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Abstract
We provide a finite volume approximation in dimension d ≥ 1 to a quasilinear parabolic equation
with discontinuous hysteresis modelling a phase change, arising as a singluar limit of a pseudo-
parabolic regularisation of a foward-backward diffusion equation. The convergence of the numerical
solution to a suitable weak entropy solutions is shown under a parallelism assumption between the
nonlinearities driving the evolution in each phase. The main challenge lies in the treatment of the
discontinuous hysteresis operator in the proof of the compactness of the sequence of approximate
solutions. This is achieved by regularising the hysteresis operator with a continuous one for which
Hilpert inequalities are accessible and let us obtain crucial uniform translation estimates in L1 in
space. Numerical simulations, computed using a Julia-based framework for the finite volume dis-
cretisation of reaction-diffusion equations, are shown.

Keywords: Quasilinear parabolic equation, discontinuous hysteresis operator, finite volume
method, entropy solutions.

1 Introduction
We consider the following quasilinear parabolic problem in the variables (u, v, λ) on the time inter-
val [0, T ], with T > 0 fixed and on the d-dimensional torus Td:

Diffusion equation:
∂tu−∆v = 0 in (0, T )× Td

u = β(v, λ) in [0, T )× Td

u|t=0, v|t=0, λ|t=0 = u0, v0, λ0 ∈ L∞(Td)× L∞(Td)× L∞(Td; [0, 1])

(1)

where β(v, λ) := (1− λ)κ0(v) + λκ1(v) is a convex combination between two continuous increasing
functions κ0, κ1 such that κ0 < κ1 on R. A hysteresis relation between λ and v closes the set of
equations:

Hysteresis relation:
λ = kP (v, λ

0) in [0, T )× Td (2)
where P = (P0, P1) is a couple of real values with P0 < P1 and the operator kP is a hysteresis
operator called the completed delayed relay operator with thresholds P : the operator kP (·, λ0) sets
λ to 0 when v passes below P0 and sets it to 1 when v passes above P1 (see a complete description
in [26]). This operator is nonlocal in time, since the value kP (v, λ

0)(t) cannot be deduced from
the local values of v in a neighbourhood of t. This effectively introduces a memory effect in the
diffusion equation (1): the variable λ indicates the progress of the transition between two phases
with distinct diffusive properties (characterised by κi, i = 0, 1). A graphical description of the dy-
namics of this operator is seen on Figure 1, while its precise formulation is provided later in section 2.

We adopt a thermodynamical point of view for this model (see [11, 4]), u can be interpreted as
the enthalpy density, v the temperature and λ the phase fraction.
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Figure 1: The graph and dynamics of the completed delayed relay operator kP .

The set of equations (1)-(2) can arise as the singular limit as ν → 0 of a third order pseudo-
parabolic equation:

∂tuν −∆ϕ(uν) = ν∆∂tuν (3)

with ϕ a coercive and cubic-shaped nonlinearity (see Figure 2 for a graphical representation).

c0 c1

P0

P1

u

φ(u) φ0

φ1

Figure 2: Cubic-shaped thermodynamical law ϕ(u) = u(u2 − 1).

The properties, stability and asymptotic behaviour of the pseudo-parabolic equation (3) with
fixed ν > 0 have been widely studied e.g. in [17, 18]. Equations (1)-(2) and (3) have applications
in a broad variety of models in ecology and population dynamics [18, 19], physical models of phase
change [4] or image processing for denoising without losing contrast, in a similar spirit as for nu-
merical use of the Perona-Malik equation [12, 9].

In the limit ν → 0 in (3), the functional relation v = ϕ(u) is not preserved due to the asymptotic
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explosion of the rate of oscillations generated by the backward diffusion in the spinodal region
u ∈ [c0, c1]. However the weak-∗ relative compactness of the sequence (uν)ν>0 in L∞(Td) gives rise
to the parameter λ: the functional relation u = β(v, λ) as well as entropy inequalities relating λ
and v are proven in [20]. They take the form:

∂tG(v) ≤ g(v)∂tβ(v, λ) (4)

for all nondecreasing g ∈ C1(R) with G = (1 − λ)G ◦ κ0 + λG ◦ κ1 and G′ = g ◦ ϕ. It turns
out that the entropy inequalities (4) are a way of encoding a weak formulation of the hysteresis
operator kP (see Proposition 2.1) and are very usefual for the definition of weak solutions to (1)-(2).

As explained in the initial works of Plotnikov [20, 21] ϕ determines the parameters P0, P1 and
the functions κ1 and κ0 appearing in (1)-(2):

∗ P0 (resp. P1) is the value of the local minimum (resp. maximum) of ϕ which is attained at
c1 (resp. c0).

∗ κ0 (resp. κ1) is some extension of the inverse of ϕ0 := ϕ|(−∞,c0] (resp. ϕ1 := ϕ|[c1,+∞)).

Note that the choices of the extensions for κ0 have no incidence on the original problem due to the
form of the hysteresis operator kP in (2): if v > P1, then λ = 1 and β(v, λ) = κ1(v) and hence
the definition of κ0 above P1 has no impact on the equations. The same comment follows for the
extension of κ1 below P0.
The analysis of parabolic equations involving hysteresis, either in the bulk equation [24], or on the
boundary, is an important subject of investigation for the study of many physical systems (ferromag-
netisme, continuum mechanics). In [25] Visintin provides the continuous analysis of the diffusion
model with hysteresis (1) - (2) with linear and parallel κ0 and κ1. To this day, the uniqueness of
solutions in higher dimensions remains an open question. A thorough answer exists in dimension 1,
let us mention [16] in which the authors show the well-posedness of pure-phase solutions (λ ∈ {0, 1})
in dimension 1 with a Hölder-regular free boundary. The work of Terracina [23] is key in under-
standing that a class of solutions allowing passage in the spinodal can not enjoy uniqueness. If the
continuous model still lacks a rigorous treatment of its well-posedness, it seems that the work of
Visintin [25] paves a way to a suitable class of solutions by introducing an ϵ-regularisation of the
delayed-relay operator (see Figure 3). Taking the limit ϵ → 0 selects a restricted class of solutions
we may call entropy-process solutions. While it is claimed in [25] that the continuity of the flow in
L1 holds for the entropy-process solutions, it appears that a subtle technical flaw in the proof of
this claim was found by the authors and therefore we do not rely on this result.

The goal of this work is to provide a converging numerical scheme for suitable weak solutions of
Problem (1)-(2). In dimension d = 1, numerical experiments already exist in the literature. The 1D
finite difference discretisation of the pseudo-parabolic regularisation (3) was originally investigated
by Elliott in [4] and by Evans and Portilheiro in [5] and later studied more finely by Mascia and
Lafitte in [13] by the use of spectral methods. It is found that the pseudo-parabolic regularisation
is unsuited for efficient approximation due to the oscillations generated in the spinodal region. The
semi-discrete 1D lattice regularisation of the forward-backward equation ∂tu = ∆ϕ(u) was analysed
by Helmers and Herrmann in [10]. They show the convergence of this lattice regularisation to a
Stefan problem with a hysteresis behaviour in the Stefan condition.
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Figure 3: The graph and dynamics of the regularised delayed relay operator kϵP .

Finite volume methods are widely regarded as a natural discretisation of entropy solutions of
conservation laws [15, 14]. Their structure-preserving nature makes them ideal to run simulations
with discrete counterparts of properties of the continuous model. While not restricted to hyperbolic
models, the physical soundness of the finite volume approximation lead to successful implementa-
tion of phase change models and degenerate advection-diffusion equations [2, 7, 8, 1].

To the authors’ knowledge, there exist no converging discretisation of (1)-(2) in dimension d > 1.
Let us be given a time-space finite volume discretisation D of (0, T )× Td, i.e. an admissible mesh
M = (T , E ,P) consisting of control volumes tiling Td, edges and center points (see Definition 3.1)
and a time discretisation (tn)0≤n≤N . In this article we provide some properties and the convergence
of the following implicit finite volume scheme:

uϵ,n+1
K − uϵ,n

K

∆t
=

1

mK

∑
L∈N (K)

τK|L

(
vϵ,n+1
L − vϵ,n+1

K

)

uϵ,n
K = β(vϵ,nK , λϵ,n

K )

λϵ,n+1
K

 =

∈

Γϵ(v
ϵ,n+1
K , λϵ,n

K ) if ϵ > 0

Γ0(v
0,n+1
K , λ0,n

K ) if ϵ = 0

(5)

for all n ∈ {0, ..., N − 1}, K ∈ T . Also uϵ,0
K , vϵ,0K , λϵ,0

K satisfy,

vϵ,0K =
1

mK

ˆ
K

v0(x) dx, λϵ,0
K = Γ0(v

ϵ,0
K , λϵ,0

K ), uϵ,0
K = β(v0K , λ0

K)

Here Γ0 (resp. Γϵ), defined in section 2, is a discretisation of the completed delayed-relay operator
(resp. its regularisation): see Figure 4. Here K ∈ T is any control volume of some admissible mesh
of Td, n ∈ 0, ..., N − 1 is the time-step and ϵ ≥ 0 is the regularisation parameter of the hysteresis
operator.
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Figure 4: The graphs of Γϵ(·, µ) (ϵ = 0.2) and Γ0(·, µ)

We denote size(D) = max

{
max
K∈T

diam(K), max
0≤n≤N−1

tn+1 − tn
}

. Let (Dh)h>0 be a sequence of

discretisations of (0, T ) × Td such that size(Dh) −→ 0 as h → 0 and such that Mh is a periodic
mesh (see Definition 4.1). Our main result is the following convergence theorem.

Theorem 1.1. Assume ϵ ≥ 0 and that κ0 and κ0 satisfy some technical assumptions (see (A1)ϕ-
(A2)ϕ later). For h > 0, let (uϵ

h, v
ϵ
h, λ

ϵ
h) be the unique solution of (5) on Dh.

Then there exists a weak entropy solution (uϵ, vϵ, λϵ) of (1)-(2) (see Definition 2.1) such that,
up to a subsequence:

(uϵ
h, v

ϵ
h, λ

ϵ
h) −→

h→0
(uϵ, vϵ, λϵ) strongly in Lp((0, T )× Td) for all 1 ≤ p < +∞

Structure of the article: In section 2 we give the mathematical formulation of the hysteresis
operator kP and its regularisation kϵP , the main assumptions on ϕ (equivalently on κi) and we define
the notion of weak entropy solutions for (1)-(2) (see Definition 2.1). Our notion is motivated by
Proposition 2.1 which rigorously establishes the entropy inequalities (4) as a suitable formulation
of the dynamics of kP .

In section 3 we show preliminary results on the scheme (5): a discrete maximum principle, the
existence and uniqueness of solutions, the asymptotic preservation in the limit ϵ → 0. In particular
two distinct but equivalent formulations (on v and u) are used for the analysis, the formulation on
the enthalpy u is useful for the concrete implementation of the scheme. The section is concluded
by the proof of discrete entropy inequalities.

We provide, in section 4, the essential discrete estimates for the convergence. We find uniform
H1((0, T ) × Td) estimates for v, BV estimates in time for u and λ. The BV estimates in space
needed for the compactness of approximate solutions in L1 are only achieved under the paralllism
assumption (A2)ϕ and on periodic meshes.
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In section 5, we show the main result Theorem 1.1 using estimates of the previous section.

Last, in section 6 we describe the algorithm which uses a Julia-based finite volume framework
VoronoiFVM.jl, developed by one of the coauthors of this work. We further provide various numeri-
cal experiments in dimensions 1 and 2, not on the torus but on a bounded domain with homogeneous
Neumann boundary conditions.

2 Main assumptions, hysteresis operators and weak entropy
solutions

We here make the statement of Theorem 1.1 precise by giving the main assumptions on ϕ (or κi

equivalently) and by describing the notion of weak entropy inequalities by providing the equivalence
between weak formulations of the hysteresis operator kP (see Proposition 2.1).

2.1 Assumptions on ϕ and/or κi

The general assumptions we make on ϕ are the following:

(A1)ϕ



(a) ϕ : R −→ R is locally Lipschitz continuous and for each M > 0, we denote by Lϕ(M) < +∞
the Lipschitz constant of ϕ on [−M,M ].

(b) There exist c0 < c1 such that ϕ is increasing on (−∞, c0] and [c1,+∞), and decreasing on
[c0, c1].

(c) |ϕ(u)| −→
|u|→+∞

+∞.

The example displayed on Figure 2 is ϕ(u) = u(u2 − 1), associated to the double-well potential.
It satisfies assumption (A1)ϕ.

While most of the analysis carried out later on a finite volume numerical scheme holds under
the general assumption (A1)ϕ, an important discrete BV estimate in space is obtained under the
following additional assumption on ϕ:

(A2)ϕ There exists a positive constant δ > 0 such that

κ1(v)− κ0(v) = δ for all v ∈ [P0, P1]

Assumption (A2)ϕ implies that the increasing monotone branches of ϕ are parallel i.e. identical up
to a translation of size δ in the range [P0, P1] (see a graphical representation on Figure 5). Under
assumption (A2)ϕ and in light of the independence of the choice of extension for κ0 and κ1, we
can write

β(v, λ) = κ0(v) + δλ

thereby the nonlinearity no longer contains multiplicative terms mixing v and λ. In such a case, if
κ0 is affine with unit slope and δ = 1, we are in the setting studied by Visintin in [25].
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Figure 5: Example of ϕ satisfying (A2)ϕ, here ϕ0(u) =
sin(5u)+5u

2 − 1
2 .

2.2 Mathematical formulations of kP

Now we introduce the mathematical formulations of the completed delayed relay operator kP (see
[25, 25]). Given v ∈ W 1,1(0, T ;R) ↪→ C([0, T ];R) and ξ ∈ [0, 1], we say that λ ∈ kP (v, ξ) if
λ : [0, T ] −→ [0, 1] is measurable and if it satisfies the following conditions,

λ(0) =


0 if v(0) < P0

ξ if v(0) ∈ [P0, P1]

1 if v(0) > P1

(6)

For t ∈ (0, T ], the following confinement conditions are satisfied:

λ(t) ∈


{0} if v(t) < P0

[0, 1] if v(t) ∈ [P0, P1]

{1} if v(0) > P1

(7)

And for any t ∈ (0, T ], the following dissipation conditions are satisfied:
if v(t) ̸= P0, P1, then λ is constant in a neighbourhood of t

if v(t) = P0, then λ is nonincreasing in a neighbourhood of t

if v(t) = P1, then λ is nondecreasing in a neighbourhood of t

(8)

Weak formulations of kP : The completed delayed relay operator kP : W 1,1(0, T ) × [0, 1] −→
P(BV (0, T )) is a multi-valued operator which is closed (strong in W 1,1, weak-∗ in BV (0, T )) and
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discontinuous (i.e. no continuous selection exist). The reason for using this multivalued operator
instead of any other single-valued selection k̃P such that k̃P (v, ξ) ∈ kP (v, ξ) (e.g. the outer or
inner relay h+

P , h−
P ) is because k̃P : W 1,1(0, T ) × [0, 1] −→ BV (0, T ) does not enjoy useful weak

formulations and is therefore inqadequate for the analysis in a PDE context.

Relaxed operator: The confinement and dissipation conditions (7)-(8) have equivalent formula-
tions, which are more fitting for the weak formulation of (1)-(2). Given v ∈ W 1,1(0, T ), ξ ∈
[0, 1], we have λ ∈ kP (v, ξ) if and only if the two following relations are satisfied:
The confinement condition (7) is rewritten as

0 ≤ λ ≤ 1,

 (λ− 1)(v − P1) ≥ 0
a.e in (0, T ),

λ(v − P0) ≥ 0
(9)

and the dissipation condition (8) is equivalent to the property that for any t ∈ (0, T ],
ˆ
[0,t]

v dµ =

ˆ
[0,t]

P1 dµ
+ −
ˆ
[0,t]

P0 dµ
− =: Ψ(λ; [0, t]) (10)

where µ = ∂tλ ∈ Mb([0, T ]) is the measure representation of the distributional derivative of λ
(recall that λ ∈ BV (0, T )). Also µ+, µ− are the positive measures resulting from the Jordan
decomposition µ = µ+ −µ−. This formulation is found in e.g. [25] which proves useful in the
formulation of the weak problem in the case of β linear.

Entropy inequalities: Another formulation of the completed delayed relay operator kP can be
expressed as a family of entropy inequalities. For a given v ∈ W 1,1(0, T ) ⊂ C([0, T ]) and
λ ∈ BV (0, T ) they read:

G(v)t ≤ g(v)∂tβ(v, λ) in (0, T ) (11)

for any nondecreasing g ∈ C1(R) and where G(v) := (1 − λ)G(κ0(v)) + λG(κ1(v)) with
G′(u) = (g ◦ ϕ)(u). The quantities ∂tG(v) and ∂tβ(v, λ) are understood in the sense of
measures.

The following proposition makes the link between the dissipation conditions and the entropy
inequalities rigorous:

Proposition 2.1. Let v ∈ W 1,1(0, T ), λ ∈ BV (0, T ) and ξ ∈ R then we have the following set of
equivalences:

(i) λ ∈ kP (v, ξ).

(ii) (λ, v) satisfy (6), (9) and (10).

(iii) (λ, v) satisfy (6), (9) and (11) for any nondecreasing g ∈ C1(R).

A partial version of Proposition 2.1 is stated in [21, Theorem 1.2]. We provide a complete proof
in Appendix A.
Remark 2.1. Note that the entropy inequalities (11) depend a priori on ϕ and the associated
functions κ0, κ1. However the equivalence result above shows that the inequalities in fact encode a
relationship between v and λ which is independent of the specific ϕ satisfying (A1)ϕ.
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Regularisation of the delayed relay operator For the purpose of the analysis (both continu-
ous and numerical) it is important to introduce the ϵ-regularisation of the hysteresis operator. Let
ϵ > 0, we introduce kϵP : W 1,1(0, T ) × [0, 1] −→ W 1,1(0, T ) defined by an implicit relation. For
(v, ξ) ∈ W 1,1(0, T )× [0, 1], we have

λ = kϵP (v, ξ)
def⇐⇒ λ ∈ kP (v − ϵ(2λ− 1), ξ) (12)

The operator kϵP is now single-valued and continuous from W 1,1(0, T ) onto BV (0, T ) (see Figure 3).
The reason for introducing the regularisation (12) is because it allows to exploit specific inequalities,
called Hilpert inequalities (see [22]), to be used in the proof of an L1 contraction inequality in λ
and v. In the discrete analysis, this contraction inequality passes to the limit as ϵ → 0 and allows
to obtain the strong compactness of the sequence of approximate solutions in L1, crucial for the
convergence result in this nonlinear setting.

2.3 Weak entropy solutions to the forward-backward diffusion equation
In the weak formulation of the equations, we choose the entropy inequalities to describe the dis-
sipation condition. They allow to express a suitable notion of weak solutions under the general
assumption (A1)ϕ.

Definition 2.1. Assume ϵ ≥ 0. Let (u0, v0, λ0) ∈ L∞(Td) be given initial conditions such that
u0 = β(v0, λ0). We say that (uϵ, vϵ, λϵ) ∈ L∞((0, T )× Td) is a weak entropy solution of (1)-(2) if

(i) vϵ ∈ L2((0, T ), H1(Td)) and for any ξ ∈ C∞
c ([0, T )× Td), we have,

ˆ T

0

ˆ
Td

−uϵ∂tξ +∇vϵ · ∇ξ dxdt+

ˆ
Td

u0(x)ξ(0, x) dx = 0

(ii) Confinement condition:

0 ≤ λϵ ≤ 1,

 (λϵ − 1)(wϵ − P1) ≥ 0
a.e in (0, T )× Td,

λ(w − ϵ− P0) ≥ 0

where wϵ := vϵ − ϵ(2λϵ − 1).

(iii) Entropy inequalities: for any nondecreasing g ∈ C1(R) such that g, g′ ∈ Cb(R), and any
ξ ∈ C∞

c ((0, T )× Td), ξ ≥ 0, we have,
ˆ T

0

ˆ d

T
−G(wϵ)∂tξ + β(wϵ, λϵ)∂t(g(wϵ)ξ) dx dt ≤ 0

Remark 2.2. In the linear case, Visintin provides a distinct formulation of weak solutions which rely
on the weak dissipation condition (10). Under the slightly more general assumption (A1)ϕ-(A2)ϕ,
it is also possible to provide a notion of weak solutions where the entropy inequalities are replaced
by the weak dissipation condition:ˆ

Td

K0(uϵ(t, x))−K0(u
0(x)) + δΨϵ(λϵ(·, x), [0, t]) dx+

ˆ ˆ
(0,t)×Td

|∇vϵ|2 dx ≤ 0

for all t ∈ [0, T ], where K ′
0 = κ0 and Ψϵ(λ(·, x), [0, t]) := Ψ(λ(·, x)), [0, t])+2ϵ(λ(t, x)−λ0(x))(λ(t, x)+

λ0(x)− 1), recalling Ψ is defined in (10).
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3 Finite volume discretisation of entropic solutions and ele-
mentary results

We give here a detailed description of the finite volume approximation scheme (5) used to approach
weak entropy solutions of the forward-backward diffusion problem and show some of its elementary
properties. We first describe the basic notations for finite volume approximation and related discrete
spaces and norms. We then introduce our implicit finite volume scheme for both the original and
regularised hysteresis relation (i.e. ϵ ≥ 0). It is possible to formulate the scheme in terms of the
temperature v or the enthalpy u leading to two equivalent formulations when ϵ > 0 but a priori
distinct when ϵ = 0. While the temperature formulation is well-suited for uniqueness, the enthalpy
formulation naturally enjoys solvability and L∞-stability. In light of these results, we can actually
show the equivalence between the temperature and the enthalpy formulations when ϵ = 0.

3.1 Finite volume discretisation of (0, T )× Td

For the space discretisation, we describe the notion of admissible mesh which is a natural framework
for the discretisation of conservation laws. We hereafter define a standard notion (found e.g. in [6])
of admissible mesh for the torus Td.

Definition 3.1. Let M := (T ,F ,P) be a triplet satisfying the following description:

Control volumes: T is a finite set of disjoint open convex bounded polygons such that,

Td =
⋃

K∈T
K.

Egdes: E is a family of closed subsets Td called edges contained in hyperplanes and with positive
Lebesgue measure of dimension d− 1.

Center points: P is a finite family of points in Td.

We say that M is an admissible mesh of the polygonal domain Td if the following conditions
are satisfied:

(i) For any K ∈ T , there exists a subfamily EK ⊂ E of edges such that ∂K =
⋃

σ∈EK
σ.

(ii) For any σ ∈ E , there exist two distinct control volumes K,L ∈ T such that σ = K|L =: K∩L.

(iii) For each K ∈ T there exists a unique center point xK ∈ P such that xK ∈ K. Additionally,
for any K,L ∈ T , if K|L ∈ E then the line segment [xK , xL] is orthogonal to K|L.

If M = (T , E ,P) is an admissible mesh of Td, we can define the following complementary
notations:

Neighbouring volumes: For any K ∈ T , we define

N (K) := {L ∈ T : K|L ∈ E}

Geometric quantities: For any σ = K|L ∈ E , and for any K ∈ T we define the following positive
quantities

12



Measure of K: mK := mK is the d-dimensional Lebesgue measure of K
Measure of σ: mσ := Hd−1(σ) is the (d− 1)-dimensional Hausdorff measure of σ.

Distance: dσ := |xK − xL|.
Transmissibility: τσ := mσ

dσ
.

Normal vector: nK,σ := xL−xK

dσ

(
∈ Sd−1

)
is the outward unit normal vector of the vol-

ume K on its edge σ.

Size of M: ∆x := max{diam(K) | K ∈ T }

Figure 6: A control volume K in an admissible mesh.

When M is an admissible mesh of Td and (tn)0≤n≤N is such that 0 = t0 < t1 < ... < tN = T
we say that the couple D := (M, (tn)0≤n≤N ) is an admissible discretisation of size (h, k) where

∆t := max
{
tn+1 − tn | 0 ≤ n ≤ N − 1

}
The usual finite dimensional functional spaces associated with admissible meshes are the piecewise
constant reconstructions on M and D:

X(M) :=

{∑
K∈T

uK1K | uK ∈ R,∀K ∈ T
}

X(D) :=

{
N−1∑
n=0

∑
K∈T

vnK1[tn,tn+1)×K | vnK ∈ R,∀ 0 ≤ n ≤ N − 1, ∀K ∈ T
}

For any p ∈ [1,+∞], X(M), (resp. X(D)) is a finite dimensional subspace of Lp(Td) (resp.
Lp((0, T )×Td)). Hence they are naturally equipped with the corresponding induced topology. We
also equip X(M) and X(D) with usual topologies for the analysis of the convergence of the scheme.
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Definition 3.2. Let u ∈ X(M), v ∈ X(D) and let p ∈ [1,+∞].

(i) The H1(Td)-discrete semi-norm and norm are

|u|2H1(Td),M :=
∑

K|L∈E

τK|L(uK − uL)
2

∥u∥2H1(Td),M := ∥u∥2L2(Td) + |v|2H1(Td),M

(ii) The Lp(0, T ;H1(Td))-discrete semi-norm and norm are

|v|pLp(0,T ;H1(Td)),D =

N−1∑
n=0

(tn+1 − tn)|v(tn, ·)|p
H1(Td),M

∥v∥pLp(0,T ;H1(Td)),D = ∥v∥pLp(0,T ;L2(Td)) + |v|pLp(0,T ;H1(Td)),D

(iii) The H1(0, T ;Lp(Td))-discrete semi-norm and norm are

|v|2H1(0,T ;Lp(Td)),D =

N∑
n=0

1

tn+1 − tn
∥∥v(tn+1, .)− v(tn, .)

∥∥2
Lp(Td)

∥v∥2H1(0,T ;Lp(Td)),D = ∥v∥2L2(0,T ;Lp(Td)) + |v|2H1(0,T ;Lp(Td)),D

3.2 Temperature-phase formulation
Let ϵ ≥ 0 be fixed and let us introduce an implicit finite volume scheme for (1)-(2) on a given
admissible discretisation D := ((tn)0≤n≤N ,M), with unknowns (uϵ

D, v
ϵ
D, λ

ϵ
D) ∈ X(D). The variable

uϵ
D is called the discrete enthalpy density, vϵD is called the discrete temperature and λϵ

D is called the
discrete phase fraction.

Let us be given the initial data (u0, v0, λ0) ∈ L∞(Td) satisfying the initial hysteresis relation.
To describe this relation let us introduce the region of R2

R0 := (−∞, P0]× {0} ∪ [P0, P1]× [0, 1] ∪ [P1,+∞)× {1}

and for ϵ > 0 we define:

Rϵ :=
{
(v, λ) ∈ R2 | (v − ϵ(2λ− 1), λ) ∈ R0

}
These regions correspond to the confinement conditions for both the regularised (ϵ > 0) and non-
regularised (ϵ = 0) hysteresis operator. Therefore we ask that

(v0, λ0) ∈ Rϵ a.e. in Td

The knowledge of v0 and λ0 suffice to determine u0 through the condition u0 = β(v0, λ0). The
discrete initial data v0,ϵM ∈ M is taken as the mean value of v0 over the individual volumes of M
i.e. for each K ∈ T we define

vϵ,0K :=
1

mK

ˆ
K

v0(x) dLd(x) (13)
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The initial value λϵ,0
M must satisfy the confinement condition (9) and uϵ,0

M is given by the functional
relation. That is we assume:

λϵ,0
K ∈ Γϵ(v

ϵ,0
K , λϵ,0

K ), uϵ,0
K := β(vϵ,0K , λϵ,0

K ) (14)

where for λ ∈ [0, 1], v ∈ R we recall β(v, λ) := (1 − λ)κ0(v) + λκ1(v) and in the case ϵ = 0,
Γ0 : R× [0, 1] → P(R) is a multi-valued map which describes the hysteresis relation (2) and defined
as follows:

Γ0(v, λ) :=


{0} if v < P0

[0, λ] if v = P0

{λ} if P0 < v < P1

[λ, 1] if v = P1

{1} if v > P1

In the case ϵ > 0 then Γϵ(v, λ) is single-valued and is defined as the unique real number z such that
z ∈ Γ0(v − ϵ(2z − 1), λ). Explicitely, we can write:

Γϵ(v, λ) :=



0 if v < P0 − ϵ
v − P0 + ϵ

ϵ
if v ∈ [P0 − ϵ, P0 − (1− λ)ϵ]

λ if v ∈ [P0 − (1− λ)ϵ, P1 + λϵ]
v − P1

ϵ
if v ∈ [P1 + λϵ, P1 + ϵ]

1 if v > P1 + ϵ

(15)

These maps are in fact a good tool for the discretisation of the hysteresis operator as our convergence
result later will show. See Figure 7 for a graphical representation of both Γ0 and the regularisation
Γϵ.

P0 − εP0 P1P1 + ε

0

µ

1

v

λ
Γε(·, µ)

P0 P1

0

µ

1

v

λ
Γ0(·, µ)

Figure 7: The graphs of Γϵ(·, µ) and Γ0(·, µ)

Hence for ϵ ≥ 0, the discrete problem reads:

Find (uϵ
D, v

ϵ
D, λ

ϵ
D) ∈ X(D) such that for any K ∈ T , 0 ≤ n ≤ N − 1
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

uϵ,n+1
K − uϵ,n

K

∆t
=

1

mK

∑
L∈N (K)

τK|L

(
vϵ,n+1
L − vϵ,n+1

K

)

uϵ,n
K = β(vϵ,nK , λϵ,n

K )

λϵ,n+1
K

 =

∈

Γϵ(v
ϵ,n+1
K , λϵ,n

K ) if ϵ > 0

Γ0(v
0,n+1
K , λ0,n

K ) if ϵ = 0

(16)

For a function v ∈ X(M), the term τK|L(vL − vK) corresponds to the two-point flux of v across
the edge σ and the sum

∑
L∈N (K) τK|L(vL − vK) can therefore be interpreted as an approximation

of the flux-balance on the boundary of the volume K.

Formally we justify the finite volume approximation of −∆v by applying Stokes formula:

−∆v(tn, xK) =
1

mK

ˆ
∂K

∇v · ndHd−1 + o∆x→0(1)

−→
discretisation

1

mK

∑
L∈N (K)

(vK − vL)

dσ
mσ

=
1

mK

∑
L∈N

τK|L(vK − vL)

Below we show that in the discrete problems, the limit ϵ → 0 is stable.

Lemma 3.1 (Stability as ϵ → 0). Assume that for each ϵ > 0, (uϵ
D, v

ϵ
D, λ

ϵ
D) is a solution to (16)

and that we have the convergence

(uϵ
D, v

ϵ
D, λ

ϵ
D) −→

ϵ→0
(u0

D, v
0
D, λ

0
D) a.e. in (0, T )× Td

Then (u0
D, v

0
D, λ

0
D) is a solution to (16) for ϵ = 0.

Proof. By continuity of β : R2 −→ R and of for each K ∈ M of the scheme function

SK :

{
R4 −→ R

(u1, u2, v1, v2) 7−→ u2−u1

∆t − 1
mK

∑
L∈N (K) τK|L(v2 − v1)

it is clear that the first and second equations of (16) are verified by (u0
D, v

0
D, λ

0
D). For the third

equation, note that the graph of Γϵ is closed for any ϵ ≥ 0. Now the graph of Γϵ converges to the
graph of Γ0 as ϵ → 0 for the Hausdorff distance in R3; This fact leads to the convergence for the
third equation as ϵ → 0.

Remark 3.1. The discrete problem (16) may be considered as a problem posed purely in terms of
only two unknowns: the temperature v and the phase fraction λ. This is due to the functional
relation u = β(v, λ). Hence, we refer to this formulation as the temperature-phase formulation.

16



3.3 Enthalpy-phase formulation
We can express the problem in a different form, called the enthalpy-phase formulation, in which the
enthalpy variable u becomes the main unknown of the problem, instead of v. This formulation is
well-suited for the analysis of the existence and the L∞-stability of the scheme as we will see in the
next section.

Let ϵ > 0 and λ ∈ [0, 1], observe that Γϵ(·, λ) is continuous non-decreasing, and because of the
strict monotonicity of each κi, the map γϵ(·, λ) := β(·,Γϵ(·, λ)) is continuous increasing. Therefore,
we may define its inverse:

Φϵ :

{
R× [0, 1] −→ R

(u, λ) 7−→ [β(·,Γϵ(·, λ))]−1
(u)

(17)

For a graphical representation of the graphs of Φ0 and Φϵ see Figure 8.

P0 − ε

P0

P1

P1 + ε

u

v
Φε(·, µ1)

Φε(·, µ2)

P0

P1

u

v
Φ0(·, µ1)

Φ0(·, µ2)

Figure 8: The graphs of Φϵ(·, µ1), Φϵ(·, µ2) and Φ0(·, µ1), Φ0(·, µ2) for µ1 ≤ µ2

We gather some elementary properties of Φϵ in the following lemma.

Lemma 3.2. Assume ϵ > 0, Φϵ : R× [0, 1] −→ R has the following properties,

(i) For any λ ∈ [0, 1], u 7→ Φϵ(u, λ) is nondecreasing.

(ii) For any u ∈ R, λ 7→ Φϵ(u, λ) is nonincreasing.

(iii) For any u ∈ (−∞, κ0(P0 − ϵ)] ∪ [κ1(P1 + ϵ),+∞), λ ∈ [0, 1], we have

Φϵ(u, λ) = ϕ(u).

(iv) For any M > 0 such that [κ0(P0 − ϵ), κ1(P1 + ϵ)] ⊂ [−M,M ], for any u1, u2 ∈ [−M,M ] and
λ1, λ2 ∈ [0, 1],

|Φϵ(u1, λ1)− Φϵ(u2, λ2)| ≤ Lϕ(M)(|u1 − u2|+ Cκ(M)|λ1 − λ2|).
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where Cκ(M) := sup
v∈ϕ([−M,M ])

{κ1(v)− κ0(v)}.

(v) Φϵ −→
ϵ→0

Φ0 uniformly on R× [0, 1] and Φ0(·, λ) is a left inverse of γϵ(·, λ) i.e. for any v ∈ R,

Φ0(β(v,Γ0(v, λ)), λ) = {v}. (18)

(vi) For any (u, λ) ∈ R× [0, 1], let v := Φϵ(u, λ) then

v = Φϵ(u,Γϵ(v, λ)).

Proof. (i) & (ii): This is a direct consequence of the fact that γϵ is increasing and continuous with
respect to u and λ.

(iii): Let λ ∈ [0, 1], and assume that u ≤ κ0(P0 − ϵ). Denote v := Φϵ(u, λ), µ := Γϵ(v, λ); by
definition of Φϵ (17) we have u = β(v, µ), therefore

κ0(P0 − ϵ) ≥ β(v, µ)

= (1− µ)κ0(v) + µκ1(v) (19)

Now because κ0 ≤ κ1 on R, we also have κ0(P0 − ϵ) ≤ (1 − µ)κ0(P0 − ϵ) + µκ1(P0 − ϵ).
Combining this with (19) we find

(1− µ)(κ0(P0 − ϵ)− κ0(v)) + µ(κ1(P0 − ϵ)− κ1(v)) ≥ 0

From which we deduce that there exists i ∈ {0, 1} such that κi(v) ≤ κi(P0 − ϵ) and by
monotonicity of κi this implies v ≤ P0 − ϵ. Hence from (15) we get µ = 0 and therefore
u = β(v, 0) = κ0(v), finally Φϵ(u, λ) = v = κ−1

0 (u) = ϕ(u). A symmetrical reasoning is
applied for the case u ≥ κ1(P1 + ϵ).

(iv): By assumption on M and since κi are inverses of the locally Lipschitz, increasing branches of
ϕ, it is not restrictive to assume that for any v1, v2 ∈ ϕ([−M,M ]),

|κi(v1)− κi(v2)| ≥
1

Lϕ(M)
|v1 − v2| (20)

Lipschitz constant in u: Let u1, u2 ∈ [−M,M ] and λ ∈ [0, 1]. We have vj := Φϵ(uj , λ) ∈
ϕ([−M,M ]), j = 1, 2. We infer from the definition of Φϵ that,

u1 − u2 = β(v1, µ1)− β(v2, µ2)

=

(
1− µ1 + µ2

2

)
(κ0(v1)− κ0(v2))

+
µ1 + µ2

2
(κ1(v1)− κ1(v2)) + c(v1, v2)(µ1 − µ2)

where µj := Γϵ(vj , λ) and c(v1, v2) := (κ1−κ0)(v1)+(κ1−κ0)(v2)
2 > 0. Now κ0, κi and Γϵ(·, λ)

are nondecreasing, hence the three terms appearing in the last identity have the same sign.
Therefore, taking the absolute value and using (20) twice, yields

|u1 − u2| ≥
1

Lϕ(M)
|v1 − v2|+ c(v1, v2)|µ1 − µ2| ≥

1

Lϕ(M)
|v1 − v2|

18



Which finally yields Lϕ(M) as a local Lipschitz constant of Φϵ on [−M,M ] × [0, 1] in the
variable u.
Lipschitz constant in λ: Let u ∈ [−M,M ], λ1, λ2 ∈ [0, 1]. We have vj := Φϵ(u, λj) ∈
ϕ([−M,M ]) and from the definition of Φϵ we find this time

u− u = β(v1, µ1)− β(v2, µ2)

0 =

(
1− µ1 + µ2

2

)
(κ0(v1)− κ0(v2))

+
µ1 + µ2

2
(κ1(v1)− κ1(v2)) + c(v1, v2)(µ1 − µ2)

where µj := Γϵ(vj , λj). Again the first two terms have the same sign, hence µ1 − µ2 must
be of the opposite sign. Without loss of generality, assume that v1 > v2, hence Γϵ(v1, λ1) <
Γϵ(v2, λ2). By the structure of Γϵ this implies that 0 < µ2 − µ1 < λ2 − λ1. Finally using (20)
we find,

c(v1, v2)|λ1 − λ2| ≥
1

Lϕ(M)
|v1 − v2|

Hence denoting Cκ(M) := supv∈ϕ([−M,M ]){κ1(v)− κ0(v)} < +∞, we can take Cκ(M)Lϕ(M)
as a local Lipschitz constant of Φϵ on [−M,M ]× [0, 1] in the variable λ.

(v): The Lipschitz constant of Φϵ is independent of ϵ > 0, hence {Φϵ}0<ϵ≤1 is equibounded and
equicontinuous on the compact K := [κ0(P0 − 1), κ1(P1 + 1)] × [0, 1]. By the Arzelà-Ascoli
theorem, Φϵ −→

ϵ→0
Φ uniformly on K, up to some subsequence and for some continuous function

Φ. Property (iii) allows to infer the uniform convergence on R×[0, 1]. Now let v ∈ R, λ ∈ [0, 1]
and µ ∈ Γ0(v, λ). Remark that we can always find a sequence (vϵ)ϵ>0 ⊂ R such that vϵ → v
and with Γϵ(vϵ, λ) = µ. Hence we find that for any ϵ > 0,

Φϵ(β(vϵ, µ), λ) = vϵ

Then (18) falls from the uniform convergence of Φϵ, upon taking the limit ϵ → 0. Since any
limit of Φϵ has to fulfill this property, we find that the limit must be unique and we denote it
by Φ0.

(vi): Let u ∈ R and λ ∈ [0, 1]. Denote v := Φϵ(u, λ) and ṽ := Φϵ(u, λ̃) where λ̃ = Γϵ(v, λ). Note
that by definition of Φϵ, we have u = β(v, λ̃) = β(ṽ,Γϵ(ṽ, λ̃)). We want to show that v = ṽ.

Assume by contradiction that
ṽ < v (21)

Then because Γϵ(·, λ̃) is nondecreasing we find Γϵ(ṽ, λ̃) ≤ Γϵ(v, λ̃). However note that
Γϵ(v, λ̃) = λ̃, hence we have:

Γϵ(ṽ, λ̃) ≤ λ̃ (22)

Again from (21), since β(·, λ̃) is increasing, we find β(ṽ, λ̃) < β(v, λ̃) and by combining with
(22) we find β(ṽ,Γϵ(ṽ, λ̃)) < β(v, λ̃). Which by definition of Φϵ (17) implies the contradictory
statement u < u.
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We can express a new formulation thanks to the definition of Φϵ, written as follows
un+1
K − un

K

∆t
=

1

mK

∑
L∈N (K)

τK|L
(
Φϵ(u

n+1
L , λn

L)− Φϵ(u
n+1
K , λn

K)
)

λn+1
K = Γϵ(Φϵ(u

n+1
K , λn

K), λn
K)

Note that contrary to the temperature-phase formulation (16), the enthalpy-phase formulation
allows for an explicit update in time of the phase fraction λn

K . Remark that therefore, in the
nonregularised regime ϵ = 0, this explicit update hinders the uniqueness of the discrete solution or
the stability of the scheme as ϵ → 0. We can circumvent this loss of uniqueness with the following
observation: when ϵ > 0, Φϵ is a right inverse of γϵ, therefore for any u, λ ∈ R× [0, 1],

(1− Γϵ(Φϵ(u, λ), λ))κ0(Φϵ(u, λ)) + Γϵ(Φϵ(u, λ), λ))κ1(Φϵ(u, λ)) = u

After rearranging, we find that

Γϵ(Φϵ(u, λ), λ) =
u− κ0(Φϵ(u, λ))

κ1(Φϵ(u, λ))− κ0(Φϵ(u, λ))

Thus if we have sequences of real numbers (uϵ)ϵ>0, (λϵ)ϵ>0 such that uϵ, λϵ −→
ϵ→0

u, λ, we find by the
uniform convergence of Φϵ on R× [0, 1] (see (v) of Lemma 3.2):

Γϵ(Φϵ(uϵ, λϵ), λϵ) −→
ϵ→0

u− κ0(Φ0(u, λ))

κ1(Φ0(u, λ))− κ0(Φ0(u, λ))

This procedure allows to select the formulation which enjoys stability as ϵ → 0, written as follows:

Find (uϵ
D, λ

ϵ
D) ∈ X(D) such that for all K ∈ T , 0 ≤ n ≤ N − 1

uϵ,n+1
K − uϵ,n

K

∆t
=

1

mK

∑
L∈N (K)

τK|L

(
Φϵ(u

ϵ,n+1
L , λϵ,n

L )− Φϵ(u
ϵ,n+1
K , λϵ,n

K )
)

λϵ,n+1
K =

uϵ,n+1
K − κ0(Φϵ(u

ϵ,n+1
K , λϵ,n

K ))

κ1(Φϵ(u
ϵ,n+1
K , λϵ,n

K ))− κ0(Φϵ(u
ϵ,+1
K , λϵ,n

K ))

(23)

Below, we derive the stability of the enthalpy-phase formulation in the limit ϵ → 0.

Lemma 3.3 (Stability as ϵ → 0). Assume that (uϵ
D, λ

ϵ
D) ∈ X(D) is a solution to (23) for all ϵ > 0

and that we have the convergence

(uϵ
D, λ

ϵ
D) −→

ϵ→0
(u0

D, λ
0
D) a.e. in (0, T )× Td

Then (u0
D, λ

0
D) fulfills (23) for ϵ = 0.

The equivalence of the two formulations (16) and (23) is obvious for ϵ > 0 because Φϵ(·, λ) is a
proper inverse of γϵ(·, λ). However in the case ϵ = 0, this is no longer the case as Φ0(·, λ) is only
a left-inverse, the equivalence of the formulations in this case still needs proper analysis. A first
partial equivalence result is recorded below.
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Lemma 3.4 (Equivalence of formulations). Let ϵ > 0 and assume (vϵD, u
ϵ
D, λ

ϵ
D) is a solution of

(16) with initial conditions given by (13) and (14) then (uϵ
D, λ

ϵ
D) is a solution of (23) with identical

initial conditions.

Let ϵ ≥ 0 and assume (uϵ
D, λ

ϵ
D) is a solution of (23) with initial conditions given by (13) and

(14) and define vD ∈ X(D) as the piecewise constant reconstruction of

vnK := Φϵ(u
n
K , λn−1

K )

for n ∈ {1, ..., N} and K ∈ T .

Then (vϵD, u
ϵ
D, λ

ϵ
D) is a solution of (16) with identical initial conditions.

Remark 3.2. (i) In what follows we will see that the equivalence indeed holds for ϵ = 0 as a
consequence of the stability as ϵ → 0 and of the unique solvability of both schemes.

(ii) The property (vi) of Lemma 3.2 allows to write (23) as an implicit scheme in Λ. Indeed, we
observe that

Φϵ(u
n+1
K , λn

K) = Φϵ(u
n+1
K , λn+1

K )

for all n ∈ {0, ..., N − 1} (it also holds for n = 0) This is an important property of the
scheme for the derivation of H1 and BV estimates (see Proposition 4.1, Proposition 4.3
later). Informally, the update of the phase at the next time-step has no incidence on the
value of the temperature.

3.4 L∞-stability, unique solvability and equivalence of the discrete prob-
lems

This paragraph is dedicated to the L∞-stability and existence of a solution for the enthalpy for-
mulation for ϵ ≥ 0. We then show the uniqueness of solutions in the temperature formulation for
ϵ ≥ 0. These inquiries, along with the stability results (Lemma 3.1, Lemma 3.3), then allow to
prove the equivalence of the two formulations (16) and (23) in the case ϵ = 0 .

Proposition 3.5 (Maximum Principle). Assume ϵ ≥ 0 and that (uϵ
D, λ

ϵ
D) is a solution to (23).

Then we have the following bounds for any n ∈ {0, ..., N}, K ∈ T :

min

{
κ0(P0 − ϵ),min

Td
uϵ,0
M

}
≤ uϵ

D(t
n) ≤ max

{
κ1(P1 + ϵ),max

Td
uϵ,0
D

}
.

Proof. We prove the result by induction on 0 ≤ n ≤ N and for the first inequality only, the other
inequality being symmetric.
The base case n = 0 is obvious. Now assume the stability estimate holds up until time step tn and
denote by J ∈ T the volume on which uϵ

D(t
n+1, ·) ∈ X(M) is minimal, i.e. uϵ,n+1

J = mindT u
ϵ
D(t

n+1).

— If uϵ,n+1
J ≥ κ0(P0 − ϵ) then we are done.
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— Otherwise if uϵ,n+1
J < κ0(P0 − ϵ), then by the expression of the scheme we have

uϵ,n+1
J = uϵ,n

J +
∆t

mK

∑
L∈N (K)

τK|L

(
Φϵ(u

ϵ,n+1
L , λϵ,n

L )− Φϵ(u
ϵ,n+1
J , λϵ,n

J )
)

= uϵ,n
J +

∆t

mK

∑
L∈N (K)

τK|L

(
Φϵ(u

ϵ,n+1
L , λϵ,n

L )− ϕ(uϵ,n+1
J )

)
= un

J +
∆t

mK

∑
L∈N (K)

τK|L

(
Φϵ(u

ϵ,n+1
L , λϵ,n

L )− Φϵ(u
ϵ,n+1
J , λϵ,n

L )
)

≥ uϵ,n
J

≥ min

{
κ0(P0 − ϵ), min

K∈T
u0
K

}
By noting first from (iii) of Lemma 3.2 that Φϵ(u

ϵ,n+1
J , λ) = ϕ(uϵ,n+1

J ) for all λ ∈ [0, 1] because
uϵ,n+1
J < κ0(P0 − ϵ) and second that u 7→ Φ(u, λ) is nondecreasing. The conclusion then falls

by minimality of uϵ,n+1
J .

Proposition 3.6 (Existence for the enthalpy formulation). For any ϵ ≥ 0 there exists a solution
(uϵ

D, λ
ϵ
D) of (23).

Proof. The topological degree deg(f,W, y) ∈ Z of f ∈ C(W,RM ), W ⊂ RM open and y ̸∈ f(∂W ) ⊂
RM has the three following properties:

(d1) deg(f,W, y) ̸= 0 implies that f(x) = y admits a solution x ∈ W .

(d2) deg(Id,W, y) = 1 if y ∈ W .

(d3) λ 7→ deg(f(λ, ·),W, y) is constant on [0, 1] if f : [0, 1] × W → RM is continuous and y ̸∈
f(λ, ∂W ) for any λ ∈ [0, 1].

The construction of such a degree and its properties can be readily found in [3, Theorem 3.1].

We reason by induction. Let 0 ≤ n ≤ N − 1 and let (uϵ,n
K , λϵ,n

K )K∈T be a given solution at time
step n. Let us introduce the scheme function,

S :


[0, 1]× R|T | −→ R|T |

(
µ, (uϵ,n+1

K )K∈T

)
7−→

uϵ,n+1
K + µ

∆t

mK

∑
L∈N (K)

τK|L

(
Φϵ(u

ϵ,n+1
K , λϵ,n

K )− Φϵ(u
ϵ,n+1
L , λϵ,n

L )
)

K∈T

Any solution (uϵ,n+1
K )K∈T to the nonlinear equation,

S(1, (uϵ,n+1
K )K∈T ) = (uϵ,n

K )K∈T

is a solution of (23) for time step n+ 1.
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The continuity of S with respect to its variables comes from the continuity of Φϵ and of the basic
operations in the vector space R|T |. Now let r := max{maxK∈T |uϵ,n

K |, |κ(P0 − ϵ)|, |κ(P1 + ϵ)|}+ 1
and define W as the L∞-ball of R|T | with radius r.

From (d2), since (uϵ,n
K )K∈T ∈ W , we have deg(S(0, ·),W, (uϵ,n

K )K∈T ) ̸= 0. Also for any µ ∈ [0, 1],
(uϵ,n

K )K∈T ̸∈ S(µ, ∂W ) by virtue of Proposition 3.5.

Now from (d3) we deduce that deg(S(1, .),W, (uϵ,n
K )K∈T ) = 1 and (d1) yields the existence of a

solution.

The uniqueness of the temperature formulation is found by an energy-type argument which
is performed by induction. However because of the hysteretic nature of the problem, we cannot
obtain a more general L2-contraction result with two distinct initial conditions. The following
result crucially relies on the hypothesis that the two considered solutions start at the same initial
condition.

Proposition 3.7 (Uniqueness for temperature-phase formulation). For any ϵ ≥ 0 and any given
initial conditions (u0, v0, λ0) there is at most one solution of (16)

Proof. Assume there exists two solutions (uϵ
D, v

ϵ
D, λ

ϵ
D) and (uϵ

D, v
ϵ
D, λ

ϵ

D). Denote w := uϵ
D − uϵ

D,
z := vϵD − vϵD ∈ X(D) and µ := λϵ

D − λ
ϵ

D.

We show the result by induction on the time step n, the base case n = 0 being given by the
initial condition. Hence we assume that w(tn, ·) = z(tn, ·) = µ(tn, ·) = 0 on Td. Remark that the
conclusion w(tn+1, ·) = 0 will follow directly from the fact z(tn+1, ·) = µ(tn+1, ·) = 0. Let us now
show this last claim.

First subtract both equations (16) at time step n and volume K ∈ T to find,

β(vn+1
K , λn+1

K )− β(vn+1
K , λ

n+1

K ) =
∆t

mK

∑
L∈N (K)

τK|L
(
zn+1
L − zn+1

K

)
(24)

There exists M > 0 such that vD, vD ∈ ϕ([−M,M ]), hence our observation:(
β(vn+1

K , λn+1
K )− β(vn+1

K , λ
n+1

K )
)
zn+1
K =

(
β(vn+1

K , λn+1
K )− β(vn+1

K , λn+1
K )

)
zn+1
K

+
(
β(vn+1

K , λn+1
K )− β(vn+1

K , λ
n+1

K )
)
zn+1
K

≥ 1

Lϕ(M)

(
zn+1
K

)2
+ µn+1

K (κ1(v
n+1
K )− κ0(v

n+1
K ))zn+1

K

≥ 1

Lϕ(M)

(
zn+1
K

)2
because κ1 ≥ κ0 on R and the monotonicity of v 7→ Γϵ(v, λ). Hence multiplying (24) by mKzn+1

K

and summing over K ∈ T we find,

1

Lϕ(M)

∥∥z(tn+1)
∥∥2
L2(Td)

≤ ∆t
∑
K∈T

∑
L∈N (K)

τK|L
(
zn+1
L − zn+1

K

)
zn+1
K
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= ∆t
∑

K|L∈E

τK|L
(
zn+1
L − zn+1

K

)
zn+1
K +

(
zn+1
K − zn+1

L

)
zn+1
L

= −∆t
∑
K|L

τK|L
(
zn+1
L − zn+1

K

)2
≤ 0

We conclude that z(tn+1, ·) = 0 and consequently from (24) we find µ(tn+1, ·) = 0 by injectivity
of λ 7→ β(v, λ) for v ∈ R. This concludes our proof.

In the following proposition, concluding this first section, we show the equivalence between the
temperature-phase and the enthalpy phase formulation in every regime of regularisation ϵ ≥ 0.

Proposition 3.8. For any ϵ ≥ 0 the formulations (16) and (23) are equivalent. Consequently both
formulations satisfy the maximum principle Proposition 3.5 and enjoy unique solvability (Proposi-
tion 3.6 and Proposition 3.7).

Proof. There only remains to show that any solution of (16) must also be a solution of (23) in the
case ϵ = 0.
Let (uD, vD, λD) be any solution to (16) with ϵ = 0. For each ϵ > 0, there exists a unique solution
(uϵ

D, v
ϵ
D, λ

ϵ
D) of (16), and thanks to the maximum principle Proposition 3.5 and the stability result

Lemma 3.1, we find that this family of solutions must converge (up to subsequence) to some solution
of (16) as ϵ → 0, which by uniqueness Proposition 3.7 must be our solution (uD, vD, λD).
Additionally, we know from Lemma 3.4 that (uϵ

D, λ
ϵ
D) is a solution of (23) for ϵ > 0. Hence from

the stability of the enthalpy form Lemma 3.3 indeed is (uD, λD) a solution to (23). Hence the
conclusion.

3.5 Discrete entropy inequalities
In this last part we show the discrete counterpart to the entropy inequalities (11) between the
unknowns v and λ, in preparation for the proof of the convergence.

Proposition 3.9. Assume that ϵ ≥ 0 and that (uϵ
D, v

ϵ
D, λ

ϵ
D) is a discrete solution to (16). Then

for any K ∈ T , n ∈ {0, ..., N − 1} and g ∈ C1(R) increasing, we have

G
ϵ,n+1

K −G
ϵ,n

K ≤ g(wϵ,n+1
K )

(
βϵ,n+1
K − βϵ,n

K

)
(25)

where wϵ,n+1
K := vϵ,n+1

K − ϵ(2λϵ,n+1
K − 1), and

G
ϵ,n

K = (1− λϵ,n
K )G(κ0(w

ϵ,n+1
K )) + λϵ,n

K G(κ1(w
ϵ,n+1
K ))

with G(u) =

ˆ u

·
g ◦ ϕ(s) ds and

βϵ,n
K := β(wϵ,n

K , λϵ,n
K )

Proof. Remark that, by definition of Γϵ the target inequality (25) is independent of the choice of
continuations of κ0 outside (−∞, P1] and of κ1 outside [P0,+∞). Hence we can always assume that
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κ0 is continued by c0 above P1 and κ1 is continued by c1 below P0.

Let us write the first order Taylor expansion with integral remainder of G0 around κ0(w
n+1
K ),

we have for any v ∈ R,

G0(v) = G(κ0(w
n+1
K )) + g(ϕ(κ0(w

n+1
K )))(κ0(v)− κ0(w

n+1
K ))

+ (κ0(v)− κ0(w
n+1
K ))2

ˆ 1

0

(1− θ)G′′(θκ0(w
n+1
K ) + (1− θ)κ0(v)) dθ

= G(κ0(w
n+1
K )) + g(P1 ∧ wn+1

K )(κ0(v)− κ0(w
n+1
K ))

+ (u− κ0(w
n+1
K ))2

ˆ 1

0

(1− θ)[g′ ◦ ϕ× ϕ′](θκ0(w
n+1
K ) + (1− θ)κ0(v)) dθ (26)

Now remark that since κ0(v), κ0(w
n+1
K ) ∈ (−∞, c0], by convexity for all θ ∈ [0, 1], θκ0(w

n+1
K ) +

(1 − θ)κ0(v) ∈ (−∞, c0], which is an interval where ϕ is increasing. Since g is also increasing, the
integral remainder in (26) is positive. Let us apply this to v = wn

K to find,

G0(w
n
K) ≥ G0(w

n+1
K ) + g(P1 ∧ wn+1

K )(κ0(w
n
K)− κ0(w

n+1
K ))

Similarly for G1 we find,

G1(w
n
K) ≥ G1(w

n+1
K ) + g(P0 ∨ wn+1

K )(κ1(w
n
K)− κ1(w

n+1
K ))

Hence we find that

G
ϵ,n+1

K −G
ϵ,n

K = (1− λϵ,n+1
K )G0(w

n+1
K ) + λϵ,n+1

K G1(w
n+1
K )− (1− λϵ,n

K )G0(w
n
K)− λϵ,n

K G1(w
n
K)

≤ (λϵ,n+1
K − λϵ,n

K )(G1(w
n+1
K )−G0(w

n+1
K )) + g(P1 ∧ wn+1

K )(1− λϵ,n
K )
(
κ0(w

n+1
K )− κ0(w

n
K)
)

+ g(P0 ∨ wn+1
K )λϵ,n

K

(
κ1(w

n+1
K )− κ1(w

n
K)
)

Remark that we have,

g(P1 ∧ wn+1
K )(1− λϵ,n

K )(κ0(w
n+1
K )− κ0(w

n
K)) ≤ g(wn+1

K )(1− λϵ,n
K )(κ0(w

n+1
K )− κ0(w

n
K))

g(P0 ∨ wn+1
K )λϵ,n

K (κ1(w
n+1
K )− κ1(w

n
K)) ≤ g(wn+1

K )λϵ,n
K (κ1(w

n+1
K )− κ1(w

n
K))

Therefore

G
ϵ,n+1

K −G
ϵ,n

K ≤ (λϵ,n+1
K −λϵ,n

K )
(
G1(w

n+1
K )−G0(w

n+1
K )− g(wn+1

K )δ(wn+1
K )

)
+g(wn+1

K )
(
βϵ,n+1
K − βϵ,n

K

)
where we denote δ(w) := κ1(v)−κ0(v). Let us show now that (λϵ,n+1

K −λϵ,n
K )(G1(w

n+1
K )−G0(w

n+1
K )−

g(wn+1
K )δ(wn+1

K )) ≤ 0, this will finish the proof.

Assume that (λϵ,n+1
K − λϵ,n

K ) ≥ 0. Since λϵ,n+1
K = Γ0(w

n+1
K , λϵ,n

K ), this implies that wn+1
K ≥ P1

and therefore that the maximum of g ◦ ϕ on [κ0(w
n+1
K ), κ1(w

n+1
K )] is g(wn+1

K ). Thus:

G1(w
n+1
K )−G0(w

n+1
K )− g(wn+1

K )δ(wn+1
K ) =

ˆ κ1(w
n+1
K )

κ0(w
n+1
K )

(g ◦ ϕ)(s) ds− g(wn+1
K )δ(wn+1

K )

≤ 0

which concludes our claim and the proof.
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4 Discrete estimates of vD, uD and λD

In the following section we obtain discrete estimates for vD, uD and λD which are uniform w.r.t. D
in order to obtain the compactness in the limit ∆t,∆x −→ 0. If v0 is H1(Td), then the temperature
vD enjoys H1 regularity both in time and space. This ensures the strong compactness in L2 of any
sequence of approximates. However the L2 framework is not suitable for the discrete estimates for
uD and λD. We instead show BV estimates in time and space to obtain in the next section the
strong compactness of the sequence in L1. The BV estimate in space requires a regular mesh and
the additional hypothesis (A2)ϕ.

4.1 Full H1((0, T )× Td) estimates of vD

This paragraph deals with uniform H1 estimates of vD. These estimates rely on the monotonicity
and the Lipschitz regularity of Φϵ and on the maximum principle Proposition 3.5.

The full time-space discrete H1 estimate of vD reads as follows.

Proposition 4.1. Assume ϵ ≥ 0 and that v0 ∈ H1(Td). Then there exists C > 0 independent of
D and ϵ such that,

|vD|2H1(0,T ;L2(Td)),D :=

N∑
n=0

∑
K∈T

mK

(
vn+1
K − vnK

)2
∆t

≤ C

|vD|2L2(0,T ;H1(Td)),D :=

N∑
n=0

∆t
∑
K|L

τK|L(v
n
K − vnL)

2 ≤ C

Proof. H1(0, T ;L2(Td)) estimate: By the equivalence of the two formulations given by Proposi-
tion 3.8, we have for any n ∈ {1, ..., N − 1} and K ∈ T

(vn+1
K − vnK)2 = (vn+1

K − vnK)(Φϵ(u
n+1
K , λn

K)− Φϵ(u
n
K , λn−1

K ))

= (vn+1
K − vnK)(Φϵ(u

n+1
K , λn

K)− Φϵ(u
n
K , λn

K))

≤ Lϕ(M)(vn+1
K − vnK)(un+1

K − un
K) (27)

where we used (ii) of Remark 3.2, the monotonicity and the local Lipschitz continuity of
u 7→ Φϵ(u, λ) (see (i)-(iv) of Lemma 3.2) and where M is given by Proposition 3.5 and
depends on u0. Note that the inequality also holds for n = 0 by compatibility of the initial
conditions (14). Now plugging (16) in (27), multiplying by mK and summing over K ∈ T we
find:

∑
K∈T

mK

(
vn+1
K − vnK

)2
∆t

≤ Lϕ(M)
∑
K∈T

mK

(
un+1
K − un

K

)(
vn+1
K − vnK

)
∆t

= L
∑
K∈T

∑
L∈N (K)

τK|L
(
vn+1
L − vn+1

K

)(
vn+1
K − vnK

)
= Lϕ(M)

∑
K|L∈E

τK|L
(
vn+1
L − vn+1

K

)(
vn+1
K − vnK

)
+ τK|L

(
vn+1
K − vn+1

L

)(
vn+1
L − vnL

)
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= −Lϕ(M)
∑

K|L∈E

τK|L

((
vn+1
L − vn+1

K

)2 − (vn+1
L − vn+1

K

)
(vnL − vnK)

)

≤ −Lϕ(M)

2

(∣∣vD(tn+1, .)
∣∣2
H1(Td),M − |vD(tn, .)|2H1(Td),M

)
where we used Young’s inequality for the last inequality. Summing over n ∈ {0, ..., N − 1} we
end up with:

|vD|2H1(0,T ;L2(Td)),D ≤ Lϕ(M)

2

∣∣v0∣∣2
H1(Td),M

L2(0, T ;H1(Td)) estimate: Multiply (16) by vn+1
K and integrate over K ∈ T and n ∈ {0, ..., N − 1}

to obtain,
N−1∑
n=0

∆t
∑
K∈T

mK
un+1
K − un

K

∆t
vn+1
K =

N−1∑
n=0

∆t
∑
K∈T

∑
L∈N (K)

τK|L
(
vn+1
L − vn+1

K

)
vn+1
K

=

N−1∑
n=0

∆t
∑

K|L∈Fint

τK|L
(
vn+1
L − vn+1

K

)
vn+1
K + τK|L

(
vn+1
K − vn+1

L

)
vn+1
L

= −
N−1∑
n=0

∆t
∑

K|L∈Fint

τK|L
(
vn+1
L − vn+1

K

)2
= −|vD|2L2(0,T ;H1(Td)),D (28)

Observe that,
N−1∑
n=0

∆t
∑
K∈T

mK
un+1
K − un

K

∆t
vn+1
K =

N−1∑
n=0

∑
K∈T

mKun+1
K vn+1

K −
N−1∑
n=0

∑
K∈T

mKun
Kvn+1

K

=

N∑
n=1

∑
K∈T

mKun
KvnK −

N−1∑
n=0

∑
K∈T

mKun
Kvn+1

K

=
∑
K∈T

mK

(
uN
KvNK − u0

Kv0K
)
−

N−1∑
n=0

∆t
∑
K∈T

mKun
K

vn+1
K − vnK

∆t
(29)

Now we know from Proposition 3.5 that for any n ∈ {0, ..., N}, K ∈ T ,

vnK ∈ ϕ([−M,M ])

Therefore ∥uD∥L∞((0,T )×Td), ∥vD∥L∞((0,T )×Td) ≤ C
(∥∥u0

∥∥
L∞(Td)

)
.

Therefore we can conclude, assembling (28) and (29) and using the Cauchy-Schwarz inequality,
that

|vD|2L2(0,T ;H1(Td)),D ≤ 2
1
2C
(∥∥u0

∥∥
L∞(Td)

)
+ T

1
2C
(∥∥u0

∥∥
L∞(Td)

)
|vD|H1(0,T ;L2(Td)),D

≤ C
(∥∥u0

∥∥
L∞(Td)

,
∥∥v0∥∥

H1(Td)
, T
)
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4.2 Full BV ((0, T )× Td) estimates
In this second paragraph, we show BV estimates in time for uD on any admissible mesh. In the
case where ϕ satisfies (A1)ϕ-(A2)ϕ and on periodic meshes, we obtain a BV estimate in space for
λD.
A question of interest, still open, to the knowledge of the authors, would first be to remove assump-
tion (A2)ϕ and also to treat the case of unstructured meshes.

The obtained BV estimates, which rely on a discrete version of the Hilpert inequality [22,
26] classical for hysteresis operators, provide the strong compactness in L1 of the sequence of
approximations. The nonlinear nature of the problem calls for this compactness result for the
convergence analysis.

4.2.1 BV estimate in time for uD and λD

Let us derive the BV estimate in time related to the enthalpy formulation of Problem (23). As a
first step, we describe a technical lemma on the sign function before deriving our estimate. The
lemma will also prove to be useful in the derivation of the space BV estimates.

Denote by s : R 7→ {−1, 0, 1} the sign function s(x) =

 −1 if x < 0
0 if x = 0
1 if x > 0

we also denote s the

multivalued function s(x) =

 {−1} if x < 0
[−1, 1] if x = 0
{1} if x > 0

.

Lemma 4.2. Let F,G : R 7→ R be two nondecreasing functions. Then for any x1, x2, y1, y2 ∈ R
and sx ∈ s(x1 − x2), sy ∈ s(y1 − y2), we have

((F (x1)− F (x2))− (G(y1)−G(y2)))(sx − sy) ≥ 0

Proof. Assume by contradiction and without loss of generality that there exist x1, x2, y1, y2 ∈ R
such that

F (x1)− F (x2) > G(y1)−G(y2)

and
sx < sy (30)

By definition of s, this implies that x2 ≥ x1 and since F is nondecreasing 0 ≥ F (x1) − F (x2) >
G(y1)−G(y2). Now G is nondecreasing hence y1 < y2 and therefore sy = −1. But this contradicts
(30) because sx ≥ −1.

Proposition 4.3 (BV (0, T, L1(Td))). Assume that ϵ ≥ 0 and that there exists C ≥ 0, independent
of D such that ∥∥∆Mv0M

∥∥
L1(Td)

:=
∑
K∈T

∣∣∣∣∣∣
∑

L∈N (K)

τK|L
(
v0L − v0K

)∣∣∣∣∣∣ ≤ C

Then we have
N−1∑
n=0

∑
K∈T

mK |un+1
K − un

K | ≤ C
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and also there exists ω : [0,+∞) −→ [0,+∞), continuous, nonincreasing and such that ω(0) = 0
and independent of D such that:

N−1∑
n=0

∆t
∑
K∈T

mK |λn+1
K − λn

K | ≤ ω(∆t)

Proof. Estimate for uD: Let n ∈ {1, ..., N − 1}, write the scheme (16) at time steps n and n− 1,
subtract both and multiply by σn+1

K := s
(
un+1
K − un

K

)
and then integrate over T .

∑
K∈T

mK

(
un+1
K − un

K

)
−
(
un
K − un−1

K

)
∆t

σn+1
K =

∑
K∈T

∑
L∈N (K)

τK|L
((
vn+1
L − vn+1

K

)
− (vnL − vnK)

)
σn+1
K

=
∑

K|L∈E

τK|L
((
vn+1
L − vn+1

K

)
− (vnL − vnK)

)(
σn+1
K − σn+1

L

)

= −
∑

K|L∈E

τK|L
((
vn+1
K − vnK

)
−
(
vn+1
L − vnL

))(
σn+1
K − σn+1

L

)

Remember that vn+1
K = Φϵ(u

n+1
K , λn

K) and from Lemma 3.2 (vi) that vnK = Φϵ(u
n
K , λn

K). By
applying Lemma 4.2 to the non-decreasing functions F := Φϵ(·, λn

K) and G := Φϵ(·, λn
L) we find,((

vn+1
K − vnK

)
−
(
vn+1
L − vnL

))(
σn+1
K − σn+1

L

)
≥ 0

Therefore, ∑
K∈T

mK

(
un+1
K − un

K

)
−
(
un
K − un−1

K

)
∆t

σn+1
K ≤ 0

And we also have
((
un+1
K − un

K

)
−
(
un
K − un−1

K

))
σn+1
K ≥

∣∣un+1
K − un

K

∣∣− ∣∣un
K − un−1

K

∣∣, hence we find,∑
K∈T

mK

∣∣un+1
K − un

K

∣∣
∆t

≤
∑
K∈T

mK

∣∣un
K − un−1

K

∣∣
∆t

After integrating on (0, T ), with a basic induction on n we then find:

N∑
n=0

∑
K∈T

mK

∣∣un+1
K − un

K

∣∣ ≤
∑
K∈T

mK

∣∣u1
K − u0

K

∣∣
∆t

=
∑
K∈T

mK
u1
K − u0

K

∆t
σ1
K

=
∑
K∈T

∑
L∈N (K)

τK|L
(
v1L − v1K

)
σ1
K

=
∑
K∈T

∑
L∈N (K)

τK|L
(
(v1L − v1K)− (v0L − v0K)

)
σ1
K +

∑
K∈T

∑
L∈N (K)

τK|L(v
0
L − v0K)σ1

K
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≤
∑

K|L∈E

τK|L
(
v1L − v0L −

(
v1K − v0K

))(
σ1
K − σ1

L

)︸ ︷︷ ︸
≤0

+
∑
K∈T

∑
L∈L(K)

τK|L
(
v0L − v0K

)
σ1
K

≤
∑
K∈T

∣∣∣∣∣∣
∑

L∈L(N)

τK|L
(
v0K − v0L

)∣∣∣∣∣∣ (31)

where we used Lemma 4.2 again to obtain (31).

Estimate for λD: Denote by ωκ : [0,+∞) −→ [0,+∞) a common, nondecreasing and concave
modulus of continuity for κ0 and κ1 on a big enough compact K ⊂ R such that vD has values within
K (K may be taken independent of D thanks to Proposition 3.5). For any n ∈ {0, ..., N − 1}, K ∈ T ,
remark,

un+1
K − un

K = anK
(
κ0(v

n+1
K )− κ0(v

n
K)
)
+ bnK

(
κ1(v

n+1
K )− κ1(v

n
K)
)
+ c(vn+1

K , vnK)
(
λn+1
K − λn

K

)
(32)

where anK := 1− λn+1
K +λn

K

2 ∈ [0, 1], bnK :=
λn+1
K +λn

K

2 ∈ [0, 1] and for v, w ∈ R, c(v, w) := κ1(v)+κ1(w)
2 −

κ0(v)+κ1(w)
2 > 0. Since κ1 > κ0 on R, by continuity there exists δK > 0 such that for v, w ∈ K we

have,
c(v, w) ≥ δK

Now take the absolute value in (32), integrate in time and space and use (31) to find,

C∆t ≥
N−1∑
n=0

∆t
∑
K∈T

mK

∣∣un+1
K − un

K

∣∣
≥

N−1∑
n=0

∆t
∑
K∈T

mKδK
∣∣λn+1

K − λn
K

∣∣− N−1∑
n=0

∆t
∑
K∈T

mK

(∣∣κ0(v
n+1
K )− κ0(v

n
K)
∣∣+ ∣∣κ1(v

n+1
K )− κ1(v

n
K)
∣∣)

After rearanging we obtain, using the uniform continuity of κi on K, i = 0, 1:

δK

N−1∑
n=0

∆t
∑
K∈T

mK

∣∣λn+1
K − λn

K

∣∣ ≤ C∆t+ 2

N−1∑
n=0

∆t
∑
K∈T

mKωκ(
∣∣vn+1

K − vnK
∣∣)

≤ C∆t+ 2Tm(Td)ωκ

(
1

Tm(Td)

N−1∑
n=0

∆t
∑
K∈T

mK

∣∣vn+1
K − vnK

∣∣)
≤ C∆t+ 2Tm(Td)ωκ(C∆t)

This last inequality comes from the uniform H1 estimate in time of vD Proposition 4.1. A valid

modulus is then ω(r) :=
C

δK
r +

2Tm(Td)

δK
ωκ(Cr).

4.2.2 BV estimates in space for λD on admissible periodic meshes and under (A2)ϕ

In the two following sections we assume that ϕ satisfies assumption (A2)ϕ.
For now, the BV estimate in space of λD is only accessible under a strong assumption on the

mesh: we assume that M is an admissible periodic mesh.

30



Definition 4.1. We say that a mesh is admissible and periodic if it is admissible and there exists
a finite generating family Ξ of vectors of Rd, called characteristic vectors of M and such that for
any K ∈ T , ξ ∈ Ξ

ξ + xK ∈ P
ξ +K ∈ T

N (K) = {ξ +K | ξ ∈ Ξ}

An admissible and periodic mesh satisfies the following properties:

1. For any K,L ∈ T , mK = mL.

2. For all K ∈ T , ξ ∈ Ξ,
N (ξ +K) = {ξ + L | L ∈ N (K)}

3. For all σ ∈ E , ξ ∈ Ξ, we have ξ + σ ∈ E and τσ = τξ+σ.

4. ∆x = maxξ∈Ξ|ξ|.

For practicality, when ξ ∈ Ξ we will write Kξ := ξ +K and σξ := ξ + σ whenever K ∈ T , σ ∈ E .

Any cartesian grid in any dimension d is an admissible periodic mesh with characteristic vectors
of the form {±hiei}1≤i≤d with hi > 0 for i ∈ {1, ..., d}. Regular hexagonal meshes in R2 are other
examples of admissible periodic meshes.

The BV estimate in space relies on a discrete version of Hilpert’s inequality: an important tool
in the study of continuous hysteresis operators to obtain L1 contraction properties. We state and
show the lemma below. We follow along the lines of [22] (continuous case) and [26] (where the
discrete case is treated).

Lemma 4.4 (Discrete Hilpert’s Inequality). Let ϵ > 0, for any λ1, λ2 ∈ [0, 1], v1, v2 ∈ R, we have:

((Γϵ(v1, λ1)− Γϵ(v2, λ2))− (λ1 − λ2))s(v1 − v2) ≥ |Γϵ(v1, λ1)− Γϵ(v2, λ2)| − |λ1 − λ2|

where s is the sign function.

Proof. Denote µ1 := Γϵ(v1, λ1), µ2 := Γϵ(v2, λ2). We divide the analysis into several cases,

∗ µ1 > µ2 and v1 > v2, the result comes at once from (λ1 − λ2)s(v1 − v2) ≤ |λ1 − λ2|

∗ µ1 < µ2 and v1 < v2, the result comes at once for the same reason.

∗ µ1 > µ2 and v1 ≤ v2. But this implies that λ1 > λ2 and therefore µ1 − µ2 ≤ λ1 − λ2, i.e.
|µ1 − µ2| − |λ1 − λ2| ≤ 0. Since s(v1 − v2) ≤ 0, we infer that

((µ1 − µ2)− (λ1 − λ2))s(v1 − v2) ≥ 0 ≥ |µ1 − µ2| − |λ1 − λ2|

∗ The case µ1 < µ2 and v1 ≥ v2 is treated symmetrically.
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We next show the wanted BV estimate for admissible and periodic meshes covering Rd or the
torus Td (i.e. periodic boundary conditions).

Proposition 4.5 (L∞(0, T ;BV (Td))). Assume ϵ ≥ 0, that (A1)ϕ-(A2)ϕ hold and that M is an
admissible periodic mesh on Td with Td = Rd or Td = Td. Let ξ ∈ Ξ be a characteristic vector of
M. Assume that (uD, vD, λD) ∈ X(D)3 is a solution to (16) on D = ((tn)0≤n≤N ,M) with initial
conditions u0, v0 ∈ L1(Td) ∩ L∞(Td), then we have

sup
0≤n≤N

∑
K∈T

mK

(∣∣∣κ0(v
n
K)− κ0(v

n
Kξ

)
∣∣∣+ δ

∣∣∣λn
K − λn

Kξ

∣∣∣) ≤
∑
K∈T

mK

(∣∣∣κ0(v
0
K)− κ0(v

0
Kξ

)
∣∣∣+ δ

∣∣∣λ0
K − λ0

Kξ

∣∣∣)
(33)

Proof. Case ϵ > 0: Let K ∈ M be a control volume, n ∈ {0, ..., N − 1} and ξ ∈ Ξ. Let us write
the first equation of the scheme on K and Kξ:

mK

(
un+1
K − un

K

)
= ∆t

∑
L∈N (K)

τK|L
(
vn+1
L − vn+1

K

)
(34)

mK

(
un+1
Kξ

− un
Kξ

)
= ∆t

∑
L∈N (Kξ)

τK|L

(
vn+1
L − vn+1

Kξ

)
(35)

By periodicity of the mesh M we know that N (Kξ) = {Lξ | L ∈ N (K)}. Now subtract (34)
with (35), multiply by the quantity σn+1

K := s(vn+1
K − vn+1

Kξ
) and sum over K ∈ T to obtain:

T :=
∑
K∈T

mK

((
un+1
K − un+1

Kξ

)
−
(
un
K − un

Kξ

))
σn+1
K

=
∑
K∈T

∑
L∈N (K)

τK|L
(
vn+1
L − vn+1

K

)
σn+1
K − τKξ|Lξ

(
vn+1
Lξ

− vn+1
Kξ

)
σn+1
K

=
∑
K∈T

∑
L∈N (K)

τK|L

((
vn+1
L − vn+1

K

)
−
(
vn+1
Lξ

− vn+1
Kξ

))
σn+1
K

=
∑

K|L∈E

τK|L

((
vn+1
L − vn+1

K

)
−
(
vn+1
Lξ

− vn+1
Kξ

))(
σn+1
K − σn+1

L

)
= −

∑
K|L∈E

τK|L

((
vn+1
L − vn+1

Lξ

)
−
(
vn+1
K − vn+1

Kξ

))(
σn+1
L − σn+1

K

)
And now Lemma 4.2 allows us to conclude that T ≤ 0. Also recall from the Hilpert inequality
Lemma 4.4 and the fact that κ0 is increasing, that

T ≥
∑
K∈T

mK

(∣∣∣κ0(v
n+1
K )− κ0(v

n+1
Kξ

)
∣∣∣− ∣∣∣κ0(v

n
K)− κ0(v

n
Kξ

)
∣∣∣+ δ

∣∣∣λn+1
K − λn+1

Kξ

∣∣∣− δ
∣∣∣λn

K − λn
Kξ

∣∣∣)
This last observation yields the wanted result.

Case ϵ = 0: Inequality (33) falls at once from the fact that (vϵD, λ
ϵ
D) −→ (v0D, λ

0
D) strongly in

L1((0, T ) × Td) as a consequence of the stability property Lemma 3.1 and the maximum
principle Proposition 3.5.
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Remark 4.1. In the general case (even on a submesh of a perdiodic mesh on a bounded domain)
and with homogeneous Neumann boundary conditions, the difficulty lies in the the fact that for a
given volume K ∈ T , it is no longer clear that Kξ ∈ T and also that the neighbours N (Kξ) can
be described in terms of the neighbours N (K). This leads to boundary terms which cannot be
controlled properly.

5 Convergence to a weak entropy solution
Let us be given a sequence of admissible meshes (Dh)h>0 such that ∆x(Dh),∆t(Dh) −→

h→0
0. We

will show the following convergence result:

Theorem 5.1. Assume ϵ ≥ 0 and that (A1)ϕ - (A2)ϕ hold. for h > 0, let (uϵ
h, v

ϵ
h, λ

ϵ
h) be the

solution to (16) on Dh with initial condition (u0, v0, λ0) satisfying (13) - (14).
Then there exists a weak entropy solution (uϵ, vϵ, λϵ) according to Definition 2.1 such that, up

to a subsequence:

(uϵ
h, v

ϵ
h, λ

ϵ
h) −→

h→0
(uϵ, vϵ, λϵ) strongly in Lp((0, T )× Td) for all 1 ≤ p < +∞

Proof. Relative compactness: The compactness is due to translation estimates stemming from
the uniform discrete estimates for vϵh and λϵ

h. The uniform H1 estimates given by Proposi-
tion 4.1 for vϵh yield that

(vϵh)h>0 is relatively strongly compact in L2((0, T )× Td)

We refer to [6, Lemmatas 18.3, 18.6] for the translation estimates. Analogously, the uniform
discrete BV estimates for λϵ

h through Proposition 4.3 and Proposition 4.5 allow for a similar
compactness result in L1((0, T )× Td). We find

(λϵ
h)h>0 is relatively strongly compact in L1((0, T )× Td)

Now the boundedness of Td, the continuity of (v, λ) 7→ β(v, λ) and the maximum principle
Proposition 3.5 lets us also conclude that

(uϵ
h)h>0 is relatively strongly compact in L1((0, T )× Td)

From now on, we select a subsequence in h, still denoted h, such that (uϵ
h, v

ϵ
h, λ

ϵ
h) −→

h→0

(uϵ, vϵ, λϵ) strongly in L1((0, T ) × Td). Since (uϵ
h, v

ϵ
h, λ

ϵ
h)h>0 are also uniformly bounded in

L∞((0, T )×Td) by Proposition 3.5, the strong convergence also holds in any Lp((0, T )×Td)
for 1 ≤ p < ∞.

Convergence for the volume equation: From the strong convergence in Lp((0, T )×Td) of the
trilpet (uϵ

h, v
ϵ
h, λ

ϵ
h) it is enough to show the convergence towards the weak formulation of the

volume equation. The arguments are classical and can be found in [6, Theorem 18.1].

Convergence for the entropy inequalities: The convergence for the entropy inequalities is per-
formed by passing to the limit in the discrete entropy inequalities Proposition 3.9.
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Let g ∈ C1(R) be nondecreasing. Let K ∈ Th, n ∈ {0, ..., N − 1}, denote as before wn
K :=

vϵ,nK − ϵ(2λϵ,n
K − 1). Remark that since (vϵh)h>0 and (λϵ

h)h>0 converge strongly in L2(Td
T )

towards vϵ and λϵ respectively, we know that

wϵ
h −→

h→0
vϵ − ϵ(2λϵ − 1) =: wϵ strongly in L2(Td

T )

Since (vϵh)h>0 and (λϵ
h)h>0 are also uniformly bounded in L∞((0, T ) × Td), the dominated

convergence theorem yields by continuity of Gi, g, g′ and β:

G0(w
ϵ
h), G1(w

ϵ
h), g(w

ϵ
h), g

′(wϵ
h), β(w

ϵ
h, λ

ϵ
h) −→ G0(w

ϵ), G1(w
ϵ), g(wϵ), g′(wϵ), β(wϵ, λϵ) strongly in L2(Td

T )

For any f ∈ X(D), denote its discrete time-derivative ∂t,hf :=
∑N−1

n=0

∑
K∈Th

fn+1
K −fn

K

∆t 1[tn,tn+1)×K .
We claim that for fixed ϵ ≥ 0,

(∂t,hg(w
ϵ
h))h>0 is unformly bounded in L2((0, T )× Td) (36)

Indeed, in the case ϵ = 0, this follows easily from Proposition 4.1, the fact that g ∈ C1(R)
and the maximum principle Proposition 3.5. In the case ϵ > 0, observe that, for any K ∈ Th,
n ∈ {0, ..., N − 1}, the 1

ϵ -Lipschitz continuity of Γϵ in v gives:

∣∣λn+1
K − λn

K

∣∣ ≤ ∣∣Γϵ(v
n+1
K , λn

K)− Γϵ(v
n
K , λn

K)
∣∣

≤ 1

ϵ

∣∣vn+1
K − vnK

∣∣
which leads to

∥∂t,hλϵ
h∥L2((0,T )×Td) ≤

1

ϵ
∥∂t,hvϵh∥L2((0,T )×Td)

Hence ∂t,hw
ϵ
h is also uniformly bounded in L2((0, T )× Td) and from the same arguments as

in the case ϵ = 0 follows (36).

From this, it follows that (∂t,hg(w
ϵ
h))h>0 converges weakly in L2((0, T ) × Td), up to subse-

quence, to an L2 function which is ∂tg(w
ϵ) by consistency of the discrete derivative with ∂t.

We are now ready to pass to the limit in the discrete inequalities. Let h > 0, ξ ∈ D(Td
T ) with

ξ ≥ 0, denote for n ∈ {0, ..., N}, K ∈ Th, ξnK := ξ(tn, xK). Multiply (25) by mKξn+1
K and sum

over n ∈ {0, ..., N − 1}, K ∈ Th to find:

N−1∑
n=0

∑
K∈Th

mK

(
G

ϵ,n+1

K −G
ϵ,n

K

)
ξn+1
K ≤

N−1∑
n=0

∑
K∈Th

mKg(wn
K)
(
βϵ,n+1
K − βϵ,n

K

)
ξn+1
K

which we summarize by
Th
1 ≤ Th

2 (37)

We have:

Th
1 =

N−1∑
n=0

∑
K∈Th

mK

(
G

ϵ,n+1

K −G
ϵ,n

K

)
ξn+1
K

34



= −
∑

K∈Th

mKG
ϵ,0

K ξ1K −
N−1∑
n=1

∑
K∈Th

mK

(
ξn+1
K − ξnK

)
G

ϵ,n

K

−→
h→0

−
ˆ
Td
T

G(vϵ)∂tξ dxdt

And we have on the other hand:

Th
2 =

N−1∑
n=0

∑
K∈Th

mKg(wn
K)
(
βϵ,n+1
K − βϵ,n

K

)
ξn+1
K

= −
∑

K∈Th

mKβϵ,0
K g(w0

K)ξ1K −
N−1∑
n=1

∑
K∈Th

mK

(
ξn+1
K g(wn

K)− ξnKg(wn−1
K )

)
βϵ,n
K

= −
∑

K∈Th

mKβϵ,0
K g(w0

K)ξ1K −
N−1∑
n=1

∑
K∈Th

mKβϵ,n
K

((
ξn+1
K − ξnK

)
g(wn

K) + ξnK(g(wn
K)− g(wn−1

K ))
)

−→
h→0

−
ˆ
Td
T

β(wϵ, λϵ)(∂tξg(w
ϵ) + ξ∂tg(w

ϵ)) (38)

The convergence (38) being justified by the weak convergence in L2(Td
T ) of ∂t,hg(wϵ

h). Hence,
passing to the limit in (37) yields the wanted inequality.

6 Numerical experiments
We here describe the implementation of an efficient algorithm to compute the numerical approxi-
mations and show numerical experiments on Riemann problems.

6.1 Description of the algorithm
Our simulations rely on the finite volume Julia package VoronoiFVM.jl developed by a co-author
of this work. It is based on a Voronoi meshing algorithm and has demonstrated its efficiency on
reaction-diffusion equations arising e.g. in semi-conductor models. The Voronoi meshing algorithm
provides admissible meshes in the sense of Definition 3.1 for 2D geometries.

The basic machinery of the algorithm relies on the implicit finite volume discretisation of a flux
J(u) in reaction-diffusion equations of the form:

∂ts(u) = div(J(u)) + r(u)

where s is a storage term, r is the reaction term. With this machinery, it is almost straightforward to
implement the enthalpy-phase formulation (23) where s = Id, r = 0 and the flux is J(u) := ∇Φ(u, λ)
which depends on the phase parameter λ. Since in (23), the update of λ is done explicitly in time,
at each time step tn the flux can be determined explicitely. Newton’s method is used to compute
the numerical solution at each time step. It is performed with an automatic differentiation method
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based on dual numbers, implemented in the Julia package ForwardDiff.jl. Even if the scheme
is implicit and no CFL condition appears in the analysis, the degeneracy of the parabolic problem
solved at each time-step yields instabilities in the Newton method. The computations may actually
fail to converge if ∆t is not chosen small enough in comparison with ∆x and the spatial variations
of the initial conditions.

Another challenge of the implementation is the computation of Φϵ for ϵ ≥ 0 which we recall is
defined in (17) as the inverse function of v 7→ β(v,Γϵ(v, λ)). Under the assumption (A1)ϕ-(A2)ϕ,
there is a simple expression for Φϵ in terms of ϕ. However under the general assumption (A1)ϕ,
this computation requires to invert a whole family of functions (γ(·, λ))λ∈[0,1]. We have chosen to
sample 100 evenly spaced values of λ ∈ [0, 1] to compute single inverses and then construct an
approximate Φϵ with a piecewise constant reconstruction.

6.2 Riemann problems in 1D and 2D under (A1)ϕ-(A2)ϕ
Here we investigate solutions of the numerical scheme (16) for ϵ = 0 with various Riemann prob-
lems both in 1D and 2D. We comment the behaviour of the arising free boundary in the simulations.

Expected behaviour of the solutions When two distinct phase values are considered initially
in the Riemann problem, we should observe the formation of a free boundary I identified as a
persistent jump discontinuity on the enthalpy u and the phase fraction λ. If the free boundary
I is moving, we are in a situation similar to a two-phase Stefan problem with a specific latent
heat proportional to the jump of enthalpy JuKI . This phenomenon is theoretically described by the
Rankine-Hugoniot condition (see [5]):

JuKIν
I
t = J∇vKI · νIx (39)

where JuKI and J∇vKI are the jumps of u and ∇v across the free boundary I and νI = (νIt , ν
I
x) ∈ Sd

is some normal unit vector on I in R+×Rd. The absolute normal velocity of I is therefore given by

V :=
|νI

t |
|νI

x|
=

|J∇vKI ·n
I
x|

JuKI
, where nI

x :=
νI
x

|νI
x|

. Hence if everything else is fixed, a lower enthalpy jump
leads to a higher absolute velocity.

On the other hand, if the free boundary is stationary, then the equations reduce to a diffusion
equation in v (with possibly inhomogeneous and degenerate diffusion coefficient in space). Note it
is possible to prepare an initial data for which the heat transfer is directed from the liquid phase
to the solid phase (see Figure 11).

In the 1D setting, the Riemann problem yields a single-point free boundary and the expected
behaviours can be thoroughly explored.

In 2D the possible situations are more complex. In particular the free boundary may exhibit
topological changes over time, as is the case for two expanding disks seen on Figure 13. We also
investigate a situation where the free boundary is steady on a given subset and moving on the other
subset.
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6.2.1 1D experiments

We perform our simulations on the interval Ω = (0, 1) with Neumann boundary conditions. While
this setting does not exactly match our theoretical assumptions, in all our experiments we can
recover the periodic boundary conditions by symetrizing aroung the point x = 1. We are under
the assumptions (A1)ϕ-(A2)ϕ with κ0 : v 7→ v − 1 and δ = 2. Denoting x0 = 1

2 , we consider the
following structure of 1D initial conditions:

u0(x) =

{
ul if x < x0

ur if x ≥ x0
v0(x) =

{
vl if x < x0

vr if x ≥ x0
λ0(x) =

{
λl if x < x0

λr if x ≥ x0

with the condition u0 = β(v0, λ0) being satisfied. For the following experiments we choose a
regular cartesian grid on [0, 1] of step ∆x and a time step ∆t, provided on each figure.

Moving free boundary with saturated phase fraction In this experiment shown in Figure 9,
we fix λl = 1 and λr = 0 and we take vl = P1 + δθ, vr = P1. In this situation the free boundary
moves from left to right: the pure solid phase melts as the heat transfers through the boundary.
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Figure 9: Free boundary evolution over time with pure phase initial condition. ∆x = 0.001,
∆t = 0.002.

Moving free boundary with unsaturated phase fraction In this experiment, shown in
Figure 10, we fix λl = 1 and λr = 0.5 and we take as before vl = P1+ δθ, vr = P1. In this situation
the free boundary moves from left to right at a higher rate than in the pure phase situation.
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We observe that, with identical initial temperature profiles, the interface in the unsaturated case
stabilizes further away in the positive direction than the one in the saturated case. This observation
is in compliance with the Rankine-Hugoniot condition (39).
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Figure 10: Free boundary evolution over time with partially melted material on the right. ∆x =
0.001, ∆t = 0.002.

Steady free boundary In this experiment, shown in Figure 11 we fix λl = 1 and λr = 0 and
we take vl = P0, vr = P1. The liquid phase is at the freezing temperature and the solid phase is
at the melting temperature. Since P1 > P0 we observe an anomalous heat transfer directed from
the solid to the liquid: the solid phase cools down, the liquid phase heats up and no phase change
occurs.

6.2.2 2D experiments

In the 2D experiments, we choose a square domain Ω = [−1, 1]2 with Neumann boundary conditions.
Again we choose the basic assumptions (A1)ϕ-(A2)ϕ with κ0 : v 7→ v − 1 and δ = 2. A subset
S ⊂ Ω is used to prepare the Riemann initial conditions:

u0(x, y) =

{
ui if (x, y) ∈ S
uo if (x, y) ̸∈ S

v0(x, y) =

{
vi if (x, y) ∈ S
vo if (x, y) ̸∈ S

λ0(x, y) =

{
λi if (x, y) ∈ S
λo if (x, y) ̸∈ S

with the additionnal conditions λ0 ∈ Γ0(v
0) and u0 = β(v0, λ0).
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Figure 11: Steady free boundary with anomalous heat transfer. ∆x = 0.001, ∆t = 0.002.

Moving free boundary Here we show a single expanding disk (with S = D((0, 0), 1
2 ), Figure 12)

and two expanding disks (with S = D((− 1
2 , 0),

2
5 ) ∪D(( 12 , 0),

2
5 ), Figure 13). We fix λi = 1, λo = 0

and choose vi = P1 + δθ, vo = P0 for some δθ > 0.

As for the classical Stefan problem, we observe the self-similarity of the radially symmetric so-
lution on Figure 12. The temperature v reaches the constant equilibrium temperature v∞ = P0,
while the phase λ stays pure (0 or 1) except on the volumes located at the boundary.

The topological change of the boundary in time is shown on Figure 13.

Mixed behaviour Here we consider a 2D Riemann problem with a piecewise linear perturbation.
Let S = [−1, 0] × [−1, 1] be the left half of the domain Ω and we consider the perturbed initial
temperature:

ṽ0(x, y) = v0(x, y) + k(y − y0)+

where k > 0 is the coefficient of the linear perturbation and y0 ∈ [−1, 1] prescribes the support
of the perturbation. Of course, the initial phase fraction is left unchanged and u0 = β(v0, λ0).
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Corresponding numerical results are shown on Figure 14.

Random initial conditions We here display the evolution of the discrete solution with a random
initial condition. The randomness is done with a uniform sampling in the range [−10, 10] for v0 and
in the range [0, 1] for λ0 before the projection on the confinement domain. As usual u0 is defined
with u0 = β(v0, λ0). Results are shown on Figure 15

6.3 Additional experiments and comments
To conclude our numerical experiments we show some 1D experiments under the general assumption
(A1)ϕ with ϕ(u) = u3 − u. We investigate wether the L1 control of norms is attained. In this
case, an homologous result to Proposition 4.5 between two solutions (u1, v1, λ1) and (u2, v2, λ2)
can be obtained for the continuous model under the additional W 1,1(0, T ;L∞(Ω)) estimate for

c(v1, v2) :=
κ1(v1) + κ1(v2)

2
− κ0(v1) + κ0(v2)

2
:

∥c∥W 1,1(0,T ;L∞(Ω)) ≤ C(T, v01 , v
0
2)

where the constant C is independent of the solutions v1 and v2. Note that in the parallel case
(A2)ϕ we always have c = 0. Let us write:

u1 − u2 = (1− λ1)κ0(v1) + λ1κ1(v1)− (1− λ2)κ0(v2)− λ2κ1(v2)

= a(λ1, λ2)(κ0(v1)− κ0(v2)) + b(λ1, λ2)(κ1(v1)− κ1(v2)) + (λ1 − λ2)c(v1, v2) (40)

where a(λ1, λ2) = 1 − λ1+λ2

2 , b(λ1, λ2) = λ1+λ2

2 are nonnegative functions. Now take the partial
time derivative in (40) and multiply by s(v1 − v2) where s is the sign function. We obtain:

∂t(u1 − u2)s(v1 − v2) = ∂t|a(κ0(v1)− κ0(v2))|+ ∂t|b(κ1(v1)− κ1(v2))|

+ ∂t(c|λ1 − λ2|)− 2

∣∣∣∣∂tcc
∣∣∣∣c|λ1 − λ2|

Now remark that
ˆ
Ω

∂t(u1−u2)s(v1− v2) dx =

ˆ
Ω

∆(v1− v2)s(v1− v2) dx ≤ 0, hence we obtain

after integration over Ω, and denoting ζv(t, x) := |a(κ0(v1) − κ0(v2))| + |b(κ1(v1) − κ1(v2))| and
ζλ := c|λ1 − λ2|,

0 ≥
ˆ
Ω

∂tζv(t, x) dx+

ˆ
Ω

∂tζλ(t, x) dx− 2

ˆ
Ω

∣∣∣∣∂tcc
∣∣∣∣ζλ(t, x) dx

Therefore we find,

d

dt

(
∥ζv(t)∥L1(Ω) + ∥ζλ(t)∥L1(Ω)

)
≤ 2

ˆ
Ω

∣∣∣∣∂tcc
∣∣∣∣ζ(t, x) dx

≤ 2

∥∥∥∥∂tcc
∥∥∥∥
L∞(Ω)

∥ζλ(t)∥L1(Ω)
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Now an application of Gronwall’s lemma to the function t 7→ ∥ζv(t)∥L1(Ω) + ∥ζλ(t)∥L1(Ω) leads to
the inequality,

∥ζv(t)∥L1(Ω) + ∥ζλ(t)∥L1(Ω) ≤ exp

(
2

ˆ t

0

∥∥∥∥∂tcc (s)

∥∥∥∥
L∞(Ω)

ds

)(
∥ζv(0)∥L1(Ω) + ∥ζλ(0)∥L1(Ω)

)

We here show the numerical decrease in time of the quantity N(t) − exp

(
2

ˆ t

0

∥∥∥∥∂tcc
∥∥∥∥
L∞

ds

)
N(0)

where N(t) = ∥ζλ(t)∥L1 + ∥ζv(t)∥L1 for two couples of solutions. On Figure 16 we display this
decrease for two couples of solutions.

7 Acknowledgements
One of the authors of this work would like to express his gratitude for the interesting exchanges he
had with Dr. Olaf Klein and Pr. Dr. Martin Brokate during his stay at the Weierstrass Institute
for Applied Sciences.
This work was supported by a public grant as part of the Investissement d’avenir project, reference
ANR-11-LABX-0056-LMH, LabEx LMH.

41



A Equivalence of weak formulations of the hysteresis operator
Proposition A.1. Let v ∈ W 1,1(0, T ), λ ∈ BV (0, T ), ξ ∈ R then we have the following set of
equivalences:

(i) λ ∈ kP (v, ξ).

(ii) (λ, v) satisfy (6), (9) and (10).

(iii) (λ, v) satisfy (6), (9) and (11) for any nondecreasing g ∈ C1(R).

Proof. (i) ⇒ (ii) It is clear that (7) implies (9). Now using (8), we see that µ+ must be supported
on the set {t ∈ [0, T ] | v(t) = P1} otherwise there would exist t∗ ∈ [0, T ] such that v(t∗) ̸= P1

and for any ϵ > 0 two points tϵ1 < tϵ2 ∈ [t∗ − ϵ, t∗ + ϵ] such that λ(tϵ1) < λ(tϵ2) thereby
contradicting the fact that λ is nonincreasing in a neighbourhood of t∗. Hence,

ˆ t

0

v dµ+ =

ˆ t

0

P1 dµ
+

Similarly, ˆ t

0

v dµ− =

ˆ t

0

P0 dµ
−

The result then follows immediately after summing the two indentities.

(ii) ⇒ (iii) Nothing has to be done for (6) and (9). Assume that λ and v satisfy (10) holds, we
will show that (11) holds.

Claim 1 For any η : [0, T ] 7→ R bounded and measurable, there holds,
ˆ T

0

vη dµ =

ˆ T

0

P1η dµ
+ −
ˆ T

0

P0η dµ
− (41)

The claim obviously holds for η = 1[s,t], s, t ∈ [0, T ]. Since {[s, t], s, t ∈ [0, T ]} is a Π-
system generating B([0, T ]) we obtain that (41) holds for η = 1A, with A ∈ B([0, T ]).
It then also holds for simple functions and by a standard density argument the claim
follows.

Claim 2 µ+ (resp. µ−) is concentrated on {t ∈ [0, T ] : v(t, x) = P1} (resp. P0).

We only prove the part of the claim concerning µ+, because symmetrical arguments can
be applied to µ− to infer the wanted result. By the Jordan decomposition µ = µ+ −µ−,
the postitive measures µ+ and µ− have disjoint support up to |µ|-null sets of [0, T ]. De-
note by S+ ⊂ [0, T ], a measurable set which satisfies µ−(S+) = 0 and on which µ+ is
concentrated.

Now for any r > 0, denote Ar := {t ∈ [0, T ] : v(t) ≥ P1 + r}. Assume by contradiction
that there exists r0 > 0 such that µ+(Ar0) > 0. Then we have µ−(Ar0) = 0 and we find
from Claim 1 with η = 1Ar0∩S+ ,

0 =

ˆ
[0,T ]

(v − P1)1Ar0
∩S+ dµ+
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≥ r0µ
+(Ar0 ∩ S+)

= r0µ
+(Ar0)

> 0

By contradiction, we showed that µ+(Ar) = 0 for all r > 0. By monotonicity, this implies
that µ+({t ∈ [0, T ] : v(t) > P1}) = 0.

In exactly the same manner, if Br := {t ∈ [0, T ] : v(t) ≤ P1 − r}, we also show by
contradiction that µ+(Br) = 0 for all r > 0, thereby showing our initial claim upon
combining the monotonicity of µ+ with the identity:

{t ∈ [0, T ] : v(t) ̸= P1} =
⋃
m≥1

(
A 1

m
∪B 1

m

)
From Claim 2, we can infer that for any real continuous function h ∈ C(R) and any bounded

measurable function η, we have,ˆ
[0,T ]

h(v)η dµ =

ˆ
[0,T ]

h(v)η dµ+ −
ˆ
[0,T ]

h(v)η dµ−

=

ˆ
[0,T ]

h(v)η1{v=P1} dµ
+ −
ˆ
[0,T ]

h(v)η1{v=P0} dµ
−

=

ˆ
[0,T ]

h(P1)η dµ
+ −
ˆ
[0,T ]

h(P0)η dµ
− (42)

To show the entropy inequalities, we first need some C1 regularity for κi, then the general
case will follow by a density argument. Hence we consider for now that κi are C1

functions. Take any η ∈ C∞
c ((0, T )), η ≥ 0 and g ∈ C1(R) such that g(a) = 0 for some

a ∈ (P0, P1) and write

−
ˆ T

0

G(v)∂tη dt = −
ˆ T

0

λ (G(κ1(v))−G(κ0(v)))︸ ︷︷ ︸
=h1(v)

∂tη dt−
ˆ T

0

G(κ0(v))∂tη dt

=

ˆ T

0

h1(v)η dµ+

ˆ T

0

λ∂th1(v)η dt−G(κ0(v))∂tη dt

=

ˆ T

0

h1(P1)η dµ
+ −
ˆ T

0

h1(P0)η dµ
−

+

ˆ T

0

λh1(v)tη dt+

ˆ T

0

∂tG(κ0(v))η dt

where we used (42) with h = h1 and η. Let us denote δ(v) := κ1(v)− κ0(v) and on the
other hand consider that

−
ˆ T

0

u∂t(g(v)η) dt = −
ˆ T

0

λδ(v)∂t(g(v)η) dt−
ˆ T

0

κ0(v)∂t(g(v)η) dt

=

ˆ T

0

δ(v)g(v)︸ ︷︷ ︸
=h2(v)

η dµ

43



+

ˆ T

0

λ∂tδ(v)g(v)η dt−
ˆ T

0

κ0(v)∂t(g(v)η) dt

=

ˆ T

0

h2(P1)η dµ
+ −
ˆ T

0

h2(P0)η dµ
−

+

ˆ T

0

λ∂tδ(v)g(v)η dt+

ˆ T

0

∂tκ0(v)g(v)η dt

=

ˆ T

0

h2(P1)η dµ
+ −
ˆ T

0

h2(P0)η dµ
−

+

ˆ T

0

λh1(v)η dt+

ˆ T

0

∂tG(κ0(v))η dt

We used (28) and the fact that ∂tG(κi(v)) = ∂tκi(v)g(v) a.e. i = 0, 1 since v ∈
W 1,1(0, T ). Therefore there only remains to show the two inequalities h2(P1)− h1(P1) ≥ 0
and h2(P0)− h1(P0) ≤ 0. This is done following those lines,

h2(P1)− h1(P1) = δ(P1)g(P1)− (G(κ1(P1))−G(κ0(P1)))

= δ(P1)g(P1)−
ˆ P1

a

δ′(w)g(w) dw

= δ(P1)g(P1)− [δ(w)g(w)]
P1

a +

ˆ P1

a

g′(w)δ(w) dw

= g(a)δ(a) +

ˆ P1

a

g′(w)δ(w) dw

=

ˆ P1

a

g′(w)δ(w) dw

≥ 0

And in a similar manner for P0 we obtain,

h2(P0)− h1(P0) =

ˆ P0

a

g′(w)δ(w) dw

≤ 0

since a ∈ (P0, P1). Now for general g, reduce to the case g(a) = 0 by considering
g̃ := g− g(a), since the quantities G(v) and g(v)∂tu are linear with respect to g and the
entropy inequalities are trivially verified for constant functions g. Therefore we obtain,
for κi ∈ C1(R),

−
ˆ T

0

G(v)∂tη dt ≤ −
ˆ T

0

u∂t(g(v)η) dt

Finally, choose sequences of C1 approximations (κn
i )n∈N such that κn

i −→ κi locally uni-
formly on R, and observe that G(κn

i (v)) −→ Gi(v) and βn(v, λ) := (1 − λ)κn
i (v) +

λκn
i (v) −→ β(v, λ) uniformly on [0, T ] as n → +∞ to find the wanted result for contin-

uous κi.
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(iii) ⇒ (i) If we assume that κi are regular, we can show that for any η ≥ 0, η ∈ C∞
c ((0, T )),

ˆ T

0

hg(v)η dµ ≤ 0 (43)

where hg : v 7→ G1(v)−G0(v)− δ(v)g(v) and µ = ∂tλ. Again by a density argument we can
show that (43) also holds for continuous κi. Now note that:

hg(v) = −δ(a)g(a)−
ˆ v

a

δ(w)g′(w) dw

for any a ∈ R. For a fixed r > 0, let us consider g such that supp g′ = (−∞, P1 − r] with
g(P1) = 0. Now take a = P1 and observe that hg(v) > 0 for all v ≤ P1 − r. Then taking a
sequence (ηn)n∈N such that ηn increases towards 1v≤P1−r

hg(v)
a.e. on [0, T ], we infer by passing

to the limit in (43) that µ({v ≤ P1 − r}) ≤ 0. Since this holds for any r > 0 we infer that
µ({v < P1}) ≤ 0.

Symmetrically, if we consider instead for r > 0, g such that supp g′ = [P0 + r,+∞), with
g(P0) = 0, we are lead to the conclusion: µ({v > P0}) ≥ 0. From this we deduce that µ
must be supported in {v ≤ P0 or v ≥ P1}. Now due to the confinement condition (9), we
know that µ({v < P0}) = µ({v > P1}) = 0. Hence the Jordan decomposition of µ yields that
supp µ+ ⊂ {v = P1} and supp µ− ⊂ {v = P0} which precisely expresses condition (8).
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Figure 12: Expanding disk with a melting front. ∆t = 0.004, ∆x = 0.002. From top to bottom,
solution at t = 0, t = 0.01, t = 0.1 and t = 1.
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Figure 13: Two disks expanding and merging. ∆t = 0.004, ∆x = 0.002. From top to bottom,
solution at t = 0, t = 0.01, t = 0.1 and t = 1.
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Figure 14: Mixed behaviour on the boundary with ∆t = 0.004, ∆x = 0.002. From top to bottom,
numerical solution at t = 0, t = 0.01, t = 0.1 and t = 1.
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Figure 15: Random initial condition with ∆t = 0.0002, ∆x = 0.002. From top to bottom, numerical
solution at t = 0, t = 0.001, t = 0.01 and t = 0.1.
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Figure 16: Gronwall-type decrease of N(t). Left: Riemann initial conditions differing by a transla-
tion of size 0.1. Right: Randomly generated initial conditions.
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