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METRIC EXTRAPOLATION IN THE WASSERSTEIN SPACE

THOMAS O. GALLOUËT, ANDREA NATALE, AND GABRIELE TODESCHI

Abstract. In this article we study a variational problem providing a way to extend
for all times minimizing geodesics connecting two given probability measures, in the
Wasserstein space. This is simply obtained by allowing for negative coefficients in
the classical variational characterization of Wasserstein barycenters. We show that
this problem admits two equivalent convex formulations: the first can be seen as a
particular instance of Toland duality and the second is a barycentric optimal transport
problem. We propose an efficient numerical scheme to solve this latter formulation
based on entropic regularization and a variant of Sinkhorn algorithm.

1. Introduction

Given a metric space (X, d), a globally minimizing geodesic on X defined on [t0, t1] ⊂
R, with t1 > t0, is a curve x : s ∈ [t0, t1] → x(s) ∈ X verifying

(1.1) d(x(s0), x(s1)) =
|s1 − s0|
|t1 − t0|

d(x(t0), x(t1)) ,

for all s0, s1 ∈ [t0, t1]. If such a curve exists, its points can be characterized as the
minimizers of the following variational problem: for any s ∈ [t0, t1]

(1.2) x(s) ∈ argmin
x∈X

{
(s− t0)

d2(x, x(t1))

2
+ (t1 − s)

d2(x, x(t0))

2

}
.

Let us consider problem (1.2) for s /∈ [t0, t1]. Specifically, after a rescaling, we consider
the following problem: given two points x0, x1 ∈ X and t > 1, find x ∈ X that solves

(1.3) inf
x∈X

{
d2(x, x1)

2(t− 1)
− d2(x, x0)

2t

}
.

By triangular and Young’s inequality, we always have that such infimum is larger than
−d2(x0, x1)/2. Moreover, if there exists a globally minimizing geodesic x : s ∈ [0, t] →
x(s) ∈ X such that x(0) = x0 and x(1) = x1 then this lower bound is attained by x(t),
which is therefore a minimizer. In particular, in the case where X = Rd, equipped with
the Euclidean distance, one always has a unique minimizer

x(t) = x0 + t(x1 − x0) .

In general, problem (1.3) gives a variational definition of geodesic extrapolation even
if no geodesic, connecting x0 to x1 on the interval [0, 1], may be extended up to time
t > 1 while staying globally length minimizing.
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In this work, we consider a specific instance of problem (1.3) where (X, d) is P2(Rd),
the set of probability measures with finite second moments, equipped with the L2-
Wasserstein distance W2. This latter is defined as follows: for any µ, ν ∈ P2(Rd)

(1.4) W 2
2 (µ, ν) := min

{∫
|x− y|2dγ(x, y) ; γ ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) ⊂ P2(Rd ×Rd) is the set of couplings having µ and ν as first and second
marginal, respectively. The problem we consider is therefore given by:

(P) min
µ∈P2(Rd)

{
W 2

2 (µ, ν1)

2(t− 1)
− W 2

2 (µ, ν0)

2t

}
.

By the derivation above, problem (P) provides a natural notion for geodesic extrapola-
tion in the Wasserstein space. This was named metric extrapolation in [15] and used for
the construction of higher order time discretization of Wasserstein gradient flows. In
contrast to the classical Wasserstein version of problem (1.2) introduced in [1], it was
shown in [15] (see also Section 2.1) that problem (P) always admits a unique minimizer
even when there are multiple geodesics connecting ν0 to ν1. This may be surprising
given the lack of convexity of the problem with respect to the linear interpolation of
probability measures, but is due to the fact that (P) is strongly convex along particular
curves known as generalized geodesics [2]. The goal of this paper is to provide a full
characterization of the hidden convexity in problem (1.2) which is responsible for its
well-posedness. More precisely, we show that it admits two different convex formula-
tions, which can be seen as an instance of Toland duality and of weak optimal transport,
respectively, and which we describe in general terms in this section. We will use such
formulations to give a precise characterization of the minimizers of problem (1.2) and
to construct an efficient numerical scheme to compute them.

1.1. Geodesics in the Wasserstein space. Consider the optimal transport problem
(1.4) from ν0 to ν1. If, for example, ν0 is absolutely continuous then Brenier’s theorem
states that there exists a unique solution γ∗ ∈ Γ(ν0, ν1) to this problem which is fur-
thermore induced by a transport map ∇u : Rd → Rd, where u : Rd → R is a convex
function usually called the Brenier potential for the transport from ν0 to ν1, i.e.

γ∗ = (Id,∇u)#ν0 .
Furthermore, in this case, there exists a uniquely defined geodesic on the interval [0, 1]
connecting ν0 to ν1, which is given by McCann’s interpolant [23]

(1.5) ν(s) = ((1− s)Id + s∇u)#ν0 , ∀ s ∈ [0, 1] .

This curve can be extended up to s = t > 1 while staying a length-minimizing geodesic
if and only if ((1− t)Id + t∇u) is an optimal transport map, or equivalently

x 7→ u(x)− t− 1

t

|x|2

2
is convex.

However, this condition is not verified in general, since we may only expect u to be
convex (and not strongly convex), which corresponds to the fact that the trajectories
of the particles, induced by (1.5), may cross precisely at t = 1.
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Note that in the following, for brevity, we will occasionally omit to specify “length-
minimizing” when referring to Wasserstein geodesics, but we will always refer to curves
that are globally length-minimizing.

1.2. Toland’s duality. Toland’s duality [31, 32] concerns the minimization of the dif-
ference of two convex, proper and lower semi-continuous functions F,G : V → (−∞,∞],
where V is a normed vector space. Specifically, we have the equivalence

inf
x∈V

{F (x)−G(x)} = inf
p∈V ∗

{G∗(p)− F ∗(p)}

where V ∗ is the topological dual of V and F ∗ and G∗ are the Legendre transforms of
F and G respectively.

The idea of using Toland duality to deal with differences of Wasserstein distances
stems from the work of Carlier [9], who considered a variant of problem (P) where the
coefficients multiplying the two distances are equal and Rd is replaced by a compact
convex set. In our case, F and G are replaced by the maps

µ ∈ P2(Rd) 7→ W 2
2 (µ, ν1)

2(t− 1)
and µ ∈ P2(Rd) 7→ W 2

2 (µ, ν0)

2t

Then, at least formally, one can check that the resulting dual problem is given by

(P∗) inf

{∫
u∗dν1 +

∫
udν0 : u− t− 1

t

| · |2

2
is convex and l.s.c.

}
.

A detailed proof of this result is provided in Section 2.2. Remarkably, and differently
from (P), this is a convex optimization problem in the usual sense. Also, we observe
that requiring u to be only convex rather than strongly convex, one recovers one of
the possible dual formulations of the quadratic optimal transport problem from ν0 to
ν1. In particular, in this case, any Brenier potential u is a solution and, if ν1 is a.c.,
∇u∗#ν1 = ν0. On the other hand, if u is a solution to (P∗) we show that ν0 := ∇u∗#ν1
may be different from ν0 but is dominated by it in the convex order (see Lemma 2.4),
i.e.

(1.6)

∫
φ dν0 ≤

∫
φ dν0

for all convex functions φ : Rd → R. Moreover, we show that the (unique) solution to
problem (P) can be written as

(1.7) νt := ((1− t)Id + t∇u)#ν0 ,

at least in the case where ν0 is absolutely continuous (see Theorem 2.5 for the precise
statement in the general case). Since u is strongly convex this means that the measure
ν0, defined via the solution of problem (P∗) is such that the geodesic from ν0 to ν1
on the time interval [0, 1] can be extended up to time t and the resulting extension is
precisely the solution to (P).
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1.3. Weak optimal transport formulation. The convex order relation between ν0 =
∇u∗#ν1 and ν0, with u solving (P∗), can be exploited to derive an equivalent formulation
of problem (P) which fits in the framework of weak (and in particular barycentric)
optimal transport, a generalization of optimal transport introduced in [18]. This reads
as follows:

(B) inf
γ∈Γ(ν0,ν1)

∫
|tx1 − (t− 1)bary(γx1)|2dν1(x1) , bary(γx1) =

∫
x0dγx1(x0) ,

where γx1 is the disintegration of γ with respect to the projection on the second mar-
ginal. On the other hand, by Strassen’s theorem (see Lemma 3.1 and [30]), the convex
order condition (1.6) implies the existence of a coupling θ ∈ Γ(ν0, ν0) which is the law
of a martingale, i.e. dθ(x, y) = dθx(y)dν0(x) and∫

y dθx(y) = x , for ν0-a.e. x ∈ Rd,

where now θx is the disintegration of θ with respect to the projection on the first
marginal. Thus, formally, the link between problem (P∗) and (B) can be stated as
follows: u solves (P∗) if and only if the coupling π ∈ Γ(ν0, ν1) defined by

(1.8) dπ(x0, x1) = dθ∇u∗(x1)(x0)dν1(x1)

solves (B) (see Theorem 3.3). Note that this gives a characterization of the minimizers
of problem (B) as the composition of a martingale and a sufficiently smooth transport
plan. Such a characterization can also be derived as a slight modification of a result of
Gozlan and Juillet [17]. Our proof shows that this can be alternatively obtained as a
consequence of Strassen’s theorem and Toland duality.

1.4. Related works. The problem of defining Wasserstein geodesic extensions has ap-
peared in the literature in different contexts. Several approaches, different from the one
discussed in this article, were proposed in [4] as a byproduct of different definitions for
cubic splines in the Wasserstein space, with the aim of interpolating (and extrapolat-
ing) multiple measures by a single curve. A variant of problem (P) was introduced in
[22] in order to construct higher order versions of the JKO scheme for the numerical
computation of Wasserstein gradient flows. The idea of using geodesic extensions is
also proposed in [21] with the same purpose.

Problem (P) has also a strong link with fluid dynamics. In one dimension, the curve
t 7→ νt defined by equation (1.7) yields a “sticky solution” of the pressureless Euler
equation [7, 24]; see also Section 4.1. In general, the idea of modifying the initial
conditions to retrieve the solution of a fluid dynamic model at the final time via convex
optimization (as it occurs in our model; see equation (1.7)) was proposed by Brenier
in [5] for the incompressible Euler equations, but it applies to a large class of models
[6, 34].

From a computational perspective, the use of strongly convex Brenier potentials has
been advocated in [27] to regularize standard optimal transport, but via a variational
formulation that differs from ours and in particular is non-convex. On the other hand,
problem (P∗), with additional constraint of L-smoothness on the potential, has been
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recently considered in [33] to provide an estimator of the true Brenier potential be-
tween sampled measures. In our case, however, the equivalence with the barycentric
problem (B) enables us to propose an algorithm with similar performance as the well-
known Sinkhorn method. Furthermore, the numerical scheme that we propose leverages
Sinkhorn in a different way than related methods introduced in [26] for general weak
optimal transport problems.

The variational formulation of the Wasserstein barycenters between multiple mea-
sures with negative coefficients appears naturally also in the context of nonlinear re-
duced basis models in the Wasserstein space, as in [12] for example, and for statisti-
cal regression [13]. However, in these works the non-convexity of the problem is not
addressed directly. In particular, in [12] the authors use a simpler proxy for the W2

distance which allows for an explicit characterization of the barycenters. In [13] instead,
the problem is tackled numerically using a convex optimization approach, without con-
vergence guarantees. We refer to Remark 3.4 for some considerations on the extension
of our work to the setting with multiple measures.

Finally, we remark that a weak optimal transport version of Wasserstein barycenters
(rather than extrapolation as in our case) has been recently introduced in [11].

1.5. Structure of the paper. The rest of the article is structured as follows. In
section 2 we collect some well-posedness results for the metric extrapolation problem,
and prove strong duality with problem (P∗). In section 3, we prove the equivalence
with the weak optimal transport formulation (B). In section 4 we give a precise link of
our problem with the H1 projection on convex functions, via a Γ-convergence result. In
section 5 we provide some exact solutions to the problem providing some intuition on
the behavior of the metric extrapolation. Finally, in Section 6, we propose and analyze
a variant of Sinkhorn algorithm to solve the problem in the case of atomic measures,
and provide some numerical results.

2. Main properties and Toland duality

In this section we collect some well-posedness results for problem (P), i.e., existence
and uniqueness of solutions and convexity of the problem along generalized geodesics,
that were already proven in [15]. We further show that the problem admits a convex
dual formulation given by problem (P∗). This last result is inspired by the duality
principle studied in [9] for the case where the transport costs are multiplied by the
same coefficient with opposite signs, but it does not contain this latter since our proof
requires the coefficients to be different in absolute value.

2.1. Existence and uniqueness of solutions. Existence and uniqueness for solutions
to problem (P) follows from the fact that the functional

(2.1) Ft(ν0, ν1;µ) :=
W 2

2 (µ, ν1)

2(t− 1)
− W 2

2 (µ, ν0)

2t

is bounded from below and is strongly convex along specific curves, known as generalized
geodesics [2, Definition 9.1.1]. As for the lower bound, this can be found directly using
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the notion of Wasserstein geodesic. In fact, if ν : s ∈ [0, t] → ν(s) ∈ P2(Rd) is a
geodesic from ν0 to µ, we have

(2.2)

W 2
2 (µ, ν0)

2t
=
W 2

2 (µ, ν(1))

2(t− 1)
+
W 2

2 (ν(1), ν0)

2

≤ W 2
2 (µ, ν1)

2(t− 1)
+
W 2

2 (ν1, ν0)

2

where we have used the variational characterization of globally minimizing geodesics in
equation (1.2), and specifically the fact that

ν(1) ∈ argmin
ν∈P2(Rd)

{
W 2

2 (µ, ν)

2
+ (t− 1)

W 2
2 (ν, ν0)

2

}
Then, equation (2.2) yields

(2.3) Ft(ν0, ν1;µ) ≥ −W
2
2 (ν0, ν1)

2
.

A precise statement for the strong convexity of Ft(ν0, ν1; ·) along generalized geodesics
is contained in the following lemma:

Lemma 2.1 (Theorem 3.4 in [22]). Let ν0, ν1 ∈ P2(Rd), and consider the functional
Ft(ν0, ν1; ·) : P2(Rd) → R defined in (2.1). For any µ0, µ1 ∈ P2(Rd), let µ : [0, 1] →
P2(Rd), µ(0) = µ0, µ(1) = µ1, be a generalized geodesic based in ν1. Then, for all
0 ≤ s ≤ 1 it holds

(2.4) Ft(ν0, ν1;µ(s)) ≤ (1− s)Ft(ν0, ν1;µ0) + sFt(ν0, ν1;µ1)−
s(1− s)

2

W 2
2 (µ0, µ1)

t(t− 1)
.

Note that this Lemma can be viewed as a simple consequence of the fact that
Ft(ν0, ν1; ·) is the sum of W 2

2 (·, ν1)/(2t − 2), which is 1/(t − 1)-convex along gener-
alized geodesics based at ν1 [2, Lemma 9.2.1] (in the sense of equation (2.4)), and
−W 2

2 (·, ν1)/(2t), which is −1/t-convex along any generalized geodesic [2, Proposition
9.3.12]. Therefore, the sum must be (1/(t−1)−1/t)-convex along generalized geodesics
based at ν1.

Using the fact that the space P2(Rd) equipped with the Wasserstein distance is
complete, one can show that Lemma 2.1 together with the lower bound (2.3) implies
that problem (P) admits a unique solution. We refer to [15, Proposition 4.10] for the
proof.

Remark 2.2 (Link with extrapolation). Suppose that there exists a length-minimizing
geodesic s ∈ [0, t] → ν(s) ∈ P2(Rd) such that ν(0) = ν0 and ν(1) = ν1, then ν(t) is the
unique minimizer to problem (P), since

W 2
2 (ν(t), ν1)

2(t− 1)
− W 2

2 (ν(t), ν0)

2t
= −W

2
2 (ν0, ν1)

2
.

The converse is also true: if the unique minimizer µ realizes the lower bound, i.e.
Ft(ν0, ν1;µ) = −W 2

2 (ν0, ν1)/2, then the geodesic ν is well-defined and µ = ν(t). In fact,
equation (2.2) holds in this case with an equality instead of an inequality, which implies
that ν1 belongs to a globally minimizing geodesic connecting ν0 and µ.
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2.2. Dual formulation. Let us recall the classical dual Kantorovich formulation of
the L2-optimal transport problem: for any µ, ν ∈ P2(Rd) and s > 0

(2.5)
W 2

2 (µ, ν)

2s
= sup

{∫
ϕ dµ+

∫
ϕcs dν

}
,

where the supremum is taken over any continuous bounded function ϕ ∈ Cb(Rd) and
ϕcs ∈ Cb(Rd) denotes the c-transform of ϕ associated with the l2 cost rescaled by the
factor 2s, i.e.

ϕcs(y) := inf
x

|x− y|2

2s
− ϕ(x) .

We will denote the c-transform with respect to the cost c(x, y) = |x−y|2/2 by ϕc := ϕc1.
In the following we will also use an alternative form of the dual formulation (2.5) written
in terms of the Brenier potential. More precisely

(2.6)
W 2

2 (µ, ν)

2
= − inf

{∫
u dµ+

∫
u∗ dν

}
+

∫
|x|2

2
dµ(x) +

∫
|x|2

2
dν(x)

where the infimum is computed over all convex functions u : Rd → R (or equivalently
over all lower semi-continuous convex function u : Rd → (−∞,∞]). Note that this
formulation can be obtained from (2.5) via the change of variable u = | · |2/2− ϕ. The
problem on the right-hand side of (2.6) always admits a lower semi-continuous solution
(which is not necessarily continuous). We refer to any such solution as an optimal
Brenier potential for the transport from µ to ν.

By the dual formulation in equation (2.5), we have

(2.7)

(P) = inf
µ,φ

sup
ψ

{∫
(ψ − φ) dµ+

∫
ψct−1 dν1 −

∫
φctdν0

}
≥ inf

φ

{∫
φct−1 dν1 −

∫
φctdν0

}
,

where the first equality is obtained by using the dual formulation for both Wasserstein
distances, whereas the inequality follows by selecting ψ = φ in the sup over ψ. Now,
let us observe that

(2.8)

−[φct ]
c(x) = − inf

y

{
|x− y|2

2
− inf

z

{
|y − z|2

2t
− φ(z)

}}
≤ inf

z
sup
y

{
−|x− y|2

2
+

|y − z|2

2t
− φ(z)

}
= φct−1(x)

and therefore we have

(P) ≥ − sup

{∫
ϕc dν1 +

∫
ϕ dν0

}
,

where now ϕ ∈ Cb(Rd), and with the constraint that there must exist a function φ ∈
Cb(Rd) such that

(2.9) ϕ(x) = φct(x) = inf
y

{
|x− y|2

2t
− φ(y)

}
.
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Note that without this last constraint, we have precisely the dual formulation of the
L2-optimal transport problem from ν0 to ν1 in equation (2.5), with s = 1. Making the
change of variable u = | · |2/2 − ϕ, which would correspond to the Brenier potential
from ν0 to ν1, the constraint (2.9) implies the existence of a function ξ ∈ C(Rd) given
by ξ = | · |2/2− tφ such that

u(x) =
t− 1

t

|x|2

2
+
ξ∗(x)

t
,

where ξ∗ is the convex function given by the Legendre transform of ξ. Hence, if we
consider the following problem

(P∗) inf

{∫
u∗dν1 +

∫
udν0 : u− t− 1

t

| · |2

2
is convex and l.s.c.

}
,

where again u∗ is the Legendre transform of u, we obtain

(2.10) (P) ≥ (P∗)−
∫

|x|2

2
dν0(x)−

∫
|x|2

2
dν1(x) .

Problem (P∗) is a convex optimization problem. It appeared already in [17], up to
slight variations, as the dual of a barycentric optimal transport problem. For complete-
ness, we provide a proof of existence of minimizers, which follows essentially the same
lines as the one used in [27] to show existence of minimizers for the W2 projection on
measures obtained via push-forward by smooth and strongly convex Brenier potentials.
The key property we will use is the fact that a lower semi-continuous proper convex
function u : Rd → (−∞,∞] is 1/L-strongly convex if and only if ∇u∗ is L-Lipschitz;
see, e.g., Theorem 18.15 in [3].

Lemma 2.3. There exists a lower semi-continuous strongly convex function u solving
(P∗).

Proof. Since u∗∗ = u, setting v = u∗ we obtain the equivalent problem

(2.11) inf

{∫
vdν1 +

∫
v∗dν0 : v ∈ C1(Rd) is convex , ∇v is L-Lipschitz

}
,

where L = t/(t − 1). Note that for any admissible v, the functional minimized in
(2.11) cannot take the value −∞. In fact, on one hand v∗ is bounded from below being
strongly convex, and on the other v(y) ≥ ⟨y, x0⟩ − v∗(x0) for some x0 ∈ Rd for which
v∗(x0) is finite and ν0 has finite first moment. We prove the existence of a minimizer for
problem (2.11). Let (vn)n be a minimizing sequence. We start by showing that up to
a subsequence extraction this converges pointwise to a function v̄ which is admissible
for problem (2.11). Since the problem is independent of the addition of a constant
to v, without loss of generality we can assume vn(0) = 0. Let yn = ∇vn(0), for any
pn ∈ ∂v∗(yn), the sub-differential of v∗ at yn, and for all y ∈ Rd, we have

(2.12) v∗n(y) ≥ v∗n(yn) + ⟨pn, y − yn⟩+
1

2L
|y − yn|2
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and we can pick pn = 0 since yn = ∇vn(0). Therefore we obtain, by Jensen’s inequality,∫
vndν1 +

∫
v∗ndν0 ≥ vn(bary(ν1)) + v∗n(yn) +

1

2L

∫
|y − yn|2dν0

≥ ⟨bary(ν1), yn⟩+
1

2L

∫
|y − yn|2dν0 ,

where the second inequality is due to Fenchel–Young inequality, and where

bary(ν1) :=

∫
xdν1(x) .

This implies that yn = ∇vn(0) is uniformly bounded, moreover for all x ∈ Rd

|∇vn(x)| ≤ |∇vn(x)−∇vn(0)|+ |∇vn(0)| ≤ L|x|+ |∇vn(0)| .

Therefore, by the Arzelà-Ascoli theorem (∇vn)n converges uniformly on compact sub-
sets (up to a subsequence extraction) to a function g which is L-Lipschitz. Since
vn(0) = 0, one can show that vn converges pointwise (again, up to a subsequence ex-
traction) to a convex function v̄ such that v̄(0) = 0 and that g = ∇v̄. Indeed, we have
that for all n,m ≥ 0,

|vn(x)− vm(x)| =
∣∣∣∣∫ 1

0

⟨∇vn(sx)−∇vm(sx), x⟩ds
∣∣∣∣ ≤ |x|

∫ 1

0

|∇vn(sx)−∇vm(sx)|ds

and so the uniform convergence of ∇vn on compact sets implies that (vn(x))n is Cauchy
for all x ∈ Rd. Furthermore, since v̄(0) = 0, for all x, y ∈ Rd

(2.13) vn(x)− vn(y) =

∫ 1

0

⟨∇vn(sy + (1− s)x), x− y⟩ds

=⇒ v̄(y)− v̄(x) =

∫ 1

0

⟨g(sy + (1− s)x), y − x⟩ds ,

which in turn implies that v̄ is differentiable and g = ∇v̄.
Now, observe that by the definition of Legendre transform and the fact that vn(0) = 0,

we have v∗n ≥ 0. Therefore by Fatou’s lemma,

lim inf
n→∞

∫
v∗ndν0 ≥

∫
lim inf
n→∞

v∗ndν0 ≥
∫
v̄∗dν0 .

On the other hand vn(x) − ⟨yn, x⟩ ≥ 0 for all x ∈ Rd. Applying again Fatou’s lemma
with respect to the sequence of functions x 7→ vn(x) − ⟨yn, x⟩, and using the fact that
yn converges to ∇v̄(0), we obtain

lim inf
n→∞

∫
vndν1 ≥

∫
v̄dν1.

Therefore v̄ solves (2.11) and v̄∗ solves (P∗). □

Additionally, we have the following characterization of the minimizers, which will be
useuful to establish the strong duality between (P) and (P∗). This is also contained
in [17], but we include a sketch of the proof here for completeness. Before stating the
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result, we remark that for any strongly convex function u, ∇u∗ is Lipschitz continuous
so (∇u∗)#ν1 is well-defined also when ν1 is not absolutely continuous.

Lemma 2.4. Define η := (∇u∗)#ν1−ν0. Then, a (t−1)/t-convex lower semi-continuous
function u solves (P∗) if and only if

(2.14)

∫ (
u(x)− t− 1

t

|x|2

2

)
dη(x) = 0 and

∫
φ(x) dη(x) ≤ 0

for all lower semi-continuous convex functions φ : Rd → (−∞,∞].

Proof. Equation (2.14) is equivalent to the optimality conditions of problem (P∗).
In fact, if u is a lower semi-continuous function solving (P∗), given any lower semi-
continuous function φ such that u+φ is (t−1)/t-convex, then u+εφ is (t−1)/t-convex
and lower semi-continuous for all 0 < ε ≤ 1 and it is therefore an admissible competitor
for problem (P∗). Hence we find that∫

(u+ εφ)∗dν1 +

∫
(u+ εφ)dν0 ≥

∫
u∗dν1 +

∫
udν0 ,

or equivalently ∫
(u+ εφ)∗ − u∗

ε
dν1 ≥ −

∫
φdν0 .

By Lemma 6.1 in [17], generalizing a result of Gangbo [16], if there exist a, b ≥ 0 such
that φ(x) ≥ −a|x| − b for all x ∈ Rd and φ is continuous, then the integrand on the
left-hand side tends pointwise to −φ ◦ ∇u∗ as ε→ 0+. Therefore for such functions φ,
by Fatou’s lemma, ∫

φd(∇u∗)#ν1 ≤
∫
φdν0 .

In particular, the inequality holds for any lower semi-continuous convex function φ, since
these may be approximated by Lipschitz functions, e.g., by setting φn(x) = infy φ(y) +
n|x−y|. Moreover, formally, taking φ = ±(u−|·|2(t−1)/(2t)) we get the first condition
in (2.14). Note however that even if φ = −(u − | · |2(t − 1)/(2t)) is such that u + φ
is convex, it may itself be neither convex nor continuous so one needs an additional
regularization argument to conclude the proof; see point (b) in the proof of Theorem
1.2 in [17].

On the other hand, given a lower semi-continuous (t − 1)/t-convex function u that
satisfies (2.14), for any lower semi-continuous (t− 1)/t-convex function ũ,∫

(ũ− u)dη =

∫ (
ũ(x)− t− 1

t

|x|2

2

)
dη(x)−

∫ (
u(x)− t− 1

t

|x|2

2

)
dη(x) ≤ 0 .

This implies that∫
udν0 +

∫
u∗dν1 =

∫
ud(∇u∗)#ν1 +

∫
u∗dν1 −

∫
udη

≤
∫
ũd(∇u∗)#ν1 +

∫
ũ∗dν1 −

∫
ũdη

=

∫
ũ∗dν1 +

∫
ũdν0 ,
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where we also used the fact that u is an optimal Brenier potential for the transport
from ∇u∗#ν1 to ν1. □

The following theorem establishes that strong duality holds between problems (P)
and (P∗).

Theorem 2.5. We have

(2.15) (P) = (P∗)−
∫

|x|2

2
dν0(x)−

∫
|x|2

2
dν1(x) .

Moreover,

(1) µ solves (P) if and only if µ = T (t)#ν1, where

T (t) := ∇u∗ + t(Id−∇u∗)

and u solves (P∗);
(2) conversely, u solves (P∗) if and only if −(t−1)u∗+ t| · |2/2 and tu−(t−1)| · |2/2

are optimal Brenier potentials from ν1 to µ and from ν0 to µ, respectively, and
µ solves (P).

Proof. Let u solve (P∗). By the optimality conditions in Lemma 2.4, and specifically
the equality in (2.14), we have

(2.16)

(P∗) =

∫
(u(∇u∗(x)) + u∗(x)) dν1(x)−

t− 1

2t

∫
|x|2dη(x)

=

∫ (
⟨∇u∗(x), x⟩ − t− 1

2t
|∇u∗(x)|2

)
dν1(x) +

t− 1

2t

∫
|x|2dν0(x) .

Define

µ := (∇u∗ + t(Id−∇u∗))#ν1 and ν0 := (∇u∗)#ν1.

By the optimality conditions for u, and denoting w := tu−(t−1)| · |2/2 (which is convex
due to the strong convexity of u), we deduce that

(2.17)

−W
2
2 (µ, ν0)

2t
=

1

t
inf

v convex

{∫
vdν0 +

∫
v∗dµ

}
−
∫

|x|2

2t
dν0(x)−

∫
|x|2

2t
dµ(x)

≤ 1

t

[∫
wdν0 +

∫
w∗dµ

]
−
∫

|x|2

2t
dν0(x)−

∫
|x|2

2t
dµ(x)

=
1

t

∫
[w(∇u∗(x)) + w∗(∇u∗(x) + t(x−∇u∗(x)))] dν1(x)

−
∫

|x|2

2t
dν0(x)−

∫
|x|2

2t
dµ(x) ,

where for the first equality we used the dual formulation in (2.6). Since x ∈ ∂u(∇u∗(x)),
the subdifferential of u at ∇u∗(x), and given that w is convex, we have that ∇u∗(x) +
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t(x−∇u∗(x)) ∈ ∂w(∇u∗(x)), the subdifferential of w at ∇u∗(x). Therefore, we obtain

(2.18) − W 2
2 (µ, ν0)

2t
≤ 1

t

∫
⟨∇u∗(x),∇u∗(x) + t(x−∇u∗(x))⟩dν1(x)

−
∫

|x|2

2t
dν0(x)−

∫
|∇u∗(x) + t(x−∇u∗(x))|2

2t
dν1(x) .

Consider now the coupling:

γ := (Id,∇u∗ + t(Id−∇u∗))#ν1 ∈ Γ(ν1, µ) .

Since γ is an admissible coupling for the transport from ν1 to µ,

(2.19)

(P) ≤
∫

|x− x1|2

2(t− 1)
dγ(x1, x)−

W 2
2 (µ, ν0)

2t

≤ −
∫

|tx− (t− 1)∇u∗(x)|2

2t(t− 1)
dν1(x) +

∫
|x|2

2(t− 1)
dν1(x)−

∫
|x|2

2t
dν0(x) ,

where the second inequality can be obtained by using (2.18) and the definition of γ,
and rearranging terms. Developing the square and comparing the result with equation
(2.16) we get

(P) ≤ (P∗)−
∫

|x|2

2
dν0(x)−

∫
|x|2

2
dν1(x) .

Recalling (2.10), this implies the equality.
The reasoning above implies a posteriori that given u optimal for (P∗), µ = (∇u∗ +

t(Id−∇u∗))#ν1 is necessarily the unique minimizer of problem (P). This implies point
(1) in the theorem.

For the only if part of point (2), in view of (2.15) and the inequalities (2.18) and
(2.19), we just need to check that (1− t)u∗ + t| · |2/2 is convex if u is (t− 1)/t-strongly
convex. Observe that if ∇u∗ is t/(t− 1)-Lipschitz, for all x, y ∈ Rd,

(2.20) u∗(y) ≤ u∗(x) + ⟨∇u∗(x), y − x⟩+ t

t− 1

|y − x|2

2
.

Then, since t > 1, this is equivalent to

(1− t)u∗(y) + t
|y|2

2
≥ (1− t)u∗(x) + (1− t)⟨∇u∗(x), y − x⟩ − t

|y − x|2

2
+ t

|y|2

2

= (1− t)u∗(x) + t
|x|2

2
+ ⟨(1− t)∇u∗(x) + tx, y − x⟩ ,

which in turn is equivalent to the convexity of (1− t)u∗ + t| · |2/2.
Finally, to show the if part in point (2) of the theorem we follow the same steps

to show (2.10). Specifically, let µ solve (P) and tu + (1 − t)| · |2/2 be an optimal
Brenier potential from from ν0 to µ. Then u is admissible for problem (P∗). Moreover,
proceeding as in equation (2.7),

(2.21) (P) ≥
∫
φct−1 dν1 −

∫
φctdν0,
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where φ is an optimal Kantorovich potential for the transport from µ to ν0 (i.e., an
optimal potential for the dual formulation in equation (2.5) with s = t). By direct
calculation, φct = −u + | · |2/2 and φct−1 ≥ −[φct ]

c = u∗ − | · |2/2, by equation (2.8).
Reinserting this in (2.21) and using the equality (2.15), we deduce that u solves (P∗).

□

From the proof of Theorem 2.5, one can also deduce that given u solving (P∗) then
tu+ (1− t)| · |2/2 is an optimal Brenier potential for the transport not only from ν0 to
µ but also from ν0 to µ. In particular, if ν0 and ν0 are absolutely continuous, one has
that the solution µ to (P) verifies

µ = (t∇u+ (1− t)Id)#ν0 = (t∇u+ (1− t)Id)#ν0.

Theorem 2.5 confirms the observation in Remark 2.2. In particular, the optimal
Brenier potential u from ν0 to ν1 is (t− 1)/t-convex if and only if there exists a length-
minimizing geodesic s ∈ [0, t] 7→ ν(s) ∈ P2(Rd) such that ν(0) = ν0 and ν(1) = ν1. In
this case u solves (P∗), and the solution to (P) is ν(t). If on the contrary the optimal
Brenier potential from ν0 to ν1 is not sufficiently convex, problem (P∗) still selects a
potential u which is sufficiently convex to trace a geodesic connecting ν0 at time 0 to the
extrapolation µ at time t. However, by the optimality conditions (2.14), ∇u∗ pushes ν1
to ν0 ⪯C ν0: the mass at the initial time is reorganized to guarantee the existence of a
length-minimising geodesic up to time t passing through ν1 at time 1.

Remark 2.6 (Toland’s duality). The strong duality established in Theorem 2.5 can be
partly seen as an instance of Toland’s duality [31, 32], just as for the case studied in
[9]. Given two convex, proper and lower semi-continuous functions F,G : V → (∞,∞],
where V is a normed vector space, Toland’s duality yields the equivalence

inf
x∈V

{F (x)−G(x)} = inf
p∈V ∗

{G∗(p)− F ∗(p)}

where V ∗ is the topological dual of V and F ∗ and G∗ are the Legendre transforms of F
and G respectively. In our case, F and G are replaced by the maps

µ ∈ P2(Rd) 7→ W 2
2 (µ, ν1)

2(t− 1)
and µ ∈ P2(Rd) 7→ W 2

2 (µ, ν0)

2t
,

respectively, whereas F ∗ and G∗ are replaced by

φ ∈ Cb(Rd) 7→ −
∫
φct−1dν1 and φ ∈ Cb(Rd) 7→ −

∫
φctdν0 ,

respectively. Then, at least formally, the Toland dual is the problem appearing on the
right-hand side in (2.7). Note, however, that this is not a convex problem and one needs
a further change of variable to recover (P∗).

3. Barycentric Optimal Transport formulation

In this section we provide yet another equivalent formulation of problem (P), which
turns out to coincide to a specific type of barycenteric optimal transport given by

(B) inf
π∈Γ(ν0,ν1)

∫
|tx1 − (t− 1)bary(πx1)|2dν1(x1) ,
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where

bary(πx1) :=

∫
x0 dπx1(x0) .

This is a specific instance of a weak optimal transport problem as studied in [18, 17].
This equivalence is not surprising given that the dual formulation (P∗) coincides up
to minor modifications to that derived for the barycentric optimal transport problem
in [18]. We give here a direct proof of the equivalence between (P) and (B): this can
also be seen as an alternative way to prove the dual formulation (P∗) for problem (B)
via Toland’s duality. As a byproduct, it also yields the same type of characterization
for the minimizers of problem (B) as the one proved in [17] for a slight variant of our
problem.

Our main tool will be Strassen’s theorem [30]. Before stating it, let us recall that
given µ, ν ∈ P(Rd) and a coupling θ ∈ Γ(µ, ν), we can always represent θ in the
following disintegrated form (with respect to the projection on the first marginal):

dθ(x, y) = dθx(y)dµ(x)

where we can interpret θx as a probability measure on Rd for all x (which is uniquely
defined µ-a.e.). We will use a similar notation for couplings with multiple marginals.
Furthermore, we say that µ, ν ∈ P1(Rd) are in the convex order µ ⪯C ν if and only if∫

φdµ ≤
∫
φdν

for all (continuous) convex functions φ : Rd → R.

Lemma 3.1 (Strassen’s theorem). Let µ, ν ∈ P1(Rd) then µ ⪯C ν if and only if there
exists a coupling θ ∈ Γ(µ, ν) such that dθ(x, y) = dθx(y)dµ(x) and

(3.1)

∫
ydθx(y) = x for µ-a.e. x ∈ Rd .

Remark 3.2. In probabilistic terms, the condition on θ in equation (3.1) is equivalent
to the existence of a martingale (X, Y ), where X and Y are random variables with laws
µ and ν, respectively. Then, θ is the law of the martingale (X, Y ).

Let us go back to showing the equivalence of problems (P) and (B). We start by
rewriting problem (P) as follows, using the definition of the Wasserstein distance in
(1.4),
(3.2)

(P) = inf
µ

[
inf

γ1∈Γ(ν1,µ)

∫
|x1 − x|2

2(t− 1)
dγ1(x1, x)− inf

γ0∈Γ(ν0,µ)

∫
|x0 − x|2

2t
dγ0(x0, x)

]
= inf

µ

[
inf

γ1∈Γ(ν1,µ)

∫
|x1 − x|2

2(t− 1)
dγ1(x1, x)− inf

η∈Γ(ν0,ν1,µ)

∫
|x0 − x|2

2t
dη(x0, x1, x)

]
.

Given a π ∈ Γ(ν0, ν1), which can be disintegrated as follows

dπ(x0, x1) = dπx1(x0)dν1(x1) ,

one can construct a coupling η by setting

dη(x0, x1, x) = dπx1(x0)dγ1(x1, x) .
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It is easy to check that η ∈ Γ(ν0, ν1, µ). If we restrict η in (3.2) to belong to this specific
class of couplings we get the following lower bound:

(P) ≥ inf
µ

inf
γ1∈Γ(ν1,µ)

sup
π∈Γ(ν0,ν1)

[∫
|x1 − x|2

2(t− 1)
dγ1(x1, x)−

∫ ∫
|x0 − x|2

2t
dπx1(x0)dγ1(x1, x)

]
≥ sup

π∈Γ(ν0,ν1)
inf

γ1∈Γ(ν1,µ)
µ

[∫
|x1 − x|2

2(t− 1)
dγ1(x1, x)−

∫ ∫
|x0 − x|2

2t
dπx1(x0)dγ1(x1, x)

]
where the second inequality is due to the exchange of inf and sup. We can obtain a
further lower bound by minimising the whole integrand with respect to x, i.e.

(P) ≥ sup
π∈Γ(ν0,ν1)

inf
γ1∈Γ(ν1,µ)

µ

∫
inf
x

[
|x1 − x|2

2(t− 1)
−
∫

|x0 − x|2

2t
dπx1(x0)

]
dγ1(x1, x)

= sup
π∈Γ(ν0,ν1)

∫
inf
x

[
|x1 − x|2

2(t− 1)
−
∫

|x0 − x|2

2t
dπx1(x0)

]
dν1(x1) .

Expanding the squares and using the fact that π ∈ Γ(ν0, ν1) we obtain

(P) ≥ − 1

2t(t− 1)
inf

π∈Γ(ν0,ν1)

∫
|tx1 − (t− 1)bary(πx1)|2dν1(x1)

+
1

2(t− 1)

∫
|x|2dν1(x)−

1

2t

∫
|x|2dν0(x) .

Hence we have

(P) ≥ − 1

2t(t− 1)
(B) + 1

2(t− 1)

∫
|x|2dν1(x)−

1

2t

∫
|x|2dν0(x) .

The fact that the inequality we obtained between (P) and (B) is in fact an equality
is a direct consequence of Strassen’s theorem. Specifically, if u solves (P∗), then by
Lemma 2.4, we have that ν0 := ∇u∗#ν1 ⪯C ν0, and therefore by Strassen’s theorem,
there exists a coupling θ ∈ Γ(ν0, ν0) with dθ(x, y) = dθx(y)dν0(x) and

(3.3)

∫
ydθx(y) = x , for ν0-a.e. x ∈ Rd.

This can be used to show the following result:

Theorem 3.3. The following equality holds:

(3.4) (P) = − 1

2t(t− 1)
(B) + 1

2(t− 1)

∫
|x|2dν1(x)−

1

2t

∫
|x|2dν0(x)

Moreover,

(1) π solves (B) if and only if

(3.5) ∇u∗(x1) = bary(πx1) , for ν1-a.e. x ∈ Rd ,

and u solves (P∗);
(2) conversely, u solves (P∗) if and only if (3.5) holds and π solves (B);
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Proof. Let u solve (P∗). Reasoning as in the the proof of Theorem 2.5 we get the bound
in equation (2.19), i.e.

(P) ≤ −
∫

|tx− (t− 1)∇u∗(x)|2

2t(t− 1)
dν1(x) +

1

2(t− 1)

∫
|x|2dν1(x)−

1

2t

∫
|x|2dν0(x) .

By Strassen’s theorem, there exists a coupling θ ∈ Γ(ν0, ν0) verifying (3.3). Therefore,
we can define a coupling π ∈ Γ(ν0, ν1) as follows

(3.6) dπ(x0, x1) = dθ∇u∗(x1)(x0)dν1(x1)

which is equivalent to (3.5). Then the inequality (2.19) is equivalent to

(P) ≤ − 1

2t(t− 1)

∫ ∣∣∣∣tx1 − (t− 1)

∫
x0dπx1(x0)

∣∣∣∣2 dν1(x1)
+

1

2(t− 1)

∫
|x|2dν1(x)−

1

2t

∫
|x|2dν0(x) .

This shows that π is optimal for (B) and directly implies equation (3.4).
In order to conclude the proof, we just need to observe that the function minimized

in problem (B) is strongly convex when viewed as a function of bary(πx1). This means
that any minimizer of problem (B) must satisfy (3.5) with u solving (P∗). □

Remark 3.4 (Generalizations). It is natural to ask to what extent the study presented
in this and the previous sections applies to other variants of problem (P). The most
natural scenarios are the case where the l2 cost is replaced by a general cost function,
and the case with multiple measures. For the first one, when using a general cost one
needs to at least require convexity along generalized geodesics, which is guaranteed upon
some conditions on the cost, and namely the so-called non-negative cross curvature
condition [20, 14]. The case with multiple measures would consist in considering the
problem:

inf
µ

{
K+∑
i=1

λ+i W
2
2 (µ, ν

+
i )−

K−∑
j=1

λ−j W
2
2 (µ, ν

−
j )

}
,

where K−, K+ ≥ 1, ν+i , ν
−
j ∈ P2(Rd) and λ+i , λ

−
j > 0 for all i, j,

∑
i λ

+
i >

∑
j λ

+
j . In the

particular case where K+ = 1, the functional is still strongly convex along generalized
geodesics based at ν+1 , and we expect that one can derive an equivalent version of problem
(P∗) and (B). In the general case, however, the picture is much less clear, and although
one can still apply Toland duality, it is not trivial to check that the resulting problem
is convex in appropriate variables and to derive an associated weak optimal transport
problem. We reserve to study these issues in future works.

4. Relation with the H1 projection on convex functions

In this section we show that problem (P) is strongly linked to the problem of com-
puting the Ḣ1 projection of an appropriate potential on the set of convex functions.
This also allows us to further justify the interpretation of problem (P) as a notion of
geodesic extrapolation.
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4.1. One-dimensional setting. Let us consider the specific case where d = 1. Given
µ ∈ P2(R), let us denote by Fµ : R → [0, 1] the right-continuous non-decreasing function
given by the cumulative distribution of µ, i.e. Fµ(x) := µ((−∞, x]), and denote by

F
[−1]
µ : [0, 1] → R its (left-continuous) pseudo-inverse defined by

F [−1]
µ (a) = inf{x ∈ R : Fµ(x) ≥ a}

with the usual convention inf ∅ = +∞, which is also known as the quantile function
associated with µ.

The optimal transport plan between two measures in P2(R) for the l2 cost is given
by the monotone rearrangement plan [29, Theorem 2.9]. As a consequence we can
reformulate the minimization problem (P) as follows

inf

{
1

2(t− 1)

∫ 1

0

|F [−1]
µ (x)− F [−1]

ν1
(x)|2dx− 1

2t

∫ 1

0

|F [−1]
µ (x)− F [−1]

ν0
(x)|2dx

}
,

where the infimum is taken over any quantile function F
[−1]
µ . Rearranging the squares,

the minimizers of this problem are the solutions to

(4.1) inf

∫ 1

0

∣∣F [−1]
µ (x)− (tF [−1]

ν1
(x)− (t− 1)F [−1]

ν0
(x))

∣∣2 dx .
Suppose that ν0 is absolutely continuous, then the optimal transport map from ν0 to

ν1 is T0 := F
[−1]
ν1 ◦ Fν0 and the problem above is equivalent to

(4.2) inf
T

∫ 1

0

|T − (tT0(x)− (t− 1)x)|2 dν0(x) ,

where T ∈ L2
ν0
(R) is required to be non-decreasing, and given a minimizer T we can

retrieve the minimizer µ of the original problem by

µ = T#ν0 .

This is just the L2 projection on the space of monotone functions of the map

x 7→ x+ t(T0(x)− x) .

Remark 4.1 (Equivalence with pressureless fluids). Suppose still that ν0 is absolutely
continuous and let T0(x) = x+ ∂xϕ0, where x 7→ |x|2/2+ ϕ0(x) is the Brenier potential
for the transport from ν0 and ν1. The solutions to the minimization problem (4.2) can be
related to the particular solutions of the pressureless Euler system, µ : [0,∞) → P2(R),
v : [0,∞) → L2(µ(t);R), solving

(4.3)

{
∂tµ+ ∂x(µv) = 0 ,

∂t(µv) + ∂x
(
µv2
)
= 0 ,

with initial conditions given by

µ(0) = ν0 , v(0, ·) = ∇ϕ0(·) ,
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and satisfying the sticky collision condition, which consists in requiring particles to share
the same position after collision. Brenier and Grenier [7] constructed sticky solutions
to problem (4.3) for which the evolution of µ is expressed explicitly by the curve

µ(t) = X̃(t, ·)#ν0,
with

(4.4) X̃(t, x) := (∂xcoψ(t, ·)) ◦ F0(x) , ψ(t, s) :=

∫ s

0

X(t, F [−1]
ν0

(s′)) ds′ ,

and X(t, x) = x+t∇ϕ0(x). Note that as long as the geodesic can be extended ψ(t, ·) stays
convex (as it is the integral of a monotone function) and therefore X̃ = X. It is easy
to check that X̃(t, ·) and µ(t) are precisely the solutions to (4.2) and (P), respectively.

4.2. A Γ-convergence result. In this section we elucidate the link between problem
(P) and a generalization of the projection onto monotone maps (4.2) in the multi-
dimensional setting. For the sake of clarity, from now on we focus on the case ν0
absolutely continuous. Consider a function ϕ0 : Rd → R such that x 7→ |x|2 + 2ε̄ϕ0(x)
is convex for some ε̄ ≥ 1, and such that ∇ϕ0 is L-Lipschitz. For 0 < ε ≤ ε̄, we consider
the functionals defined by

Gε(µ) :=
t(t− ε)

ε

[
W 2

2 (µ, νε)

t− ε
− W 2

2 (µ, ν0)

t

]
where

νε := (Id + ε∇ϕ0)#ν0 .

We investigate here the limit ε → 0+ which, loosely speaking and up to multiplicative
factors, corresponds to the case where ν1 tends to ν0 in (P) along the geodesic connecting
the two.

Proposition 4.2. The functionals Gε, as ε→ 0+, Γ-converge on (P2(Rd),W2) towards
the functional G : P2(Rd) → R defined by

(4.5) G(µ) :=
∫

|∇u(x)− (x+ t∇ϕ0(x))|2dν0(x)− t2W 2
2 (ν0, ν1)

where u : Rd → R is the unique convex function such that (∇u)#ν0 = µ.

Proof. First of all, we rewrite Gε as follows

Gε(µ) = tHε(µ) +W 2
2 (µ, ν0) , Hε(µ) :=

W 2
2 (µ, νε)−W 2

2 (µ, ν0)

ε
.

We prove that Hε Γ-converge towards

(4.6) H(µ) = −2

∫
⟨∇u(x)− x,∇ϕ0(x)⟩dν0(x) ,

which implies the result directly. For this, observe that

Hε(µ) ≤
1

ε

[∫
|∇u− (x+ ε∇ϕ0(x))|2dν0 −

∫
|∇u− x|2dν0

]
= H(µ) + εW 2

2 (ν0, ν1)

where we used the fact that (∇u, Id + ε∇ϕ0)#ν0 is an admissible coupling for the
transport from µ to νε. This implies directly the Γ − lim sup. For the Γ − lim inf, let
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(µε)ε ⊂ P2(Rd) be such that µε → µ in W2 as ε→ 0+. Let γε ∈ Γ(µε, νε) be an optimal
coupling and denote

uε(x) :=
|x|2

2
+ εϕ0(x) ,

which is convex by hypothesis. Note that (∇u∗ε)#νε = ν0. We have

Hε(µε) ≥
1

ε

[∫
|z − y|2dγε(z, y)−

∫
|∇u∗ε(y)− z|2dγε(z, y)

]
= −1

ε

∫
|∇u∗ε(y)− y|2dνε(y) +

2

ε

∫
⟨∇u∗ε(y)− y, z − y⟩dγε(z, y)

= −ε
∫

|∇ϕ0(x)|2dν0(x)− 2

∫
⟨∇ϕ0(∇u∗ε(y)), z − y⟩dγε(z, y) .

Recalling that L is the Lipschitz constant of ∇ϕ0, we obtain

Hε(µε) ≥ −εW 2
2 (ν0, ν1)− 2

∫
⟨∇ϕ0(∇u∗(y))−∇ϕ0(y) +∇ϕ0(y), z − y⟩dγε(z, y)

≥ −εW 2
2 (ν0, ν1)− 2LεW2(ν0, ν1)W2(µε, νε)− 2

∫
⟨∇ϕ0(y), z − y⟩dγε(z, y) .

By the stability of optimal transport maps, as ε → 0+, γε converges in W2 towards
the optimal map γ from ν0 to µ (since it converges weakly and its 2-moments converge
towards those of γ), therefore we get

lim inf
ε→0+

Hε(µε) ≥ H(µ) .

□

Remark 4.3. The functional G defined in (4.5) is 2-convex along generalized geodesics
based at ν0, which is expected since it is the Γ-limit of the functionals Gε which are
2-convex along generalized geodesics based at νε.

5. Particular solutions

When there is no geodesic from ν0 to ν1 that stays length-minimizing when extended
up to time t, the solution to problem (P) is not trivial in general. Nonetheless, in this
section, we construct some explicit solutions corresponding to specific choices for the
measures ν0 and ν1.

5.1. Extrapolation when ν1 is a Dirac mass. We suppose ν1 = δx1 with x1 ∈ Rd

fixed. As before, for any µ ∈ P2(Rd), we denote by bary(µ) ∈ Rd its barycenter

bary(µ) :=

∫
xdµ(x) .
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By Jensen’s inequality

W 2
2 (µ, ν0) =

∫
|x|2dµ(x) +

∫
|x|2dν0(x)− 2 inf

{∫
udν0 +

∫
u∗dµ; u convex

}
≤
∫

|x|2dµ(x) +
∫

|x|2dν0(x)− 2 inf

{∫
udν0 + u∗(bary(µ)); u convex

}
≤
∫

|x|2dµ(x)− |bary(µ)|2 +W 2
2 (δbary(µ), ν0) .

On the other hand,

W 2
2 (µ, ν1) =

∫
|x− x1|2dµ(x) =

∫
|x|2dµ(x) + |x1|2 − 2⟨bary(µ), x1⟩

=

∫
|x|2dµ(x)− |bary(µ)|2 +W 2

2 (δbary(µ), ν1) .

This implies that

(5.1)
W 2

2 (µ, ν1)

t− 1
− W 2

2 (µ, ν0)

t
≥ 1

t(t− 1)

(∫
|x|2dµ(x)− |bary(µ)|2

)
+
W 2

2 (δbary(µ), ν1)

t− 1
−
W 2

2 (δbary(µ), ν0)

t
.

Applying again Jensen’s inequality, the first term on the right-hand side of (5.1) is
non-negative. Hence µ must be a Dirac mass, and in particular

µ = δxt where xt = bary(ν0) + t(x1 − bary(ν0)) .

Remark 5.1. In this specific setting, the extrapolation is consistent with a sticky parti-
cle interaction. In particular after collapsing at a single point all particles move together
while the total momentum is preserved.

5.2. Difference with locally minimizing geodesics. We detail here an example
highlighting the difference between the metric extrapolation and locally minimizing
geodesics.

The setting we consider is represented in Figure 1. In this example, d = 2 and
ν0 = ν+0 + ν−0 and ν1 = ν+1 + ν−1 are each the sum of two Dirac masses:

ν+0 =
1

2
δ(−2,1) , ν−0 =

1

2
δ(2,−1) , ν+1 =

1

2
δ(−1,1) , ν−1 =

1

2
δ(1,−1) .

Note that the curve

s ∈ R 7→ ν(s) =
1

2
δ(−2+s,1) +

1

2
δ(2−s,−1)

is a locally length-minimizing geodesic such that ν(0) = ν0 and ν(1) = ν1. However we
now show that for t sufficiently large the minimizer of (P) is not ν(t).

First of all we observe that in this case any minimizer µ of (P) must be symmet-
ric with respect to the origin. Furthermore it must be contained in the set {y ≥
max(−x/2, 2x)} ∪ {y ≤ min(−x/2, 2x)} (shaded in the figure). In fact, if this was
not the case, we could always reflect the part of µ which is not contained in that
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x

y

1

1

ν+0

ν−0

ν+1

ν−1
µ−

µ+

.

.
ν+0

ν−0

Figure 1. An example in which locally length-minimizing geodesic pass-
ing by ν0 = ν+0 + ν−0 and ν1 = ν+1 + ν−1 exists for all times but the metric
extrapolation does not coincide with it.

area with respect to the axis y = 2x or y = −x/2 to get a measure µ satisfying
W2(µ, ν0) = W2(µ, ν0) and W2(µ, ν1) ≥ W2(µ, ν1), leading to a contradiction.

Hence, we can write µ = µ+ + µ− where µ+ and µ− have equal mass and solve

µ+ = argmin
µ

W 2(µ, ν+1 )

2(t− 1)
− W 2(µ, ν+0 )

2t
,

µ− = argmin
µ

W 2(µ, ν−1 )

2(t− 1)
− W 2(µ, ν−0 )

2t
,

subject to the constraint that the support of µ+ is contained in {y ≥ max(−x/2, 2x)},
whereas the support of µ− is contained in {y ≤ min(−x/2, 2x)}. Proceeding like in
the previous example, we deduce that µ+ = δ(x+,y+)/2 and µ− = δ(x−,y−)/2 are Dirac
masses. Therefore, the minimization becomes explicit and we find

(x+, y+) =

{
(−2 + t, 1) if t ≤ 5

2

(1
2
, 1) + (t− 5

2
)(1, 2) if t > 5

2

,

and (x−, y−) = −(x+, y+).
Note that we can obtain the same result in an alternative way which highlights the

link with the barycentric formulation. Specifically, using the symmetry of the solution
with respect to the axis y = −x/2 we have

W 2
2 (µ, ν0) = min

s∈[0,1]
W 2

2 (µ
+, (1− s)ν+0 + sν−0 ) +W 2

2 (µ
−, sν+0 + (1− s)ν−0 )

Replacing this in the original problem we obtain

(5.2) µ+ = argmin
µ

max
s∈[0,1]

W 2(µ, ν+1 )

2(t− 1)
− W 2(µ, sν+0 + (1− s)ν−0 )

2t
,
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(5.3) µ− = argmin
µ

max
s∈[0,1]

W 2(µ, ν−1 )

2(t− 1)
− W 2(µ, (1− s)ν+0 + sν−0 )

2t
,

where now the minimizations are unconstrained. For a fixed s we are in the setting of
the previous section, and in particular µ+ (respectively µ−) is the extrapolation up to
time t from ν+0 to ν+1 (respectively, from ν−0 to ν−1 ), where

ν+0 := bary(sν+0 + (1− s)ν−0 ) , ν−0 := bary((1− s)ν+0 + sν−0 ) ,

as shown in Figure 1. The optimal s can be determined by swapping the min and max
in (5.2) and (5.3), leading to the same cost as in the barycentric problem (B).

6. A numerical scheme for atomic measures

In this section we focus on the case where ν0 and ν1 are both atomic measures, i.e.

ν0 =
M∑
i=1

aiδxi , ν1 =
N∑
j=1

bjδyj ,

for (xi)
M
i=1 =: X, (yj)

N
j=1 =: Y ⊂ Rd and (ai)

M
i=1, (bj)

N
j=1 ⊂ R+, with

∑M
i=1 ai = 1 and∑N

j=1 bj = 1. Any coupling π ∈ Γ(ν0, ν1) is of the form

π =
N∑
i=1

M∑
j=1

Pijδ(xi,yj)

where
P ∈ G(a, b) :=

{
P ∈ RM×N

+ :
∑
j

Pij = ai ,
∑
i

Pij = bj

}
.

The barycentric problem (B) in this setting can be written as follows:

(6.1) min
P

{
g(P ) : P ∈ G(a, b)

}
where

g(P ) =
1

2t(t− 1)

N∑
j=1

∣∣∣tyj − (t− 1)baryj(P )
∣∣∣2bj ,

with baryj(P ) =
∑

i xi
Pij
bj
, for 1 ≤ j ≤ N . As already pointed out, this is a quadratic

but not strictly convex optimization problem, due to the possible kernel of the barycen-
ter operator. Following the discussion in Section 3, from a solution P one can recover
the extrapolation from ν0 to ν1 at time t as

νt =
∑
j

bjδzj , where zj = tyj − (t− 1)
∑
i

xi
Pij
bj
.

From the marginal constraints on P , zj ∈ tyj − (t − 1)conv(X) for every 1 ≤ j ≤ N ,
where conv denotes the convex hull.

Entropic regularization is a popular approach for solving optimal transport in this
fully discrete setting [28]. It consists in adding the entropy of the transport plan as a
barrier function, in order to smoothen the problem and enforce at the same time the
nonnegativity constraint. The approach is particularly attractive as one can explicitly
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write the dual problem as an unconstrained minimization problem and solve it via
the Sinkhorn algorithm. However, since problem (6.1) is quadratic and not linear as
the standard optimal transport problem, one cannot rely on the Sinkhorn algorithm
directly. Following [10], we consider a variant of Sinkhorn algorithm, alternating the
Sinkhorn iterations with a gradient descent step on an appropriate auxiliary variable,
with similar complexity and a linear convergence guarantee. We will provide a detailed
proof of this last result following the same strategy as in [10], but with some adaptations
to deal with the specific form of our cost, and to ensure that the gradient descent step-
size can scale linearly with ε. This was not a concern in [10] but it is crucial in our case
since we are mainly interested in the limit ε→ 0.

6.1. Sinkhorn algorithm with an additional gradient descent step. For ε > 0,
the entropic barycentric problem is

(6.2) min
P

{
g(P ) + ε

∑
ij

Pij

(
log
( Pij
aibj

)
− 1

)
:
∑
j

Pij = ai,
∑
i

Pij = bj

}
,

where the regularization term is the relative entropy of P with respect to the coupling
(aibj)

M,N
i=1,j=1 ∈ G(a, b). The entropy is by definition equal to +∞ for any negative value,

thereby automatically ensuring the non-negativity of any finite candidate coupling. The
following proposition collects useful facts for problem (6.2). Importantly, this admits an
unconstrained dual formulation, as the standard entropic optimal transport problem.

Proposition 6.1. The following holds:

i) there exists a unique solution P ε to (6.2) and P ε → P for ε → 0, where P is the
maximal entropy solution to (6.1);

ii) (6.2) is equal, up to a constant term and a sign change, to

(6.3) min
ϕ,ψ,Z

f(ϕ, ψ, Z)

where ϕ = (ϕi)
M
i=1, ψ = (ψj)

N
j=1 ⊂ R, Z = (zj)

N
j=1 ⊂ Rd and

(6.4) f(ϕ, ψ, Z) = ε
∑
ij

aibj

[
exp

(−Ct
ij(Z) + ϕi + ψj

ε

)
− ϕi + ψj

ε

]
+

1

2(t− 1)

∑
j

|zj − yj|2 bj

for Ct
ij(Z) =

1
2t
|zj − xi|2;

iii) νεt :=
∑N

j=1 bjδzεj ⇀
∑N

j=1 bjδzj = νt, for ε→ 0, where Zε solves (6.3).

Proof. i) Existence and uniqueness is evident since the function to be minimized is
strictly convex and coercive and the feasible set is convex and not empty. The conver-
gence towards the unregularized problem can be easily obtained adapting the proof in
[28, Proposition 4.1] to the quadratic case.
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ii) Notice that, as done in Section 3, the function g(P ) can be rewritten as

(6.5) g(P ) = max
Z

∑
ij

Ct
ij(Z)Pij −

1

2(t− 1)

∑
j

|zj − yj|2 bj + C ,

for any P ∈ G(a, b), where the constant term is

C = − 1

2t

∑
ij

|xi|2Pij +
1

2(t− 1)
|yj|2 bj = − 1

2t

∑
i

|xi|2 ai +
1

2(t− 1)

∑
j

|yj|2 bj .

Enforcing the mass constraints with the Lagrange multiplier ϕ and ψ, and exchanging
inf and sup by a standard duality argument, we obtain the dual problem

max
ϕ,ψ,Z

min
P

∑
ij

Ct
ij(Z)Pij −

1

2(t− 1)

∑
j

|zj − yj|2 bj + ε
∑
ij

Pij

(
log
( Pij
aibj

)
− 1

)
+
∑
i

ϕiai +
∑
j

ψjbj ,

up to the constant term. The optimization in P provides

Pij = aibj exp

(−Ct
ij(Z) + ϕi + ψj

ε

)
, 1 ≤ i ≤M, 1 ≤ j ≤ N.

Plugging this in the dual problem and switching sign, we obtain (6.3).
iii) By the optimality, P ε ∈ G(a, b) and

zεj = tyj − (t− 1)baryj(P
ε) , 1 ≤ j ≤ N.

The convergence of νεt ⇀ νt is therefore an immediate consequence of i). □

A similar entropic optimal transport problem with non-fixed cost matrix has been
considered in the recent paper [10]. The authors introduced a novel iterative procedure,
called SISTA, alternating between the phase of exact minimization over the potentials
and a phase of proximal gradient descent over the parameters defining the transport
cost. We follow the same approach for (6.3), performing a gradient descent step with
respect to Z. Notice that the potentials are defined up to a common constant, as
(ϕ+c, ψ−c) attain the same value in (6.3) as (ϕ, ψ) for any c ∈ R. We fix this constant
by setting ϕnM = 0 for any n ≥ 0. Then, starting from ψ0 and Z0, the ϕ and ψ updates
are

ϕn+1
i = −ε log

N∑
j=1

bj exp

(−Ct
ij(Z

n) + ψnj
ε

)
, 1 ≤ i ≤M − 1,

ϕn+1
M = 0,

(6.6)

ψn+1
j = −ε log

M∑
i=1

ai exp

(
−Ct

ij(Z
n) + ϕn+1

i

ε

)
, 1 ≤ j ≤ N,(6.7)
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whereas for τ > 0 the gradient descent step writes for 1 ≤ j ≤ N as

(6.8) zn+1
j = znj − τ

[
znj − yj

t− 1
bj −

M∑
i=1

znj − xi

t
aibj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)]
.

Note that the first two steps coincide with the classical Sinkhorn algorithm, but we
perform a gradient step with respect to Z instead of an exact minimization since this
latter would lead to a nonlinear system to be solved at each iteration.

6.2. Convergence analysis. Let us denote xn = (ϕn, ψn, Zn) ∈ RM+(1+d)N and

xn+
1
3 = (ϕn+1, ψn, Zn) , xn+

2
3 = (ϕn+1, ψn+1, Zn) , xn+1 = (ϕn+1, ψn+1, Zn+1) .

To perform the convergence analysis, we will consider the norm | · |S, and its dual,
defined as

|x|2S := |ϕ|2∞ + |ψ|2∞ + |Z|22 , |p|2S∗ = |pϕ|21 + |pψ|21 + |pZ |22 ,

for x = (ϕ, ψ, Z) and p = (pϕ, pψ, pZ). Note, in particular, that the l∞ norm for
the discrete potentials is the natural counterpart for the supremum norm, and it will
simplify some of the necessary estimates in the proof. We define:

Lϕ := sup
n≥0

max
s∈[0,1]

max
|hϕ|∞=1
(hϕ)M=0

∇2
ϕf
(
(1− s)xn+

1
3 + sxn+1

)
hϕ · hϕ ,(6.9)

Lψ := sup
n≥0

max
s∈[0,1]

max
|hψ |∞=1

∇2
ψf
(
(1− s)xn+

2
3 + sxn+1

)
hψ · hψ ,(6.10)

LZ := sup
n≥0

max
s∈[0,1]

max
|hZ |2=1

∇2
Zf
(
(1− s)xn+

2
3 + sxn+1

)
hZ · hZ .(6.11)

These constants quantify the smoothness of f , with respect to the | · |S norm, restricted
along linear interpolations between consecutive iterations of the algorithm.

The following lemmas show that the iterates Zn stay bounded upon a step restriction
independent of ε, and as a consequence the constants above scale linearly with 1/ε. In
the following we will denote

D := max
ij

|xi − yj| .
.

Lemma 6.2. Assume z0j ∈ tyj − (t − 1)conv(X), for all j, and τ ≤ t(t−1)
|b|∞ . Then, for

all n ≥ 0 and all j, znj ∈ tyj − (t− 1)conv(X), and in particular,

|zj − yj| ≤ (t− 1)D , |zj − xi| ≤ tD.

Proof. The gradient descent update on Zn can be written as

zn+1
j =

(
1− bjτ

t(t− 1)

)
znj +

bjτ

t(t− 1)

∑
i

(
tyj − (t− 1)xi

)P n
ij

bj
, 1 ≤ j ≤ N .

Since by assumption
bjτ

t(t−1)
≤ 1, we deduce recursively that at each step zn+1

j ∈ tyj −
(t− 1)conv(X). □
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Lemma 6.3. Assume z0j ∈ tyj − (t− 1)conv(X), for all j, and τ ≤ t(t−1)
|b|∞ . Then,

Lϕ ≤
C

ε
, Lψ ≤ C

ε
, LZ ≤ |b|∞

((t− 1)C + t

t(t− 1)
+
CD2

ε

)
,

where C := exp(2λD2|b|∞) and λ := τ/ε.

Proof. Notice first that from the updates on ϕ and ψ, we have

N∑
j=1

bj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψnj
ε

)
= 1 , 1 ≤ i ≤M − 1,(6.12)

M∑
i=1

ai exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)
= 1 , 1 ≤ j ≤ N.(6.13)

Then, the second non-mixed derivatives of the objective function along the iterations
of the algorithm are, for all 1 ≤ i ≤M − 1 and 1 ≤ j ≤ N ,

∂2ϕif(x
n+ 1

3 ) =
ai
ε

N∑
j=1

bj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψnj
ε

)
=
ai
ε
,

∂2ψjf(x
n+ 2

3 ) =
bj
ε

M∑
i=1

ai exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)
=
bj
ε
,

∇2
zj
f(xn+

2
3 ) =

bj
t− 1

Idd −
1

t

M∑
i=1

aibj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)
Idd

+
1

εt2

M∑
i=1

(znj − xi)⊗ (znj − xi)aibj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)

=
bj

t(t− 1)
Idd +

1

εt2

M∑
i=1

(znj − xi)⊗ (znj − xi)aibj exp

(
−Ct

ij(Z
n) + ϕn+1

i + ψn+1
j

ε

)
,

where Idd is the identity matrix on Rd. Moreover, ∇2
ϕf(x) and ∇2

ψf(x) are diagonal
matrices with nonnegative components, whereas ∇Zf(x) is block-diagonal for any x. It
follows that

max
|hϕ|∞=1
(hϕ)M=0

∇2
ϕf(x)hϕ · hϕ =

M−1∑
i=1

∂2ϕif(x) ,

max
|hψ |∞=1

∇2
ψf(x)hψ · hψ =

N∑
j=1

∂2ψjf(x) ,

max
|hZ |2=1

∇2
Zf(x)hZ · hZ = max

j
max

|hzj |2=1
∇2
zj
f(x)hzj · hzj .

By Lemma 6.2, for all n ≥ 0 and all 1 ≤ j ≤ N , znj ∈ tyj − (t− 1)conv(X) and

|∇zjf(x
n+ 2

3 )| ≤ bj

(1
t
max
i

(|znj − xi|) +
1

t− 1
|znj − yj|

)
≤ 2Dbj ,
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Therefore, using the gradient descent update (6.8),

−Ct
ij(Z

n + s(Zn+1 − Zn)) ≤ −Ct
ij(Z

n) + sτD|∇zjf(ϕ
n+1, ψn+1, Zn)|

≤ −Ct
ij(Z

n) + sτ2D2|b|∞ .

Then, by convexity of the exponential function and using (6.12)-(6.13), we can bound
Lϕ and Lψ as

Lϕ ≤ sup
n

max
s∈[0,1]

exp(sλ2D2|b|∞)

(
(1− s)

M−1∑
i=1

∂2ϕif(x
n+ 1

3 ) + s

M−1∑
i=1

∂2ϕif(x
n+ 2

3 )

)

≤ max
s∈[0,1]

exp(sλ2D2|b|∞)

ε

(
(1− s)

M∑
i=1

ai + s

N∑
j=1

bj

)
≤ C

ε
,

Lψ ≤ sup
n

max
s∈[0,1]

exp(sλ2D2|b|∞)

(
N∑
j=1

∂2ψjf(x
n+ 2

3 )

)

= max
s∈[0,1]

exp(sλ2D2|b|∞)

ε

N∑
j=1

bj ≤
C

ε
.

Finally, using again (6.2) and (6.13),

max
|hzj |2=1

∇2
zj
f((1− s)xn+

2
3 + sxn+1)hzj · hzj ≤

≤ bj
t− 1

+
Cbj
t

+
Cbj
εt2

max
i

max
|hzj |2=1

[
(znj − xi)⊗ (znj − xi)

]
hzj · hzj

≤ bj

((t− 1)C + t

t(t− 1)
+
CD2

ε

)
and the last estimate follows. □

Lemma 6.3 suggests that if τ scales linearly with ε, LZ scales as 1/ε and therefore
LZ ≤ 1/τ for τ sufficiently small. This is made precise in the following Lemma:

Lemma 6.4. Assuming ε ≤ 1, there exists K > 0 only depending on t, |b|∞ and D,

such that if τ ≤ Kε then τ ≤ min
( t(t−1)

|b|∞ , 1
LZ

)
.

Proof. One needs to find K such that
Kε ≤ t(t− 1)

|b|∞
,

K exp(K)(Aε+B) +
Kε

t− 1
≤ 1

|b|∞
,

where A = exp(2D2|b|∞)/t and B = exp(2D2|b|∞)D2. In particular, one can take

K = min
( t(t−1)

|b|∞ , K
)
where K solves

K exp(K) +
K

t− 1
=

1

(A+B)|b|∞
.



28 T. O. GALLOUËT, A. NATALE, AND G. TODESCHI

□

The following proof of convergence of iterations (6.6)-(6.7)-(6.8) is an adaptation
from [10]. Before stating it, let us recall that f being µ-convex and L-smooth on a set
S with respect to the norm | · | means that, ∀x, y ∈ S,

f(x) ≥ f(y) +∇f(y) · (x− y) +
µ

2
|x− y|2 ,(6.14)

f(x) ≤ f(y) +∇f(y) · (x− y) +
L

2
|x− y|2 .(6.15)

Moreover, the gradient of f is L-Lipschitz, that is

|∇f(x)−∇f(y)|∗ ≤ L|x− y|

∀x, y ∈ S, where | · |∗ is the dual norm with respect to | · |.
See for example [25, 8] for more details on strong convexity and smoothness in convex

optimization.

Proposition 6.5. Suppose τ ≤ Kε, with K as in Lemma 6.4. Then, iterations (6.6)-
(6.7)-(6.8) converge with linear rate, i.e. there exists 0 < η < 1 such that

f(xn+1)− f(x∗) ≤ η
(
f(xn)− f(x∗)

)
, ∀n ≥ 0 ,

where x∗ is the unique solution of problem (6.3).

Proof. First of all, the objective function is decreasing monotonically along iterations
of the algorithm, i.e.

(6.16) f(xn+1) ≤ f(xn+
2
3 ) ≤ f(xn+

1
3 ) ≤ f(xn) , ∀n ≥ 0.

The first two inequalities come directly by definition of alternate minimization. Con-
cerning the third inequality, since f is LZ-smooth along (1− s)xn+

2
3 + sxn+1, ∀n ≥ 0,

and LZ ≤ 1/τ by Lemma 6.4,

(6.17)

f(xn+1) ≤ f(xn+
2
3 ) +∇f(xn+

2
3 ) · (xn+1 − xn+

2
3 ) +

1

2τ
|xn+1 − xn+

2
3 |2S

= f(xn+
2
3 )− 1

τ
|xn+1 − xn+

2
3 |2S +

1

2τ
|xn+1 − xn+

2
3 |2S

= f(xn+
2
3 )− 1

2τ
|xn+1 − xn+

2
3 |2S ,

where we used the definition of gradient descent step in the first equality.
Consider

g(ϕ, ψ) := ε
∑
ij

aibj

[
exp

(
ϕi + ψj

ε
− tD2

2ε

)
−
(
ϕi + ψj

ε
− tD2

2ε

)]
− tD2

2
,

and notice that f(ϕ, ψ, Z) ≥ g(ϕ, ψ) for any Z such that zj ∈ tyj − (t− 1)conv(X), ∀j.
Since f(xn) is decreasing,

g(ϕn, ψn) ≤ f(xn) ≤ f(x0) , ∀n ≥ 0 .
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Using expx−x ≥ |x|, we obtain

|ϕni + ψnj | ≤ f(x0) + tD2 =:
C

2
, ∀ (i, j),

which in turn provides, using ϕnM = 0 for any n, |ϕn|∞ ≤ C and |ψn|∞ ≤ C. Therefore,
the iterates of the algorithm are uniformly bounded and belong to

S :=
{
(ϕ, ψ, Z) ∈ RM+(1+d)N : |ϕ|∞ ≤ C , |ψ|∞ ≤ C , zj ∈ tyj − (t− 1)conv(X)

}
.

The strictly convex function f is furthermore µ-convex on the compact set S, with

µ := min
x∈S

min
|h|S=1

∇2f(x)h · h .

Hence, at each step n, by definition of the alternate minimization, which provides
∇ϕf(x

n+ 1
3 ) = 0 and ∇ψf(x

n+ 2
3 ) = 0, and using (6.14) with respect to the norm | · |S, it

holds
f(xn) ≥ f(xn+

1
3 ) +

µ

2
|xn+

1
3 − xn|2S ,

f(xn+
1
3 ) ≥ f(xn+

2
3 ) +

µ

2
|xn+

2
3 − xn+

1
3 |2S .

Combing these with (6.17) we obtain
(6.18)

(f(xn)− f(x∗))− (f(xn+1)− f(x∗)) ≥ µ

2
(|xn+

1
3 − xn|2S + |xn+

2
3 − xn+

1
3 |2S) +

1

2τ
|xn+1 − xn+

2
3 |2S

≥ µ

2
|xn+1 − xn|2S ,

since µ ≤ LZ ≤ 1
τ
. Again by (6.14),

f(x∗) ≥ f(xn+1) +∇f(xn+1) · (x∗ − xn+1) +
µ

2
|x∗ − xn+1|2S

and using further x · y + µ
2
|y|2S ≥ − 1

2µ
|x|2S∗ , we can write

f(xn+1)− f(x∗) ≤ 1

2µ
|∇f(xn+1)|2S∗ .

Since f is Lϕ-smooth along (1− s)xn+
1
3 + sxn+1, Lψ-smooth along (1− s)xn+

2
3 + sxn+1,

and LZ-smooth along (1 − s)xn+
2
3 + sxn+1, ∀n ≥ 0 and for s ∈ [0, 1], using again

∇ϕf(x
n+ 1

3 ) = 0 and ∇ψf(x
n+ 2

3 ) = 0,

|∇ϕf(x
n+1)|21 = |∇ϕf(x

n+1)−∇ϕf(x
n+ 1

3 )|21 ≤ L2
ϕ|xn+1 − xn+

1
3 |2S ,

|∇ψf(x
n+1)|21 = |∇ψf(x

n+1)−∇ψf(x
n+ 2

3 )|21 ≤ L2
ψ|xn+1 − xn+

2
3 |2S ,

|∇Zf(x
n+1)|22 = |∇Zf(x

n+1)−∇Zf(x
n+ 2

3 ) +
1

τ
(Zn − Zn+1)|22

= |∇Zf(x
n+1)−∇Zf(x

n+ 2
3 )|22 +

1

τ 2
|(Zn − Zn+1)|22

+
2

τ
(Zn − Zn+1) · (∇Zf(x

n+1)−∇Zf(x
n+ 2

3 ))

≤ (L2
Z +

1

τ 2
)|xn+1 − xn+

2
3 |2S ,
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where in the last inequality we also used the gradient descent step and the convexity
of f with respect to Z. This provides

f(xn+1)− f(x∗) ≤ L̂2 + τ−2

2µ
|xn+1 − xn|2S ,

where L̂2 = L2
ϕ + L2

ψ + L2
Z , and combining this with (6.18) we finally get

f(xn+1)− f(x∗) ≤ L̂2τ 2 + 1

L̂2τ 2 + 1 + µ2τ 2
(f(xn)− f(x∗)) .

□

Remark 6.6. From the proof of Proposition 6.5, since the iterates are uniformly
bounded with respect to ε, one can infer that µ → 0 exponentially fast for ε → 0.
Notice that on the compact set S the function f is furthermore L-smooth with

L := max
x∈S

max
|h|S=1

∇2f(x)h · h ,

and similarly, L → ∞ exponentially fast for ε → 0. Since the constant of smoothness
is related to the maximal stepsize τ , this motivates our choice of working with the local
smoothness constants (6.9)-(6.10)-(6.11), which scale only linearly with respect to 1/ε,
contrary to the global constant L. In the end, for τ = Kε, we have

η ≤ 1

1 + C1 exp(−C2/ε)

for some positive constants C1, C2 independent of ε, so that we obtain the same ex-
ponential dependency on ε of the linear convergence rate as in the classical Sinkhorn
algorithm.

6.3. Numerical tests.

6.3.1. Extrapolation of shapes. Figure 2 illustrates some examples of extrapolations
obtained using the algorithm discussed in this section. The data ν0 and ν1 are given
by a collection of Dirac masses with equal weights, whose location is chosen to provide
an optimal quantization in the W2 sense of two uniformly distributed densities. For all
test cases in this figure ε = 10−3.

6.3.2. Gradient flow of the opposite Wasserstein distance. Let us consider the curve
νgf : [1,∞) → P2(Rd) obtained as the W2 gradient flow of the time dependent energy:

(6.19) E(t, µ) := −W
2
2 (ν0, µ)

2t

for t ≥ 1 and initial conditions νgf(1) = ν1. This is a well-defined flow as discussed in [2],
and moreover if there exists a length-minimizing geodesic on [0, t] passing through ν0
at time 0 and ν1 at time 1, ν coincides with it on the interval [1, t] [2, Theorem 11.2.10]
(note that differently from [2] we use a time-dependent energy to avoid rescaling time
when comparing the gradient flow with geodesics). Our framework provides a natural
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Figure 2. Example of extrapolation. The four images in the center are
pairwise extrapolated in both positive and negative direction, from t = 1
(blue) to t = 3 (red).

way to discretize this flow. As a matter of fact, the JKO scheme [19] with time step
h > 0 yields the following minimization problem, for all n ≥ 0,

(6.20) νn+1
gf = argmin

µ∈P2(Rd)

W 2
2 (ν

n
gf , µ)

2h
− W 2

2 (ν0, µ)

2tn+1

where we set ν0gf = ν1 and tn = 1 + nh, which is a metric extrapolation problem.
Remarkably, in one dimension νgf(t) = νt, the metric extrapolation from ν0 to ν1 at
time t, and it also yields a sticky solution to the pressureless Euler equations (see [24]
and Remark 4.1). In higher dimension, however, in general νgf(t) ̸= νt, as it could
be expected since only in one dimension the L2 transport cost is equivalent to an L2

distance on quantile functions. Note also that the metric extrapolation coincides with
one single JKO step for the energy (6.19) up to the final time. A simple scenario where
one can observe the difference between the two flows is provided in Figure 3, where ν0
and ν1 are a sum of Dirac measures with equal masses:

ν0 =
1

3

3∑
i=1

δxi , ν1 =
1

2

2∑
j=1

δyj
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ν1

ν0

ν1

ν0

Figure 3. A comparison between the gradient flow νgf (dashed blue line)
and metric extrapolation νt (solid red line) on the same time interval, for
the same ν0 and two different initial conditions for ν1.

where x1 = (−2, 1), x2 = (2, 1), x3 = (0, 0), and y1 = (−1, 1), y2 = (1, 1) on the left, and
y2 = (1, 1.2) on the right. The two flows are represented on the time interval [1, 5.5] and
with time step h = 4.5 · 10−3. Note that when the mass is distributed symmetrically
with respect to the y axis the two flows coincide (the same happens for the explicit
examples of Section 5). However for a slightly perturbed ν1 we obtain two different
curves for the metric extrapolation and the gradient flow. Note that these results were
obtained using an interior point scheme to solve the quadratic program (6.1) with high
precision, but one obtains the same picture using the entropic scheme of this section
for sufficiently small ε.
In Figure 4 we show another example of gradient flow of the opposite Wasserstein

distance. As in the examples of Figure 2, the measures ν0 and νgf(1) = ν1 are obtained
as optimal quantization in the W2 sense of two uniformly distributed densities. The
flow is approximated on the time interval [1, 4] using the JKO scheme (6.20) and the
entropic scheme presented in this section, for h = 0.1 and ε = 10−3. The evolution is
compared with the metric extrapolation νt.
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Figure 4. Example of gradient flow of the opposite Wasserstein dis-
tance (top row) from ν0 (first column from the left) with initial condition
ν1 (second column from the left) and comparison with the metric extrap-
olation (bottom row). Time grows from left to right, from t = 1 (blue)
to t = 4 (red).
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