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Abstract

Gaussian random fuzzy numbers are random fuzzy sets generalizing Gaussian random vari-
ables and possibility distributions. They define belief functions on the real line that can be
conveniently combined by the product-intersection rule under the independence assumption.
In this paper, we introduce various extensions of this rule to account for dependence and
partial reliability of the pieces of evidence. We first provide formulas for the combination
of an arbitrary number of Gaussian random fuzzy numbers whose dependence is described
by a correlation matrix, and we introduce a minimum-conflict combination operation. To
account for partially reliable evidence, we then introduce two discounting operations called
possibilistic and evidential discounting, as well as several combination operators based on
different assumptions, each one parameterized by a correlation matrix and a vector of dis-
counting coefficients. We demonstrate the application of these operators to the combination
of predictions with different sets of inputs in machine learning, and show that performance
can be enhanced by optimizing the parameters of the combination operators.

Keywords: Evidence theory, Dempster-Shafer theory, belief functions, random fuzzy sets,
discounting, information fusion, machine learning, regression.

1. Introduction

The Dempster-Shafer (DS) theory of evidence [5][26] is a widely used methodology for
information fusion (see, e.g., [3][18][31]). This approach is based on two main concepts: the
representation of independent items of evidence by belief functions, and their combination
by an operator called Dempster’s rule of combination [26]. Although the mathematical
foundations of continuous belief functions have been laid for a long time [27][28], most
applications of the theory consider belief functions on finite frames of discernment. The
reason for this limitation has been the absence of practical models of belief functions for
continuous variables compatible with Dempster’s rule of combination. For instance, random
interval models such as p-boxes [16] define belief functions on the real line, but they cannot
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be conveniently used in evidential reasoning because the combination of two p-boxes by
Dempster’s rule is no longer a p-box.

As an extension of DS theory and possibility theory [33], epistemic random fuzzy set
(ERFS) theory recently introduced in [7][9][14] makes it possible to overcome this limi-
tation. In this new theoretical framework, uncertain and/or fuzzy pieces of evidence are
represented by random fuzzy sets inducing belief functions, and independent items of evi-
dence are combined by the product-intersection rule generalizing both Dempster’s rule and
the normalized product-intersection operator of possibility theory. Within this framework,
Gaussian random fuzzy numbers (GRFNs) introduced in [9] are an important practical
model making it possible to represent evidence about continuous real variables. A GRFN is
characterized by its mean, its variance and its imprecision. Gaussian random variables and
Gaussian fuzzy numbers are recovered, respectively, in the special cases of infinite precision
and zero variance. As shown in [9], GRFNs define a parametric family of belief functions on
the real line, closed under the product-intersection rule. Even more general models based
on transformations and mixtures [14] allow us to represent evidence about variables taking
values in a subset of the real line, with virtually unlimited flexibility. GRFNs have been used
for uncertainty quantification in machine learning in [8] and [12]; applications to statistical
inference and belief elicitation are discussed in [14].

As Dempster’s rule, the product-intersection rule introduced in [7][9] is based on two
assumptions: independence and reliability (or “relevance” [23, 24]), which can be given
precise meanings in the random fuzzy set (RFS) framework. Formulas for the combination
of reliable and independent GRFNs are given in [9]. However, these assumptions are often
too restrictive in applications. For instance, opinions from different experts, or predictions
based on correlated features or overlapping datasets (using, e.g., the ENNreg model [8])
often cannot be treated as fully reliable or independent. The combination of dependent and
partially reliable GRFNs is, thus, an important problem. In this paper1, we address this
problem and present the following main contributions:

1. We provide formulas for the combination of n GRFNs whose dependence is described
by a correlation matrix;

2. We introduce a minimum-conflict conjunctive combination operation allowing one to
combine GRFNs with unknown dependence;

3. We introduce two discounting operations for RFSs and new combination rules based
on meta-knowledge about the relevance of information sources, allowing us to combine
partially reliable GRFNs;

4. We demonstrate the application of these new fusion mechanisms to the combination
of predictions based on different sets of inputs in machine learning.

The rest of this paper is organized as follows. Necessary notions about epistemic random
fuzzy sets are first recalled in Section 2. Formulas for the combination of n GRFNs with an
arbitrary covariance matrix are then derived in Section 3, and discounting operations as well

1This paper is an extended version of short paper [10], in which only the combination of dependent
GRFN is addressed.
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as new rules for combining partially reliable GRFNs are introduced in Section 4. Finally,
numerical experiments are reported in Section 5, and Section 6 concludes the paper.

2. Background

General definitions and results about RFSs are first reviewed in Section 2.1. The no-
tion of GRFN as well as those of transformation and mixture of GRFNs are then recalled,
respectively, in Sections 2.2 and 2.3.

2.1. Epistemic Random Fuzzy Sets

ERFS theory is based on two main components: the representation of evidence by RFSs
(inducing belief and plausibility functions), and a combination mechanism: the product-
intersection rule for pooling independent evidence.

Random fuzzy sets. Let (Ω,ΣΩ, P ) be a probability space, (Θ,ΣΘ) a measurable space, and

X̃ a mapping from Ω to the set [0, 1]Θ of fuzzy subsets of Θ (see Figure 1). For any α ∈ [0, 1],

let αX̃ denote the mapping from Ω to 2Θ that maps each ω ∈ Ω to the (weak) α-cut of X̃(ω),

αX̃ : Ω → 2Θ

ω 7→ {θ ∈ Θ : X̃(ω)(θ) ≥ α}.

If, for any α ∈ [0, 1], αX̃ is ΣΩ−ΣΘ strongly measurable [21], the tuple (Ω,ΣΩ, P,Θ,ΣΘ, X̃)

is said to be a RFS [4]. We sometimes identify the RFS with mapping X̃ when there is no
ambiguity about the underlying probability and measurable spaces.

Interpretation. In ERFS theory, a RFS represents a piece of evidence, which may be un-
reliable, vague (fuzzy), or both. The set Ω is seen as a set of interpretations of a piece of
evidence about a variable X taking values in Θ. If interpretation ω ∈ Ω holds, we only know
that X is constrained by the possibility distribution defined by fuzzy set X̃(ω). Standard

DS theory only considers the case of unambiguous evidence, in which every image X̃(ω)

is crisp; mapping X̃ is then a random set. In contrast, possibility theory only imposes a
flexible contraint on X, without considering that this constraint may be itself uncertain.
By considering both vagueness and uncertainty, ERFS is, thus, more flexible, allowing for
faithful representation of different kinds of evidence.
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Figure 1: Definition of a random fuzzy set.
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Associated belief functions. To any RFS, we can be associate a belief function representing
one’s beliefs based on the available evidence. For technical reasons, we assume hereafter any
RFS X̃ to verify the following normalization conditions: (1) For all ω ∈ Ω, X̃(ω) is either

the empty set, or a normal fuzzy set, and (2) the image X̃(ω) is almost surely nonempty, i.e.,

P ({ω ∈ Ω : X̃(ω) = ∅}) = 0. For any ω ∈ Ω, a conditional possibility measure ΠX̃(ω) and a
dual conditional necessity measure NX̃(ω) on Θ can be defined as follows: for any B ⊆ Θ,

ΠX̃(ω)(B) = sup
θ∈B

X̃(ω)(θ),

and

NX̃(ω)(B) =

{
1− ΠX̃(ω)(B

c) if X̃(ω) 6= ∅
0 otherwise,

where Bc denotes the complement of B. For any B ∈ ΣΘ, let BelX̃(B) and PlX̃(B) denote,
respectively, the expected necessity and the expected possibility of B wrt P :

BelX̃(B) =

∫

Ω

NX̃(ω)(B)dP (ω), (1a)

PlX̃(B) =

∫

Ω

ΠX̃(ω)(B)dP (ω) = 1−BelX̃(Bc). (1b)

The corresponding mappings BelX̃ : ΣΘ → [0, 1] and PlX̃ : ΣΘ → [0, 1], are, respectively,
belief and plausibility functions [4, 34].

Product-intersection rule. Given two normal fuzzy subsets F̃ and G̃ of Θ, their normalized
product intersection is defined as

(F̃ � G̃)(θ) =





F̃ (θ)G̃(θ)

hgt(F̃ · G̃)
if hgt(F̃ · G̃) > 0

0 otherwise.

(2)

where hgt(F̃ · G̃) = supθ∈Θ F̃ (θ)G̃(θ) is the height of the product intersection of F̃ and

G̃. This operation is associative; as shown in [13], it is the only normalized intersection
operator having this property. The normalized product intersection can be extended to
RFSs as follows. Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two RFSs representing independent
pieces of evidence. The product-intersection operation maps these two RFSs to another
RFS, called their orthogonal sum and defined as

(Ω1 × Ω2,Σ1 ⊗ Σ2, P̃12,Θ,ΣΘ, X̃1 ⊕ X̃2), (3)

where X̃1 ⊕ X̃2 is the mapping from Ω1 × Ω2 to [0, 1]Θ defined as (X̃1 ⊕ X̃2)(ω1, ω2) =

X̃1(ω1) � X̃1(ω2), Σ1 ⊗ Σ2 is the tensor product of Σ1 and Σ2, and P̃12 is the probability
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measure on (Ω1 × Ω2,Σ1 ⊗ Σ2) obtained by conditioning the product measure P1 × P2 by

the fuzzy set of consistent pairs (ω1, ω2), defined as F̃ (ω1, ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
, i.e.,

∀A ∈ Σ1 ⊗ Σ2, P̃12(A) =

∫
Ω1

∫
Ω2
A(ω1, ω2)F̃ (ω1, ω2)dP2(ω2)dP1(ω1)

∫
Ω1

∫
Ω2
F̃ (ω1, ω2)dP2(ω2)dP1(ω1)

, (4)

where A(·, ·) denotes the indicator function of A. The degree of conflict between the two
pieces of evidence is defined as one minus the denominator in the right-hand side of (4). The
product intersection of RFSs is commutative and associative. It extends both Dempster’s
rule for combining random sets, and the normalized product intersection (2) for combining
possibility distributions.

As mentioned above, the product-intersection operation can be used to combine indepen-
dent pieces of evidence. The independence assumption comes into play when considering the
product measure P1 × P2 for the definition of P̃12 in (3). It could be relaxed by considering
a general probability measure P12 in (Ω1×Ω2,Σ1⊗Σ2), with marginals equal to P1 and P2.
This idea will be exploited in Section 3 for the special case of GRFNs, whose definition is
recalled in the next section.

2.2. Gaussian Random Fuzzy Numbers

Gaussian Fuzzy Numbers (GFNs) play the same role in quantitative possibility theory as
Gaussian random variables (GRVs) in probability theory. They are defined as fuzzy subsets
of R with membership function

x 7→ exp

(
−h

2
(x−m)2

)
, (5)

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. A GFN with mode m and
precision h will be denoted by GFN(m,h). If h = 0, parameter m becomes immaterial and
we write GFN(∗, h); this GFN is said to be vacuous. GFNs are easily combined by the
normalized product-intersection operator, as the following property holds:

GFN(m1, h1) � GFN(m2, h2) =

{
GFN

(
h1m1+h2m2

h1+h2
, h1 + h2

)
if h1 + h2 > 0,

GFN (∗, 0) otherwise.

Let us now consider a GRV M with mean µ and variance σ2. The random set

(R,BR, PM ,R,BR, X̃),

where PM is the probability distribution of M , BR is the Borel-σ algebra on R, and X̃ is
the mapping X̃ : R → [0, 1]R such that X̃(m) = GFN(m,h), is called a Gaussian random
fuzzy number (GRFN) with mean µ, variance σ2 and precision h. We write, equivalently,

X̃ ∼ GFN(M,h), M ∼ N(µ, σ2), or X̃ ∼ Ñ(µ, σ2, h) depending on the context.
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A GRFN can, thus, be seen as a GFN whose mode is uncertain and described by a Gaus-
sian probability distribution. It is defined by a location parameter µ, and two parameters
h and σ2 corresponding, respectively, to possibilistic and probabilistic uncertainty. A GRV
or a GFN is recovered when, respectively, h = +∞ or σ2 = 0. When h = 0, the GRFN is
said to be vacuous: it represents total ignorance; the mean and standard deviation are then
irrelevant and we write X̃ ∼ Ñ(∗, ∗, 0). The contour function plX̃ : x 7→ PlX̃({x}) as well
as the lower and upper cumulative distribution functions (cdfs) x 7→ BelX̃((−∞, x]) and
x 7→ PlX̃((−∞, x]) are given by the following equations, proved in [9]:

plX̃(x) =
1√

1 + hσ2
exp

(
− h(x− µ)2

2(1 + hσ2)

)
, (6a)

BelX̃((−∞, x]) = Φ

(
x− µ
σ

)
− plX̃(x)Φ

(
x− µ

σ
√

1 + hσ2

)
, (6b)

where Φ is the standard normal cdf, and

PlX̃((−∞, x]) = BelX̃((−∞, x]) + plX̃(x). (6c)

As shown in [9], the family of GRFNs is closed under the product-intersection combina-
tion operation ⊕. Let M1 ∼ N(µ1, σ

2
1) and M2 ∼ N(µ2, σ

2
2) be two independent GRVs, and

let X̃1 = GFN(M1, h1) and X̃2 = GFN(M2, h2) be corresponding GRFNs. To combine X̃1

and X̃2 by the product-intersection rule, we proceed as follows [9]:

1. We condition the joint probability distribution of (M1,M2) by the fuzzy subset F̃ of
R defined by

F̃ (m1,m2) = hgt (GFN(m1, h1) ·GFN(m2, h2)) = exp

(
−h

2
(m1 −m2)2

)
, (7)

where h = h1h2/(h1 + h2). This conditional distribution is normal with mean µ̃ =

(µ̃1, µ̃2)T and covariance matrix Σ̃,

Σ̃ =

(
σ̃2

1 ρ̃σ̃1σ̃2

ρ̃σ̃1σ̃2 σ̃2
1

)
,

where

µ̃i =
µi(1 + hσ2

j ) + µjhσ
2
i

1 + h(σ2
i + σ2

j )
, σ̃2

i =
σ2
i (1 + hσ2

j )

1 + h(σ2
i + σ2

j )
(8a)

for (i, j) ∈ {(1, 2), (2, 1)}, and

ρ̃ =
hσ1σ2√

(1 + hσ2
1)(1 + hσ2

2)
. (8b)
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Figure 2: 95% coverage probability ellipses for the unconditional distribution of random vector (M1,M2) in

Example 1 (solid red curve) and its conditional distribution given F̃ (dashed blue curve).

2. Let X̃ = X̃1 ⊕ X̃2 be the combined RFS; we have X̃ ∼ Ñ(µc, σ
2
c , h1 + h2) with µc =

h∗T µ̃ and σ2
c = h∗T Σ̃h∗, where h∗ = (h1, h2)T/(h1 + h2) is the vector of normalized

precisions.

3. The degree of conflict between X̃1 and X̃2 is

κ = 1− σ̃1σ̃2

σ1σ2

√
1− ρ̃2 exp

{
−1

2

[
µ2

1

σ2
1

+
µ2

2

σ2
2

]
+

1

2(1− ρ̃2)

[
µ̃2

1

σ̃2
1

+
µ̃2

2

σ̃2
2

− 2ρ̃
µ̃1µ̃2

σ̃1σ̃2

]}
(9a)

if σ1, σ2 > 0, and

κ = 1− 1√
1 + hσ̃2

1

exp

(
− h

2(1 + hσ̃2
1)

(µ̃1 − µ2)2

)
(9b)

if σ1 ≥ 0 and σ2 = 0.

Example 1. Consider two GRFNs X̃1 = GFN(M1, h1) and X̃2 = GFN(M2, h2), where h1 =
2, h2 = 1, and (M1,M2) has a two-dimensional normal distribution with mean µ = (1, 3)T

and covariance matrix Σ = diag(4, 1). Figure 2 shows ellipses with 95% coverage probability
for the unconditional distribution of random vector (M1,M2) and its conditional distribution

given F̃ . We can see that the mean vector of the conditional distribution is closer to the line
m1 = m2, and that the conditional correlation coefficient ρ̃ is positive. Figure 3 displays X̃1,
X̃2 and X̃1⊕ X̃2. Each GRFN X̃ is represented by its contour function plX̃ and by its lower
and upper cdfs x 7→ BelX̃((−∞, x]) and x 7→ PlX̃((−∞, x]).

2.3. Transformations and Mixtures of Gaussian Random Fuzzy Numbers

As the normal distribution in probability theory, the notion of GRFN is too constrained to
represent beliefs about a numerical quantity in all situations. Transformations and mixtures
of GRFNs, introduced in [14], allow for the definition of much more flexible models.
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Figure 3: (a) and (b): two GRFN X̃1 and X̃2; (c): their orthogonal sum X̃1⊕ X̃2. For each GRFN, we plot
ten realizations (black dotted curves), the contour function (red curve), as well as the lower and upper cdfs
(blue curves).

Transformation of a GRFN. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN and ψ a one-to-one mapping

from R to Λ ⊆ R. We denote by ψ̃ the extension of ψ to fuzzy subsets, i.e., the mapping
[0, 1]R → [0, 1]Λ that maps any F̃ ∈ [0, 1]R to ψ̃(F̃ ) ∈ [0, 1]Λ defined as

∀λ ∈ Λ, ψ̃(F̃ )(λ) = sup
λ=ψ(x)

F̃ (x) = F̃
(
ψ−1(λ)

)
.

As shown in [14], the composed mapping ψ̃◦X̃ is a RFS, which we call a transformed GRFN

(or t-GRFN), and we write ψ̃ ◦ X̃ ∼ TÑ(µ, σ2, h, ψ−1). As shown in [14], the belief and

plausibility functions associated with ψ̃ ◦ X̃ can be derived from those associated with X̃
using the following equalities:

Belψ̃◦X̃(C) = BelX̃(ψ−1(C)) and Plψ̃◦X̃(C) = PlX̃(ψ−1(C))

for any measurable subset C of Λ. Two important cases are ψ = exp and ψ : x 7→
(1 + exp(−x))−1 corresponding to lognormal and logit-normal random fuzzy numbers with
supports, respectively, (−∞, 0] and [0, 1].

Finally, the following property was shown in [14]: the orthogonal sum of two transformed

RFSs ψ̃ ◦ X̃1 and ψ̃ ◦ X̃2 is the transformation of the orthogonal sum of X̃1 and X̃2:

(ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2) = ψ̃ ◦ (X̃1 ⊕ X̃2).

Furthermore, the degree of conflict between ψ̃◦X̃1 and ψ̃◦X̃2 is equal to the degree of conflict
between X̃1 and X̃2. This property allows us to combine, e.g., lognormal or logit-normal
RFSs using the formula recalled in Section 2.2 for combining GRFNs.

Example 2. Figure 4 shows two logit-normal random fuzzy numbers Ỹ1 ∼ TÑ(−1, 4, 2, logit),

Ỹ2 ∼ TÑ(2, 1, 1, logit), and their orthogonal sum Ỹ1 ⊕ Ỹ2.

8



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

B
e
lie
f/
p
la
u
si
b
ili
ty

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

B
e
lie
f/
p
la
u
si
b
ili
ty

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

B
e
lie
f/
p
la
u
si
b
ili
ty

(c)

Figure 4: (a) and (b): two logit-normal random fuzzy numbers Ỹ1 and Ỹ2; (c): their orthogonal sum Ỹ1⊕ Ỹ2.
For each t-GRFN, we plot ten realizations (black dotted curves), the contour function (red curve), as well
as the lower and upper cdfs (blue curves).

Mixtures of GRFNs. Another useful notion introduced in [14] is that of (finite) mixture of
GRFNs. Let (M,Z) denote a pair of random variables taking values in Ω = R×{1, . . . , K},
such that the marginal distribution of Z is defined by P (Z = k) = πk, k = 1, . . . , K, and
the conditional distribution of M given Z = k is univariate normal:

M | (Z = k) ∼ N(µk, σ
2
k).

The marginal distribution of M is, thus, a mixture of K normal distributions. We consider
the random fuzzy set X̃ : Ω→ [0, 1]R defined as follows,

X̃(M,Z) = GFN

(
M,

K∏

k=1

hZk
k

)
,

where Zk = I(Z = k), and I(·) is the indicator function. Conditionally on Z = k, X̃ is a
GRFN with mean µk, variance σ2

k and precision hk:

X̃ | (Z = k) ∼ Ñ(µk, σ
2
k, hk).

We say that X̃ is a mixture GRFN (m-GRFN) and we write

X̃ ∼
K∑

k=1

πkÑ(µk, σ
2
k, hk).

The following two theorems are proved in [14].
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Figure 5: (a) and (b): two m-GRFNs X̃1 and X̃2; (c): their orthogonal sum X̃1 ⊕ X̃2. For each m-GRFN,
we plot ten realizations (black dotted curves), the contour function (red curve), as well as the lower and
upper cdfs (blue curves).

Theorem 1. Let B(R) be the Borel σ-algera on R, and A ∈ B(R) be a measurable subset of

R. The degrees of belief and plausibility of A induced by an m-GRFN X̃ ∼
∑K

k=1 πkÑ(µk, σ
2
k, hk)

are

BelX̃(A) =
K∑

k=1

πkBelX̃k
(A) and PlX̃(A) =

K∑

k=1

πkPlX̃k
(A),

with X̃k ∼ Ñ(µk, σ
2
k, hk).

Theorem 2. Let X̃1 ∼
∑K

k=1 π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼

∑L
`=1 π2`Ñ(µ2`, σ

2
2`, h2`) be two

independent m-GRFNs. Their orthogonal sum is an m-GRFN,

X̃1 ⊕ X̃2 ∼
K∑

k=1

L∑

`=1

π̃k`

[
Ñ(µ1k, σ

2
1k, h1k)⊕ Ñ(µ2`, σ

2
2`, h2`)

]
,

with

π̃k` =
(1− κk`)π1kπ2`∑

k′`′(1− κk′`′)π1k′π2`′
,

where κk` denotes the degree of conflict between X̃1k and X̃2` given by (9).

Example 3. Figure 5 displays two m-GRFNs X̃1 ∼ 0.5Ñ(0, 0.52, 1) + 0.5Ñ(3, 0.12, 2) and

X̃2 ∼ 0.3Ñ(0, 0.52, 1) + 0.7Ñ(5, 0.12, 1), as well as their orthogonal sum X̃1 ⊕ X̃2.

3. Combination of dependent GRFNs

The formulas for the product intersection of two GRFNs recalled in Section 2.2 were
established under the assumption that the underlying GRVs are independent. In this sec-
tion, we generalize these formulas to the combination of n dependent GRFNs GFN(Mi, hi),

10



i = 1, . . . , n, where random vector M = (M1, . . . ,Mn)T has a multidimensional normal
distribution with an arbitrary covariance matrix. After preliminaries exposed in Section 3.1,
we prove our main result in Section 3.2. The problem of combining GRFNs with unknown
dependence is then addressed in Section 3.3.

3.1. Preliminaries

Let us first recall that a Gaussian fuzzy vector (GFV) with mode m ∈ Rn and symmet-
ric, positive semidefinite (PSD) precision matrix H ∈ Rn×n is a fuzzy subset of Rn with
membership function

x 7→ exp(−0.5(x−m)TH(x−m)).

It is denoted as GFV(m,H). The results derived in Section 3.2 are based on results about
the product of GFNs and GFVs stated in this section.

Proposition 1 below generalizes Propositions 3 in [9] and follows directly from results
about the product of univariate normal densities proved in [1].

Proposition 1. Let GFN(mi, hi), i = 1, . . . , n, be n GFNs.

1. The height of their product intersection is

F̃ (m1, . . . ,mn) = hgt (GFN(m1, h1) · . . . ·GFN(mn, hn))

=

{
exp

[
−1

2

(∑n
i=1 him

2
i −

(
∑n

i=1 himi)
2∑n

i=1 hi

)]
if
∑n

i=1 hi > 0

1 otherwise.
(10)

2. If
∑n

i=1 hi > 0, their normalized product intersection is a GFN with precision h =∑n
i=1 hi and mode m = (1/h)

∑n
i=1 himi. Otherwise, it is the vacuous GFN with

precision h = 0.

The following proposition generalizes Proposition 11 in [9], by only assuming one of the
two precision matrices to be positive definite (PD).

Proposition 2. Let GFV(m1,H1) and GFV(m2,H2) be two GRVs. Assuming that H1 is
PD and H2 is PSD,

1. The height of their product intersection is

exp

(
−1

2
(m1 −m2)TH2(In +H−1

1 H2)−1(m1 −m2)

)
, (11)

where In is the n× n identity matrix;

2. Their normalized product intersection is a GFV with precision matrix H = H1 +H2

and mode m = H−1(H1m1 +H2m2).

Proof. See Appendix A.
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3.2. Conjunctive combination of GRFNs with arbitrary correlation matrix

Let us consider n GRFNs X̃1, . . . , X̃n such that X̃i ∼ Ñ(µi, σ
2
i , hi) for i = 1, . . . , n. Let

Mi denote the random mode of X̃i, and assume that random vectorM = (M1, . . . ,Mn)T has
a multivariate normal distribution with mean µ and covariance Σ. Matrix Σ can be written
as Σ = diag(σ)R diag(σ), where σ = (σ1, . . . , σn) is the vector of standard deviations of
the components of M , diag(σ) is the diagonal matrix with i-th diagonal elements equal to
σi, and R is the correlation matrix of random vector M .

We define the conjunctive combination of X̃1, . . . , X̃n with correlation matrix R as
the RFS (Rn,BRn , P̃M ,R,BR, X̃), where X̃ is the mapping from Rn to [0, 1]R

p
such that

(m1, . . . ,mn) 7→ X̃1(m1) � . . . � X̃n(mn), and P̃M is the multivariate normal distribution
N(µ,Σ) conditioned by the fuzzy set

F̃ (m1, . . . ,mn) = hgt
(
X̃1(m1) · . . . · X̃n(mn)

)

of consistent tuples (m1, . . . ,mn) given by (10). We denote this RFS as CR(X̃1, . . . , X̃n),
and we refer to this operation as the R-conjunctive combination. Obviously, we have
CR(X̃1, . . . , X̃n) = X̃1 ⊕ . . .⊕ X̃n if R = In, i.e., if the n GRFNs are independent.

To derive the expression of CR(X̃1, . . . , X̃n), we start with the following lemma.

Lemma 1. Let M = (M1, . . . ,Mn)T be a random vector having a multivariate normal
distribution with mean µ and covariance Σ. Its conditional distribution given the fuzzy
subset F̃ of Rn expressed by (10) is multivariate normal with mean

µ̃ = (In + ΣA)−1µ (12a)

and covariance matrix
Σ̃ = (In + ΣA)−1Σ, (12b)

in which A is the symmetric and PSD matrix

A =

{
0n,n if h1 = . . . = hn = 0,

diag(h)− hhT

1Th
otherwise,

(12c)

where 0n,n denotes the matrix of size n × n whose entries are zero, h = (h1, . . . , hn)T and
1 = (1, . . . , 1)T .

Proof. See Appendix B.

We can now state the main result in this section.

Theorem 3. Let X̃1, . . . , X̃n be n GRFNs such that X̃i ∼ Ñ(µi, σ
2
i , hi), i = 1, . . . , n.

Let Mi ∼ N(µi, σ
2
i ) be the random mode of X̃i, and assume that random vector M =

(M1, . . . ,Mn)T has a multivariate normal distribution with correlation matrix R and co-

variance matrix Σ = diag(σ)R diag(σ) with σ = (σ1, . . . , σn). We have CR(X̃1, . . . , X̃n) ∼
Ñ (µc, σ

2
c ,
∑n

i=1 hi), with

µc = h∗T (In + ΣA)−1µ and σ2
c = h∗T (In + ΣA)−1Σh∗, (13)
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Figure 6: 95% coverage probability ellipses for the unconditional distribution of random vector (M1,M2) in

Example 4 (solid red curve) and its conditional distribution given F̃ (dashed blue curve), for ρ = 0.9 (a)
and ρ = −0.9 (b).

where A is given by (12c) and h∗ = (h1, . . . , hn)T/
∑n

i=1 hi is the vector of normalized
precisions. Furthermore, the degree of conflict is

κR(X̃1, . . . , X̃n) = 1− |In + ΣA|−1/2 exp

(
−1

2
µTA[In + ΣA]−1µ

)
. (14)

Proof. See Appendix C.

We can remark that the equations derived in [9] and recalled in (8) and (9) for the
product intersection of two independent GRFNs and their degree of conflict can be recovered,
respectively, from (12) and (14) when n = 2 and Σ is diagonal.

Example 4. Let us consider again the two GRFNs of Example 1, and let us denote by ρ
the correlation coefficient between M1 and M2. Figures 6a and 6b show ellipses with 95%
coverage probability for the unconditional distribution of random vector (M1,M2) and its

conditional distribution given F̃ for, respectively, ρ = 0.9 and ρ = −0.9. The combined
GRFNs assuming ρ = −1, ρ = 0 and ρ = 1 are shown in Figure 7. It is clear that the
assumed correlation coefficient strongly influences the result of the combination. Figures
8a and 8b show, respectively, the mean and standard deviation of the combined GRFN as
functions of ρ. The standard deviation appears to be particularly sensitive to the value of
ρ. Figure 8c shows the degree of conflict as a function of ρ. It reaches a minimum value of
0.629 for ρ = 0.625.

Case of complete positive dependence. Complete positive dependence corresponds to the
case where all the correlation coefficients are equal to 1, i.e., R = Jn, where Jn is the
square matrix of size n whose entries are all equal to 1. Operator CJn is not idempotent,
because the normalized product intersection � is not. However, the degree of conflict κ
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Figure 7: Combination of the two GRFNs of Example 1 assuming ρ = −1 (solid lines), ρ = 0 (dashed lines)
and ρ = 1 (dotted lines). Each GRFN is represented by its contour function (red curve) and by its lower
and upper cdfs (blue curves).
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Figure 8: Mean (a), standard deviation (b) and degree of conflict (c) as functions of ρ for the combination
of the two GRFNs of Example 4.
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when combining a GRFN X̃ n times is null. These results are expressed in the following
proposition.

Proposition 3. For any GRFN X̃ ∼ Ñ(µ, σ2, h),

CJn(X̃, . . . , X̃︸ ︷︷ ︸
n times

) ∼ Ñ(µ, σ2, nh), and κJn(X̃, . . . , X̃︸ ︷︷ ︸
n times

) = 0.

Proof. See Section Appendix E.

When applied to identical GRFNs, the conjunctive combination operator with complete
positive dependence thus gives the smallest degree of conflict. However, this is not true in
general when combining different GRFNs. The idea of combining GRFNs while minimizing
the conflict is explored in Section 3.3.

Combination of transformed GRFNs. Just as the product-intersection rule, theR-conjunctive
combination operation can be extended to transformed GRFNs in a simple way. Let n
t-GRFNs Ỹ1, . . . , Ỹn such that Ỹi = ψ̃ ◦ X̃i with X̃i ∼ Ñ(µ1, σ

2
i , hi). We define their R-

conjunctive combination as

CR(Ỹ1, . . . , Ỹn) = ψ̃ ◦
(
CR(X̃1, . . . , X̃n)

)
.

Example 5. Consider again the two logit-normal RFNs Ỹ1 and Ỹ2 of Example 2. Figure 9
shows their conjunctive combination with ρ = 0 (product-intersection rule), ρ = 1 (complete
positive dependence) and ρ = 1 (complete negative dependence).

Combination of mixtures of GRFNs. The R-conjunctive combination operation can also
be extended to mixtures of GRFNs. For ease of exposition, consider two mGRFNs X̃1 ∼∑K

k=1 π1kÑ(µ1k, σ
2
1k, h1k) and X̃2 ∼

∑L
l=1 π2lÑ(µ2l, σ

2
2, h2l). Let use denote by M11, . . . ,M1K

and M21, . . . ,M2L the random modes of, respectively, the components of X̃1 and X̃2. In the
most general case, we need to specify the correlation coefficient ρkl between M1k and M2l

for each (k, l) ∈ {1, . . . , K} × {1, . . . , L}. In real applications, such detailed information is
unlikely to be available. A useful working hypothesis is to assume that these correlation
coefficients all have a common value ρ. In the general case of n mGRFNs we thus have a
single correlation matrix R. This model is illustrated by the following example.

Example 6. Let us consider again the two mGRFNs of Example 3 in Section 2.3. Figure
10 shows the contour functions and lower/upper cdfs of the combined mGRFNs with ρ ∈
{−1, 0, 1}.

3.3. Minimum-conflict combination

In real applications, it is often the case that the sources cannot be assumed to be inde-
pendent, but the correlation matrix R is unknown. One could then consider the set of all
possible combinations for all possible values of R. However, it is not clear how such a set
of GRFNs could be manipulated and exploited for further combination or decision-making.
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Figure 9: Combination of the two logit-normal RFNs of Example 5 assuming assuming ρ = −1 (solid lines),
ρ = 0 (dashed lines) and ρ = 1 (dotted lines). Each GRFN is represented by its contour function (red curve)
and by its lower and upper cdfs (blue curves).
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Figure 10: Combination of the two mGRFNs of Example 3 assuming ρ = −1 (solid lines), ρ = 0 (dashed
lines) and ρ = 1 (dotted lines). Each mGRFN is represented by its contour function (red curve) and by its
lower and upper cdfs (blue curves).
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A more tractable approach is to assume a priori the sources to be consistent: among all
correlation matrices, those yielding the smallest degree of conflict are thus regarded as the
most plausible. A similar strategy was proposed in [2] for combining dependent belief func-
tions on a finite frame of discernment. To justify this strategy, we can remark that the idea
of minimizing the conflict or inconsistency when combining pieces of information is natural
in many situations. For instance, in natural language understanding, disambiguation con-
sists in choosing, among different possible meanings of a word or a sentence, one making it
maximally consistent with the context. As another example, as discussed in [6], maximum
likelihood estimation in statistics can be seen as finding the parameter value that minimizes
the conflict between the statistical model and the observations. In the following we consider,
successively, the case of n = 2 sources, and the case where n > 2.

Case n = 2. In the case of two sources, there is only one parameter to determine: the
correlation coefficient ρ ∈ [−1, 1] between the modes of the two GRFNs to be combined. We
then have a univariate optimization problem, which is easy to solve. This is illustrated by
the following example.

Example 7. Let us consider two GRFNs X̃1 ∼ Ñ(µ1, 4, 2) and X̃2 ∼ Ñ(µ2, 1, 1) and let ∆ =
|µ1−µ2| denote the distance between their means. Figure 11a shows the minimum degree of
conflict as a function of ∆ ∈ [0, 10], as well as the degrees conflict for the product-intersection
rule (corresponding to ρ = 0) and the complete positive dependence rule (corresponding to
ρ = 1). As expected, the minimum degree of conflict increases with ∆ and is always smaller
than the degree of conflict of the product-intersection rule. For ∆ > 1.6, the complete positive
dependence rule no longer minimizes the conflict, and it even yields a larger conflict than
the product-intersection rule. Figure 11b displays the correlation coefficient ρ̂ corresponding
to the minimum conflict as a function of ∆. Consistently with Proposition 3, the minimum-
conflict combination is achieved for ρ̂ = 1 when ∆ is small (low conflict), but it is achieved
for ρ̂ = −1 (complete negative dependence) when ∆ is large (high conflict), and ρ̂ takes
values between −1 and 1 for intermediate distances.

Case n > 2. When the number of sources is greater than 2, finding the minimum-conflict
combination of GRFNs becomes more delicate. The correlation matrix must be parame-
terized in such a way that the problem can be solved using an unconstrained optimization
algorithm. Parameterizations of a covariance matrix are reviewed in [25]. For correlation
matrices, the most widely used approach is the spherical parameterization [19]. It is based
on the Cholesky decomposition R = CCT , where C = (ci,j) is an n × n lower triangular
matrix with positive diagonal elements. Matrix C can be parameterized by n(n−1)/2 angles
ωi,j ∈ [0, π] with i ∈ {2, . . . , n}, j ∈ {1, . . . , i− 1} as follows:

ci,j =





cos(ωi,j) if j = 1

cos(ωi,j)
∏j−1

k=1 sin(ωi,k) if 2 ≤ j ≤ i− 1∏j−1
k=1 sin(ωi,k) if j = i.
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Figure 11: (a): Minimum degree of conflict (solid blue curve), degree of conflict for ρ = 0 (dashed red curve)
and ρ = 1 (green dashed-dotted curve) vs. ∆ = |µ1−µ2|. (b): Minimum-conflict correlation coefficient ρ̂ as
a function of ∆.

To satisfy the constraints ωi,j ∈ [0, π], we introduce new parameters θi,j ∈ R and write

ωi,j =
π

1 + exp(−θi,j)
.

Using this parameterization, there is a one-to-one mapping between correlation matrices
R and vectors θ ∈ Rn(n−1)/2, and any unconstrained optimization procedure, such as the
BFGS algorithm, can be used to minimize the conflict. We can remark that the number of
parameters grows as the square of the number n of sources, making the optimization problem
increasingly difficult when n increases. We denote by CR∗(X̃1, . . . , X̃n) the minimum-conflict

combination of X̃1, . . . , X̃n, with

R∗ = arg min
R

κR(X̃1, . . . , X̃n).

Example 8. We consider three GRFNs X̃1 ∼ Ñ(µ1, 1, 1), X̃2 ∼ Ñ(0, 1, 1) and X̃3 ∼
Ñ(µ3, 1, 1) with (µ1, µ3) ∈ {−2,−1.5,−1, 0} × {0, 1, 1.5, 2}. Table 1 shows the degrees of
conflict κR∗ and κI3 obtained by, respectively, the minimum-conflict and product-intersection
rules for different values of µ1 and µ3. As expected, the conflict increases with the distance
µ1−µ3. The conflict reduction achieved by the minimum-conflict rule is larger when the dis-
tance is smaller. The minimum-conflict correlation coefficients ρ∗12, ρ∗13 and ρ∗23 are reported
in Table 2. We can see that the complete positive dependence rule CJ3 minimizes the conflict
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Table 1: Degrees of conflict (κR∗ , κI3) obtained by, respectively, the minimum-conflict and product-
intersection rules for different values of µ1 and µ3 in Example 8.

µ1�µ3 0 1 1.5 2.0
0 (0.00,0.50) (0.28,0.58) (0.50,0.66) (0.63,0.74)
-1 (0.28,0.58) (0.58,0.70) (0.68,0.77) (0.76,0.84)

-1.5 (0.50,0.66) (0.68,0.77) (0.76,0.84) (0.82,0.89)
-2 (0.63,0.74) (0.76,0.84) (0.82,0.89) (0.87,0.93)

Table 2: Minimum-conflict correlation coefficients (ρ∗12, ρ
∗
13, ρ

∗
23) for different values of µ1 and µ3 in Example

8.

µ1�µ3 0 1 1.5 2.0
0 (1,1,1) (1,1,1) (1,0.62,0.63) (1,-0.25,-0.25)
-1 (1,1,1) (0.79,0.26,0.79) (0.79,-0.26,0.38) (0.85,-0.66,-0.17)

-1.5 (0.63,0.62,1) (0.38,-0.26,0.79) (0.48,-0.54,0.48) (0.58,-0.75,0.10)
-2 (-0.25,-0.25,1) (-0.17,-0.66,0.85) (0.10,-0.75,0.58) (0.28,-0.84,0.28)

when (µ1, µ3) ∈ {(0, 0), (0, 1), (−1, 0)}. We have ρ∗12 = 1 when µ1 = 0 and, symmetrically
ρ∗23 = 1 when µ3 = 0.

4. Combination of partially reliable GRFNs

The product-intersection rule recalled in Section 2.2 is based on two main assumptions:
the independence and reliability of the combined evidence. The former issue has been
dealt with in Section 3; the latter is addressed in this section. The notion of reliability,
or relevance of a source of information has been well studied in classical DS theory and in
the finite setting [29, 20, 23, 24]. In the ERFS framework, it can be given the following

precise meaning. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS modeling a piece of evidence about a
variable X taking values in Θ. If interpretation ω ∈ Ω holds, the source tells us that the
value of X is constrained by possibility distribution X̃(ω). If we consider the source as fully

reliable, we accept X̃(ω) as our possibility distribution for X when ω holds. If we consider
the source as fully unreliable, we regard the information it gives us as irrelevant and we
are left in a state of total ignorance, which can be represented by the vacuous possibility
distribution assigning a maximum possibility degree to all θ ∈ Θ. In intermediate situations
where the source is believed to be partially reliable, X̃ must be transformed into a weaker,
less informative RFS. Such an operation is referred to as discounting. In Section 4.1 below,
we briefly review notions of discounting in DS and possibility theories. We then extend these
notions to random fuzzy sets in Section 4.2. Finally, in Section 4.3, we propose mechanisms
for combining partially reliable GRFNs based on different assumptions about the reliability
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of the sources.

4.1. Discounting in DS and possibility theories

Discounting plays an important role in DS theory, where it is often used to “weaken”
evidence before combination [26]. Similarly, a notion of discounting taking into account the
credibility of evidence was also introduced in possibility theory [32]. These two notions are
reviewed below.

Evidential discounting. The notion of discounting plays an important role in DS theory. It
was introduced by Shafer [26] for belief functions on finite frames. Let m : 2Θ → [0, 1] be a
mass function on a finite set Θ, and let m? denote the vacuous mass such that m?(Θ) = 1.
For any α ∈ [0, 1], the discounted mass function with discount rate 1 − α is mass function
m′ = De(α,m) such that

m′ = αm+ (1− α)m?. (15)

Obviously, De(1,m) = m and De(0,m) = m?. Let Pl and Pl′ denote the pausibility
functions corresponding, respectively, to m and m′. For any A ⊆ Θ,

Pl′(A) = αPl(A) + (1− α)Pl?(A) (16a)

=

{
αPl(A) + 1− α if A 6= ∅,
0 otherwise.

(16b)

Hence, for all A ⊆ Θ, Pl′(A) ≥ Pl(A) or, equivalently, Bel′(A) ≤ Bel(A): m′ is thus less
committed, or less informative than m. In [29], Smets proposed a model of source reliability
by introducing a variable Z ∈ {0, 1} and a probability distribution pZ such that pZ(1) = α.
If Z = 1, the source is reliable and we accept m as a representation of our beliefs on Θ;
otherwise, the source is not reliable and our beliefs on Θ are represented by the vacuous
mass function m?. Smets then showed that the discounting operation can be deduced from
fundamental operations of DS theory. In this model, α has a clear interpretation as the
probability that the source is reliable.

Possibilistic discounting. A notion of discounting was also introduced in approximate rea-
soning and possibility theory by Yager [32]. Let us assume that a piece of evidence on a

variable X taking values in Θ can be expressed as “X is Ã”, where Ã is a fuzzy subset
of Θ, and let α denote the “credibility” of the sources measured on the scale [0, 1]. Upon

consideration of the source’s credibility, Yager [32] proposes to transform fuzzy set Ã into

Ã′ = Dp(α, Ã) such that

∀θ ∈ Θ, Ã′(θ) = δ(α, Ã(θ)),

where δ is a discounting function, defined as a mapping from [0, 1]2 to [0, 1] verifying the
following conditions:

1. ∀a ∈ [0, 1], δ(0, a) = 1;

2. ∀a ∈ [0, 1], δ(1, a) = a;
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3. ∀a ∈ [0, 1], ∀(α1, α2) ∈ [0, 1]2, α1 > α2 ⇒ δ(α2, a) ≥ δ(α1, a);

4. ∀(a, b) ∈ [0, 1]2, ∀α ∈ [0, 1], a > b⇒ δ(α, a) ≥ δ(α, b).

Examples of discounting functions are δ(α, a) = S(1 − α, a), where S is a t-conorm, and

δ(α, a) = aα. It is clear that, if Ã′ = Dp(α, Ã), we have Ã′(θ) ≥ Ã(θ) for all θ ∈ Θ.
Consequently, for all A ⊆ Θ, ΠÃ′(A) ≥ ΠÃ(A), i.e., the possibilistic discounting operation
transforms possibility measure ΠÃ into a less informative one.

4.2. Extension to random fuzzy sets

Both evidential and possibilistic discounting operations recalled in Section 4.1 can be
extended to ERFSs.

Evidential discounting. Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be an ERFS representing some piece of
evidence. Let beliefs about reliability of the source of this evidence be represented by a
binary random variable Z ∈ {0, 1} (such that Z = 1 means that the source is reliable) with
probability distribution PZ such that PZ(1) = α. A discounted RFS can be defined as

(Ω× {0, 1},ΣΩ ⊗ 2{0,1}, P × PZ ,Θ,ΣΘ, X̃
′),

where X̃ ′ is the mapping from Ω× {0, 1} to [0, 1]Θ defined as

X̃ ′(ω, 1) = X̃(ω)

X̃ ′(ω, 0) = Θ.

We call this operation evidential discounting with discount rate 1 − α and we write X̃ ′ =
De(α, X̃). We have, for all measurable subset A ⊆ Θ,

PlX̃′(A) = α

∫
ΠX̃(ω)(A)dP (ω) + (1− α)ΠΘ(A)

=

{
αPlX̃(A) + 1− α if A 6= ∅
0 otherwise,

which parallels (16).

Possibilistic discounting. Alternatively, we may extend the notion of possibilistic discounting
by considering the RFS

(Ω,ΣΩ, P,Θ,ΣΘ, X̃
′′),

where X̃ ′′ is the mapping from Ω to [0, 1]Θ such that ω 7→ X̃ ′′(ω) = Dp(α, X̃(ω)), where Dp

is a possibilitic discounting operation based on some discounting function δ. We call this
operation possibilistic discounting with discount rate 1−α and we write X̃ ′′ = Dp(α, X̃). As,

for all ω ∈ Ω and all θ ∈ Θ, X̃ ′′(ω)(θ) ≥ X̃(ω)(θ), we have, for all A ⊆ Θ, ΠX̃′′(A) ≥ ΠX̃(A)
and, for all measurable A ⊆ Θ,

PlX̃′′(A) =

∫
ΠX̃′′(A)dP (ω) ≥ PlX̃(A).
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Application to GRFNs. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN. The result of the evidential

discounting operation with discount rate 1−α is a mixture of X̃ with proportion α and the
vacuous GRFN with proportion 1− α,

X̃ ′ = De(α, X̃) ∼ αÑ(µ, σ2, h) + (1− α)Ñ(∗, ∗, 0).

Let us now consider possibilistic discounting with discounting function δ(a) = aα. Let

X̃ ′ = Dp(α, X̃). We have

X̃ ′(ω)(x) = [X̃ ′(ω)(x)]α =

[
exp

(
−h

2
(x−M(ω))2

)]α
= exp

(
−αh

2
(x−M(ω))2

)
.

Consequently, X̃ ′′ = Dp(α, X̃) ∼ Ñ(µ, σ2, αh).
In both cases, the belief function induced by the discounted RFS tends to the vacuous

belief function when α→ 0, i.e., for any event A ⊂ R,

lim
α→0

BelDe(α,X̃)(A) = 0 and lim
α→0

BelDp(α,X̃)(A) = 0

and, for any nonempty event A,

lim
α→0

PlDe(α,X̃)(A) = 1 and lim
α→0

PlDp(α,X̃)(A) = 1.

In practice, the discount rate α can sometimes be elicited from experts, but it will more
often be determined as the solution of an optimization problem, as will be illustrated in
Section 5.

Example 9. Let us consider the GRFN X̃ ∼ Ñ(0, 1, 2). Figure 12 shows the lower/upper

cdfs and contour functions of Dp(α, X̃) and De(α, X̃) for α ∈ {1, 0.8, 0.5, 0.2}. We can see
that, for a given α, evidential discounting is more “drastic” than possibilistic discounting,
as the plausibility of any nonempty event A after evidential discounting with rate 1 − α is
at least equal to 1− α.

4.3. Combination of discounted GRFNs

In classical DS theory, a classical strategy for fusing evidence from unreliable sources
is to combine discounted mass functions by Dempster’s rule (see, e.g., [15]). Discounting
has, in particular, the effect of reducing the conflict. A similar approach can be adopted
for combining unreliable GRFNs. We discuss this approach below considering, successively,
possibilistic and evidential discounting.

Conjunctive combination after possibilistic discounting. As possibilistic discounting yields
GRFNs, its use with the conjunctive combination operation introduced in Section 3 is im-
mediate. Applying this operation to n GRFNs X̃1, . . . , X̃n after possibilistic discounting, we
get a new GRFN denoted as

C(p)
R,α(X̃1, . . . , X̃n) = CR

(
Dp(α1, X̃1), . . . , Dp(αn, X̃n)

)
, (17)

where α = (α1, . . . , αn). We can observe that the new C(p)
R,α depends on two vector parame-

ters: the correlation matrix R and the vector of coefficients α.
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Figure 12: Lower/upper cdfs and contour functions for discounted GRFNs (Example 9), for α = 1 (solid
black lines), α = 0.8 (dashed blue lines), α = 0.5 (dotted red lines), α = 0.2 (dashed-dotted green lines). (a):
lower/upper cdfs, possibilistic discounting; (b) contour functions, possibilistic discounting; (c): lower/upper
cdfs, evidential discounting; (d) contour functions, evidential discounting.
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Conjunctive combination after evidential discounting. As before, let us assume that we have
n GRFNs X̃1, . . . , X̃n with X̃i ∼ Ñ(µ1, σ

2
i , hi). Let Zi ∼ B(αi) be a Bernoulli random

variable indicating the reliability of X̃i. After evidential discounting, we obtain n mGRFNs
X̃ ′1, . . . , X̃

′
n with

X̃ ′i = De(αi, X̃i) ∼ αiÑ(µi, σ
2
i , hi) + (1− αi)Ñ(∗, ∗, 0).

Each mGRFN X̃ ′i can, alternatively, be written as

X̃ ′i = GFN(Mi, hiZi),

where Mi is a GRV with mean µi and variance σ2
i , and it is assumed that Mi and Zi are

independent. To combine these n mGRFNs, we need to make assumptions about the joint
distribution of random vectorsM = (M1, . . . ,Mn)T and Z = (Z1, . . . , Zn)T . As in Section 3,
we assume that M has a multivariate normal distribution with mean µ = (µ1, . . . , µn) and
covariance matrix Σ = diag(σ)R diag(σ), where σ = (σ1, . . . , σn) and R is a correlation
matrix. We further assume that Z has a probability mass function pZ with marginals
pZi

(1) = αi, and that M and Z are independent. Under these assumptions, the following
theorem gives the expression of the combined mGRFNs.

Theorem 4. Under the above assumptions, the conjunctive combination of X̃1, . . . , X̃n after
evidential discounting is

X̃ = C(e)
R,pZ

(X̃1, . . . , X̃n) ∼
∑

z∈{0,1}n
πzÑ(µz, σz, hz), (18a)

with hz =
∑n

i=1 zihi,

µz = h∗Tz (In + ΣAz)
−1µ, σ2

z = h∗Tz (In + ΣAz)
−1Σh∗z, (18b)

πz =
(1− κz)pZ(z)∑
z′(1− κz′)pZ(z′)

, (18c)

where h∗z = hz/hz, hz = (h1z1, . . . , hnzn)T ,

Az =

{
0n,n if z1 = . . . = zn = 0,

diag(hz)− hzhTz /hz otherwise,
(18d)

and

κz = 1− |In + ΣA|−1/2 exp

(
−1

2
µTAz[In + ΣAz]

−1µ

)
. (18e)

Proof. See Appendix D.
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This new conjunctive operation is, thus, indexed by a correlation matrix R and a prob-
ability mass function pZ in {0, 1}n. It essentially computes a mixture of GRFNs obtained

by conjunctively combining the GRFNs X̃i such that zi = 1, for all combinations of reliable
sources encoded in z, with proportions given by (18c). For small n, the probability mass
function pZ can be learnt from data (cf. Section 5) or specified by the user. For large n, some
additional assumptions can be useful to reduce the number of parameters. Hereafter, we
describe three models with n degrees of freedom, based on different simplifying assumptions:

Model 1: RVs Zi are assumed to be independent, so that

pZ(z) =
n∏

i=1

P (Zi = zi) =
n∏

i=1

αzii (1− αi)1−zi .

This assumption is often plausible, and it reduces the number of parameters from 2n−1
to n. The corresponding operator can be denoted by C(e)

R,α with α = (α1, . . . , αn). It

has the same number of parameters as C(p)
R,α in (17). This model includes as a special

cases the conjunctive combination of the n GRFNs (when α1 = . . . = αn = 1), as
well as the conjunctive combination of any subset of the n GRFNs (when αi = 1 for
i ∈ I ⊂ {1, . . . , n} and αi = 0 for i 6∈ I).

Model 2: we assume that either there is exactly one reliable source, or all sources are
reliable, i.e., the number of reliable sources is either 1 or n. Let βi be the probability
that source i is the only reliable source, and let βn+1 be the probability that all sources
are reliable. These numbers must satisfy the constraint

∑n+1
i=1 βi = 1, and we have

αi = βi + βn+1. In that case, the combined mGRFN is a mixture of the X̃i’s and their
conjunctive combination,

X̃ = C(e)
R,pZ

(X̃1, . . . , X̃n) ∼
n∑

i=1

πiÑ(µi, σi, hi) + πn+1Ñ

(
µc, σc,

n∑

i=1

hi

)
,

with µc and σc given by (13), and

πi =
βi∑n

j=1 βj + (1− κR)βn+1

, πn+1 =
(1− κR)βn+1∑n

j=1 βj + (1− κR)βn+1

,

where κR is the degree of conflict of the conjunctive combination given by (14). This
operator is interesting, because it includes mixtures of the n GRFNs as well as the
conjunctive combination as special cases. We can observe that it behaves similarly to
a mixture combination of the n GRFNs when their degree of conflict κR is close to 1.
This operator will be denoted by MR,β, with β = (β1, . . . , βn+1).

Model 3: we assume that either there are exactly n − 1 reliable sources, or all sources
are reliable, i.e., the number of reliable sources is either n − 1 or n. Let βi be the
probability all sources except source i are reliable, and let βn+1 be the probability that
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all sources are reliable. These numbers must satisfy the constraint
∑n+1

i=1 βi = 1, and
we have αi = 1 − βi, i = 1, . . . , n. Denoting by z(−i) the vector with all components
equal to 1, except component i equal to 0, the combined mGRFN can be written as

X̃ = C(e)
R,pZ

(X̃1, . . . , X̃n) ∼
n∑

i=1

πiÑ(µz(−i)
, σz(−i)

, hz(−i)
) + πn+1Ñ

(
µc, σc,

n∑

i=1

hi

)
,

where hz(−i)
=
∑

j 6=i hj, µz(−i)
and σz(−i)

are defined by (18b), µc and σc given by (13),
and

πi =
(1− κ−iR )βi∑n

j=1(1− κ−jR )βj + (1− κR)βn+1

, πn+1 =
(1− κR)βn+1∑n

j=1(1− κ−jR )βj + (1− κR)βn+1

,

where κR is the degree of conflict of X̃1, . . . , X̃n given by (14), and κ−iR is the degree of

conflict of the n− 1 GRFNs X̃j, j 6= i. This fusion operator will be denoted byMR,β.

Other rules could be defined based on more complex assumptions. For instance, we could
assume that q out of n sources are reliable, for some q ∈ {2, . . . , n− 1}. However, the three

simple operations C(e)
R,α, MR,β and MR,β defined above, together with C(p)

R,α given by (17),
have the advantage of depending on a small number of parameters and can be expected to be
sufficient for most applications. In practice, different models can be compared empirically,
as will be shown in Section 5.

Example 10. Figure 13 shows three GRFNs X̃1 ∼ Ñ(1, 1, 2), X̃2 ∼ Ñ(1.5, 1, 2) and X̃3 ∼
Ñ(4, 0.52, 3). We assume these GRFNs to be independent, i.e., the correlation matrix is
equal to the identity matrix I. Combinations of these three GRFNs under Models 1, 2
and 3 with different parameter values are illustrated in Figures 14 to 16. Figure 14 shows
the combined GRFN C(e)

I,α using Model 1 (independence) with (a): α = (0.5, 0.5, 0.5); (b):
α = (0.5, 0.9, 0.9), and (c): α = (0.9, 0.9, 0.5). Figures 15 and 16 display, respectively,
the combined GRFNs using Models 2 and 3 with (a): β = (1/3, 1/3, 1/3, 0); (b): β =
(0.1/3, 0.1/3, 0.1/3, 0.9), and (c): β = (0.01/3, 0.01/3, 0.01/3, 0.99).
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Figure 13: The three GRFNs of Example 10. Each GRFN is represented by its contour function (red curve),
its lower and upper cdfs (blue curves) and 10 realizations (dotted curves).
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Figure 14: Combined GRFN C(e)I,α using Model 1 (independence) with (a): α = (0.5, 0.5, 0.5); (b): α =
(0.5, 0.9, 0.9); (c): α = (0.9, 0.9, 0.5). Each GRFN is represented by its contour function (red curve) and by
its lower and upper cdfs (blue curves). The conjunctive combination is represented by dashed curves.

27



-2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

B
e
lie
f/
p
la
u
si
b
ili
ty

(a)

-2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

B
e
lie
f/
p
la
u
si
b
ili
ty

(b)

-2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

B
e
lie
f/
p
la
u
si
b
ili
ty

(c)

Figure 15: Combined GRFN MI,β using Model 2 with (a): β = (1/3, 1/3, 1/3, 0); (b): β =
(0.1/3, 0.1/3, 0.1/3, 0.9); (c): β = (0.01/3, 0.01/3, 0.01/3, 0.99). Each GRFN is represented by its con-
tour function (red curve) and by its lower and upper cdfs (blue curves). The conjunctive combination is
represented by dashed curves.
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Figure 16: Combined GRFN MI,β using Model 3 with (a): β = (1/3, 1/3, 1/3, 0); (b): β =
(0.1/3, 0.1/3, 0.1/3, 0.9); (c): β = (0.01/3, 0.01/3, 0.01/3, 0.99). Each GRFN is represented by its con-
tour function (red curve) and by its lower and upper cdfs (blue curves). The conjunctive combination is
represented by dashed curves.
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5. Numerical experiments

To demonstrate the usefulness of the fusion methods introduced in this paper, we con-
sider their application to the combination of predictions of a quantitative variable in machine
learning. The ENNreg model introduced in [8, 11] is a neural network model for regression
that quantifies prediction uncertainty using GRFNs. The mean of the output GRFN in-
dicates the most plausible value of the response for the given input, while its standard
deviation and precision correspond, respectively, to aleatory and epistemic uncertainty.

In the experiment described in this section, we consider the combination of several models
trained with different, but overlapping sets of predictors. In the real world, model combi-
nation can be useful in different situations: for instance, different models may be trained
using different datasets or with different sets of inputs to account for possible unavailabil-
ity of some predictors (due to sensor failure or other reason). We can remark that model
combination in evidential machine learning is an important topic that, in full generality,
goes beyond the scope of this paper. Here, our objective is to illustrate the practical use of
the combination operators studied in this paper, and to show that they can be optimized
to enhance prediction performance. Experimental settings will first be described in Section
5.1; results will then be reported and discussed in Section 5.2.

5.1. Experimental settings

We considered four regression datasets: the Boston dataset (506 observations, 13 inputs)
from the R package MASS [30], two datasets from the UCI Machine Learning Repository2:
Concrete Compressive Strength (1030 observations, 8 inputs) and Energy efficiency (769
observations, 8 inputs), and the kin8nm dataset downloaded from the OpenML web site3

(8192 obervations, 8 inputs). For each dataset, we proceeded as follows:

1. The data were split randomly into training, validation and test sets containing, re-
spectively, 60%, 20% and 20% of the observations;

2. Three overlapping subsets of bp/2c + 1 inputs were randomly selected out of the p
inputs;

3. An ENNreg model with K = 30 prototypes was trained with each of the three input
subsets, yielding three models (hyperparameters ξ and ρ were tuned by five-fold cross-
validation);

4. The parameters of the following five combination operators were fitted using the vali-
dation set:

(a) CR (conjunctive combination with correlation matrix R);

(b) C(p)
R,α (conjunctive combination with correlation matrix R and possibilistic dis-

counting with coefficients α);

(c) C(e)
R,α (conjunctive combination with correlation matrix R and model-1 evidential

discounting with coefficients α);

2https://archive.ics.uci.edu/ml/.
3https://www.openml.org
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(d) MR,β (conjunctive combination with correlation matrixR and model-2 evidential
discounting with coefficients β);

(e) MR,β (conjunctive combination with correlation matrixR and model-3 evidential
discounting with coefficients β).

5. The quality of the combined predictions using each of the optimized combination
operators as well as the product-intersection CI was assessed on the test set.

The whole process was repeated 30 times (with different random data partitions and
input subsets). The ENNreg model was trained by minimizing a generalized log-likelihood
(GLL) loss, as explained in [8]. Similarly, the combination operators were fitted in Step 4
above by minimizing the following loss function,

Lε(y, Ỹ ) = −1

2

[
lnBelỸ ([y − ε, y + ε]) + lnPlỸ ([y − ε, y + ε])

]
, (19)

where y is the true value of the response, Ỹ the prediction (a random fuzzy number), and
ε a hyperparameter that was fixed to 0.01 times the standard deviation of the response Y .
The rationale for criterion (19) is that a good prediction should assign a high degree of belief
to a small interval [y − ε, y + ε] centered on the true value, and a low degree of belief to
the complement of this interval, i.e., a high plausibility degree to [y − ε, y + ε]. The same
criterion was used to assess the quality of the combined predictions in Step 5.

5.2. Results

Boxplots of test GLL values for the four datasets are shown in Figures 17a, 18a, 19a
and 20a. We can see that optimizing the correlation coefficient allows for a performance
improvement over the product-intersection combination, and that both possibilistic and evi-
dential discounting bring further improvements. The best performing combination operators
were conjunctive combination with possibilistic discounting C(p)

R,α and conjunctive combina-

tion with evidential discounting and independent reliability assumption C(e)
R,α, with the latter

outperforming the former on the Boston and Energy datasets.
P-values of pairwise paired t-tests with Bonferroni correction for the comparison of GLL

values are shown in Tables 3 to 6. We can see that most observed differences are highly
significant. In particular, CR significantly outperforms CI on the four datasets, and the ad-
ditional performance gain obtained by possibilistic or evidential discounting is also highly
significant. Combination operator C(e)

R,α significantly outperforms C(p)
R,α on the Boston (p-

value=0.031) and Energy (p-value=0.00339) datasets, while the two methods yield similar
results on the Concrete and kin8nm datasets. Operators MR,β and MR,β perform signif-

icantly worse than C(e)
R,α and C(p)

R,α for the four datasets. Whether these operators can be
useful for prediction combination or other information fusion applications remains an open
question.

Finally, boxplots of computing times are displayed in Figures 17b, 18b, 19b and 20b.
The reported times are the times to learn the parameters of the fusion operators using the
validation set. We can see that learning the correlation matrix alone is quite fast, while
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Figure 17: Generalized log-likelihood (a) and learning time (b) for the Boston dataset with different fusion
methods.
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Figure 18: Generalized log-likelihood (a) and learning time (b) for the Concrete dataset with different fusion
methods.
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Figure 19: Generalized log-likelihood (a) and learning time (b) for the Energy dataset with different fusion
methods.
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Figure 20: Generalized log-likelihood (a) and learning time (b) for the kin8nm dataset with different fusion
methods.
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learning discounting coefficients takes significantly more time. We can also observe that op-
erators computing a mixture of GRFNs (C(e)

R,α,MR,β andMR,β) are more computationally

costly than operator C(p)
R,α based on possibilistic discounting. Since C(p)

R,α performs almost as

well as C(e)
R,α, this may be an argument in favor of the former when computational resources

are limited.

Table 3: P-values with Bonferroni correction of pairwise paired t-tests between the GLL values obtained
with different fusion methods for the Boston dataset.

CI CR C(e)
R,α MR,β MR,β

CR 1.5× 10−7 - - - -

C(e)
R,α 1.1× 10−9 6.9× 10−10 - - -
MR,β 3.4× 10−9 2.2× 10−8 5.2× 10−8 - -
MR,β 4.7× 10−9 1.2× 10−7 3.3× 10−9 2.9× 10−6 -

C(p)
R,α 1.1× 10−11 1.2× 10−13 0.031 0.129 3.6× 10−13

Table 4: P-values with Bonferroni correction of pairwise paired t-tests between the GLL values obtained
with different fusion methods for the Concrete dataset.

CI CR C(e)
R,α MR,β MR,β

CR 3.3× 10−14 - - - -

C(e)
R,α < 2× 10−16 < 2× 10−16 - - -
MR,β < 2× 10−16 1.4× 10−13 < 2× 10−16 - -
MR,β 8.5× 10−16 3.6× 10−8 < 2× 10−16 1.4× 10−13 -

C(p)
R,α < 2× 10−16 < 2× 10−16 1 8.9× 10−14 < 2× 10−16

Table 5: P-values with Bonferroni correction of pairwise paired t-tests between the GLL values obtained
with different fusion methods for the Energy dataset.

CI CR C(e)
R,α MR,β MR,β

CR 1.4× 10−10 - - - -

C(e)
R,α 4.1× 10−10 7.2× 10−8 - - -
MR,β 1.2× 10−8 2.5× 10−5 3.6× 10−12 - -
MR,β 9.3× 10−10 4.1× 10−5 3.9× 10−9 0.00094 -

C(p)
R,α 5.3× 10−10 2.6× 10−7 0.00339 0.03339 3.6× 10−7
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Table 6: P-values with Bonferroni correction of pairwise paired t-tests between the GLL values obtained
with different fusion methods for the kin8nm dataset.

CI CR C(e)
R,α MR,β MR,β

CR 2.4× 10−15 - - - -

C(e)
R,α < 2× 10−16 < 2× 10−16 - - -
MR,β < 2× 10−16 < 2× 10−16 < 2× 10−16 - -
MR,β < 2× 10−16 2.6× 10−15 < 2× 10−16 3.6× 10−13 -

C(p)
R,α < 2× 10−16 < 2× 10−16 1 < 2× 10−16 < 2× 10−16

6. Conclusions

The theory of epistemic random fuzzy sets generalizes DS and possibility theories by
considering random fuzzy sets as a model of uncertain and imprecise information. In this
approach, the basic mechanism for combining information is the product-intersection rule,
which extends and plays the same role as Dempster’s rule in DS theory. Among other
benefits, this new approach makes it possible to define parametric families of random fuzzy
numbers (GRFNs and extensions), allowing one to represent and reason with evidence about
continuous variables.

As Dempster’s rule, the product-intersection rule is, however, too restrictive to apply to
all situations encountered in practice. Specifically, it is based on strong assumptions about
the independence and reliability of the pieces of evidence being combined. In this paper,
we have shown how these assumptions can be relaxed when combining GRFNs and related
random fuzzy sets. First, we have extended the product-intersection rule by providing
formulas for the combination of any number of GRFNs whose dependence is represented
by an arbitrary correlation matrix (instead of the identity matrix assumed in the product-
intersection rule). To accommodate frequent situations in which the dependence structure
of the evidence is not precisely known, we have proposed a minimum-conflict combination
operation in which the correlation matrix is determined to minimize the degree of conflict
between pieces of evidence.

To address the issue of partial reliability of the evidence, we have introduced two dis-
counting operations for random fuzzy sets: possibilistic discounting “weakens” a RFS by
making the fuzzy focal sets more imprecise, whereas evidential discounting mixes the RFS
with a vacuous one as done by the discounting operation in classical DS theory. When
applied to a GRFN, the former operation yields another GRFN with a smaller precision
parameter, while the latter yield a mixture of two GRFNs, one of which is vacuous. We
have then studied different operations based on the conjunctive combination (with a given
correlation matrix) of discounted evidence. When used within a combination mechanism,
evidential discounting appears to be richer as it allows for the definition of different combi-
nation operations based on different assumptions about the reliability of items of evidence.
These operations all amount to computing a mixture of conjunctive combinations of subsets
of GRFNs.

To illustrate the application of the combination operations introduced in this paper, we
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have considered the combination of predictions made by the ENNreg model, a regression neu-
ral network model introduced in [8], which quantifies prediction uncertainty using a GRFN.
We have considered the particular situation in which different models are trained with par-
tially overlapping subsets of features. We have shown that optimizing the parameters of
different combination operators using a validation set allows for improved performance on
test data, as compared to the baseline product-intersection operation. For this application,
the best fusion strategy was found to be the combination of evidentially discounted GRFNs
with the reliability independence assumption.

The methods introduced in this paper considerably extend the toolbox of techniques
for combining evidence about real variables. One of the promising applications of these
techniques is evidential machine learning. For instance, parameterized combination opera-
tions could be embedded in evidential regression models such as ENNreg [8]; alternatively,
combination schemes for ensembles of models built in different ways could be devised. The
combination of knowledge elicited from multiple experts is another research avenue that will
be explored in future work.
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Appendix A. Proof of Proposition 2

From [22, page 42], we have (with our notations), for H1 and H2 PD,

exp
(
(x−m1)TH1(x−m1)

)
· exp

(
(x−m2)TH2(x−m2)

)
=

C exp
(
(x−m)TH(x−m)

)

with H = H1 +H2, m = H−1(H1m1 +H2m2), and

C = exp

(
−1

2
(m1 −m2)T (H−1

1 +H−1
2 )−1(m1 −m2)

)
.

Consequently, the following equation holds:

GFV(m1,H1) � GFV(m2,H2) = GFV(m,H),

and the height of the product intersection between GFV(m1,H1) and GFV(m1,H2) is

hgt (GFV(m1,H1) ·GFV(m1,H2)) = exp

(
−1

2
(m1 −m2)T (H−1

1 +H−1
2 )−1(m1 −m2)

)
,

which is the result given in [9]. We can remark that

(H−1
1 +H−1

2 )−1 =
[
(H−1

1 H2 + In)H−1
2

]−1
= H2(In +H−1

1 H2)−1,

which gives us the expression in (11). However, this result was established assuming H2

to be PD. We now need to show it is still true when H2 is only PSD. Assume that H2

is PSD. We can observe [17, page 432] that H2 is the limit when k → ∞ of PD matrices

H
(k)
2 = H2 + k−1In. From the continuity of the product, maximum and matrix inverse

operations, we have

hgt (GFV(m1,H1) ·GFV(m1,H2)) = lim
k→∞

hgt
(

GFV(m1,H1) ·GFV(m1,H
(k)
2 )
)

= lim
k→∞

H
(k)
2 (In +H−1

1 H
(k)
2 )−1

= H2(In +H−1
1 H2)−1.

Appendix B. Proof of Lemma 1

We first remark that (10) can be written in vector form as

F̃ (m) = exp

[
−1

2
mTAm

]
,

with m = (m1, . . . ,mn)T . For all m ∈ Rn, F̃ (m) ≤ 1 or, equivalently, mTAm ≥ 0;
consequently, A is PSD. We consider two cases.
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• Case 1: Σ is PD. Random vector M then has a density, and its conditional density
given fuzzy event F̃ is

f(m|F̃ ) =
f(m)F̃ (m)∫
f(m)F̃ (m)dm

. (B.1)

From Proposition 2, f(m|F̃ ) ∝ exp
(
−1

2
(m− µ̃)T Σ̃

−1
(m− µ̃)

)
with

µ̃ = Σ̃(Σ−1µ+A0) = Σ̃Σ−1µ and Σ̃
−1

= Σ−1 +A.

Consequently, the conditional distribution of M given F̃ is normal with mean µ̃ and

PD covariance matrix Σ̃. Writing Σ̃
−1

= Σ−1(In + ΣA), we get

Σ̃ = (In + ΣA)−1Σ and µ̃ = (In + ΣA)−1µ. (B.2)

• Case 2: The distribution of M is degenerate. We can remark that the expressions
in (B.2) still make sense, as In + ΣA is nonsingular. Indeed, as A is symmetric and
PSD, it has a symmetric and PSD square root A1/2. Matrix A1/2ΣA1/2 is symmetric
and, for any m ∈ Rn,

mTA1/2ΣA1/2m = (A1/2m)TΣ(A1/2m) ≥ 0,

hence it is PSD. Now, AΣ = A1/2(A1/2Σ) and (A1/2Σ)A1/2 have the same eigenvalues
(as for any square matrices P and Q, PQ and QP have the same eigenvalues). There-
fore, the eigenvalues of AΣ are all nonnegative. Let us now consider an eigenvector u
of I + ΣA and the corresponding eigenvalue λ. We have

(I + ΣA)v = v + ΣAv = λv ⇒ ΣAv = (λ− 1)v.

Hence v is an eigenvector of AΣ and λ − 1 ≥ 0, i.e., λ ≥ 1. As the eigenvalues of
I + ΣA are all positive, I + ΣA is nonsingular. As, when singular, Σ is the limit of
a sequence of nonsingular covariance matrices, (B.2) remains true by continuity.

Appendix C. Proof of Theorem 3

From Proposition 1, the product intersection of X̃1(M1), . . . , X̃n(Mn) is the GRFN with
precision

∑n
i=1 hi and random mode

Mc =

∑n
i=1 hiMi∑n
i=1 hi

= h∗TM .

From Lemma 1, M has, conditionally on F̃ , a multivariate normal distribution with mean
µ̃ and covariance matrix Σ̃ given, respectively, by (12a) and (12b). Hence, Mc ∼ N(µc, σ

2
c )

with µc = h∗T µ̃ and σ2
c = h∗T Σ̃h∗.
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Now, assuming random vector M to have a density, the degree of conflict between the n
GRFNs is defined as one minus the denominator on the right-hand side of (B.1). The term
on the left-hand side is

A = (2π)n/2|Σ̃|−1/2 exp

(
−1

2
(m− µ̃)T Σ̃

−1
(m− µ̃)

)
.

The numerator on the right-hand side of (B.1) is

B = (2π)n/2|Σ|−1/2 exp

(
−1

2
(m− µ)TΣ−1(m− µ)

)
exp

(
−1

2
(mTAm

)
.

From Proposition 2,

B = (2π)n/2|Σ|−1/2 exp

(
−1

2
µTA[I + ΣA]−1µ

)
exp

(
−1

2
(m− µ̃)T Σ̃

−1
(m− µ̃)

)
.

Consequently, noticing that |Σ̃|/|Σ| = |Σ̃Σ−1| = |I + ΣA|−1, we get

κR(X̃1, . . . , X̃n) = 1− B

A

= 1−

(
|Σ̃|
|Σ|

)1/2

exp

(
−1

2
µTA[I + ΣA]−1µ

)

= 1− |I + ΣA|−1/2 exp

(
−1

2
µTA[I + ΣA]−1µ

)
.

As before, this expression remains valid when Σ is singular, by continuity.

Appendix D. Proof of Theorem 4

The proof parallels that of Theorem 4 in [14]. The conjunctive combination of X̃ ′1, . . . , X̃
′
n

corresponds to the mapping

(m, z) 7→ GFN(m1, h1z1) � . . .�GFN(mn, hnzn),

with m = (m1, . . . ,mn)T . The fuzzy subset F̃ of consistent interpretations is

F̃ (m, z) = exp

(
−1

2
mTAzm

)
,

where matrix Az is given by (18d). The conditional probability distribution of (M ,Z)

given F̃ can be described as follows:

• The conditional distribution of M given Z = z and F̃ is given by Lemma 1: it is a
multivariate normal distribution with mean

µ̃z = (In + ΣAz)
−1µ

and covariance matrix
Σ̃z = (In + ΣAz)

−1Σ.
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• From Bayes’ theorem and Theorem 3, the conditional probability distribution of Z
given F̃ is

πz = P (Z = z | F̃ ) =
P (F̃ | Z = z)pZ(z)

P (F̃ )
=

(1− κz)pZ(z)∑
z′(1− κz′)pZ(z′)

,

where κz is given by (18e).

From Theorem 3, given Z = z and F̃ , the mean of M is µz = h∗Tz µ̃z, and its variance is

σ2
z = h∗Tz Σ̃zh

∗
z. The result follows.

Appendix E. Proof of Proposition 3

Let 1n be the vector of length n whose components are all equal to 1. We assume
h = h1n, µ = µ1n and Σ = σ2Jn. We then have

A = hIn −
h

n
Jn

and

ΣA = σ2Jn

(
hIn −

h

n
Jn

)
= σ2hJn − σ2h

n
nJn = 0n,n.

Consequently, from (13),

µc =
µ

n
1Tn1n = µ and σ2

c =
σ2

n2
1TnJn1n =

σ2

n2
n2 = σ2.

Finally, µTAµ = µ21T (hIn − h
n
Jn)1 = µ2(hn− h

n
n2) = 0, hence κJn(X̃, . . . , X̃) = 0.
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