
HAL Id: hal-04647001
https://hal.science/hal-04647001

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Molecular Mechanisms of Bacterial Resistance to
Antimicrobial Peptides in the Modern Era: An Updated

Review
Layla Tajer, Jean-Christophe Paillart, Hanna Dib, Jean-Marc Sabatier, Ziad

Fajloun, Ziad Abi Khattar

To cite this version:
Layla Tajer, Jean-Christophe Paillart, Hanna Dib, Jean-Marc Sabatier, Ziad Fajloun, et al.. Molec-
ular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated
Review. Microorganisms, 2024, 12 (7), pp.1259. �10.3390/microorganisms12071259�. �hal-04647001�

https://hal.science/hal-04647001
https://hal.archives-ouvertes.fr


Citation: Tajer, L.; Paillart, J.-C.; Dib,

H.; Sabatier, J.-M.; Fajloun, Z.; Abi

Khattar, Z. Molecular Mechanisms of

Bacterial Resistance to Antimicrobial

Peptides in the Modern Era: An

Updated Review. Microorganisms 2024,

12, 1259. https://doi.org/10.3390/

microorganisms12071259

Academic Editor: Maurizio Ciani

Received: 8 May 2024

Revised: 10 June 2024

Accepted: 18 June 2024

Published: 21 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Molecular Mechanisms of Bacterial Resistance to Antimicrobial
Peptides in the Modern Era: An Updated Review
Layla Tajer 1, Jean-Christophe Paillart 2 , Hanna Dib 3 , Jean-Marc Sabatier 4,* , Ziad Fajloun 1,5

and Ziad Abi Khattar 6,*

1 Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its
Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon;
layla1tajer@gmail.com (L.T.); ziad.fajloun@ul.edu.lb (Z.F.)

2 CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen,
F-67000 Strasbourg, France; jc.paillart@ibmc-cnrs.unistra.fr

3 College of Engineering and Technology, American University of the Middle East, Egaila City 54200, Kuwait;
hanna.dib@aum.edu.kw

4 CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
5 Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska,

Tripoli 1352, Lebanon
6 Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100,

Tripoli 1300, Lebanon
* Correspondence: sabatier.jm1@gmail.com (J.-M.S.); ziad.abikhattar@balamand.edu.lb (Z.A.K.)

Abstract: Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a
significant number of deaths annually due to infections that are resistant to treatment. Amidst
this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional
antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a
crucial role in the innate immune system of multicellular organisms and in bacterial interspecies
competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites.
AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting
their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged
due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the
development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is
attributed to the misuse of this and the high rate of horizontal genetic transfer of the corresponding
resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to
proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex
modifications in bacterial cell wall and membrane structures. This review comprehensively examines
all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental
evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms
toward structurally diverse AMPs to broaden and enhance their potential in developing and applying
them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of
AMP resistance within the context of host–pathogen interactions.

Keywords: antimicrobial resistance; antimicrobial peptides; molecular resistance; bacterial membranes;
lipopolysaccharides; efflux pumps; mutations; peptide modifications; cationic peptides; host–pathogen
interactions

1. Introduction

AMR claims the lives of around 700,000 people annually, solidifying its status as one
of the most significant global health threats. Looking ahead to 2050, estimates suggest
that deaths attributed to this issue could soar to 10 million annually, marking a staggering
increase of roughly 14.3 times compared to the current levels [1]. AMR is also expected
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to raise the occurrence of diseases, amplify the seriousness of illnesses, escalate disability
rates, and accordingly, become the world’s primary cause of death [2,3].

Many factors contribute to the spread of AMR, including the poor medication quality
(such as counterfeit production), inappropriate prescription practices, patient misuse of
antibiotics, inadequate surveillance systems and tests for AMR, and overuse of antibiotics
in the industrial, animal, and agricultural sectors [4]. Wars and conflicts also play a crucial
role in contributing to this grave situation [5]. Last, but not least, during the coronavirus
disease 2019 pandemic, there was a surge in the incorrect overuse of antibiotics [6].

In light of this, AMPs have emerged as a solution to address this challenging situa-
tion [7], demonstrating their effectiveness in combating resistant microorganisms. AMPs
primarily damage bacteria through a non-receptor-mediated membrane mode, enabling
them to impede microbes’ ability to repair their damaged membranes [8] (for a detailed
review on AMPs, see [9]). AMPs are ubiquitous across all life domains [10]. Currently, more
than 3940 peptides have been documented in the AMP Database [11]. Upon administration,
AMPs selectively targetbacterial membranes, primarily due to the prevalence of anionic
lipids, such as cardiolipin (CL) and phosphatidylglycerol (PG). Puzzlingly, the presence
of CL has been observed to protect against AMP-mediated membrane disruption in some
cases [12], whereas in other scenarios, membrane disruption appears to be intensified by
CL [13]. The subsequent Section 3.5 will delve into further detail regarding this aspect.

The presence of zwitterionic lipids, like phosphatidylcholine, in mammalian cells
reduces the affinity of cationic AMPs to their membranes [14]. However, AMPs can still
interact with eukaryotic cell membranes to some extent and interact with intracellular
organelles including mitochondria, which may have implications for their therapeutic
efficacy and potential side effects [15,16]. CL is a major functional component of the inner
mitochondrial membrane in eukaryotes [17]. Despite some similarities in composition and
electric charge between the cell membrane and outer mitochondrial membrane, it remains
uncertain if AMPs interact with the outer mitochondrial membrane in a manner similar
to that with the cell or bacterial membrane. Nonetheless, it is known that, once inside
cells, AMPs alter the permeability of both the outer and inner mitochondrial membranes,
thus triggering the mitochondrial pathway. Consequently, AMPs that induce mitochon-
drial apoptosis often simultaneously modulate the permeability of both mitochondrial
membranes in a synergistic manner [18].

AMPs offer several advantages over traditional ATBs [11,14,19–23] (Figure 1), primar-
ily due to their capability to target the challenging non-permeable double membrane of
Gram-negative bacteria [24].

Bacteria have developed resistance to AMPs [25], although this occurrence is believed
to be currently less widespread and progresses at a slower pace compared to what is ob-
served with traditional antibiotics, apart from the non-host peptides polymyxins [22,26,27].
Indeed, Peschel and Sahl (2006) proposed that immune defense strategies using cationic
AMPs as weapons and bacterial resistance mechanisms have co-evolved over millions of
years. This co-evolution toward specificity and complexity enhances the fitness of bacte-
ria [22]. However, hurdles in evolutionary adaptation to resist AMPs stem from various
factors, such as functional compatibility, fitness costs, and the relatively lower occurrence
of AMP resistance genes associated with mobile genetic elements [28]. Despite being in
the gut microbiome, AMP resistance genes exhibit a diminished capacity for horizontal
transfer comparing to antibiotic resistance genes [29]. In terms of fitness tradeoffs, stud-
ies have revealed that the increased expression of mcr-1 gene, a plasmid-borne enzyme
altering lipid A to confer acquired colistin resistance, results in many cellular alterations
and reduced cell viability and growth rate [30]. The molecular mechanisms underlying
acquired resistance through gene mutation(s) have been elucidated experimentally in sev-
eral bacterial pathogens by isolating AMP-resistant strains following serial passages in the
presence of gradually increasing AMP concentrations, or by directly exposing them to the
supra-minimum inhibitory concentration (MICs) of clinically relevant through plating (for
a detailed review, see [31]). Therefore, the long-standing belief that acquiring resistance
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to AMPs is extremely difficult, and not a major concern [32–35] is mistaken, as such re-
sistance can indeed develop at high rates at least under in vitro conditions. This results
in mutants that do not entail significant loss of fitness [31], with sometimes significant
levels of resistance granting cross-resistance to human AMPs inherent to innate immunity
or those in clinical use, each with different structures and modes of action. Resistance
to AMPs can manifest as constitutive (passive and intrinsic), with mechanisms rooted
in the inherent properties of an organism that confer resistance even in the absence of
AMPs. These properties, such as the components of bacterial membranes and cell walls,
can be essential for the bacterial survival. Some bacteria like the Gram-negative species
Neisseria spp., Proteus spp., Providencia spp., Morganella morganii, Serratia spp., Edwardsiella
tarda, and Burkholderia cepacia complex (BCC) exhibit intrinsic resistance to polymyxins
in vitro. This resistance is mainly due to the constitutive expression of lipopolysaccharides
(LPSs) substituted with positively charged 4-amino-4-deoxy-L-arabinose (L-Ara4N), which
electrostatically repulses polymyxins [36–38]. Such substitutions were shown to be essential
for survial of Burkholderia cenocepacia since only conditional mutants in this pathway are
viable. Furthermore, the members of BCC show exceptionally high resistance to polymyxin
B and AMPs, with some isolates having MIC exceeding 512 µg/mL. This resistance is
partly attributed to the synthesis of hopanoids (eukaryotic sterol analogs) and isoprenoids,
which stabilize the inner membrane permeability, thus preventing the self-promoted up-
take of polymyxin B. Active efflux pump expression and other mechanisms, not yet fully
understood, also contribute to high polymyxin B resistance in Burkholderia [36,38,39].
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On the other hand, pathogenic bacteria can modify their transcriptome in response to
conditions encountered within their hosts [40], for an optimal adaptation to the presence
of AMPs. Inducible (adaptive) resistance to AMPs is often governed by sophisticated
systems, such as two-component regulatory systems (TCSs) [41–44], which are widespread
among both commensal and pathogenic bacteria [45]. For example, in Salmonella, inducible
resistance to AMPs is governed by the PhoPQ TCS, activated directly by sublethal concen-
trations of AMPs or indirectly by the stress caused by these peptides [46], as well as other
stressors potentially encountered inside phagosomes, such as low magnesium concentra-
tions or an acidic pH [41]. Additionally, PhoPQ activates the adaptor pmrD protein, which
in turn activates the PmrAB TCS. This system is also induced in the presence of high Fe2+
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concentrations to mediate various LPS modifications associated with resistance to cationic
AMPs, including polymyxins [37,41,47].

Significant advances in structural biochemistry and microbial genetics have shed light
on the structures of several AMPs and the molecular and mechanistic bases of bacterial
resistance to these peptides. For example, Groisman et al. (1992) demonstrated that a single
gene, phoP, encoding a transcriptional regulator, could render the intracellular pathogen
Salmonella Typhimurium resistant to AMPs by modifying its outer membrane [48].

In this review, we thoroughly investigate and discuss the molecular mechanisms
experimentally proven to confer AMP resistance in bacteria, whether constitutively or
induced by environmental signals including AMPs themselves. Furthermore, we analyze
their correlation with the virulence phenotype and pathogenicity determinants observed
through in vitro cell culture bioassays and in animal models of infection.

2. Antimicrobial Peptides

AMPs are typically small molecules comprising fewer than 100 amino acid residues [49]
and play a vital role in innate immunity, serving as the first line of defense against invading
microorganisms within various host organisms [50]. AMPs are synthesized in different
locations depending on the organism producing them. For example, mammalian AMPs are
synthetized in mucosal tissues, glandular cells, the skin and colostrum, endothelial cells,
and certain immune cells, such as neutrophils, macrophages, and dendritic cells [51].

AMPs can be classified according to seven criteria, including targets, sources, char-
acteristics, biosynthesis, structures, covalent bonding forms (universal classification), and
ultimately, their predominantly antibacterial functions [11,52] (Figure 2).

Microorganisms 2024, 12, x FOR PEER REVIEW 5 of 63 
 

 

 
Figure 2. Classification of antimicrobial peptides. AMPs are classified according to seven criteria. The 
classification of AMPs based on their three-dimensional structure encompasses four categories: alpha 
(α), beta (β), alpha–beta (α-β), and non-α-β. These categories are defined by the presence of helical 
structures, β strands, a combination of helical and β structures, or the absence of both α and β struc-
tures, respectively. Regarding covalent bond classification, peptides are divided into four groups based 
on their polypeptide chain-bonding patterns: Class O peptides adopt circular structures due to a bond 
between the N-terminal and C-terminal backbone atoms; class P peptides take on a shape resembling the 
letter “P”, formed by a bond between the side chain of one amino acid and the backbone of another; class 
S peptides exhibit bonds between different side chains; and class L includes all linear peptides [11]. 

Roughly 88% of AMPs are positively charged and display hydrophobic characteristics 
[11]. Consequently, AMPs interact with the negatively charged components of bacterial 
membranes, thereby disrupting them and ultimately killing microbes [53]. These AMPs have 
the capability to target multiple sites on both the membrane and within the bacterial cell 
[54,55]. Eradicating bacteria by AMPs can be achieved directly or indirectly. In the direct 
mode, AMPs target the membrane, either by binding to cytoplasmic membrane receptors [56] 
or by acting without direct binding [57]. In the latter case, the membrane is disrupted non-
specifically, leading to damage through pore formation [58] or the permeation of cytoplasmic 
membranes without pore formation [59]. The pore formation mode is further categorized into 
two forms: the Barrel–Stave pore model and the toroidal pore model, while the non-pore for-
mation mode is exemplified by the carpet model [60]. Additionally, AMPs can directly target 
the cell walls [58] or the intracellular components (DNA, RNA, and proteins) of bacteria [61]. 
Alternatively, the indirect mode involves modulating the immune system [62].  

While the advantages of AMPs surpass those of classical ATBs, they also pose chal-
lenges, such as restricted bioactivity, potential biotoxicity, delivery, and to the risk of hemol-
ysis, particularly due to imprecise damage and failure to distinguish between foreign bodies 
and host cells [63,64]. For instance, defensins and cathelicidins are the two prominent mam-
malian families of cationic AMPs with amphipathic properties. Defensins are characterized 
by their cysteine-rich nature and the formation of β-sheet structures held together by disul-
fide bonds [65]. On the other hand, cathelicidins lack disulfide bonds and instead adopt 
amphipathic α-helical structures. In humans and mice, only one cathelicidin member exists, 
known as LL-37 and murine cathelicidin-related antimicrobial peptide (mCRAMP), respec-
tively. The positive charge of these AMPs facilitates their selective interaction with nega-
tively charged bacterial membranes [65,66]. LL-37 and defensins are produced in the bone 
marrow and epithelial cells [67] and have been observed to interact with host cell receptors 
even at concentrations significantly lower than the MIC of these peptides. This interaction 

Figure 2. Classification of antimicrobial peptides. AMPs are classified according to seven criteria.
The classification of AMPs based on their three-dimensional structure encompasses four categories:
alpha (α), beta (β), alpha–beta (α-β), and non-α-β. These categories are defined by the presence of
helical structures, β strands, a combination of helical and β structures, or the absence of both α and
β structures, respectively. Regarding covalent bond classification, peptides are divided into four
groups based on their polypeptide chain-bonding patterns: Class O peptides adopt circular structures
due to a bond between the N-terminal and C-terminal backbone atoms; class P peptides take on a
shape resembling the letter “P”, formed by a bond between the side chain of one amino acid and
the backbone of another; class S peptides exhibit bonds between different side chains; and class L
includes all linear peptides [11].
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Roughly 88% of AMPs are positively charged and display hydrophobic characteris-
tics [11]. Consequently, AMPs interact with the negatively charged components of bacterial
membranes, thereby disrupting them and ultimately killing microbes [53]. These AMPs
have the capability to target multiple sites on both the membrane and within the bacterial
cell [54,55]. Eradicating bacteria by AMPs can be achieved directly or indirectly. In the
direct mode, AMPs target the membrane, either by binding to cytoplasmic membrane
receptors [56] or by acting without direct binding [57]. In the latter case, the membrane is
disrupted non-specifically, leading to damage through pore formation [58] or the perme-
ation of cytoplasmic membranes without pore formation [59]. The pore formation mode
is further categorized into two forms: the Barrel–Stave pore model and the toroidal pore
model, while the non-pore formation mode is exemplified by the carpet model [60]. Addi-
tionally, AMPs can directly target the cell walls [58] or the intracellular components (DNA,
RNA, and proteins) of bacteria [61]. Alternatively, the indirect mode involves modulating
the immune system [62].

While the advantages of AMPs surpass those of classical ATBs, they also pose chal-
lenges, such as restricted bioactivity, potential biotoxicity, delivery, and to the risk of
hemolysis, particularly due to imprecise damage and failure to distinguish between foreign
bodies and host cells [63,64]. For instance, defensins and cathelicidins are the two promi-
nent mammalian families of cationic AMPs with amphipathic properties. Defensins are
characterized by their cysteine-rich nature and the formation of β-sheet structures held
together by disulfide bonds [65]. On the other hand, cathelicidins lack disulfide bonds and
instead adopt amphipathic α-helical structures. In humans and mice, only one cathelicidin
member exists, known as LL-37 and murine cathelicidin-related antimicrobial peptide
(mCRAMP), respectively. The positive charge of these AMPs facilitates their selective
interaction with negatively charged bacterial membranes [65,66]. LL-37 and defensins are
produced in the bone marrow and epithelial cells [67] and have been observed to interact
with host cell receptors even at concentrations significantly lower than the MIC of these
peptides. This interaction contributes to various illnesses, including pulmonary disorders,
autoimmune diseases, tumors, and cardiovascular and neurodegenerative diseases [68].

Additionally, AMPs are costly, poorly stable, and have a short half-life due to envi-
ronmental factors, such as protease activity (mainly pancreatic enzymes), temperature,
salts, extreme pH conditions, and reduced permeation through gastrointestinal membrane,
which makes their oral administration much difficult [69–73]. Consequently, more than 50%
of identified AMPs undergo modifications depending on their administration route and
delivery system [74,75]. In contrast to other administration routes, such as intramuscular or
subcutaneous routes, the stability requirement for peptides may be less stringent. Therefore,
injection stands out as the preferred route of administration for most AMPs [76]. However,
intravenous administration exposes peptides to the esterase and peptidase activity found
in serum [77,78]. Moreover, optimizing the drug dosage and minimizing systemic exposure
can reduce systemic side effects when administering a drug via the lungs. Inhaled peptide
medications have shown a superior efficacy in terms of rapid onset [79]. The most prevalent
and well-developed applications of AMPs involve their incorporation into nanoparticles,
hydrogels, creams, gels, and ointments for topical use [80]. Further research is necessary to
explore new and suitable administration routes.

Natural peptides serve as a template for creating synthetic peptides with enhanced sta-
bility, increased bioactivity, reduced toxicity, and additional antimicrobial activities [81,82].
These synthetic peptides can be generated through various modifications, including chemi-
cal alterations, targeted peptide mutagenesis, nanoengineering techniques, capping, motif
usage, coupling with photosensitizers, or combination with ATBs [83,84]. However, ap-
proaches to enhancement should be pursued with caution and precision, as even minor
alterations can compromise effectiveness.
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For instance, lipidation involves attaching fatty acids to the active regions of the
peptides [85]. The lipid addition confers numerous advantages to AMPs without altering
their fundamental characteristics, such as increasing hydrophobicity, enhancing membrane
interaction, improving penetrability, reducing degradation (thus increasing stability), and
preserving cationic charges [86–88]. Nevertheless, this mechanism may also have significant
drawbacks. For example, the elongated fatty acid chain increases hydrophobicity, leading
to a greater toxicity against mammalian cells [89]. Additionally, it promotes self-assembly
in water, resulting in a reduced interaction between peptides and the membranes of their
targets [90].

Notwithstanding their potent antimicrobial effects in vitro, only some AMPs derived
from bacteria, including polymyxin B, polymyxin E (commonly known as colistin), and bac-
itracin, are currently used to treat Gram-negative infections in humans, while others have
shown promise in preclinical studies and clinical trials [91–93] (Table 1). Despite concerns
regarding toxicity and the emergence of resistance [94–96], colistin has been reintroduced
for use as monotherapy or in combination as a last resort for treating MDR and extensively
drug-resistant (XDR) Gram-negative bacteria isolated from nosocomial infections. These
infections involve pathogens such as P. aeruginosa, Acinetobacter baumannii, K. pneumoniae,
and E. coli [97,98]. Because of poor pharmacokinetics, the intravenous administration of
colistin is typically restricted to treating urinary tract infections or employed as inhalation
therapy [99,100]. Efforts to optimize its use, including dosage adjustment and combination
therapy with other antibiotics, are ongoing to balance its effectiveness with the risk of
adverse effects.
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Table 1. Selected antimicrobial peptides with bacterial membrane depolarization/disruption actions under clinical trials or approved for clinical application.

AMPs Structure/Charge Source Amino Acid Sequence a Target Bacteria/Indications Clinical Phase b Administration Refs.

Polymyxin B Cyclic/+5 Bacillus polymyxa 6-mo-DabTDabDab[γDablLDabDabT] (Polymyxin B1) MDR G-infections IV Topical, oral, IV,
ophthalmic, aerosolized [101,102]

Colistin Cyclic/+5 Bacillus colistinus 6-mh-DabTDab[γDablLDabDabT] (Colistin A) MDR G-infections IV Topical, oral, IV [103–105]

Nisin Cyclic/+4 Lactococcus lactis ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK
(Nisin A)

Broad spectrum, food
preservative

High clinical
potential

Undefined; oral or
IP in animal models [106–108]

Daptomycin Cyclic/-3 Streptomyces roseosporus WNDTGKDADGSEY G+ skin infections,
endocarditis, & bacteremia IV IV [109,110]

Gramicidin S Cyclic/+2 Brevibacillus brevis VKLFPVKLFP
Broad spectrum; wound

infections,
conjunctivitis, genital ulcers

In market Ophthalmic and topical
preparations [111,112]

LTX-109 (Lytixar) Cyclic/+3 Synthetic R-Tbt-R-NH-EtPh G+ skin infections,
anti-MRSA and VRSA II/III Topical or nasal [113,114]

Murepavadin (POL708) Cyclic/+5 Synthetic Ala-Ser-D-Pro-Pro-Thr-Trp-Ile-Dab-Orn-D-Dab-Dab-
Trp-Dab-Dab

Pseudomonas in cystic
fibrosis III IV and eFlow®

nebulizer system [115,116]

LL-37 (hCAP18) α-helical/+6 Human LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES Hard-to-heal venous leg
ulcers II Wound bed preparations [117–119]

Pexiganan (MSI-78) α-helical/+9 Synthetic GIGKFLKKAKKFGKAFVKILKK Infected diabetic foot ulcers III Topical [119–121]

Melimine Random coil c/+15 Synthetic TLISWIKNKRKQRPRVSRRRRRRGGRRRR Contact lens colonizers,
anti-biofilm II/III Ocular [122]

Omiganan
(CLS001 or MBI-226) Linear c/+5 Synthetic ILRWPWWPWRRK Skin and catheter

infections, antisepsis III Topical [123]

hLF1-11 Linear c/+4 Synthetic GRRRSVQWCAV MDR A. baumannii MRSA,
Lm, E. coli, and Kp I/II IV [124]

Brilacidin
(PMX-30063) Linear/+4 Synthetic Not available since it is a non-peptide arylamide

oligomer
Staphylococcus spp. skin

infections II Topical and mouth rinse [125]

Abbreviations: hLF1-11: Human lactoferrin 1–11; IV: Intravenous, IP: Intraperitoneal; G-: Gram-negative; G+: Gram-positive; Kp: Klebsiella pneumoniae; Lm: Listeria monocytogenes; MRSA:
Methicillin-resistant S. aureus; MDR: multidrug resistant; VRSA: Vancomycin-resistant S. aureus. a Available at http://dramp.cpu-bioinfor.org (accessed on 14 May 2024); b Available at
https://www.clinicaltrials.gov/ (accessed on 14 May 2024); c May increase their α-helical content/change conformation in bacterial membrane-mimetic environments. The underlined
AMPs are FDA-approved.

http://dramp.cpu-bioinfor.org
https://www.clinicaltrials.gov/
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3. Mechanisms of Resistance to AMPs

In this section, we explore the mechanisms of AMP resistance (Figures 3–5), emphasiz-
ing their correlation with the bacterial morphological and functional structures encountered
by AMPs from their exposure in the bacterial environment to their interaction with and
traversal across bacterial envelopes until reaching the cytoplasmic membrane or other
intracellular targets [66]. To reach their targets, AMPs must interact with and traverse the
enveloping structures, which can vary in chemical and physical properties among bacteria.
Understanding these interactions is crucial for elucidating the effectiveness of AMPs and
devising strategies to overcome bacterial resistance.

Tables 2 and 3 summarize the mechanisms of resistance to AMPs described for Gram-
negative and Gram-positive bacteria and their association with virulence and pathogenicity.
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Figure 5. Bacterial mechanisms of AMP resistance not associated with modifications of cell wall
structures. (A): Active efflux. (B): Secreted proteinases degrading AMPs. (C): Surface proteins
trapping/inhibiting AMPs. (D): Secreted proteins blocking/inhibiting AMPs. (E): Pili-blocking
AMPs. (F): Capsule-mediated protection. (G): Modifications of cytoplasmic membrane phospholipids
by the incorporation of cationic residues. (H): Transcriptional downregulation of AMP production by
mucosal host cells.
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3.1. Extracellular Proteolytic Degradation

Many bacterial pathogens employ surface-secreted or surface-expressed proteases to
recognize and cleave cationic AMPs, allowing them to evade their bactericidal effects [126]
(Figure 5B). These enzymes can be divided according to their active sites in five classes:
cysteine proteases, aspartic proteases, metalloproteases, serine proteases, and threonine pro-
teases [127]. The simple linear form of the α-helical peptide LL-37 and other cationic AMPs
renders them susceptible in vitro to various proteases produced by different pathogenic
bacteria (Tables 2 and 3) (Figure 5B). In particular, S. Typhimurium produces an endopepti-
dase in the outer membrane, named PgtE, which specifically degrades the linear cationic
AMPs LL-37 and C18-G. The transcription or outer membrane localization of PgtE is reg-
ulated by an unknown post-transcriptional mechanism activated by PhoPQ [128]. PgtE
exhibits structural characteristics consistent with those of the OmpT or VII proteases of
E. coli [129], and Pla from Yersinia [130]. The ability of E. coli to produce PgtE and degrade
protamine is associated with the rapid uptake of K+ ions by bacteria [131]. However, the
PgtE protease does not enhance Salmonella resistance to AMPs that adopt amphipathic
β-sheet conformations stabilized by intramolecular disulfide bridges (e.g., defensins and
protegrins), as these AMPs are resistant to protease activity.
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Table 2. Mechanisms of AMP resistance in Gram-negative bacteria and their correlation with virulence and pathogenicity.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Acinetobacter
baumannii

Acylation of lipid A lpxL Polymyxin B Unknown [132]

LPS-full length-mediated
protection lpxA, lpxC, and lpxD Lysozyme, LL-37, and lactoferrin Bacteremia (mice) [133–135]

Deacylation of lipid A naxD (pmrB) Polymyxin B Unknown [136]

Hydroxylation of lipid A lpxO/pagQ Polymyxin B, colistin, and HBD3
Bacteremia (Galleria melonella)

Antiphagocytic
(invertebrates and mammalian cells)

[137]

Addition of PEtN to lipid A ept, mcr (plasmid-encoded),
(pmrABC and stkSR) Colistin Increased virulence in G. mellonella [138–143]

Uptake by/binding to porins ompA
ompW

Colistin (uptake)
LL-37, BMAP-28 (binding), and

colistin

Virulence to the human airway
epithelium,

adherence to cells, and biofilm
formation

[144,145]

Active efflux (MFS-type)
(RND-type)

emrB
adeABC

Colistin
Colistin heteroresistance

Overexpression increased virulence
in a pulmonary infection model [146–148]

Manipulation of host AMP
production lpxO Galiomycin, gallerimycin,

and lysozyme Bacteraemia (G. mellonella) [137]

Actinobacillus
pleuropneumoniae

Outer membrane permeability ompW (soxS) Polymyxin B Unknown [149]

Active efflux (ABC family/K+

dependent) sap PR-39 Respiratory tract infection (mice) [150]

Bordetella sp.
O-antigen-mediated protection wlbA and wlbL (bvgAS) Cecropin, magainin,

protamine, and melittin Tracheal colonization (turkey) [151,152]

Acylation of lipid A pagP (bvgAS) and lpxL1 C18G Respiratory tract infection (mice)
Infection of human macrophages [153,154]

Brucella abortus Dephosphorylation of lipid A lpxE Polymyxin B Not required [155]

Brucella melitensis Active efflux (ABC-type) yejABEF Protamine, melittin, polymyxins,
HBD-1, and HBD-2 Survival in macrophages (mice) [156]
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Table 2. Cont.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Burkholderia
cenocepacia complex

Degradation by zinc
metalloproteases

zmpB and zmpA (cepIR and
cciIR) Defensins and LL-37 Chronic respiratory infection (mice) [157,158]

Inhibition by exopolysaccahrides
(mainly cepacian) - Cathelicidins Lung infections of cystic fibrosis

(humans) [159]

Blockage of AMP uptake by the
LPS-heptosylated core

oligosaccharide
waaF Polymyxin B, melittin, and

HNP-1 Unknown [36,160]

Stabilization of the inner
membrane lipids

ispH (LytB; isoprenoid
synthesis) and hpnJ (encodes

hopanoid)
Polymyxin B Unknown [36]

Protease-mediated protection
(unknown role/mechanism) mucD (HtrA protease family) Polymyxin B Unknown [36]

Active efflux (MATE-type) norM Polymyxin B Unknown [161]

Addition of 4AraN to lipid A ugdBCAL2946 (two ugd in B.
caepacia) Polymyxin B Unknown (mutants of

4AraN synthesis not viable) [160]

Alternative sigma factor regulon
(37 ◦C) rpoE Polymyxin B Phagolysosomal fusion in

macrophages [36]

Campylobacter jejuni

LOS-heptosylated core-mediated
protection waaF Polymyxin B, HNPs, LL-37, and

BPI Invasion of INT407 cells in vitro [162,163]

LOS core-mediated protection galU Polymyxin B, colistin, magainin,
cecropin, and bacitracin Unknown [164]

Active efflux (RND-type) cme Polymyxin B
Intracellular survival and

multiplication (Acanthamoeba
polyphaga)

[165,166]

Capnocytophaga
canimorsus Dephosphorylation of lipid A lpxE Polymyxin B Unknown [167]
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Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Enterobacter cloacae
complex

Active efflux (RND-type) acrAB-tolC (soxSR)
kexD/(crrC) Polymyxin B and colistin Systemic infection

(intraperitoneal mouse model) [168–170]

Addition of 4AraN to lipid A arn (phoPQ and mgrB) Colistin heteroresistance Unknown [171,172]

Addition of PEtN to lipid A mcr Colistin Unknown [173]

Potential efflux mechanism
mediated by an inner membrane

protein
dedA (ecl) Colistin heteroresistance Unknown [169]

Erwinia chrysanthemi Active efflux (ABC
family/K+-dependent) sap α-thionin and anakin Unknown [174]

Escherichia coli

Protease-mediated degradation
degP Lactoferrin

Urovirulence (humans)
[175]

ompT and degP Protamine, C18G, and LL-37 [131,176–178]

Core oligosaccharide-mediated
protection pmrD Polymyxin B Unknown [179]

Acylation of lipid A pagP and lpxM (pmrAB and
mgrB) LL-37 Unknown [180,181]

Addition of 4AraN to lipid A arn (phoPQ, pmrAB, and
mgrB) Polymyxin B and colistin Unknown [182–184]

Addition of PEtN to lipid A eptA, eptB, eptC, and mcr
(phoPQ, pmrAB, and mgrB) Polymyxin B and colistin Unknown [184–186]

Decreased entry via porins ompF Colicin and P6 Unknown [187,188]

Peptidoglycan modification amiA and amiC (cpxRA and
nlpE)

Protamine, magainin, and
melittin Unknown [189]

Active efflux (ABC-type) macB Bacitracin and colistin Unknown [190]

Active efflux (RND and
MFS-types) acrAB and emrAB (cpxRA) Protamine Unknown [191]
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Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Transcriptional repression of
host’s AMP production (ETEC)

elt (heat-labile toxin-encoding
gene) Defensins and LL-37

Downregulation of kinase A, ERK
MAP Kinase, and Cox-2 pathways

(intestinal epithelial cells)
[192]

Francisella novicida Dephosphorylation of lipid A lpxF Polymyxin B Pulmonary and
subcutaneous infections (mice) [193,194]

Francisella tularensis Deacylation of lipid A naxD Polymyxin B Intracellular replication (mice) [195]

Haemophilus ducreyi
Active efflux (ABC family/K+

dependent) sapA LL-37 Chancroid (human) [196]

Active efflux (RND-type) mtr LL-37 and defensins Unknown [197]

Haemophilus influenzae

Acylation of lipid A lpxL/htrB Polymyxin B Colonization of human airway
epithelial cells [198,199]

Active efflux (ABC
family/K+-dependent) sapA

cBD-1 β-defensins, HBD-1, -2, -3,
LL-37, HNP-1, HBD-3, and

melittin
Otitis media (chinchillas) [200]

Helicobacter pylori

Dephosphorylation of lipid A lpxE and lpxF LL-37, defensin, and P-113 Gastrointestinal infection (mice) [201]

Addition of PEtN to lipid A eptA Polymyxin B Unknown [202]

O and N-acetylations of
peptidoglycan patA and pgdA (synergistic) Lysozyme Stomach colonization (mice) [203]

Klebsiella pneumoniae

Capsule-mediated protection cps Polymyxin B and lactoferrin Pulmonary infection (mice) [204]

O-antigen protection wcaI, cpsB, wcaJ, and cpsG Histone Unknown [205]

Acylation of lipid A
lpxM
pagP

(mgrB and crrab)
Polymyxin B

Antiphagocytic, limits the activation of
inflammatory responses by

macrophages, and survival (G.
mellonella); pneumonia (mice)

[143,206,207]

Hydroxylation of lipid A lpxO (phoPQ) Colistin Pulmonary infection (mice) [208]

Addition of 4AraN to lipid A pmrHFIJKLM
(phoPQ, pmrABC, and mgrB) Colistin Same phenotypes as for lpxM

mutant in G. mellonella [183,184,209,210]
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Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Klebsiella pneumoniae

Addition of PetN to lipid A eptA, eptB, eptC, and mcr,
(phoPQ, pmrABC, and mgrB) Colistin Unknown [184,209–211]

Activation of unknown systems
dedicated to ameliorating AMP

cytotoxicity
ompA Polymyxin B and protamine Pulmonary infection (murine) [212]

Active efflux (ABC
family/K+-dependent) sapA LL-37 Systemic infection (mice) [213]

Active efflux (RND-type) acrRAB
H239_3064 (crrAB)

Polymyxin B, HNP-1,
HBD-1 and HBD-2, and colistin Pneumonia (mice) [214,215]

Legionella pneumophila Acylation of lipid A rcp
pagP (phoPQ)

LL-37
Polymyxin B and C18G

Pulmonary colonization and infection
(mice) [216]

Neisseria gonorrhoeae

Inhibition by lactoferrin-binding
protein B lbpB Lactoferricin Unknown [217,218]

Inhibition by type IV pili pilE LL-37 Adherence to human epithelial cells [219,220]

Active efflux (RND-type) mtr LL-37, PG-1, PC-8,
polymyxin B, and colistin Genital tract infection (mice) [221–224]

Neisseria meningitidis

Inhibition by lactoferrin-binding
protein B lbpB (nalP) Lactoferricin Unknown [217,218,225]

Sequestration/shielding by
capsule cps

HBD-1 and 2, HNP-1 and 2,
LL-37, CRAMP, PG-1, and

polymyxin B
Meningitis (humans) [226,227]

Sequestering by blebs from
the OM and biofilm formation - Cationic AMPs Unknown [228]

Addition of PetN to lipid A lptA (misRS)
dsbA Polymyxin B Unknown [229,230]

Porin-mediated export porB Polymyxin B Unknown [229]

Active efflux (RND-type) mtr Polymyxin B, PG, and LL-37 Unknown [229]
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Photorhabdus laumondii

Active efflux (RND-type) acrAB Polymyxin B and colsitin Unknown [231,232]

Addition of 4AraN pbgPE
phoP

Polymyxin B, colistin,
cecropins A and C Septicemia and virulence (insects) [233,234]

Porphyromonas
gingivalis

Dephosphorylation of lipid A lpxF Polymyxin B Unknown [233–235]

Outer membrane OmpA-like
porins (undefined mechanism) pgm6 and pgm7 HBDs 1-3 and LL-37 Unknown [236]

Inactivation by proteases RIA,
RIB, and Kgp prpR1 and kgp Cecropin B, brevinin, cecropin A

1-7, melittin 2-9, and mastoparan Unknown [237]

Proteolytic degradation by
gingipains (serine proteases) rgpAB Cecropin B Abscess formation (mice)

Prevotella sp. Proteolytic degradation Unknown Cecropin B and brevinine Unknown [237]

Proteus mirabilis

Degradation by metalloprotease zapA LL-37 Urinary tract infection (mice) [238]

Addition of 4AraN to lipid A pmrAB Polymyxin B Unknown [239]

Active efflux (ABC
family/K+-dependent) sap Protegrin Unknown [239]

Pseudomonas
aeruginosa

Degradation by elastase lasB LL-37 and defensins Corneal infection (mice) [240]

Capsular protection cps Polymyxin B Resistance to neutrophil-mediated
killing [241]

Shedding of host proteoglycans lasA LL-37 and human α-defensins Pulmonary infection (mice) [242,243]

Hydroxylation of lipid A lpxO Polymyxin B
Acquisition of loss-of-function

mutations during chronic CF lung
infection (mice)

[244,245]

Addition of 4AraN to lipid A pmrHFIJKLM (pmrAB, phoPQ,
parRS, colRS, and cpsRS) Colsitin and polymyxin B Cystic fibrosis (humans) [246–248]

Addition of PEtN to lipid A

eptA (only by ectopic
expression in

L-Ara4N-defective mutants)
and mcr

Colistin Unknown [249–251]
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Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Pseudomonas
aeruginosa

Alteration of membrane
phospholipid composition PA0920 Protamine Unknown [252,253]

Active efflux (RND family) mexAB, mexCD, and mexXY Colistin and polymyxin B
Controversial and opposing roles

since some mutations increase
virulence

[254–256]

Stimulation of host cathepsins Unknown Defensins Cystic fibrosis (humans) [257,258]

Pseudomonas
fluorescens

Alteration of cytoplasmic
membrane lipid composition Unknown Polymyxin B Unknown [259]

Rhizobium etli
Dephosphorylation of lipid A lpxE and lpxF Polymyxin B Unknown [167]Rhizobium

leguminosarum

Salmonella enterica

Endopeptidase-mediated
degradation pgtE (phoPQ) LL-37 and C18-G Unknown [128]

Acylation of lipid A lpxM
pagP (phoPQ)

Polymyxin B and defensin
C18G and protegrins Unknown [182,260]

Dephosphorylation of lipid A pagL and lpxR (phoPQ) Polymyxin B Unknown [261]

Hydroxylation of lipid A lpxO (phoPQ) LL-37 Unknown [262]

Addition of 4AraN to lipid A pmrHFIJKLM (phoPQ) Defensins and polymyxin B Gastrointestinal infection (mice) [260,263]

Addition of PEtN to lipid A eptA, cptA, mcr (pmrAB) Polymyxins Unknown [185,264]

Peptidoglycan modification amiA and amiC (cpxRA and
nlpE)

Protamine, magainin, and
melittin Unknown [189]

Active efflux (ABC transporter) macAB C18G Intracellular survival (macrophages) [265,266]

Active efflux (ABC
family/K+-dependent)

sap
yejABEF

Protamine, melittin, and
polymyxin B Gastrointestinal infection (mice) [48,267,268]

Extracytoplasmic σE factor rpoE P2, polymyxin B, and defensins Gastrointestinal infection (mice) [269,270]
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Pathogenicity/Virulence * Refs.

Shigella dysenteriae Manipulation of host AMP
production Unknown LL-37 Bacillary dysentery (human) [271]

Shigella flexneri
O-antigen-mediated protection Unknown Histones Unknown [205,272]

Alteration of host AMP
production ospF (mxiE) Rabbit α-defensin NP5 Repression of NF-kB-responsive genes

(Caco-2 and HeLa cells, rabbits) [273]

Ureaplasma parvum Host chromatin alterations Unknown HBD-1, HNP-6, and LL-37
Decreased histone H3K9 acetylation

(Human THP-1 monocytoid tumor cell
line)

[274]

Vibrio cholerae

Acylation of lipid A lpxL Polymyxin B Unknown [275]

Hydroxylation of lipid A lpxN Polymyxin B Unknown [275]

Sensing by OMP/Activation
of a DegS-dependent σE factor ompU/degS/rpoE Polymyxin B and P2 Unknown [276,277]

Active efflux (RND-type) vexAB, vexCD, and vexIJK Polymyxin B Small intestine colonization (mice) [278]

Transcriptional repression of
host’s AMP production

ctxA and ctxB
(cholera toxin-encoding

genes)
LL-37

Downregulation of kinase A,
ERK MAP Kinase, and Cox-2

pathways
(intestinal epithelial cells)

[192]

Vibrio vulnificus K+ uptake transporter system trkA Protamine and polymyxin B Septicemia (mice) [279]

Yersinia enterocolitica

Acylation of lipid A lpxP and htrB Polymyxin B Gastrointestinal infection (mice) [280]

OMP-mediated protection yadA (pYVe
plasmid-encoded)

Lysozyme and defensins
from human granulocytes Unknown [281]

Active efflux (MFS-type) rosAB Polymyxin B, cecropin, and
melittin Unknown [282]

Yersinia pestis
Degradation by aspartate

protease pla LL-37, rCRAMP, and rat
β-defensin-1 Plague (mice) [130]

Active efflux (RND-type) acrAB Polymyxin B Not required [283]



Microorganisms 2024, 12, 1259 19 of 67

Table 2. Cont.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Yersinia
pseudotuberculosis Acylation of lipid A pagP Polymyxin B and cecropin Unknown [284]

* Roles in virulence and pathogenicity have been demonstrated in animal models, in vitro cell cultures and bioassays, and ex-vivo studies, either performed within the same study or
independently. These roles may not conclusively be linked to antimicrobial peptide (AMP) resistance per se. The underlined genes are regulatory genes. Abbreviations: BMAP-28: bovine
myeloid antimicrobial peptide (cathelicidin family), Blebs: vesicles containing DNA, LOS, and OMPs; BPI: bactericidal/permeability-increasing Protein; cBD-1: caveolin-1-binding
domain; CRAMP: cathelicidin-related antimicrobial peptide C18G: synthetic α-helical peptide derived from human platelet factor I; ETEC: enterotoxigenic Escherichia coli; EPSs:
extracellular polymeric substances; HBD: human β-defensin; HNP: human neutrophil peptide; LBP-B: lactoferrin-binding protein B; LPS: lipopolysaccharide; LOS: lipooligosaccharide;
mCRAMP: murine cathelicidin; OM: outer membrane; OMP: outer membrane protein; P-113: AMP derived from the human salivary protein histatin 5; P2 and P6: bioactive peptide
fragments; PC-8: linearized synthetic variant lacking both disulfide bonds; PG-1: protegrin-1 (porcine); PR-39: a proline-rich antibacterial peptide; RIA and RIB: enzymes arising by the
differential processing of the prpR1 arginine-specific protease; rCRAMP: rat cathelicidin.

Table 3. Mechanisms of AMP resistance in Gram-positive bacteria and their correlation with virulence and pathogenicity.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Bacillus anthracis

Degradation by metalloproteases clpX LL-37, α-defensins, and
lysozyme Lethal infection in CRAMP −/− mice [285,286]

Capsular-mediated protection capA
Defensins, gramicidin,

polymyxin B, nisin, protegrin,
and melittin

Dissemination of inhalation anthrax
infection (guinea pig) [25,287,288]

D-alanylation of TAs dlt Polymyxin B, colistin, nisin,
and maganin-2

Survival in macrophages and full
virulence in a mouse model of

inhalational infection
[289]

Lysinylation of PG mprF Protamine, LL-37, and defensin Unknown [290]

Bacillus cereus

D-alanylation of TAs dlt
Protamine, nisin, polymyxin B,

colistin, lysozyme, and
cecropin B

Septecaemia and virulence (insects) [291]

Proteolytic degradation by zinc
metalloproteases inhA1 and inhA2 Cecropin and attacin

Escape from host macrophages
Lethal infection by injection into

insects
[292,293]
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Bacillus subtilis

D-alanylation of TAs dlt (spoO and abrB) Nisin Unknown [294,295]

Alteration of cytoplasmic
membrane lipid composition sigX Nisin Unknown [294]

Clostridium difficile D-alanylation of TAs dlt Nisin, polymyxin B, and
gallidermin Unknown [296]

Enterococcus faecalis

Degradation by gelatinase gelE LL-37 and HYL-20 Peritonitis (mice) [240,297]

Degradation by serine proteases sprE HYL-20 Peritonitis (mice) [298,299]

Shedding of host proteoglycans
and neutralization of AMPs Undefined (probably gelE) Neutrophil-derived α-defensins Unknown [300]

D-alanylation of TAs dlt Colistin, nisin, and polymyxin B Unknown [301]

Lysinylation of phospholipids mprF1 and mprF2 Defensins and daptomycin Bacteremia (mice) [302–304]

Alteration of the localization of
cardiolipin microdomains liaR Daptomycin and telavancin Unknown [305]

O-acetylation of peptidoglycan EF_0783 Lysozyme Survival in peritoneal macrophages
(mice) [306]

Group A streptococcus

Degradation by
cysteine-proteinases

speB/ideS (covRS also known
as csrRS) LL-37

SpeB highly expressed in vivo and
colocalizes with LL-37 in human tissue

samples
[240,307]

Capsule (hyaluronic
acid)-mediated repelling hasABC (covRS) LL-37 Survival in neutrophil extracellular

traps [308]

Secreted and surface-bound
inhibitory proteins

emm1 (Fimbrial M1 proteins) LL-37 Skin or systemic infection (mice) [309]

ska streptokinase LL-37 and other cationic AMPs Systemic dissemination and virulence
(mice) [310,311]

sic LL-37 and defensins Skin infection (mice) [312]

Shedding of host proteoglycans
that bind cationic AMPs lasA and speB LL-37 and defensins Skin infection (mice) [300,313]

Cleavage by GRAB:SpeB
complex

speB
grab LL-37 Skin infection (mice) [314]
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Group A streptococcus

Regulatory systems sensing and
inducing AMP resistance

covRS LL-37 In vivo induction by LL-37 [315,316]

crgR mCRAMP Competitive advantage (mice) [317]

D-alanylation of TAs dlt LL-37, polymyxin B, and
lysozyme

Resistance to neutrophil killing,
adhesion, and invasion (pharyngeal

epithelial cells)
[318]

Active efflux (ABC transporter) salY SalA and SalA1 lantibiotics Intramacrophage survival (zebrafish) [319]

Manipulation of host AMP
production Unknown Defensins Unknown [320]

Group B streptococcus

TCS regulatory pathways

liaR and covRS Polymyxin B, colistin and nisin
LL-37 Sepsis and pneumonia (mice) [321,322]

ciaR mCRAMP and lyzozyme

Intracellular survival within
neutrophils,

murine macrophages, and human
brain

microvascular endothelial cells

[322]

Competitive
binding/inactivation by PBP1a ponA (liar) LL-37, CRAMP, and defensin Antiphacocytic

Pulmonary infection and sepsis (rats) [323,324]

Sequestration by pili pilB (liar) LL-37 and mCRAMP

Invasion and paracellular translocation
mediating resistance to phagocytic
killing and virulence (humans and

animal models)

[325,326]

D-alanylation of TAs dlt (dltSR) Colistin Pulmonary or systemic infection (rats) [327,328]

Listeria
monocytogenes

N-deacetylation of peptidoglycan pgdA Lysozyme

Virulence after oral and IV
inoculations (mice)

Survival in macrophages, liver,
spleen, and intestinal lumen

[329]

O-acetylation of peptidoglycan oat Lysozyme
Virulence, survival in macrophages,
and control of cytokine production

(mice)
[330]
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Table 3. Cont.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Listeria
monocytogenes

Glycosylation of WTAs gttA, gltB, and rml LL-37 Intestinal epithelium colonization
(mice) [331,332]

D-alanylation of TAs dlt (virR) Colistin, polymyxin B, and nisin Blood infection (mice) [333,334]

Lysinylation of PG mprF (virR) Defensins Survival in liver and spleen (mice) [334,335]

Active efflux (ABC-type) anrAB (virR and rpoN) Nisin, bacitracin, and gallidermin Unknown [336]

Thermoregulated transcription
factor prfA Defensins Gastrointestinal infection (mice) [337]

Mycobacterium
tuberculosis Lysinylation of PG lysX HNP-1 and lysozyme Respiratory infection (mice and pig) [338]

Mycobacterium marinum Mycolic acid-mediated protection kasB Defensins Intramacrophage survival [339]

Staphylococcus
aureus

Degradation by metalloprotease
aureolysin aur Haloganan and LL-37 Not required [340–342]

Degradation by V8
glutamylendopeptidase (serine

protease)
sspA LL-37 Virulence and in vivo growth

(murine abscess models) [341,343,344]

Inhibition by iron regulated
surface determinant A isdA Lactoferrin and LL-37 Initial stage of abscess formation

after IV infection (mice) [345–347]

Inhibition by staphylokinase
(plasminogen activator protein)

Sak
(agr)

Lactoferricin, tritrpticin, and
defensins

Establishment of skin infections
(humans and mice models) [348–351]

O-acetylation of peptidoglycan oat Host lysozyme

Septic arthritis (mice)
Anti-inflammation

Inhibits the polarization of T-helper
cells (mice)

[352–357]

WTA-mediated protection tagO Defensins

Induction and progression of
endovascular infection (rabbit model

of infective endocarditis), adherence to
human epithelial cells biofilm

formation, colony spreading, and
virulence in mammals

[358–363]
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Table 3. Cont.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Staphylococcus
aureus

D-alanylation of TAs dlt (agr)
HNP1–3, gallidermin, protegrins

3 and 5, tachyplesins-1 and 3,
magainin-2, nisin, and tPMP-131

Sepsis and septic arthritis (mice) [364–369]

Alteration of cytoplasmic
membrane lipid composition pgsA and cls2 Daptomycin Unknown [370]

Lysinylation of PG mprF/lysS Defensins Systemic infection (mice) [371–373]

Active efflux (ABC-type) pmtABCD Defensins and LL-37 Skin infection (mice) [374]

Plasmid-mediated active efflux
(MFS) qacA tPMP Endovascular infections (rabbit) [375]

TCS inducing AMP resistance graRS and apsSX/apsR HBD3, nisin, indolicidin, and
LL-37

Kidney infections
(peritoneal infection murine model) [367,368,376]

Active efflux (ABC-type) vraFG HBD3, nisin, indolicidin, and
LL-37

Hemolytic activity,
expansion of subcutaneous abscesses [368,376,377]

Staphylococcus
epidermidis

Sequestration/inhibition by EPS:
PIA also known as PNAG ica HBD-3, LL-37, and anionic

dermcidin Resistance to PMN killing (humans) [378]

AMP-inducible three component
systems

apsXRS
(via dlt, mprF, and vraFG) HBD3 Resistance to PMN killing (humans) [369,379]

Staphylococcus
xylosus D-alanylation of TAs dlt Gallidermin, magainin 2, and

nisin Unknown [365]

Streptococcus iniae

Shielding/ inhibition by
polyanionic

surface capsule and cell wall
structures

pgm (phosphoglucomutase) Moronecidin and mCRAMP Meningoencephalitis (hybrid striped
bass model) [380]

O-acetylation of peptidoglycan cpsY and oatA (metR/mtaR) Lysozyme Survival in neutrophils [381]

Streptococcus
mutans

Active efflux (ABC-type) bceABRS (formerly
mbrABCD)

Bacitracin and human α- or
β-defensins (also induce bce) Unknown [382]

D-alanylation of TAs (planktonic
cells and biofilm) dlt (ciaR) HBD-1, HBD-2, HBD-3, and LL37 Regulation of cariogenic virulence [383,384]
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Table 3. Cont.

Bacteria Mechanisms/Regulatory
Pathways of Resistance Gene(s) Involved AMPs Correlation with

Pathogenicity/Virulence * Refs.

Streptococcus
pneumoniae

Inhibition by pneumococcal
surface protein A pspA Apolactoferrin Pneumococcal infection (mice) [385]

Neutralization by free anionic
capsular polysaccharide cps Polymyxin B and (HNP-1) Unknown [241]

D-alanylation of TAs dlt (ciaRH) Nisin and gallidermin Competitive advantage in murine
model of pneumococcal pneumonia [386–388]

Active efflux (ABC-type) macAB homolog Bacitracin, LL-37, and nisin Unknown [389,390]

Active efflux (MFS-type) mefE Defensins, LL-37, and CRAMP Unknown [389,391]

N and O-acetylations of
peptidoglycan pgdA and adr Lysozyme Colonization of the upper respiratory

tract (mice) [392]

Streptococcus suis Degradation by cysteine protease apdS LL-37 Meningitis and sepsis (humans) [393]

O-acetylation of peptidoglycan oat Lysozyme Unknown [394]

* Roles in virulence and pathogenicity have been demonstrated in animal models, in vitro cell cultures and bioassays, and ex-vivo studies, either performed within the same study or
independently. These roles may not conclusively be linked to antimicrobial peptide (AMP) resistance per se. The underlined genes are regulatory genes. Abbreviations: CRAMP:
cathelicidin-related antimicrobial peptide; ETEC: enterotoxigenic Escherichia coli; EPSs: extracellular polymeric substances; GRAB: α2-macroglobulin/G-related α2-macroglobulin-
binding protein; HBD: human β-defensin; HNP: human neutrophil peptide; HYL-20: peptide derived from the venom of the solitary bee Hylaeus signatus; mCRAMP: murine cathelicidin;
PBP1a: penicillin-binding protein 1a; PG: phosphatidylglycerol; PIA: polysaccharide intercellular adhesin also known as Poly N-acetylglucosamine (PNAG); TA: teichoic acid; WTA: wall
teichoic acid.
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3.2. Extracellular Trapping and Inactivation

Given the limited efficacy of proteases against defensins and other AMPs, numer-
ous bacterial pathogens have devised supplementary strategies to impede their function
(Tables 2 and 3). Many of these tactics are tailored to specific peptides, encompassing
processes such as recognition and extracellular capture. The direct capture or neutralization
of AMPs can occur through the action of secreted proteins or those affiliated with the
bacterial surface, while indirect methods involve host cells releasing surface molecules
capable of binding PAMs (Tables 2 and 3). Consequently, when a substantial portion of
AMPs released during the innate immune response hampers these molecules, inadequate
quantities reach the bacterial cell membrane.

3.2.1. AMP-Inhibitory Proteins Associated with the Bacterial Cell Surface

The sequestering of AMPs by certain molecules prevent them from interacting with
their targets (Figure 5C). For example, SGA generate fimbrial M proteins, which steadfastly
adhere to the cell wall, enveloping themselves in mucoid layers. Lauth et al. (2004) revealed
that virulent strains producing the M1 serotype of this protein display a notably heightened
resistance to cathelicidin LL-37 compared to their less virulent counterparts (housing M
proteins of alternative serotypes) [33]. This protein is capable of binding to the cathelicidin
precursor (hCAP-18), inhibiting its transformation into a mature AMP, and it can also bind
to LL-37, thereby evading its effect [395].

Streptococci and staphylococci produce a variety of surface proteins able to degrade
cationic AMPs (Table 3). For example, S. aureus expresses the iron-regulated surface
determinant A (IsdA), located on the peptidoglycan layer, which is responsible for resistance
to lactoferrin and mCRAMP. This adhesin, highly expressed during iron deficiency, confers
resistance to AMPs via its C-terminal domain, which binds to apolactoferrin and suppresses
its protease activity. Notably, IsdA does not necessitate attachment to the bacterial surface
to manifest its proteolytic activity [345,346].

Neisseria gonorrhoeae and N. meningitidis produce a membrane-bound lipoprotein
known as lactoferrin-binding protein B (LbpB) (Table 2). This protein contains anionic
domains capable of conferring resistance to lactoferricin B, derived from host lactoferrin, an
iron-sequestering antimicrobial protein released by neutrophils [217,218]. Recent structural
studies have revealed that the N-lobe of LbpB harbors the binding site for lactoferrin. While
LbpB may not be essential for iron acquisition in vivo, it plays a crucial role in protecting
against cationic AMPs when membrane-bound. The enzymatic release of N. meningitidis
LbpB from the cell surface by the bacterial protease NalP is hypothesized to contribute
to LbpB’s function as a “Cationic AMP sink” [225,396]. Studies have also shown that
the anionic regions of LbpB from Moraxella catarrhalis protect bacteria against cationic
AMPs [397]. Additionally, LbpB-mediated protection against cationic AMPs is highly
specific, as it provides resistance to the mCRAMP and certain synthetic peptides (IDR-1002
and IDR-0018) but not others (Tritrp 1 or LL37, HH-2, or HHC10) [397]. Recently, Ostan et al.
(2024) demonstrated that the addition of lactoferricin to the anionic domain of LbpB or
full-length LbpB secreted from the cattle pathogen Moraxella bovis, which expresses the
largest anionic domain of the LbpB homologs, results in the formation of phase-separated
droplets of LbpB together with the AMP. The droplets displayed a low rate of diffusion,
suggesting that cationic AMPs become trapped inside and are no longer able to kill bacteria.
Authors suggested that pathogens, like M. bovis, leverage anionic intrinsically disordered
domains for the broad recognition and neutralization of antimicrobials via the formation of
biomolecular condensates [398] (Figure 5C).

Finally, N. gonorrhoeae expressing type IV pili demonstrates resistance against LL-37
and neutrophil-mediated killing. However, non-piliated strains exhibit heightened sus-
ceptibility, potentially due to elevated intracellular iron levels. Iron chelation effectively
protects non-piliated mutants from hydrogen peroxide and LL-37-mediated killing, indi-
cating a role for iron availability in modulating bacterial sensitivity [219]. Therefore, the
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above-mentioned observations emphasize a critical relationship between piliation status,
iron homeostasis, and susceptibility to host-derived AMPs (Figure 5E).

3.2.2. AMP-Inhibitory Proteins Secreted by Bacteria

S. aureus secretes a plasminogen activator protein called staphylokinase (Sak), which
has the ability to bind to certain AMPs and inhibit their activities. For example, Sak,
especially the truncated Sak with its first ten residues, exhibits a lower affinity for melittin
and mCRAMP, but shows a high affinity for lactoferricin and tritrpticin [350]. In addition,
Sak can bind to human β-defensins and restrict their bactericidal activity [349]. Similarly,
GAS hijacks host plasmin through the secreted plasminogen activator streptokinase (Ska) to
evade the lethal effects of cathelicidin, facilitating their evasion from innate immunity [310].
Moreover, the virulent strains of GAS M1 secrete a protein known as SIC (Streptococcal
Inhibitor of Complement), which is absent in the vast majority of non-invasive GAS strains.
SIC is capable of binding to and inactivating LL-37 and human α-defensin [312] (Table 3)
(Figure 5D).

3.2.3. AMP-Inhibitory Molecules Released by Host Tissues

Bacteria appear to trap and deactivate PAMs by exploiting the negatively charged
proteoglycan molecules that decorate the surfaces of host epithelial cells. For instance,
extracellular proteases, such as cysteine proteinases, gelatinases, elastases, and alkaline
proteinases, secreted by bacteria such as S. pyogenes, E. faecalis, and Pseudomonas aeruginosa,
respectively, degrade human cell surface proteoglycans, such as decorin, then releasing
dermatan sulfate (Tables 2 and 3). The released dermatan sulfate binds to and inactivates
human α-defensins [300]. In addition, P. aeruginosa produces elastase LasA, which increases
the release of syndecan-1, a cell-surface heparan sulphate proteoglycan, from host cells.
Consequently, syndecan-1 binds to and inactivate cationic AMPs [242] (Tables 2 and 3).

3.3. Electrostatic Shielding/Sequestration of AMPs by the Capsule

The production of capsule polysaccharides (CPSs) is involved in adjusting biofilm
formation to cause persistent infections in the blood, respiratory tract, and gastrointestinal
mucosa of mammals [399,400]. Additionally, it can either confer resistance or reduce sus-
ceptibility to several AMPs and evade phagocytosis [401]. While the chemical composition
of CPSs varies widely among bacterial species, the majority of them are anionic. The
interaction with the bacterial capsule is believed to trigger conformational changes that
lead to the sequestration of AMPs, consequently inhibiting their capacity to reach their
target on the bacterial membrane [402].

The role of CPSs as a physical barrier in resistance to AMPs has been extensively
studied, as observed in K. pneumoniae, S. pyogenes TX72 [204], and N. meningitidis [226],
whose CPS mutants display increased sensitivity to AMPs compared to wild-type (WT)
strains (Tables 2 and 3). Furthermore, the degree of K. pneumoniae resistance to polymyxin
B and lactoferrin is proportional to the amount of CPSs produced as a result of cps gene
induction by these two AMPs [204]. Purified CPSs from K. pneumoniae, S. pneumoniae, and
P. aeruginosa effectively sequester cationic AMPs and neutralize their bactericidal activity.
The release of CPSs into the milieu increases significantly when bacteria are exposed to
polymyxin B and human neutrophil peptide-1 (HNP-1) [241]. Additionally, O’Brien et al.
elucidated that non-capsulated Bacillus anthracis strains are markedly more susceptible to
various AMPs, compared to their encapsulated counterparts [25] (Table 3) (Figure 5F).

3.4. AMP Resistance Mechanisms Associated with Bacterial Cell Wall Structures and
Their Modifications

The bacterial cell wall, primarily composed of peptidoglycan, is an important target
for several antimicrobial agents. It is found outside the bacterial cell membrane, serves
as a protective barrier against environmental stresses, and reinforces cell shapes [403].
AMPs face the initial challenge of penetrating the bacterial cell envelopes, which varies
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between Gram-negative and Gram-positive bacteria. In Gram-negative bacteria, this
barrier includes an outer membrane in addition to a thin peptidoglycan layer and the
cytoplasmic membrane, with the outer membrane being composed of phospholipids,
lipopolysaccharides (LPSs), and proteins. Conversely, Gram-positive bacteria lack an outer
membrane but possess a thicker peptidoglycan layer to which teichoic acids (TAs) and
lipoteichoic acids (LTAs) are anchored [404]. Hence, most bacterial resistance mechanisms
operate by altering the chemical components of these surface structures to restrict the
interaction with AMPs.

3.4.1. Involvement of LPS and Its Modifications in Resistance to AMPs

The outer membrane plays a crucial role in the Gram-negative bacterial natural de-
fense by exhibiting reduced permeability, and regulating its permeability and integrity
is pivotal [405,406]. The principal component of the OM is the negatively charged LPS,
which attracts cationic AMPs, while outer membrane proteins (OMPs) also contribute to
this resistance through their physiological roles, as discussed in Section 3.4.2. While bacte-
rial plasma membranes share the same phospholipid composition, certain AMPs exhibit
effectiveness against specific bacterial strains but not others [407]. This difference in activity
highlights variations in the structure and composition of LPS among bacterial species,
which consequently affect the barrier properties of the outer membrane permeability. The
LPS consists of three components: lipid A, core oligosaccharide, and the O-polysaccharide
or O antigen (Figure 3). It is highly polyanionic, primarily due to (i) the presence of two
monophosphate groups substituting the lipid A at positions 1 and 4′, and (ii) the carboxylic
groups of the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), along with monophosphate
(or pyrophosphate or diphosphate) groups substituting the heptose residue(s) at the inner
core level. Additionally, the oligosaccharide core harbors numerous anionic groups, the
distribution of which varies among Gram-negative bacterial species [405]. The O-antigen
composition varies significantly and is unique to each bacterium [185,408]. The enzymes
responsible for catalyzing the biosynthesis of phospholipids and LPS are well characterized
in E. coli and are located either in the cytoplasm or on the inner cytoplasmic leaflet of
the inner membrane [409,410]. Considering the crucial role of LPS in protecting bacte-
ria from the entry of hydrophobic and hydrophilic molecules [411], enzymes involved
in LPS biosynthesis, such as Lpx [206], and LPS modifications induced by PhoPQ and
PmrAB, play a significant role in the resistance of many Gram-negative bacteria against
AMPs [216,412] (Table 2). Additionally, specific mutations within these TCSs, as well as in
ColRS, ParRS, and CprS TCSs of P. aeruginosa, lead to their constitutive activation, resulting
in the subsequent overexpression of LPS-modifying genes in these bacteria [37].

Resistance to AMPs Due to O-Antigen and Core Oligosaccharide

The specific O chains define the surface properties of bacteria in species that do not
produce capsules. It acts as a protective shield that prevents the entry of AMPs into
the LPS bilayer (Table 2). These oligosaccharide chains are crucial for the bacteria that
produce them to avoid recognition by the host’s immune defenses. For example, C. jejuni
mimics the gangliosides (glycolipids) on the surface of its host’s eukaryotic cells [413].
O-antigens have been shown to provide protection to S. flexneri and K. pneumoniae by
shielding them from histones, significant components of neutrophil extracellular traps and
acting as AMPs [205]. In addition, a larger O-antigen provides increased protection against
AMPs. Indeed, resistance to AMPs is significantly reduced in several bacteria that possess
truncated or completely absent LPS antigens, commonly referred to as rough LPS mutants
(LPS-R), compared to WT bacteria with smooth LPS (LPS-S) [239,414–418] (Table 2).

Such differences in susceptibility are most likely due to variations in the LPS content
of divalent cations [419,420]. In fact, LPS chelates a multitude of divalent cations, including
Mg2+ and Ca2+, owing to its negative charges [421–423]. The partial neutralization of these
negative charges by the bridges formed with these cations diminishes repulsion between
adjacent LPS molecules and stabilizes lateral interactions [424]. AMPs interacting with the
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outer layer of LPS competitively displace divalent cations, causing the destabilization of
the LPS bilayer [425]. Interactions between neighboring O chains may thus contribute to
the stability of this bilayer [426]. These intermolecular interactions through O chains (and
likely the outer core) are markedly more significant in LPS-S than in LPS-R [427]. Yeh, H. Y.
and Jacobs, D. M. (1992) demonstrated that the presence of long O chains in LPS reduces
the fluidity of the phospholipid bilayer more effectively than those with short or no O
chains. This indicates that O chains influence the behavior of the lipid A domain [428].

The structure of LPS can influence the interaction of AMPs with the outer membrane.
This has been elucidated in S. Typhimurium with magainin 2, showing that the sensitivity of
Gram-negative bacteria to this peptide is associated with factors that facilitate the transport
of AMPs across the outer membrane. These include the importance and location of LPS
charge, LPS concentration in the outer membrane, its architecture, as well as the presence
or absence of the lateral chain of the O-antigen [429]. Several studies have subsequently
shown that resistance to AMPs depends on variations in the chemical composition of
LPS, such as the importance of the charge of O antigen saccharide chains and the specific
glycosylation of the latter (through gtr genes). Glycosylation leads to a modification of the
conformation of the O antigen subunits by halving the thickness of the LPS layer, which can
increase bacterial resistance to AMPs, particularly in S. flexneri and Bordetella sp. [151,272].

The enzymes involved in the biosynthesis of the outer and/or inner core oligosaccha-
ride, the nature of the latter, and the density of the O-polysaccharide chain all contribute,
either collectively or individually, to enhanced resistance to AMPs (Table 2). For example,
the removal of this core can downregulate the expression of the pmrD gene responsible for
E. coli resistance against polymyxins [179]. In C. jejuni, the galU gene is indeed responsi-
ble for synthesizing uridine diphosphate (UDP)-glucose, which is a precursor molecule
required for the synthesis of LPS. When the galU gene is mutated or disrupted, the pro-
duction of UDP-glucose is impaired, resulting in the truncation of the LPS core structure.
This truncation makes the bacterium more susceptible to AMPs and other antimicrobial
agents [164].

Roles of the Acylation and Modifications of Lipid A Acyl Chains in Intrinsic and Induced
Resistance to AMPs

The higher content of saturated fatty acids in LPS, coupled with divalent cations,
induces rigidity in LPS [419,430,431]. Several experiments have conclusively shown that
the portion of LPS anchored in the outer membrane, specifically the fatty acids, exhibits a
remarkably low fluidity [432,433]. Fluidity, in this context, refers to the ability of molecules
to move within the same layer. Unlike PG, the glycerophospholipids typically found in
other biological membranes such as the cytoplasmic membrane, which contains only two
chains of saturated fatty acids, LPS comprises between four and seven chains. However,
unlike unsaturated fatty acids, saturated fatty acids reduce the fluidity of the lipid layer
they compose due to their larger steric hindrance [434]. Consequently, the absence of
unsaturated fatty acids renders the inner leaflet of the LPS (comprising fatty acid chains)
much less fluid, thereby diminishing the permeability of the outer membrane. Furthermore,
the number, distribution, length, and type of the acyl chain in the fatty acid of lipid A vary
among various bacteria, such as Acinetobacter baumannii, B. cepacia, B. pseudomallei, C. jejuni,
H. pylori, E. coli, N. gonorrhoeae, K. pneumoniae, S. enterica, P. aeruginosa, Vibrio cholerae, and
Y. pestis, which can influence their membrane properties [435].

Acylation of Lipid A in LPS

Lipid A typically contains four primary chains of (R)-3-hydroxyacyl directly and
covalently linked to the glucosamine disaccharide at positions 2, 3, 2′, and 3′. Some of these
(R)-3-hydroxyacyl groups are modified by secondary acyl chains, forming acyloxyacyl
fractions [435]. For example, in E. coli and S. Typhimurium, secondary acyl groups of laurate
(12 carbons) and myristate (14 carbons) are attached to the 3-Kdo2-lipid A at positions 2′

and 3′ of the primary acyl chain, respectively (Figure 3). The incorporation of lauroyl chain
is mediated by the LpxL acyltransferases (HtrB in Salmonella, Shigella, and H. influenzae),
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while the myristoyl chain is mediated by LpxM (formerly MsbB or WaaN) [435,436]. The
activation of HtrB requires a high temperature in E. coli [437], whose genome also contains
the lpxP gene (homologous to lpxL), induced by cold shock (12 ◦C). LpxP catalyzes the
incorporation of palmitoleate (unsaturated fatty acid) instead of laurate, suggesting the
bacterium needs to adjust the fluidity of its outer membrane [436,438].

Only a limited number of laboratory knockout mutations (through insertional inacti-
vation) can be generated at the lipid A level without impacting bacterial viability. Among
these mutations are those affecting the lpxA, lpxM, and htrB genes. For instance, in N. menin-
gitidis, a viable lpxA (encoding UDP-GlcNAc acyltransferase required for the first step of
lipid A biosynthesis) mutant that is entirely deficient in LPS experiences severe growth
impairment. Additionally, there is an increase in phosphatidylethanolamine (PE) and PG
species, predominantly composed of shorter chains, thus hindering in vivo analyses [439].
On the other hand, the inactivation of lpxM has been extensively studied in several En-
terobacterales [440,441]. Myristoylation of lipooligosaccharide (LOS), catalyzed by the
acyltransferase HtrB, is a crucial factor in conferring resistance to human β-defensin by
the human pathogen H. influenzae. Mutant strains lacking HtrB are 45 times more sensitive
than the WT [198]. However, mutations in the lpxM gene in several bacterial pathogens do
not provide conclusive findings regarding the resulting phenotypes. For instance, lpxM
mutants of S. Typhimurium and S. flexneri exhibit attenuated ability to induce inflammation
in vivo [440,442]. Alterations in growth and membrane permeability observed in the lpxM
mutants of S. Typhimurium lead to the selection of extragenic suppressor mutations in this
bacterium [443]. The only instance of observed virulence attenuation in a murine infection
model directly linked to the lpxM gene mutation was observed in a clinical strain of E. coli.
The lpxM gene is not indispensable for E. coli growth [443–445], but its mutation leads
to side effects such as capsule reduction [446]. Furthermore, the inactivation of the lpxP
gene in E. coli does not affect bacterial growth but heightens bacterial sensitivity to certain
antibiotics at low growth temperatures [447]. The role of covalent modifications catalyzed
by LpxM in maintaining membrane integrity, as well as enhancing its permeability and
resistance to cationic AMPs, has also been elucidated in K. pneumoniae, A. baumannii, and
V. cholerae [206] (Table 2).

Resistance to polymyxins in E. coli and S. Typhimurium requires the LpxM-mediated
myristoylation of their lipid A since the addition of L-Ara4N to the phosphate groups of
lipid A (catalyzed by L- Ara4N transferase ArnT) depends on the presence of the secondary
myristate (catalyzed by LpxM) chain at position 3′ of glucosamine [182]. Moreover, muta-
tions of lpxP and htrB in Y. pestis result in increased susceptibility to polymyxin B at 21 ◦C
and 37 ◦C, respectively. Additionally, the acylation of lipid A plays a role in the expression
of virulence factors [280].

A. baumannii can develop resistance to colistin through the loss of its LPS (Table 2).
The outer membranes of polymyxin-resistant strains, with lipid A modified with PEtN or
deficient LPS, exhibit distinct atomic-level interactions with polymyxins [448]. In mouse
models, LPS-deficient A. baumannii strains exhibit reduced virulence. The development
of colistin-resistant LPS-deficient strains involves spontaneous mutations in genes such
as lpxA, lpxC (encoding UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacety-
lase), and lpxD (encoding UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acetyltransferase).
Studies have shown that LPS-deficient A. baumannii weakly stimulate neutrophils, leading
to lower levels of reactive oxygen species (ROS) and inflammatory cytokine production. Fur-
thermore, LPS-deficient A. baumannii strains are more susceptible to antibacterial lysozyme
and lactoferrin compared to their WT counterparts [133,135]. Jennifer H. Moffatt et al.
(2013) also demonstrated that LPS-deficient A. baumannii are more susceptible to LL-37 and
exhibit altered signaling through host Toll-like receptors [134].

Some Francisella species, like F. tularensis, responsible for tularemia, synthesize rela-
tively short LPS molecules with a lipid A devoid of Kdo and other saccharide chains [449].
The lipid A of these bacteria is devoid of both a phosphate group and acyl chains at the 4′

and 3′ ends, respectively. The dephosphorylation of lipid A in Francisella is facilitated by
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the 4′- phosphatase LpxF, a constituent of the LPS biosynthesis pathway in this bacterium.
The lpxF mutant of F. novicida displays a heightened sensitivity to cationic AMPs [193]
(Table 2). This increased susceptibility damages the bacterial envelope, exposing membrane
lipoproteins and bacterial DNA to Toll-like receptors TLR2 and TLR9, respectively [450].
Notably, the dephosphorylation of lipid A by LpxF is contingent upon the absence of a sec-
ondary myristate chain at position 3′ due to its steric hindrance chain near the 4′-phosphate
group [193].

Similarly, H. pylori, Rhizobium leguminosarum, P. gingivalis, and Rhizobium etli tend to
remove the anionic phosphate group from the lipid A to resist against AMPs by using the
4′-phosphatases LpxF [167]. On the other hand, some bacteria, such as Helicobacter pylori,
has a tendency to remove the 1-phosphate group from lipid A using the 1-phosphatase
LpxE encoded by lpxE gene, and subsequently add the phosphoethanolamine (PEtN) group,
facilitated by the EptA enzyme [167,201,202]. Furthermore, the deletion mutants of lpxE
gene in Capnocytophaga canimorsus and Brucella abortus exhibited increased polymyxin B
sensitivity [155,167,245] (Table 2).

pagP, one of the genes induced by PhoPQ in Salmonella, encodes an unusual acetyl-
transferase named PagP, located in the outer membrane and involved in LPS biosyn-
thesis. PagP catalyzes the transfer of palmitate from PE (donor) to the OH group of the
3-hydroxymyristate chain linked at position 2 to the lipid A of LPS (Figure 3). This increases
the number of acyl groups per lipid A molecule to a total of seven chains (in addition to the
six chains constitutively incorporated) [451]. Furthermore, the palmitate chain is longer
than those previously incorporated during lipid A biosynthesis as it consists of 16 carbon
atoms (C16:O). All these functions are likely to alter the fluidity of the outer membrane
by increasing hydrophobic interactions and van der Waals bonds between the acyl chains
of neighboring LPS molecules. This stabilization is suggested by the fact that palmitate
incorporation catalyzed by PagP confers resistance to cationic AMPs in S. enterica [452]
and attenuates the ability of LPS to trigger immune responses via the TLR4 Toll path-
way [453]. PagP mutants of S. Typhimurium are sensitive to certain AMPs, such as C18G
and protegrins, but are resistant to polymyxins. The increased acylation of lipid A alters
the hydrophobic interaction between fatty acids and the AMP, thereby preventing or at
least delaying its insertion into the bilayer [454]. The involvement of the pagP gene (or its
homologues) in inducible resistance to AMPs has also been demonstrated in the pathogens
Bordetella parapertussis, B. bronchiseptica (rcp gene for resistance to cationic antimicrobial
peptides) [153], Legionella pneumophila, and Yersinia pseudotuberculosis [216,284,455]. The
regulation of these genes is correlated with the bacterial lifestyle during infection. Some
studies have highlighted that PagP might function as an apical sensory transducer, which
can be activated by a breach in the outer membrane of the enterohemorrhagic strain E. coli
O157:H7. Indeed, PagP is capable of sensing assaults that alter the permeability of the
outer membrane, such as the action of EDTA, which chelates Mg2+ cations, or mutations
affecting the presentation of LPS on the bacterial surface. Thus, the mutation of the lpxM
(msbB) gene of E. coli O157:H7 triggers the palmitoylation of lipid A catalyzed by PagP,
thereby restoring the permeability barrier role ensured by the outer membrane [180].

Recently, Sun et al. have revealed the role of Crrab TCS in upregulating the PagP-
mediated palmitoylation of glycerophosphoglycerols and lipid A in K. pneumoniae, aim-
ing to confer high-level polymyxin resistance and virulence. They demonstrated that
PagP transfers palmitate from the glycerophospholipid of the OM inner layer to glyc-
erophosphoglycerols, forming acyl-glycerophosphoglycerols, thereby boosting the ratio of
acyl-glycerophosphoglycerols to glycerophosphoglycerols and enhancing outer membrane
hydrophobicity [207].

Deacylation of Lipid A in LPS

pagL is a PhoPQ-governed gene encoding for PagL, an enzyme with lipase or deacylase
activity, localized in the outer membrane of S. Typhimurium. It facilitates the deacylation
or removal of the hydroxymyristate chain linked at position 3 to the glucosamine of lipid
A in Salmonella [456] (Figure 3). Conversely, LpxR is another outer membrane lipase that
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cleaves the covalent bond between the acyloxyacyl chain linked at 3′ and the Kdo2-lipid A
portion in a calcium-dependent manner [457]. PagL mutants of S. enterica are more sensitive
to polymyxin B than the corresponding WT strain. Both LpxR and PagL lipases remain
inactive in the outer membrane and are only activated upon overproduction, suggesting
the presence of endogenous inhibitors, such as L-Ara4N [261]. The latency of PagL partly
depends on the incorporation of PEtN at the Kdo2-lipid A level. The activation of PagL
facilitates the deacylation of glucosamine at position 3, compensating for the decreased
resistance to cationic AMPs caused by the absence of L-Ara4N at the lipid A of LPS [261].
Since this modification is only observed following PagL overproduction, it is possible to
speculate that PagL is necessary for minor adjustments to the fluidity of the LPS layer after
the addition of seven fatty acid chains to its lipid A.

Additionally, NaxD (N-acetylhexosamine deacetylase), a deacetylase from the YdjC
superfamily, deacetylates N-acetylgalactosamine (linked to the lipid carrier undecaprenyl
phosphate) to positively charged galactosamine, a necessary step for the subsequent addi-
tion of galactosamine to lipid A, contributing to polymyxin resistance in Francisella and
A. baumannii [136,195] (Table 2). NaxD-mediated lipid A modification in A. baumannii
is regulated by the sensor kinase PmrB [136]. Finally, spontaneous mutations and in-
sertion sequences (IS) in the N-acetylglucosamine deacetylase encoding lpxC gene were
shown to be associated with colistin resistance in colistin-resistant LPS-deficient strains of
A. baumannii [133].

Hydroxylation of Lipid A in LPS

LpxO (or Pag Q) is an inner membrane Fe2+/alpha-ketoglutarate-dependent dioxy-
genase in Salmonella that catalyzes, in a PhoPQ-dependent manner, the hydroxylation
(incorporation of the OH group) of the 2-hydroxymyristate chain of Kdo2-lipid A [458,459]
(Figure 3). It compensates for the decrease in OH groups caused by PagP’s catalytic ac-
tivity. The OH groups play a vital role as hydrogen bond donors, stabilizing interactions
between neighboring LPS molecules. Unlike membrane phospholipids, the lipid A of
LPS contains a number of hydroxylated fatty acids. Typically, the residues at positions 2
and 3 of glucosamine lack secondary myristate chains, resulting in two hydroxyl groups
within the membrane that can act as hydrogen bond donors. The NH groups (2 groups
at positions 2 and 2′) and the 4-OH group of reduced glucosamine are available to act as
hydrogen bond donors. Additionally, the inner core oligosaccharide linked at position 6′ to
the unreduced glucosamine provides numerous groups that could serve as both hydrogen
bond donors and acceptors [405] (Figure 3). LpxO-dependent lipid A 2-hydroxylation has
been shown to be essential for protecting A. baumannii against cationic AMPs, aiding its
survival in human whole blood and the wax moth Galleria mellonella (Table 2). Additionally,
LpxO shields Acinetobacter from G. mellonella AMPs, controlling their expression [137]. Sim-
ilarly, in K. pneumoniae, LpxO-dependent modification dampens inflammatory responses
and confers resistance to AMPs. Notably, a lpxO mutant exhibits attenuation in vivo, un-
derscoring the significance of this lipid A alteration in Klebsiella infection. Colistin prompts
the in vivo lipid A pattern, already expressed in colistin-resistant isolates, where LpxO-
dependent lipid A modification is pivotal for resisting colistin [208]. Similarly, LpxO was
suggested to confer resistance against AMPs and contribute to the pathogenicity of S. enter-
ica, P. aeruginosa, and B. bronchiseptica [244,262,460]. Another enzyme called LpxN functions
as a lipid A secondary hydroxy-acyltransferase in V. cholerae, responsible for the transfer of
3-hydroxylaurate to the lipid A domain significantly enhances polymyxin resistance [275]
(Table 2).

Role of Cationic Polar Groups Added to Lipid A in Induced Resistance to AMPs

Cationic AMPs selectively bind to the negatively charged phosphate moieties and
acidic groups within the lipid A and core polysaccharide by electrostatic interactions [419].
Many Gram-negative bacteria employ various strategies to reduce the interaction be-
tween cationic AMPs and their outer membranes by adding positively charged residues.
The primary LPS modification involves the cationic substitution of phosphate groups
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with L-Ara4N, which neutralizes the net negative charge of lipid A, while the second
most common modification is the addition of PEtN, reducing the net charge from −1.5
to −1 [136,405,461] (Figure 3). Among these modifications, the L-Ara4N substitution is
deemed more effective due to its impact on charge alteration. For example, polymyxin-
resistant Gram-negative species inherently possess LPS with one or more of these mod-
ifications. Indeed, S. Typhimurium emerges as a prominent example, highlighting how
resistance to AMPs through alterations in LPS serves as a critical mechanism for survival.
Although most of the genes required for these modifications are encoded in the chromo-
some, the recently identified plasmid-borne PEtN transferases (mcr-1 to mcr-10) pose a
threat by potentially accelerating the spread of clinically significant colistin resistance [462].

Addition of Aminoarabinose to Lipid A in LPS

Gram-negative bacteria, including E. coli and S. enterica, reduce the negative charge
of their surface by incorporating positively charged L-Ara4N at the 4′ phosphate end
of their lipid A (Figure 3) (Table 2). This modification decreases the affinity of cationic
AMPs, like polymyxin, to the outer membrane and reduces electrostatic repulsions between
neighboring LPS molecules [463]. The addition of L-Ara4N occurs in a PhoPQ-dependent
manner, which indirectly activates the PmrAB TCS via PmrD [183,464,465]. The biosynthe-
sis and addition of L-Ara4N are catalyzed, respectively, by two genetic loci: the pmrE gene
(also known as pagA or ugd) and the pmrHFIJKLM operon (also termed arnBCADTEF or
pbgP) [466–468]. Non-polar mutagenesis studies have shown that all genes except pmrM
are essential for the addition of L-Ara4N and resistance to cationic AMPs. A significant
cause of colistin resistance in K. pneumoniae and E. coli involves mutations or the inactiva-
tion of the regulatory mgrB gene, which normally exerts a negative feedback on PhoPQ
by inhibiting PhoQ kinase activity and/or enhancing its phosphatase activity. This re-
sults in the activation of PhoPQ, leading to the upregulation of all PhoP-mediated lipid A
modifications, including the addition of L-Ara4N and PEtN to lipid A, as well as its deacyla-
tion [184,209]. Similarly, the PbgPE-mediated incorporation of 4-aminoarabinose into lipid
A, in a PhoPQ-dependent manner, is essential for the resistance of the entomopathogen
P. laumondii to polymyxins and insect-derived cecropins A and B, as well as for virulence
in insects [233,234]. The substitution of lipid A moieties with L-Ara4N have also been
demonstrated in vivo during cystic fibrosis caused by P. aeruginosa [247].

Addition of Phosphoethanolamine to Lipid A in LPS

The addition of PEtN to the LPS can counteract the effects of negatively charged
residues. The PmrAB system controls the PEtN transferase EptA in Salmonella spp. and
E. coli [185]. In E. coli, the PEtN addition to lipid A, Kdo, and heptose I of LPS is catalyzed by
the EptA, EptB, and EptC enzymes, respectively. Another protein, termed CptA, responsible
for the addition of PEtN to the core of Salmonella LPS, has been identified [264]. The
incorporation of PEtN groups to lipid A and Kdo alters the net charge of LPS, providing
defense against polymyxin B binding and penetration, while PEtN added to heptose I,
alongside the reduction in negative charges, also prevents the insertion of the polymyxin
B lipophilic tail into the outer membrane [186]. In A. baumannii, resistance to colistin is
linked to the addition of PEtN to lipid A, facilitated by specific amino acid mutations in the
PmrB protein. This results in the overexpression of pmrC, responsible for producing the
PEtN transferase enzyme [138]. Recently, a novel TCS named StkSR was characterized in
A. baumannii. Deleting stkR resulted in a notable upregulation of pmrA, pmrC, and pmrB
expression, subsequently enhancing pmrC transcription and facilitating the replacement of
lipid A with PEtN [139]. Another potential pathway that could result in the overproduction
of PEtN in A. baumannii entails the integration of the ISAbaI insertion element upstream of
an eptA isoform [140].

Further studies have demonstrated that constitutive mutations in the pmrA gene
suppressed msbB mutant growth defects in Salmonella. In addition, the PEtN addition to
lipid A confers polymyxin resistance in msbB-mutant strains, highlighting the necessity of
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aminoarabinose biosynthetic enzyme for the incorporation of PEtN and palmitate to the
lipid A of these mutants [469].

3.4.2. Outer Membrane Proteins and Resistance to AMPs

The outer membrane proteins (OMPs) of Gram-negative bacteria comprise a diverse
array of proteins, including, among others, porins and adhesins, which fulfill diverse roles,
such as signaling, adhesion, catalyzing reactions, and the active and passive transport of
solutes and nutrients into and out of the cell [470]. AMPs have been proposed to utilize
OMPs as a gateway for entry into bacterial cells [471]. This notion was supported by
the observation that the absence of the MtrE channel unexpectedly increased gonococcal
survival after exposure to azurocidin, prompting speculation about whether MtrE might fa-
cilitate the passage of certain antimicrobials across the outer membrane [224]. Additionally,
the deletion of tolC has been found to enhance the activity of the transcriptional regula-
tors MarA, SoxS, and Rob, which regulate porin expression and could potentially modify
membrane permeability [472]. The idea that MtrE could act as a portal for AMP entry
gained support from a recent discovery demonstrating that TolC is capable of importing
bacteriocins (MW 60 kDa) in Gram-negative bacteria [473].

On the other hand, Visser et al. (1996) were among the first to describe the role of
Y. enterocolitica adhesin A (YadA), in bacterial resistance to cationic AMPs [281]. In V. cholerae,
the outer membrane proteins OmpU and OmpT, whose expression depends on the bacterial
growth phase, partially contribute to basal resistance to cationic AMPs [276]. However, this
resistance is further enhanced in the presence of AMPs in the bacterial environment. OmpU
appears to act as a membrane sensor that detects antimicrobial peptides and induces
resistance pathways through the transcription factor σE and the activator DegS [277].
Furthermore, studies have demonstrated that OmpA confers resistance to polymyxin B and
protamine in K. pneumoniae [212]. The only case where porins have been directly involved
in resistance to AMPs is observed with E. coli, where blocking OmpF by the simultaneous
addition of spermine or cefepime inhibits colicin action [187]. Interestingly, the presence
of a gap formed by OmpF facilitates the insertion of AMPs into the LPS, enabling them to
establish hydrogen bonds with the phosphate groups of the inner core oligosaccharides.
OmpF was found to play a crucial role in the entry of AMPs such as P6, either by elaborating
the binding site for LPS or by directly transporting AMPs across the outer membrane [188]
(Table 2). Moreover, Zhang et al. discovered that the downregulation of OmpW mediated
by SoxS, a transcriptional factor involved in oxidative stress, contributes to resistance
against oxidative stress and may also play a role in resistance against AMPs in E. coli [474].
A reduction in the expression of OmpW was also observed in a colistin-resistant mutant
of A. baumanni [475]. Finally, OmpA-like proteins were show to confer AMP resistance in
many other Gram-negative pathogens (Table 2).

3.4.3. Peptidoglycan Modifications and AMP Resistance

To reach their target structures inside bacterial cells, particularly in Gram-positive
bacteria, AMPs must penetrate through the dense layer of peptidoglycan. The physico-
chemical properties and density of this layer are pivotal in determining bacterial sensitivity
to antimicrobial agents [476].

In Salmonella and E. coli, the N-acetylmuramoyl-l-alanine amidases, encoded by amiA
and amiC, contribute to increased resistance to protamine, magainin 2, and melittin. The
expression of these genes is governed by the twin arginine translocation (Tat) system. Con-
versely, the CpxR/CpxA two-component system is regulated by the overexpression of the
nlpE gene, which encodes an outer membrane lipoprotein involved in copper homeostasis
and adhesion. This system upregulates amiA and amiC expression, thereby enhancing
resistance [189].

The N-deacetylation of peptidoglycan by the peptidoglycan N-deacetylase (encoded
by the pgdA gene) in L. monocytogenes is a crucial mechanism for evading the host innate
immune response. Boneca et al. (2007) demonstrated that mutants of L. monocytogenes lack-
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ing PgdA are highly susceptible to lysozyme activity, rapidly eliminated by macrophages,
and elicit a significant IFN-β response through the TLR2 and Nod1 pathways [329]. In
S. aureus, the carbon at position 6 of the N-acetylmuramic acid is acetylated by the O-
acetyltransferase Oat, which grants these bacteria resistance to the muramidase activity
of lysozyme [352]. In group B streptococcus (GBS), a mutant of the ponA gene, encoding
for the penicillin-binding protein 1a (PBP1a) (both transglycosylase and transpeptidase),
exhibits high sensitivity to defensins and LL-37 [323]. Furthermore, a mutation in the
pgm gene, which encodes a phosphoglucomutase essential for preserving peptidoglycan
integrity in Streptococcus iniae, increases the bacterial susceptibility to AMPs [380]. N- and
O-deacetylations of peptidoglycan have been linked to AMP resistance in many other
bacterial pathogens (Tables 1 and 2).

3.4.4. Modifications of Teichoic Acids and AMP Resistance

TAs constitute the second major component of the cell wall in Gram-positive bacteria,
comprising more than 50% of the cell wall mass. TAs are polyanionic polymers that exist
in many forms, such as wall teichoic acids (WTAs), which are covalently bound to the
peptidoglycan and are presented on the outer surface of bacteria, and lipoteichoic acids
(LTAs), which are anchored to glycolipids of the cytoplasmic membrane [477,478]. Mutants
of S. aureus deficient in WTA exhibits up to a 100-fold increase in resistance to degradation
and killing by gIIA phospholipase A2 (PLA2) and human β-defensin 3 (HBD-3) compared
to the WT (Table 3). However, these mutants maintain sensitivity similar to the WT to other
cationic AMPs, including Magainin 2 amide, HNP1-3, LL-37, and lactoferrin [358].

Specific enzymes called WTA glycosyltransferases mediate the glycosylation of WTA in
L. monocytogenes. These enzymes catalyze the transfer of sugar molecules, such as rhamnose
and N-acetylglucosamine in serovar 1/2a, and galactose and glucose in serovar 4b, into the
WTAs, thereby modifying their structure and leading to resistance to AMPs [331,332]. On
the other hand, many studies have revealed that the D-alanylation of TAs reduces the overall
negative charge of the bacterial surface and confers resistance to AMPs (Figure 4) [479]
(Table 3). This substitution is also crucial for stimulating TLR2 [480,481], and the absence of
such a substituent leads to a significant decrease in bacterial inflammatory properties [482].
The incorporation of positively charged D-alanine residues into LTAs is catalyzed by
products of the dlt operon [479]. This operon has been characterized in at least thirteen
species of Gram-positive bacteria where it confers resistance to various AMPs (Table 3). The
dlt operon generally includes the genes dltA, dltB, dltC, and dltD, all of which are essential
for the D-alanyl esterification of TAs (Figure 4). The D-alannylation of TAs is completed
in two steps: first by the D-Alanine-D-alanyl carrier protein ligase (Dcl), encoded by the
dltA gene, and then by the D-alanyl carrier protein (Dcp), encoded by the dltC gene. The
dltB and dltC genes are also indispensable in this D-alanylation process. Depending on the
bacterial species, the content of D-alanyl ester in WTAs and LTAs depends, among other
factors, on the pH of the environment, temperature, and concentration of NaCl and KCl
salts [479].

The inactivation of the dltA, dltB, dltC, or dltD genes in the non-pathogenic bacterium
B. subtilis results in mutants with WTAs and LTAs devoid of D-alanyl ester residues [295].
The knock-out mutations of the dlt operon in many Gram-positive species have been shown
to significantly reduce resistance to both natural and synthetic cationic AMPs (Table 3).
Furthermore, many dlt mutants are severely impaired in their virulence in animal models
and their ability to adhere to and invade several eukaryotic cell lines in vitro, probably
due to the highly electronegative surface of the bacteria and/or altered adhesin-binding
activities [301,333] (Table 3). These features also suggest that D-alanine esterification
of TAs contributes in various ways to the ability of some bacteria to circumvent mu-
cosal and systemic antimicrobial defenses to produce systemic infections. Although the
pathogen S. pneumoniae R6 contains phosphorylcholine esters instead of D-alanyl esters
in its TAs [483], the dlt operon has been identified in its genome and confers resistance
to cationic AMPs [484]. The inactivation of dltA in these pneumococci increases bacterial
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sensitivity to antibacterial molecules (chromatin and protein granules) from neutrophil
extracellular traps (NETs) [485]. The reduction in D-alanyl esters in teichoic acids within
Lactobacillus reuteri was also shown to decrease resistance to nisin and to impair the colo-
nization of the mouse gastrointestinal tract [486].

The control of dlt gene expression varies among different Gram-positive bacterial
species because they colonize different niches and adapt to different growth and stress
conditions. For example, the dlt operon of B. subtilis is part of the σx regulon, and its
expression also depends on the global regulators SpoOA and AbrB [294,295]. Additionally,
Poyart et al. (2001) showed that the activation of the DltSR TCS depends on the amount of
D-alanine available in the cytoplasm, providing resistance to cationic peptides by increasing
cell wall density [327,328]. In S. aureus, dlt operon transcription is repressed in response to
high concentrations of Na+ as well as moderate concentrations of Mg2+ and Ca2+ in the
extracellular environment, while the dltD gene is derepressed (58-fold) by the agr locus
(accessory gene regulator) encoding the Agr quorum sensing regulator [366]. The GraRS
TCS has also been shown to control D-alanylation in S. aureus, conferring resistance to host
AMPs [367]. The regulation of the dlt operon in S. epidermidis and S. aureus is also under
the control of a three-component regulation system, ApsSX/ApsR (Aps, antimicrobial
peptide sensor), homologous to GraRS. The sensor AspX is highly specific in recognizing
and binding cationic AMPs, which subsequently induces the expression of other genes
involved in AMP resistance, including mprF and the ABC-type VraFG transporters [368,369]
(Figure 4). The regulation of the dlt operon in L. monocytogenes is controlled by the regulator
VirR belonging to the pleiotropic VirRS regulation system [334]. Finally, S. pneumoniae
upregulates the dlt locus through the CiaRH sensoring system, which senses stresses caused
by AMPs, resulting in the D-alanylation of TAs and increased inflammatory responses [387].

3.5. Role of the Cytoplasmic Membrane Phospholipids and Their Modifications in Resistance
to AMPs

The primary lipids found in the cytoplasmic membrane of bacteria consist of anionic
PG, CL (also known as diphosphatidylglycerol, synthesized by cardiolipin synthase), and
the neutral or zwitterionic PE. For example, the membrane lipid composition of E. coli com-
prises predominantly 80% PE and only 15% PG, in contrast to S. aureus, which lacks PE and
contains 58% PG and 42% CL [487]. These variations in phospholipid content may account
for the ineffectiveness of some cationic antimicrobials against bacteria. In particular, the al-
teration of CL levels within membranes has been proposed as a mechanism through which
pathogens develop resistance to cationic AMPs [488]. Molecular dynamics simulations of
the interaction between the short AMP aurein 1.2 and an anionic CL-containing lipid bilayer
showed that the structural properties of CL, including rigidity, exposed charged phosphate
groups, and the promotion of negative membrane curvature, oppose aurein 1.2’s membrane
destabilization mechanism, potentially contributing to bacterial resistance against positive
membrane curvature-dependent AMPs [12]. In fact, negative curvature-inducing lipids,
like CL and phosphatidylserine, block the lytic activity of short AMPs, like aurein 1.2,
magainin 2, polybia-MP1, LL-37, and ∆M2. This hindrance requires higher peptide-to-lipid
ratios for peptide-induced transmembrane pore formation compared to PG [12]. Further-
more, a minor amount of phosphatidic acid (anionic), lysyl-phosphatidylglycerol (LPG),
which bears a positive charge, and glycolipids are also present in bacterial membranes [489].
Other mechanisms within the cytoplasmic membrane, such as alterations in lipid charge
and membrane energetics, also contribute to bacterial resistance to AMPs.

The first observations regarding modifications of bacterial cytoplasmic membrane
phospholipids in response to environmental cues were made in P. fluorescens. It has been
shown that P. fluorescens can adapt to cationic AMPs by altering its cytoplasmic membrane.
Transitioning P. fluorescens from a phosphate-rich to a phosphate-deficient environment
led to a significant reduction in the levels of PE, PG, and CL in the cytoplasmic membrane.
This shift in membrane composition, particularly in anionic phospholipids, was followed
by the emergence of a cationic lipid component containing ornithine. The resistance of
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P. fluorescens to polymyxin B was found to be proportional to the amount of this lipid found
in the cytoplasmic membrane of these bacteria [259]. Cao and Helmann (2004) identified
the pss-ybfM-psd operon as part of the σX regulon in B. subtilis. This operon is involved in
PE biosynthesis, which, when incorporated into the bacterial cytoplasmic membrane, de-
creases its overall net negative charge, leading to a reduced affinity for cationic AMPs [294].
Other Gram-positive bacteria, such as certain Staphylococcus species, consistently express
membrane phospholipids with reduced negative charge [490]. The analysis of the consti-
tutive phospholipid composition in several of these species reveals predominantly polar
lipid profiles comprising PG and CL. Among the staphylococci tested, S. aureus stands
out for its lipid composition enriched in unsaturated menaquinones with eight isoprene
units, and LPG, a derivative of PG that exhibits considerably lower electronegativity [491].
In staphylococci, resistance to daptomycin by the alteration of membrane phospholipid
composition is postulated to change the fluidity of the membrane, thus interfering with
daptomycin binding and subsequent oligomerization. Indeed, by analyzing the action of a
membrane active AMP on giant unilamellar vesicles (GUVs), increasing LPG levels did not
correlate with reduced peptide binding by electrostatic repulsion, but with the inhibition
of intravesicular dye leakage post-binding, indicating a protective effect on membrane
integrity [492]. Considering the protective role of phospholipids and fatty acid types in
regulating membrane fluidity, it is plausible that CL contributes to preventing daptomycin
translocation upon insertion into the membrane [493]. Mutations that modify enzyme
function could potentially influence daptomycin resistance by shifting the PG to CL ratio in
the cell membrane. Supporting this notion, the genomic analysis of 33 daptomycin-resistant
Staphylococcus strains revealed associations between mutations in genes such as pgsA (in-
volved in PG synthesis) and cls2 (cardiolipin synthase) and daptomycin resistance [370]
(Figure 5G) (Table 3). Moreover, Bayer et al. (2000) demonstrated that S. aureus strains
resistant to tPMP-1 (thrombin-induced platelet microbicidal protein 1) in vitro exhibit a
notable increase in unsaturated membrane lipids compared to genetically similar strains
that are more susceptible to this cationic AMP [494].

Several Gram-positive bacteria mitigate the negative charge of PG by replacing it with
a cationic residue, lysine, forming LPG [371] (Figure 5G) (Table 3). The enzyme responsible
for this incorporation is the product of the mprF (multiple peptide resistance factor) gene,
known as the LPG synthase MprF. MprF is a bifunctional enzyme, consisting of a carboxy-
terminal cytoplasmic tail responsible for the lysinylation of PG using lysyl-tRNA as a donor
and an amino-terminal domain that facilitates “flippase” activity, transporting LPG from
the inner to the outer membrane. Additionally, a central domain appears to assist in both
lysinylation and flippase activities [495].

S. aureus responds to daptomycin by increasing its overall cell-surface charge, likely
to repel daptomycin insertion and maintain membrane integrity, a process facilitated by
mutations in mprF. These mutations, resulting in amino acid changes clustering in the
central bifunctional region that overall confer a “gain-of-function” to the enzyme [496],
lead to a gain-of-function phenotype, enhancing the synthesis of positively charged LPG.
Studies have also demonstrate that expressing mprF with daptomycin-resistant mutations
(but not WT mprF) restores daptomycin resistance in mprF mutant strains of S. aureus [497].
Additionally, inhibiting MprF protein synthesis by antisense RNA (directed against mprF
transcripts) reverses daptomycin resistance in vitro in strains with gain-of-function muta-
tions [498].

On the other hand, the exposure of S. aureus to subinhibitory levels of magainin 2
and gramicidin D prompts the bacterium to develop resistance against these peptides
in a MprF-dependent manner [372]. The inactivation of the mprF gene in S. aureus re-
sults in the depletion of membrane LPG, heightening the bacterial susceptibility to de-
fensins and PLA2 by accumulating significantly more surface-bound cationic AMPs than
WT bacteria [371,499,500]. Similarly, human neutrophils containing a high quantity of
α-defensins deactivate ∆mprF mutants of S. aureus much more rapidly and effectively than
WT bacteria [371] (Table 3).
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Homologues of MprF have also been identified and functionally characterized in
B. anthracis, L. monocytogenes, and Enterococcus sp. [290,335] (Table 3). The lysylation of
PGs in L. monocytogenes depends on the VirR response regulator, which is critical for the
virulence of this bacterium [334]. Furthermore, the genomes of E. faecalis and E. faecium
encode two paralogs, MprF1 and MprF2, where MprF2 seems to play a primary role in PG
aminoacylation in E. faecalis. The absence of L-PG from E. faecalis membrane was shown to
increase bacterial susceptibility to cationic AMPs [302,303,501] (Table 3). These findings
propose a model where the targeted action of AMPs correlates with their effectiveness in
killing bacteria and interfering with the assembly of virulence factors. Moreover, Reyes et al.
(2015) demonstrated that the deletion of the gene encoding the response regulator LiaR, a
component of the LiaFSR system controlling cell envelope homeostasis, from daptomycin-
resistant E. faecalis, altered the CL microdomain localization in the cell membrane. This
deletion led to the hypersusceptibility to daptomycin and telavancin as well as to various
AMPs of diverse origins and mechanisms of action. The observed changes in suscepti-
bility to these AMPs were associated with reduced virulence in a Caenorhabditis elegans
model [305]. Recent in vitro evolution experiments targeting daptomycin resistance un-
veiled numerous novel mutations associated with resistance, notably including mutations
in the protease-encoding ftsH gene, which were found to be enriched exclusively in a
∆mprF1 ∆mprF2 background (slowed evolution to daptomycin resistance). Moreover, it
was shown that FtsH indirectly modulates the levels of the chaperone operon repressor
(HrcA), consequently affecting the pace of daptomycin resistance evolution [304]. Interest-
ingly, Klein et al. (2008) demonstrated that membrane PGs from both the outer and inner
membranes of P. aeruginosa, when cultured in acidic conditions, undergo substitution with
alanine to form alanyl-phosphatidylglycerols (APGs). This substitution is catalyzed by
an APG synthase encoded by the PA0920 locus identified in the genome of P. aeruginosa,
which utilizes alanine tRNAs as alanine donors. The addition of alanine to PG reduces
membrane permeability and neutralizes the negative charge of PG, consequently reducing
its affinity for protamine [252,253]. Recently, an orthologue of S. aureus MprF, known as
LysX, was identified in Mycobacterium tuberculosis, suggesting its potential membership in
the aminoacyl-phosphatidylglycerol synthase family. LysX plays a critical role in Lys-PG
formation, conferring resistance against cationic AMPs and a low pH. The deletion of lysX
leads to disruptions in membrane potential, growth impairment, and defects in intracellular
replication [500]. Additionally, another LysX orthologue, named LysX2, is exclusive to
pathogenic mycobacteria and has been demonstrated to decrease the surface negative
charge under acidic conditions, enhance bacterial cell viability at lethal pH levels, and
hinder biofilm formation [502].

3.6. Active Efflux and Transport of AMPs

When the previously outlined mechanisms fail and AMPs amass on bacterial mem-
branes, they might undergo conformational changes upon interacting with phospholipids.
Upon reaching a certain threshold, they could breach the periplasm or cytoplasm via tran-
sient pore formation [503]. Even in such scenarios, bacteria retain a last resort mechanism
to eliminate AMPs, orchestrated by efflux pumps and transporters. This includes the
ability to either extrude AMPs that have crossed the outer membrane intact to prevent
their intracellular accumulation [156,223,266,268,283,504–508], or transport them intracel-
lularly for degradation by cytoplasmic proteases, such as those facilitated by the Sap
(Sensitive to Antimicrobial Peptides) transporter (for a detailed review, see [471]). Efflux
pumps are active transporters able to recognize and expel a wide array of structurally
diverse compounds, depending on their substrate specificity conferred by the presence of
one or multiple drug-binding sites [509]. These pumps not only play a role in resistance
against toxic agents, but also in regulating physiological functions and can contribute
to the formation of biofilm and virulence [510]. Efflux pumps are classified into seven
widely acknowledged categories: (i) ATP-binding cassette (ABC) superfamily; (ii) ma-
jor facilitator system (MFS) superfamily; (iii) multidrug and toxic-compound extrusion
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(MATE) family; (iv) drug/metabolite transporter superfamily (DMT), which encompasses
the small multidrug resistance (SMR) family; (v) resistance–nodulation–division (RND) su-
perfamily; (vi) proteobacterial antimicrobial compound efflux (PACE) family; and (vii) the
p-Aminobenzoyl-glutamate transporter (AbgT) family [511]. Many studies highlighted the
implication of ABC-type transporters and RND-type efflux pumps in bacterial resistance
to AMPs, while only few others reported the contribution of MFS family members to this
phenotype [510] (Tables 2 and 3).

Bacterial ABC transporters are categorized into exporters and importers [512]. Among
them, those responsible in transporting AMPs display diverse structural configurations,
such as the tripartite structures found in Gram-negative bacteria, as seen in the MacAB–TolC
efflux pump [513]. Peptide substrates recognized by MacB and its homologues typically
resemble small disulfide-bonded peptides, reminiscent of certain AMPs like mammalian
defensins. The expression of MacB-like proteins has been shown to impact the survival
of Salmonella and S. pyogenes within macrophages [265,319] (Tables 2 and 3). Notably,
the transcription of macAB is upregulated during macrophage infection and following
exposure to AMPs, a response supported by PhoPQ. The constitutive expression of macAB
enhances the survival of Salmonella in the presence of the AMP C18G [266]. Moreover, the
multifunctional inner membrane protein complex Sap transporter serves the purpose of
importing various AMPs into the cytoplasm of various Gram-negative bacterial pathogens
(Table 2). It consists of SapA, which functions as a periplasmic solute-binding protein,
along with SapB and SapC, acting as transmembrane proteins to create a pore in the inner
membrane. Additionally, SapD and SapF serve as ATPase subunits, while SapA is an
integral membrane protein likely associated with SapC [267]. SapA binds directly to AMP
and transports it from the periplasm to the SapBCDF complex for further transfer into
the bacterial cytoplasm, where the AMPs undergo degradation and their amino acids are
recycled [196,197,200,213,267,514–516].

In Gram-positive bacteria, particularly S. aureus, the GraSR TCS controls the expression
of the adjacent ABC transporter, vraFG, which, while not conferring resistance indepen-
dently, plays a vital role in sensing cationic AMPs and activating the GraR-dependent
transcription of dlt and mprF genes [376,517] (Table 3).

The efflux pumps of the RND superfamily, renowned for their polyselective nature,
have emerged as clinically significant determinants, conferring MDR in numerous bacterial
pathogens [509]. RND pumps, powered by the proton motive force (PMF) and reliant on
the pH gradient across the inner membrane, form a tripartite structure with periplasmic
adaptor proteins and outer membrane protein channels, such as TolC, to facilitate the export
of substrates from the cell [509,511,518]. The most studied RND systems involved in AMP
resistance include the AcrAB–TolC of Enterobacterales species, Mex of P. aeruginosa, Vex of
Vibrio, and Ade of Acinetobacter (Table 2). Moreover, there is increasing evidence supporting
the capability of the MtrCDE pump to recognize and extrude AMPs in various bacteria,
including N. gonorrhoeae, N. meningitidis, and H. ducreyi [197,221–224,229] (Table 2). MtrD
appears to be the only RND pump protein for which mutagenesis studies have identified
key residues crucial for the binding of an AMP, polymyxin B [222,519], suggesting that the
latter is an actively extruded substrate of this pump.

Despite its broad specificity, the involvement of AcrAB–TolC in the AMP resistance of
E. coli has been a contentious subject, as evidenced by various studies. For instance, a study
performed in 2009 concluded that LL-37, polymyxin B, and various defensins were not
substrates of AcrAB–TolC [520]. However, a subsequent study in 2010 suggested otherwise,
indicating increased susceptibility to these AMPs in acrAB-deficient mutants [521]. Warner
and Levy (2010) revealed that the discrepancies in AMP susceptibility among WT and the
acrAB and tolC mutants noted by Rieg and Warner were attributed to variations in microbi-
ological media [521], with differing ion concentrations potentially affecting AMP stability
and binding to negatively charged surfaces [522,523]. Moreover, the increased susceptibility
of tolC-deficient mutants implied the participation of other efflux pumps utilizing TolC as
a mediator for AMP efflux. Additionally, the CpxR/CpxA TCS has been demonstrated
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to upregulate the multidrug resistance cascade, enhancing E. coli resistance to a model
AMP [191]. Despite these findings, there remains a gap in the literature regarding specific
studies identifying AMP-binding sites within the AcrAB efflux pump in Gram-negative
bacteria, unlike the situation with the MtrCDE pump. The majority of research on AcrAB
centers on its interactions with antibiotics and biocides rather than AMPs [511,518,524,525].
Considering the evidence demonstrating that AcrAB–TolC can expel large molecules, such
as macrolide antibiotics (with a molecular weight smaller than 1000 Da) [526,527], it is plau-
sible that cyclic AMPs like colistin and polymyxin B, sharing a similar size (approximately
MW 1200 Da), could also be substrates of this pump. However, this hypothesis does not
apply to larger AMPs such as LL-37 (4493 Da) or defensins (3000–5000 Da) [471]. Numerous
studies utilizing isogenic acrAB mutants (lacking AcrAB proteins), loss of efflux function
mutations (possessing non-functional AcrAB proteins), and efflux pump inhibitors have
shown that AcrAB contributes to polymyxin resistance in many Gram-negative pathogens
(Table 2). Yet, it remains unclear whether this contribution arises from a direct efflux mech-
anism of the AMP itself, or indirectly through the transport of other substrates affecting the
bacterial surface charge, or alterations in membrane permeability beyond simply the loss
of efflux, which may also affect susceptibility [521,528]. This uncertainty persists due to the
physiological multifunctionality of AcrAB and its dependence on stress-induced regulators,
like CpxR, Mar, Ram, Rob, and Sox [509,518]. For instance, an acrB knockout mutant of
K. pneumoniae displayed a significantly increased susceptibility to AMPs [214], as well as a
reduced ability to cause pneumonia in a mouse model, compared to the WT strain [214]
(Table 2). In highly colistin-resistant clinical strains of K. pneumoniae, a newly discovered
unusual RND pump (H239_3064), which lacks a known periplasmic adaptive protein but
shares 49% amino acid identity with the parental AcrB, has been associated with colistin
resistance. This pump is highly induced by the CrrAB TCS, which harbors missense amino
acid substitutions in the CrrB histidine kinase, leading to a reduced susceptibility to colistin.
The deletion of H239_3064 in the crrB background resulted in an 8-fold decrease in colistin
MIC [215] (Table 2).

In addition to Klebsiella, other members of the ESKAPE pathogens, such as Enterobac-
ter asburiae and Enterobacter cloacae, partly depend on the AcrAB-TolC pump to exhibit
polymyxin heteroresistance [168]. An AcrB ortholog, KexD, similar to H239_3064 of K. pneu-
moniae, was discovered in various Enterobacter species, including E. bugandensis, and linked
to colistin resistance [529] (Table 2). KexD interacts with the predicted small transmem-
brane protein CrrC via its membrane domain. Comparable interactions were simulated
for AcrB and AcrD efflux pumps. Recently, García-Romero et al. (2024) proposed a model
in which drug efflux, enhanced by CrrC interactions with major efflux pumps, along with
lipid A modifications, regulated by PhoPQ and CrrAB, confer high-level resistance and
heteroresistance to polymyxin B in E. bugandensis. They demonstrated that KexD and CrrC
play a significant role in polymyxin B resistance and heteroresistance, with their genes
being highly overexpressed in response to this AMP. Through co-immunoprecipitation ex-
periments and proteomic analysis, they suggested that TolC and AcrA interact with KexD,
indicating that KexD likely functions with AcrA and TolC. This conclusion is supported by
the increased polymyxin B susceptibility of the acrAB and tolC mutants. Additionally, the
increased susceptibility to polymyxin B of crrCkexD and crrC mutants does not depend on
L-Ara4N modifications. Moreover, the stronger effect of crrCkexD on reducing polymyxin
B resistance suggests that both proteins have a synergistic effect [530]. Colistin heterore-
sistance in a clinical isolate of A. baumannii was also associated with the overexpression
of another RND component, AdeB, highlighting the involvement of the AdeABC system
when exposed to colistin [147] (Table 2).

In P. aeruginosa, although MexA shares a high similarity with AcrA, and MexB with
AcrB (71% and 89%, respectively), Pamp et al. (2008) reported that the adaptation of
P. aeruginosa to colistin in vitro depends on the MexAB-OprM efflux pump only in bacteria
growing as biofilms and has not been observed in the same bacteria maintained in a
planktonic state. Specifically, the induction of the MexAB-OprM pump was observed



Microorganisms 2024, 12, 1259 40 of 67

only within the metabolically active bacterial subpopulation located on the surface of
biofilms [254]. However, other efflux pumps in P. aeruginosa, such as MexCD–OprJ and
MexXY–OprM, were found ineffective in expelling polymyxin B [255]. In C. jejuni, a
mutation in the inner membrane component-encoding cmeE gene of the CmeDEF efflux
pump led to increased sensitivity to polymyxin B. This sensitivity was observed consistently
in the cmeF/cmeB double mutants, which lack the inner membrane component of the primary
efflux pump CmeABC [165] (Table 2). Furthermore, a single mutant affecting acrA and a
double mutant affecting both acrA and the membrane fusion protein-encoding mdtA gene
of the MdtABC RND efflux pump in the insect pathogen Photorhabdus laumondii exhibited
at least an 8- to 16-fold decrease in colistin and polymyxin B MICs, while resistance to
cecropins A and C was not affected compared to the parental strain. The authors suggested
that AcrAB indirectly contributes to AMP tolerance at supra-physiological concentrations,
likely by maintaining membrane integrity rather than through direct efflux, which is
probably irrelevant for Photorhabdus ability to resist AMP-induced killing in the insect
hemolymph [231,232] (Table 2).

The efflux of polymyxin B, cecropin P1, and melittinin in Yersinia enterocolitica seems to
occur through the RosA MFS efflux pump coupled to the RosB potassium antiporter, involv-
ing TolC. The RosA/RosB regulon appears to be inducible by cationic AMPs and tempera-
ture (37 ◦C), enabling bacterial adaptation to an acidic environment rich in cationic AMPs,
such as the phagolysosome [282]. Furthermore, the MFS-type emrB knockout mutation in A.
baumannii resulted in an increased susceptibility to colistin compared to the WT strain [146].
Also, the EmrAB–TolC system confers resistance to protamine in E. coli, as demonstrated
by the notable difference in survival rates between the emrB (20%) and tolC (0%) mutants
when exposed to protamine [191]. The EmrAB/TolC and AcrAB/TolC efflux systems
simultaneously contribute to E. coli protamine resistance in a CpxR/CpxA-dependent man-
ner through the activation of mar operon transcription. Moreover, CpxR/CpxA induces
the transcription of the aroK gene, enhancing the production of aromatic metabolites that
release the MarR repressor from the marO site, thereby increasing marA expression and
subsequently triggering the efflux pump-mediated multidrug resistance cascade [191].

MFS efflux systems have also been associated with cationic AMP resistance in Gram-
positive bacteria, such as staphylococci [531]. The pSK1plasmid confers the resistance of
staphylococci to numerous organic cations through an MFS pump encoded by a plasmid
gene. Kupferwasser et al. (1999) showed that transferring the qacA gene from S. aureus
to another more sensitive parental strain increases its resistance to tPMP-1 (but not to
α-defensins and protamine). Additionally, the mere presence of the qacA gene product
seems sufficient to confer this resistance, independently of the efflux mechanism itself,
especially as tPMPs do not appear to be the major substrate of this pump [375]. This
possibility suggests that the QacA protein could modify the composition of the cytoplasmic
membrane to avoid disruption by tPMP-1.

Another system relevant to AMP resistance is the ubiquitous TrkG/H–TrkA potassium
uptake system, functioning through K+ uptake coupled with H+ symport [532]. Notably, a
trkA isogenic mutant of the highly virulent marine bacterium Vibrio vulnificus displayed
increased susceptibility to protamine and polymyxin B compared to the WT. Furthermore,
infection trials revealed reduced virulence in both normal and iron-treated mice following
the intraperitoneal or subcutaneous administration of this mutant [279] (Figure 5A).

3.7. Alteration of Membrane Energetics and Resistance to AMPs

The activities of several types of AMPs are affected by the transmembrane poten-
tial [533]. Some microbial pathogens utilize the regulation of their energy status by altering
membrane energetics as a strategy to evade the action of AMPs. For instance, type II
defensins show significantly lower activity against organisms with an inherently reduced
transmembrane potential ∆ψ (due to respiration deficiency), or those capable of adapting
to such conditions. Therefore, S. aureus strains with constitutively reduced ∆ψ demonstrate
decreased sensitivity to specific AMPs [534]. Furthermore, cytochrome c oxidase modulates
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the transmembrane potential in C. jejuni, affecting membrane permeability to polymyxin
B [164]. Disulfide reductase has also been implicated in AMP resistance in S. enterica [535].

3.8. Cellular Differentiations and Resistance to AMPs

Some bacteria exhibit susceptibility to AMPs in one morpho-physiological state while
demonstrating resistance in another. This difference in susceptibility is attributed to varia-
tions in behavior between the planktonic and aggregated forms of bacteria. Notably, the
development of small colony variants (SCVs) and the formation of biofilms play signifi-
cant roles in this resistance mechanism [254,536]. These phenomena, observed in various
pathogenic bacteria, directly or indirectly contribute to their ability to resist the antimicro-
bial effects of AMPs, posing challenges for effective treatment strategies.

3.8.1. Small Colony Variants and Niche-Specific Resistance to AMPs

Small colony variants (SCVs) are a subset of bacteria characterized by slow growth
and distinct phenotypic and pathogenic features under environmental stress. They exhibit
unique colony morphology and biochemical traits, making their identification challenging.
Clinically, SCVs demonstrate reduced susceptibility to antimicrobial agents compared to
typical bacterial strains and may contribute to latent or recurrent infections [536]. Numerous
studies have delved into the resistance of S. aureus SCVs against AMPs. The SCV phenotype
in S. aureus can be triggered within the intracellular microenvironment at a frequency
of 10−3, significantly higher than the spontaneous rate of less than 10−7, aiding in the
evasion of the host immune response [537]. There is evidence indicating that reductions
in cellular energetics detrimentally affect the effectiveness of AMPs relying on ∆ψ for
their mechanism of action or target affinity. Proctor et al. (1998) illustrated how S. aureus
reversibly adopts this advantageous strategy to survive within the microenvironment of
vascular endothelial cells by forming SCV colonies [537–539]. These variants typically
exhibit atypical morphology, electron transport defects, and diminished envelope affinity
for cationic antimicrobial agents. Mutants of S. aureus strains with reduced ∆ψ display
significantly higher resistance to AMPs compared to their parental counterparts [538,539].
Furthermore, clinical S. aureus strains sensitive to tPMP1 exhibit slower multiplication
rates in cardiac tissues and splenic abscesses, whereas no discrepancy in multiplication
is observed at the renal level. This discrepancy is attributed to the relatively diminished
protective role of tPMP1 in environments with high osmotic forces, such as the kidneys [35].
A similar mechanism is observed in P. aeruginosa, frequently infecting tissues where salt
transport dysfunctions elevate the local ion content, particularly in the respiratory tract
of cystic fibrosis patients, where airway fluids contain abundant salts and AMPs [35].
Such observations underscore the risk of certain pathogens exploiting specific tissues or
physiological microenvironments to evade the action of AMPs.

Additionally, Samuelsen et al. (2005) demonstrated that S. aureus SCVs exhibit acquired
resistance to lactoferricin B, primarily due to metabolic variations. Hemin, menadione, or
thymidine SCV hemB auxotrophic mutants of S. aureus have been found to be more suscep-
tible to AMPs compared to bacteria having one of these components [540]. Furthermore,
Glaser et al. (2014) have shown that clinically derived S. aureus SCVs as well as a hemB
auxotroph S. aureus SCVs are less susceptible to various human skin-derived AMPs, such
as human β-defensin and LL-37 [541].

3.8.2. Biofilm Formation and Resistance to AMPs

Some AMPs, such as the human peptide LL-37 and a novel synthetic cationic pep-
tide named 1037, comprising just nine amino acids, can hinder biofilm formation even
at concentrations lower than their MIC. The 1037 peptide effectively hindered biofilm
formation by more than 50%, notably against the Gram-negative pathogens P. aeruginosa
and B. cenocepacia, as well as the Gram-positive bacterium L. monocytogenes [542]. However,
bacterial implantation into biofilms triggers changes in gene expression, resulting, among
other effects, in a greater resistance to antimicrobial agents compared to individual bacteria.
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Mechanisms behind biofilm-mediated AMR resistance involve multiple factors simulta-
neously, such as shielding by the polysaccharidic extracellular polymeric substance (EPS),
nutrient deficiency and altered environment, the formation of persister cells, extracellular
DNA release, stress response, and enhanced efflux pump activity [543–546]. The biofilm
environment also increases the mutation rate and exchange of genetic material, enabling
the transfer of resistance traits on mobile genetic elements [547,548].

P. aeruginosa produces significant amounts of a highly anionic exopolysaccharide
known as alginate. Friedrich et al. (1999) purified alginate and demonstrated its interference
with the activity of cationic AMPs [549] (Table 2). Alginic acid entraps bacterial cells,
contributing to the formation of biofilms involved in the development and persistence of
several chronic bacterial infections in animals and humans, particularly in the lungs during
cystic fibrosis [550,551]. The fact that the activity of several cationic AMPs is inhibited in the
presence of mono- and divalent cations could enhance the protective role of alginate [35].
However, S. epidermidis produces an atypical anionic extracellular polysaccharide called
PIA (polysaccharide intercellular adhesin), which repels AMPs secreted onto the skin
(except for the anionic dermcidin) in the presence of low saline concentrations (Table 3).
However, it enables resistance to dermcidin only in salt-rich microenvironments, such as the
skin [378]. A study performed by Begun et al. (2007) examined the role of PIA in protecting
against C. elegans immune system and the production of lethal infections [552]. Induced
resistance factors in biofilms include those resulting from induction by the antimicrobial
agent itself [553]. The slow growth (quiescence or dormancy) of the bacteria inside biofilms,
particularly in the deeper layers, likely stems from nutrient and oxygen deficiency, leading
to an extremely reduced metabolic state. This reduced metabolic activity renders the
bacteria less receptive to antimicrobial agents compared to metabolically active ones [554].
Efflux pumps are highly active in biofilms, essential for their formation and/or maintenance,
and responsible for their multiple antibiotic tolerance/resistance [555,556]. Pamp et al.
(2008) reported that the adaptation of P. aeruginosa biofilms to colistin in vitro occurs
through the active expulsion of this peptide via the MexAB-OprM efflux pump. This
mechanism is exclusively induced within biofilms and has not been observed in the same
bacteria maintained in the planktonic state. Specifically, the induction of the MexAB-OprM
pump has been observed only in the metabolically active bacterial subpopulation located
on the biofilm surface [254]. Conversely, Folkesson et al. (2008) demonstrated that biofilm
formation in E. coli confers a high tolerance to colistin on cells within the biofilm structure.
However, this protection is conditional, depending on the structural and architectural
organization of the biofilm, as well as the induction of specific tolerance mechanisms (not
by colistin itself) involving the BasS/BasR regulatory system (Salmonella pmrAB) controlling
the expression of the ybf operon (Salmonella pmrHFIJKLM) [557]. Furthermore, in the
extracellular polysaccharide matrix of P. aeruginosa biofilms, much like in biofilms formed
by other Gram-positive and Gram-negative bacteria, there is extracellular DNA (eDNA)
among other components, likely released by bacteria or dead immune cells [558]. This
eDNA (negatively charged) plays a role in shielding cationic AMPs [559]. When present
at physiological concentrations, eDNA causes bacterial lysis by chelating the cations that
stabilize bacterial LPS and cell membranes. Therefore, the genomic DNA released in sub-
inhibitory quantities by lysed bacteria in the biofilm creates a cation-deficient environment.
This deficiency leads to the induction of resistance to cationic AMPs (colistin and polymyxin
B) via the activation of the PhoPQ and PmrAB TCSs [560].

Many studies have reported associations between biofilms and swarming motility [263,561].
Notably, the strong resistance to colistin and polymyxin B of swarming bacteria of S. Ty-
phimurium has been linked to the induction under “swarming”-promoting conditions of
the pmrHFIJKLM operon involved in polymyxin B resistance [562].

3.9. Manipulation of Host Cell AMP Production

In the absence of infections, the epithelia of higher animals and leukocytes produce
small quantities of AMPs. However, this production is strongly induced in response to
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bacterial structures such as LPS and teichoic acids recognized by Toll-like receptors and may
involve the NF-κB-dependent signaling pathway [563–565]. Indeed, it has been demon-
strated that the LPSs of several bacteria, such as E. coli, S. Typhimurium, and P. aeruginosa,
are capable of bypassing the induction of genes encoding AMPs [566]. Moreover, S. pyogenes
is a very weak inducer of AMP production [320]. This observation suggests that S. pyogenes
avoids recognition receptors or actively represses the induction pathway of β-defensin-2.
An interesting study of the human gastrointestinal pathogen Shigella dysenteriae has re-
vealed that the expression of LL-37 and β-defensin-1 is transcriptionally repressed in the
early stages of infection. This plasmid-encoded repression was first observed in biopsies
from patients with bacillary dysentery and then confirmed by experiments on cell cultures
of monocytes and epithelial cells (Table 2). On the other hand, Arbibe et al. (2007) showed
that virulent strains of S. flexneri repress the transcription of several genes encoding cationic
AMPs of innate immunity (in particular, β-defensin and HBD-3, which are specifically
active against S. flexneri) following the in vitro infection of polarized human intestinal
cells [273]. This repression depends on the regulator MxiE of S. flexneri known to activate
more than 10 genes encoding effectors of the type III secretion system (TTSS), including
OpsF and OspG, which target signaling pathways via NF-κB and MAPK [273] (Table 2).
The inhibition of cationic AMP production via MxiE has been confirmed in vivo at the
transcriptional and translational levels in a murine model of human intestinal xenotrans-
plantation [567]. Moreover, Krishnenduno et al. (2008) showed that the enteric pathogens
V. cholerae and enterotoxigenic E. coli (ETEC) repress the expression of LL-37 and HβD-1 in
intestinal epithelial cells while acting on signaling pathways known in eukaryotes. Indeed,
cholera toxin (CT) and heat-labile toxin (LT), which are the two major virulence proteins
of V. cholerae and ETEC, respectively, are primarily responsible for these repressions both
in vitro and in vivo. CT represses the expression of AMPs at the transcriptional level by
activating several intracellular signaling pathways involving protein kinase A (PKA), ERK
MAPK, and Cox-2 [192] (Table 2).

Contrary to the inhibition of AMP production, another bacterial survival strategy
may involve the stimulation of host mechanisms that counter-regulate the response by
AMPs. Such a process has been demonstrated in the lungs of patients with cystic fibrosis,
where the causative pathogen P. aeruginosa stimulates the accumulation of host cysteine
proteases (cathepsins B, L, and S) in the respiratory tract fluids. These proteases degrade and
inactivate human β-defensins 2 and 3, thereby promoting chronic infection and bacterial
colonization characteristic of the disease [257].

Ureaplasma spp. are commonly found in the urogenital tract of adults and are asso-
ciated with serious infections. Infections with U. parvum induce modifications in histone
H3K9, particularly a decrease in histone acetylation. This alteration is linked to a down-
regulation of AMP gene expression, enabling bacteria to evade the host immune response,
thereby leading to chronic infection [274] (Table 2). A similar mechanism involving histone
modification, including the phosphorylation of H3 and deacetylation of H4, is observed
in L. monocytogenes. This modification is induced by the Listeria toxin listeriolysin O in a
pore-forming-independent manner. Comparable mechanisms are employed by Clostrid-
ium perfringens and S. pneumoniae, which utilize perfringolysin and pneumolysin, respec-
tively [568]. Moreover, Chlamydia inhibits NF-κB activation by blocking the degradation
of the NF-κB retention factor, IκBα, and preventing the nuclear translocation of NF-κB,
ultimately repressing NF-κB transcription [569].

4. Conclusive Remarks and Future Directions

AMPs offer great potential in combating bacterial infections, yet they encounter signif-
icant challenges due to the easy development of resistance mechanisms, even to last-resort
treatment options against MDR strains such as colistin. It is noteworthy that both Gram-
negative and Gram-positive bacteria, whether pathogenic or commensals, have adopted
various alterations or remodeling of their envelope structures to counteract AMP-mediated
killing. As illustrated in this review, these cell surface modifications are evident across
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a wide range of bacterial species, including members of Enterobacterales, P. aeruginosa,
Neisseria sp., Bacillus spp., Lactobacillus spp., Streptococcus spp., Staphylococcus spp., L. mono-
cytogenes, and even Mycobacterium spp. These examples, along with other non-associated
cell wall modifications, underscore the convergence of resistance mechanisms to AMPs
by the common selective pressure exerted by these peptides. Therefore, modifications of
bacterial cell surfaces appear to be the most conserved and effective resistance mechanism
to AMPs. This is supported by numerous experimental observations indicating that sponta-
neous mutations and those introduced in structural and regulatory genes involved in these
processes lead to the most in vitro AMP-hypersensitive phenotypes, along with the severe
attenuation or abolition of virulence in various animal models. Understanding the intricate
molecular pathways employed by bacteria to evade AMPs is paramount in developing
effective strategies to combat resistance. Interdisciplinary approaches, such as genomics,
metabolomics, structural biology, and bioinformatics, offer promising avenues to unravel
the complexity of AMP resistance mechanisms.

From the limited research conducted to examine the speed of AMP resistance emer-
gence and how resistance mechanisms would affect the fitness and virulence of mutants,
it is well established that acquiring such resistance through mutation is not challenging
for bacteria, with multiple facilitating mechanisms characterized to date. Some of these
mechanisms have a minimal impact on bacterial fitness, thanks to compensatory mutations
that can mitigate the associated fitness cost. These resistance mutations often confer cross-
resistance to human AMPs, posing concerns about the therapeutic use of AMPs potentially
selecting for mutants showing broad cross-resistance to diverse AMPs. This suggests that
the routine clinical use of AMPs could select for resistant strains capable of evading the
immune system. Researchers have emphasized the need for careful study and monitoring
as AMPs are increasingly used in clinical settings. Therefore, thorough investigation and
monitoring are essential to understand the implications of AMP resistance and to ensure
their effective clinical use. Moving forward, novel therapeutic interventions should not
only target bacterial resistance mechanisms but also strive to minimize the likelihood of
resistance development through innovative peptide design and delivery strategies. Addi-
tionally, exploring alternative approaches, such as combination therapies with conventional
antibiotics or AMP adjuvants, could enhance antimicrobial efficacy while mitigating the
risk of resistance emergence.

Finally, fostering collaborative efforts across scientific disciplines is crucial to staying
ahead of evolving resistance mechanisms and ensuring the continued efficacy of AMPs in
combating bacterial infections. By embracing innovative future perspectives and leveraging
synergistic approaches, we can enhance our arsenal against AMP resistance, ultimately
advancing the fight against infectious diseases.
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