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Navier–Stokes Equations
Mathematics of Fluids in 2- and 3-Space:

Dirichlet Boundary Conditions plus Asymptotic Analysis

Edoardo Niccolai

Abstract. Synopsis of Navier–Stokes equations (incompressible version) in 2- and 3-dimensional
space with reference to Dirichlet boundary conditions: homogeneous and non-homogeneous case.
Asymptotic analysis of a Navier–Stokes flow.

Keywords: Dirichlet boundary conditions (homogeneous and non-homogeneous case), incom-
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1. Incompressible Navier–Stokes Equations in 2- and 3-Space of Homogeneous
Fluids

The Navier–Stokes equations [13] [24] [25] [26] [27] are analyzed according to Lipschitz domain
[12] and Dirichlet boundary conditions [5], both when homogeneity is present (Sec. 1.1.1) and
when it is absent (Sec. 1.1.2).

1.1. Lipschitz Domain and No-slip Dirichlet Boundary Conditions

The no-slip condition is for a condition which states that a viscous fluid have zero (average flow
or bulk) velocity at a solid boundary.

The subject-matter addressed here is an ideal fluid with a pressure, or mathematically a scalar
function P(x, t), so that, for a certain unit normal N̂ , a force of stress P(x, t)N̂ exerted on the
surface ∂Ω is imagined per unit area at x ∈ ∂Ω at time t. Surface force is

´
∂Ωt

τs(N̂)dy, where τs
is the stress in the fluid.

1.1.1. The Homogeneity Case

Theorem 1.1 (Part I). Let

φl ∈ H−1(Ω), Ω ∈ Rn, n = 2, 3, (1)

be a Lipschitz-type function, where H is the Hilbert space [14] [15]. Then, for the flow velocity
vector υ(x, t) in Rn and the fluid pressure P, there is a pair

(υ,P) ∈ H−1(Ω)× L2
0(Ω) (2)

that is the solution of the Navier–Stokes problem

−div(∇υ)
Re + (υ∇)υ +∇P = φl

div υ = 0

}
in Ω ∈ Rn, (3a)

υ|∂Ω = 0, ∂Ω × (0, T ) = ]0, T [, (3b)
satisfying ∥∇υ∥L2 ⩽ Re∥φl∥H−1 ,

∥P∥L2 ⩽ KΩ

(
∥φl∥H−1 + (Re∥φl∥)2H−1

)
,

(4a)

(4b)

where
Re = υℓc

ν is the Reynolds number (a dimensionless quantity), in which ℓc is the characteristic
length of the device and ν is the kinematic viscosity,

div(∇υ) = △ υ, with the Laplacian △,
∇P is the pressure gradient,
L2 is the Hilbert space with respect to the Lebesgue measure [8], and
KΩ is a convenient value.

Proof. The demonstration will be divided into various parts.
(α) Let к : Rn → Rn be a continuous function, such that there exist
(i) a function ρ representing the density (field) of the fluid,
(ii) an equality к(ζ) = ξj , with

к(ζ) =
∥∇υn⩾1∥2L2

Re
+

ˆ
Ω∈Rn

(υn∇) υn×υndx−⟨φl, υn⟩H−1, H1
0
⩾

∥∇υn∥2L2

Re
−∥φl∥H−1∥υn∥H1

0
, (5)

and

ξj =

(
1

Re

ˆ
Ω∈Rn

∇υn

∣∣∣∣ ∇ьjdx+

ˆ
Ω∈Rn

(υn∇) υn × ьjdx− ⟨φl, ьj⟩H−1, H1
0

)
1⩽j⩽n

. (6)

The function

υn
eqv
==

 n∑
j=1

ζjьj

 ∈ Sn, (7)
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where Sn is a vector space of finite dimension resulted from ьj , is the solution of

∇υn
Re

∣∣∣∣ (∇яndx+

ˆ
Ω∈Rn

(υn∇) υn × яndx = ⟨φl, яn⟩H−1, H1
0

)
яn∈Sn

. (8)

If we consider the fact that
∥υn∥H1

0
= ∥∇υn∥L2 , (9)

it is easy to understand that к(ζ) ⩾ 0 as long as

∥υn∥H1
0
⩾ Re∥φl∥H−1 . (10)

Then, the focal equality, which meets the requirement of (8),

к(ζ) = 0 (11)

is given by
|ζ|Rn = ρ > 0. (12)

From Eqq. (5) plus (11) we can extract an inequality estimate:

∥∇υn∥L2 ⩽ Re∥φl∥H−1 . (13)

The latter is connected to the next step.
(β) Take a Banach space [1], say (B, ∥ · ∥), and a sequence, say {x}n, of elements of B and of Ḃ,

with two types of convergence:
(i) weak process of converging for {x}n ∈ B,
(ii) weak-⋆ process of converging for {x}n ∈ Ḃ.

It turns out that ∥x∥B ⩽ lim inf
n→∞

∥xn∥B,

∥x∥
Ḃ
⩽ lim inf

n→∞
∥xn∥Ḃ.

(14a)

(14b)

The evidence of (14) is easily achievable. Let ϵ be a positive value. If {x}n did not converge
weakly, we would have ∣∣∣⟨φl, xfn − x⟩

Ḃ, B

∣∣∣ ⩾ ϵ, (15)
so

n → ∞

{〈
φl, xf(яn) − x

〉
B
→ 0,〈

φl, xf(яn) − x
〉
Ḃ
→ 0,

(16a)

(16b)
which is in contradiction with the main assumption.

(γ) Inequalities (13) and (14) lead directly to

∥∇υ∥L2 ⩽ lim inf
n→∞

∥∇υr∥L2 ⩽ Re∥φl∥H−1 . (17)

(δ) Moving from Eq. (8), and using a Hilbert space H∗ ⊂ Lp(Ω), p = 6, we can fix that
υ ∈ H1

0(Ω) is the ad hoc solution for
1

Re

ˆ
Ω∈Rn

∇υ

∣∣∣∣ (∇яdx+

ˆ
Ω∈Rn

(υ∇) υ × яdx = ⟨φl, я⟩H−1, H1
0

)
яn∈H∗

, (18)

from which 〈
[:(υ∇)υ − Reφl +△ υ

Re
:], я

〉
H−1, H1

0

= 0. (19)

(ε) Suppose a function Z meeting the requirement

divZ|Ω = 0,

for which
⟨φl, Z⟩

H−1, H1
0
= 0. (20)

Then there is a function P ∈ L2
0(Ω) such that

φl = ∇P. (21)

The demonstration is buried in the book of G. de Rham [19] = [20], so we refer to the Swiss.
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From this proposition we conclude that here too there exists a P ∈ L2
0(Ω) such that

[: · · · :] = ∇P, (22)

and we are done.
□

Scholium 1.1 (Two clarifications).
(1) Why the Hilbertian set H∗ in (δ) is embedded into a Lp space having p = 6? Because, in

the dimensionality under discussion, it has been established that n ⩽ 3.
(2) In Eq. (19) I make use of the repeat sign [: · · · :] derived from musical notation for the

umpteenth time.

Theorem 1.2 (Part II). Let

φl ∈ L2(Ω), C1,1(Ω) ∈ Rn, n = 2, 3. (23)

Then
(υ,P) ∈ H2(Ω)× H1(Ω), (24)

meets
−div(∇υ)

Re +∇P = φl − (υ∇) υ

div υ = 0

}
in Ω ∈ Rn, (25a)

υ|∂Ω = 0, ∂Ω × (0, T ) = ]0, T [. (25b)

Proof. It is about proving that
υ ∈ Lk<∞(Ω), k < +∞. (26)

(1) If n = 2, the demonstration is a consequence of an instance of Sobolev compact embedding;
see the Sobolevian spatial structures [22] [23]. Let

W 1,p(Ω) ⊂ Lk(Ω) (27)

be a W -embedding; take for granted that

1 ⩽ k < s, (28)

on the basis of {
1 ⩽ p < +∞,

1 ⩽ k ⩽ s,

(29a)
(29b)

where s is so defined:
(i) 1 ⩽ s < +∞, for p = n,
(ii) s = +∞, for p > n,
(iii) s(p− n) = −np, for p < n.

It is effortlessly see that
H1(Ω) ⊂ Lk<∞(Ω). (30)

(2) If n = 3, the above gives
H1(Ω) ⊂ Lk(Ω), k = 6, (31)

from which {
∇υ ∈ L2(Ω),a

(υ∇) υ ∈ L
3
2 (Ω).

(32a)

(32b)
Regarding the regularity problem (25), for an increasing deduction procedure, it can be inferred

that

υ ∈


W 2, 32 (Ω),

W 1,3(Ω),

Lk<∞(Ω),

(33a)

(33b)

(33c)

a It is this (for the sake of completeness):
[
L2(Ω)

]3×3.
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and so

(υ∇) υ ∈ Lp<2(Ω) (34)

plus

υ ∈

{
W 2,p<∞(Ω),

L∞(Ω).

(35a)
(35b)

We are done. Which allows us to state that the ∈-relation (24) is true (i.e. verifiable); and, if
we generalize,a that

φl ∈ L(2<p<∞)(Ω), (36)

therefore

(υ, P) ∈ W 2,p(Ω)×W 1,p(Ω) ⊂

{
Lk(Ω),

C0,α( “Ω),

(37a)

(37b)

once it is made clear that
α ∈]0, 1] is the Hölder exponent, and
“Ω denotes a non-empty (measurable) set.

□

1.1.2. The Non-homogeneity Case

The Navier–Stokes problem with non-homogeneous Dirichlet condition is the same as that in
Eq. (3) except for sub-Eq. (3b), which should be replaced by

υ|∂Ω = л,

presuming that л is some function, i.e.

−div(∇υ)
Re + (υ∇)υ +∇P = φl

div υ = 0

}
in Ω ∈ Rn, (38a)

υ|∂Ω = л. (38b)

Theorem 1.3. Let w be the outward unit normal vector (a vector of unit length which pointis
outward, away from the surface ∂Ω of Ω), and τ ∈ ∂Ω some smooth tensor field. And we impose
γ
(c)
1 . . . γ

(c)
k as the connected components of the boundary ∂Ω. Here too Lipschitz domain Ω is

replicated. Then one has

K(1,2)Ω∈Rn > 0, n = 2, 3,

so the pair

φl ∈ H−1(Ω), (39)

τ ∈ H
1
2 (∂Ω), (40)

satisfy
ˆ
∂Ω

(л)wdτ = 0, (41a)

k∑
j=1

ˆ
γ
(c)
1⩽j⩽k

(л)wdτ ⩽
K1,Ω

Re
. (41b)

a Cf. the membership relation (23).
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The solution to the non-linear problem is given by

0 =

ˆ
Ω∈Rn

tr (∇υ) dx

=

ˆ
Ω∈Rn

div υdx

=

ˆ
∂Ω

(л)wdτ. (42)

The solution will be
(υ,P) ∈ H1

0(Ω)× L2
0(Ω), (43)

which goes to solve

∥∇υ∥L2 ⩽ K2,Ω

(
Re∥φl∥H−1

)
+K2,Ω∥л∥

H
1
2
e
K2,Ω

(
Re∥л∥

H
1
2

)
. (44)

Proof. Let ζ be a non-negative R-number,

X⃗ ∈ H1(Ω)

a vector field, and
ь ∈ H1

0(Ω)

a certain quantity, such that
∥X⃗ ⊗ ь∥L2 ⩽ ζ∥ь∥H1

0
,

∥∇X⃗∥L2 ⩽ KΩ∥л∥
H

1
2
e

(
(KΩ)

/
ζ∥л∥

H
1
2

)
.

(45a)

(45b)

Here the fine eye can see a resurrecting of Hopf’s [6] ruminations; thence it will be allowed to
gloss over the demonstrative passages about the inequalities in (45).

For notational reasons, let us add this substitution-equivalence: X⃗
eqv
== χ, with which we go to

write
−△ ь

Re + (χ̃∇)ь + (ь∇)χ̃+ (ь∇)ь +∇P = φl +
△ χ̃
Re − (χ̃∇)χ̃

div ь = 0

ь = 0

 in Ω ∈ Rn. (46a)

What is needed now is to set up an energy estimate for the problem in question, which is
equivalent to finding an estimate for

Ε(χ̃, ь) =
ˆ
Ω∈Rn

(
(ь∇)χ̃

)
ь dx+

ˆ
Ω∈Rn

(
(χ̃∇)ь

)
ь dx, (47)

=

ˆ
Ω∈Rn

(χ̃⊗ ь)
∣∣∣∣ ∇ь dx−

ˆ
Ω∈Rn

(ь ⊗ χ̃)

∣∣∣∣ ∇ь dx, (48)

given an Ε-function.
We define Y⃗ ∈ H1(Ω) to be a vector field in order that

−△ Y⃗ +∇ϝ = 0

div Y⃗ = 0

}
in Ω ∈ Rn, (49a)

Y⃗ =

(
1

|γ(c)
j |

ˆ
γ
(c)
1⩽j⩽k

(л)wdτ

)
w on γ

(c)
1⩽j⩽k, (49b)

choosing ϝ ∈ L2(Ω) as a scalar field.
Via (45) one gets |Ε(X⃗, ь)| ⩽ 2ζ∥∇ь∥2L2 , and thru (41) one achieves∣∣∣Ε(Y⃗, ь)∣∣∣ ⩽ 2∥ь∥L6∥Y⃗ ∥L3∥∇ь∥L2 ⩽ KΩ∥Y⃗ ∥L3∥∇ь∥2L2 ⩽ KΩ∥Y⃗ ∥H1∥∇ь∥2L2 ⩽

∥∇ь∥2L2

4Re
. (50)
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The multi-Eq. (46) is nothing other than the Navier–Stokes problem transcribed in such a way
as to produce a homogeneous specificity about the Dirichlet boundary condition. An estimate on
such an equational set takes this form of inequalities,

∥∇ь∥2L2

Re
⩽

(
8ζ (Re + 1)

4Re

)
∥∇ь∥2L2

+ [:

(
∥φl∥H−1 + [:

∥∥∥△ χ̃
Re − (χ̃∇)χ̃

∥∥∥
H−1

:]

)
:] ∥∇ь∥L2 ⩽ 2Re [: · · · :], (51)

which provide a solution to the problem of this Section. From the formalism combination (equation
plus inequality) of (41) and from the Hopfian inequalities (45), it can be concluded that the
non-equal relation (44) is (mathematically) true by

[: · · · :] ⩽ ∥χ̃⊗ χ̃∥L2 +
∥∇χ̃∥
Re

⩽ KΩ

(
∥л∥

H
1
2

/
Re
)
e
KΩ∥л∥

H
1
2
Re
. (52)

□

1.2. Asymptotic Analysis (of a Navier–Stokes Flow)

Let us set the problem with this set of equations,

∂υ(t)t→+∞
∂t − div(∇υ)

Re + (υ∇)υ +∇P = φl

div υ = 0,

}
in Ω ∈ Rn, (53a)

υ|∂Ω , (53b)
υ|t=0 = υ(0) = υ0, (53c)

dictating that there exists a solution

(υ,P)∞ ∈ H1
0(Ω)× L2

0(Ω). (54)

We can thereby better specify the details for the asymptotic aspect. Putting{
υ + υ∞

eqv
== ь,

P
eqv
== P∞ + p,

(55a)

(55b)

the equational set (53) looks like this:

(85)



∂ь(t)
∂t

− div(∇ь)
Re

+ (ь∇)ь + (ь∇)υ∞ + (υ∞∇)ь +∇p = 0, t → +∞,

div ь = 0,

ь = 0,

ь(0) eqv
== (υ0 − υ∞), t = 0.

(56a)

(56b)
(56c)

(56d)

Dimensionality represents a crossroads.
If n = 2, then we have a unique global weak solution regardless of the initial data.
If n = 3, there is more than one global weak solution. (Strong solutions may not be global).

1.2.1. Stability of a 2-Space Stationary Solution

Let us take a closer look at the 2-dimensionality.

Theorem 1.4. Let
φl ∈ H−1(Ω), Ω ∈ R2, (57)

be a Lipschitz-type function, and the ∈-relation (54) be the steady solution of (38). The unique
global weak solution (υ,P) of (53) meets

∥∇υ∞∥L2 ⩽ KΩ

/
Re

{
∥∇υ(t)−∇υ∞∥L2 ⩽ KΩ∥υ0 − υ∞∥L2 ,

∥υ(t)− υ∞∥L2 ⩽ ∥υ0 − υ∞∥L2 ,

(58a)
(58b)

with exp (−ζt), t ⩾ 1, in (58a), and exp (−ζt), t ⩾ 0, in (58b), for each initial data υ0 ∈ H(·).
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Proof.
(α) Let т(ϖ, υ, ь), ϖ, υ, ь ∈ H1

0(Ω), be a trilinear form on H1
0(Ω)× H1

0(Ω)× H1
0(Ω), so as to

|т(ϖ, υ, ь)| ⩽ KΩ∥ϖ∥
4−n
4

L2 ∥ϖ∥
n
4

H1∥υ∥
4−n
4

L2 ∥υ∥
n
4

H1∥ь∥H1 . (59)

From (56), with the help of Young’s inequality [32], one finds

1

2
·
d
(
∥ь∥2L2

)
dt

+
∥∇ь∥2L2

Re
⩽ KΩ∥∇υ∞∥L2∥ь∥L2∥∇ь∥L2 , (60)

d

dt
∥ь∥2L2 +

∥∇ь∥2L2

Re
⩽ KΩ

(
Re∥∇υ∞∥2L2∥ь∥2L2

)
. (61)

To be more precise, the non-equality (60) is gained by multiplying the equational group (56) by
ь, whereas the non-equality (61) is reached by Young’s inequality.

(β) Let λ1 be the first eigenvalue of the Stokes operator. The Poincaré inequality [16]
∥υ∥2H ⩽

∥∇υ∥2L2

λ1
,

∥∇υ∥2L2 ⩽
∥
∑

j⩾1(λυь)j∥2L2

λ1
,

(62a)

(62b)

comes in handy to spell out that
d

dt
∥ь∥2L2 +

1

Re
K1,Ω − KΩ · Re∥∇υ∞∥2L2︸ ︷︷ ︸

KΩ(Re∥∇υ∞∥∞)2<K1,Ω

∥ь∥2L2 ⩽ 0,

d

dt
∥ь∥2L2 + 2ζ∥ь∥2L2 ⩽ 0.

(63a)

(63b)

Ergo ∥ь(t)∥2L2 ⩽ ∥ь0∥2L2 with exp (−2ζt).
□

1.2.2. Stability of a 3-Space Stationary Solution

Let us analyze the 3D issue.

Theorem 1.5. Let
φl ∈ H−1(Ω), Ω ∈ R3, (64)

be a Lipschitz-type function, and

(υ,P)∞ ∈ H1
0(Ω)× L2

0(Ω) (65)

be a steady solution of (38). The unique global strong solution (υ,P) of (56) and hence of (53)
meets {

∥∇υ(t)−∇υ∞∥ ⩽ ∥∇υ0 −∇υ∞∥
}
L2

exp (−ζt), (66)

t ⩾ 0, admitting that
∥∇υ∞∥L2

∥∇υ0 −∇υ∞∥L2

}
⩽ KΩ

/
Re. (67)

Scholium 1.2. The unique local strong solution of (56) is easier to prove. It is set on an R-domain
of C1,1(Ω), with φl ∈ L2

loc(·), where · is for [0,+∞[, L2(Ω) in R3. The result provides that

for some М > 0


υ ∈ C0(·) ∩ L2

loc, where · = [0,М [,H∗,

P ∈ L2
loc(·), where · = [0,М [,H1(Ω),

dυ
dt ∈ L2

loc(·), where · = [0,М [,H.

(68a)

(68b)

(68c)

Proof. This time too the demonstration will be divided into several steps.
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(α) We designate △s to be the (positive self-adjoint) Stokes operator, which unbounded and it
behaves like the Laplace operator △ = ∇2 = ∇ ·∇, when △s is investigated in relation to Dirichlet
boundary conditions. If one sets out that

ь ∈ Ds(△s) =
{
ь ∈ H2(Ω,R3) | div ь|Ω = 0 and ь|∂Ω = 0

}
, (69)

where Ds is the domain of the Stokes operator, and

[:
{
ь ∈ H1(Ω,R3) | div ь|Ω = 0 and ь|∂Ω = 0

}
:] (70)

the Stokes operator can be summarized as{
△s ь = −πl △ ь = −△ ь,
Ds : ⊂ [: · · · :] −→ [: · · · :].

(71a)
(71b)

And here a linear operator was introduced ad hoc. This is the Leray projector πl [9] [10], which is
(i) the orthogonal projection from L2(Ω) onto H,

L2(Ω)
πl−−−→ H,

whose equational reference comes from (71a),
(ii) or (inasmuch as Ds possesses some smoothness properties) a projection in H1 onto itself,

∥πl(ь)∥H1 ⩽ KΩ∥ь∥H1 ,

as reflected in (71b).
From the foregoing, it can be deduced that

⟨△s ь, ϖ⟩ = −
ˆ
Ω∈R3

πl △ ь(ϖ) = −
ˆ
Ω∈R3

△ ь(ϖ) = −
ˆ
Ω∈R3

ь · △ϖ = ⟨ь △s, ϖ⟩ . (72)

(β) From (56) and (59), by making use of the operator (71), one builds∥∥∥∥△s ь
Re

∥∥∥∥2
L2

+
1

2
·
d
(
∥∇ь∥2L2

)
dt

⩽ ∥υ∞∥L6∥∇ь∥L3∥△s ь∥L2 + ∥ь∥L∞∥∇υ∥L2∥△s ь∥L2

+ ∥ь∥L∞∥∇υ∞∥L2∥△s ь∥L2 ⩽ KΩ · ∥∇υ∞∥L2∥∇ь∥
1
2

L2∥△s ь∥
3
2

L2 + ∥∇ь∥
3
2

L2∥△s ь∥
3
2

L2 .
(73)

According to Young’s inequality [32] and Poincaré inequality (62), one has subsequently that
∥△s ь∥2L2

Re
+

d

dt
∥∇ь∥2L2 ⩽ [:KΩ

(
Re3∥∇ь∥6L2

)
+KΩ

(
Re3∥∇υ∞∥4L2∥∇ь∥2L2

)
:],

K1,Ω∥∇ь∥2L2

Re
+

d

dt
∥∇ь∥2L2 ⩽ [: · · · :].

(74a)

(74b)

More accurately, Young’s inequality acts on the first formulistic line (74a); Poincaré inequality
acts on the second formulistic line (74b).

From the plexus of previous inequalities, in agreement with convenience values, one sketches
that

ь(0) eqv
== (υ0 − υ∞)


[:
d
(
∥∇ь∥2L2

)
dt

:] +
K1,Ω

2Re
−KΩ

(
Re3∥∇ь∥4L2

)
∥∇ь∥2L2 ⩽ 0,

[: · · · :] + K1,Ω

2Re
−KΩ

(
Re3∥∇ь(0)∥4L2

)
︸ ︷︷ ︸

⩾K1,Ω

/
4Re

.

(75a)

(75b)

(γ) Let t ∈ [0, T ], with T > 0, and

Tmax ∈ ]0,+∞] = {(·) ∈ R3 | 0 < (·) ⩽ +∞}. (76)

The ь-solution dictates that
T

Tmax

}
= +∞. (77)
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If that was not true, one would have that

T = Tmax ̸= +∞, (78)

namely, T < +∞, and T < Tmax, with
ˆ Tmax

0

∥ь∥2L2dt = +∞. (79)

From the denial of equality in (78) let us go write, in the first instance,

[: · · · :] +
K1,Ω∥∇ь∥2L2

8Re
⩽ 0, (80)

∥∇ь(t)∥L2 ⩽ ∥∇ь(0)∥L2 , (81)

and, secondly, 

K1,Ω

2Re
−KΩ

(
Re3∥∇ь(T )∥4L2

)
︸ ︷︷ ︸

⩾K1,Ω

/
4Re

,

K1,Ω

2Re
−KΩ

(
Re3∥∇ь(t)∥4L2

)
︸ ︷︷ ︸

⩾K1,Ω

/
8Re

.

(82a)

(82b)

In the inequality (82b) the value of t is assigned by this ∈-relation,

t ∈ [0, T + ϵ[ = {(·) ∈ R3 | 0 ⩽ (·) < T + ϵ}, ϵ > 0. (83)

Here we go. The relation (83) goes against both the fundamental ∈-relation (76) and the
equalities in (77), which epitomize nothing other than the effective ь-solution for the proof of the
Theorem 1.5.

□

1.3. The PPP-Force

We are talking about the pressure

P : Ω × R+ → R (84)

of the fluid, that is, {
P : Ω × (0, T ) → R, t ∈ (0, T ),

P : Ω × (0, T )×DR ⊂ Rn → R, n = 2, 3,

(85a)
(85b)

in consonance with Euler’s coordinates. Remember Eqq. contained in (85) and (56).
Please be aware that the pressure can be gained from an elliptic partial differential equation

(including the Laplacian) of Poisson-type [17]:

−△P =
∑
i,j

υi
xj
υj
xi
, (86)

having a function φl ∈ H−1(Ω), and υ ∈ H1
0(Ω), such that −△ υ = φl in Ω ∈ Rn.

How can we develop the asymptoticity of pressure? For this purpose, first of all, we determine
1
/
ш > 0

ˆ t+ш

t

P(x)dx, t → +∞,

P
P(x)∈L2(Ω)−−−−−−−−→ P+∞.

(87a)

(87b)

Thereafter we go on to describe the convergence behavior of
´ t+ш
t

p(x)dx.a

a Cf. Eq. (55b).
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Here are the steps to complete this action:
ˆ t+ш

t

P(x)dx︸ ︷︷ ︸
∇

=
∂

∂t

(
ь(t)− ь(t+ ш)

)
+ div [:

ˆ t+ш

t

∇ь
Re

− ь ⊗ ь − ь ⊗ υ∞ − υ∞ ⊗ ь dx:]. (88)

Let us impose some inequalities, which act as a guide. The first is

∥P∥Lk(Ω) = KΩ∥∇P∥ eqv
== ∥P∥Lk(Ω) ⩽ KΩ

(
∥P∥W−1,k(Ω) + ∥∇P∥W−1,k(Ω)

)
,

eqv
== ∥P∥Lk(Ω) ⩽ KΩ∥∇P∥H−1(Ω) = KΩ sup

ˆ
Ω

P(x) div F(x)dx

∣∣∣∣ ∥F∥H1
0(Ω) ⩽ 1,

(89)

1 < k < +∞, for any function P ∈ Lk(Ω), P ∈ C∞
c , where C∞

c is the class of all functions with
compact supported in C∞

c -form, generating a vector R-space, and for a certain function F.
The second is

∥P∥H−1 ⩽ KΩ

(∣∣´
Ω
Pdx

∣∣
|Ω|

+ ∥∇P∥H−1

)
, (90)

in which, at long last, ∥P∥H−1 = limr→∞ ∥Pnr
∈ L2(Ω)∥H−1 holds.

In both inequalities (89) and (90), the letter Ω, clearly, is the usual Lipschitz domain that stands
out throughout the article.

And accordingly

∥∥∥∥ˆ t+ш

t

P(x)dx

∥∥∥∥ ⩽ KΩ

∥∥∥∥∥∥∥∥
ˆ t+ш

t

P(x)dx︸ ︷︷ ︸
∇

∥∥∥∥∥∥∥∥
H−1

⩽ [:∥ь(t) + ь(t+ ш)∥H−1 :]

+ ∥[: · · · :]∥L2 ⩽ [: · · · :]

+KΩ

ˆ t+ш

t

∥∇ь∥L2︸ ︷︷ ︸
→0

+∥ь · υ∞∥L4 + ∥ь∥2L4

 dx.

(91)

2. Caudal Section: Concluding Passage

Wide-ranging guidelines omitted in this didascalic article, which is characterized by a merely
synoptic approach, can be found in [11] [30] [2], for instance. Insights on the Navier–Stokes
equations for incompressible non-homogeneous fluids are in [21] [4] [3] [7].

However, the present paper is ironically in line with the hypertrophic production of current
mathematics, viz. with the industrialization of scientific articles generated by the papier-mâché
Empire of publishing companies.

What has mathematics become? A Queneau-type buffo exercise, a self-replicating onanism
through the action of the apery, a pile of teratological excrescences grafted onto a chucklesome
practice of bibliometrics [31], and consequently a blind trip towards nothingness outside of itself.
Lastly, mathematics has become a game that entertain tedious souls (un giuoco che «le tediose
alme trastulla»).

True mathematics, if it genuinely rates the name yet, should not be done in this way, which is so
fashionable nowadays. The authentic meaning of the noun máthēma (μάθημα) has been lost. Well,
it leads back to the path of humility . . . And reality—of which mathematics is only a descriptive
illusion (like any other description: the poetic one, the artistic one, etc.)—certainly lies elsewhere.

∗
∗ ∗
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R. Queneau, in an unpublished essay dating between 1944 and 1948 [18], writes:
The ideal that scientists have built throughout this beginning of the century has been a presentation of

science not as knowledge but as a rule and method. We give (indefinable) notions, axioms and instructions
for use, in short, a system of conventions. But is this not a game that has nothing different from chess
or bridge? [ . . . ] [A]nd what do we know in mathematics? Precisely: nothing. And there is nothing to
know. We do not know the point, the number, the group, the set, the function any more than we know
the electron, [the concept of] life [or the] human behavior. We do not know the world of functions and
differential equations any more than we “know” the Concrete Terrestrial and Everyday Reality. All we
know is a method accepted (permitted) as true by the scientific community, a method which also has
the advantage of connecting to fabrication techniques. But this method is also a game, more precisely
what is called a jeu d’esprit. Therefore the whole of science, in its complete form, presents itself both as a
technique and as a game. It is neither more nor less than the other human activity: Art.
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