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Abstract

We are interested in the problem of classifying Multivariate Hawkes Processes (MHP)
paths coming from several classes. MHP form a versatile family of point processes that models
interactions between connected individuals within a network. In this paper, the classes are
discriminated by the exogenous intensity vector and the adjacency matrix, which encodes
the strength of the interactions. The observed learning data consist of labeled repeated and
independent paths on a fixed time interval. Besides, we consider the high-dimensional setting,
meaning the dimension of the network may be large w.r.t. the number of observations. We
consequently require a sparsity assumption on the adjacency matrix. In this context, we
propose a novel methodology with an initial interaction recovery step, by class, followed by a
refitting step based on a suitable classification criterion. To recover the support of the adjacency
matrix, a Lasso-type estimator is proposed, for which we establish rates of convergence. Then,
leveraging the estimated support, we build a classification procedure based on the minimization
of a L2-risk. Notably, rates of convergence of our classification procedure are provided. An
in-depth testing phase using synthetic data supports both theoretical results.

Keywords Multivariate Hawkes Process · Classification · Empirical Risk Minimization · High
Dimension · Lasso

1 Introduction

The supervised classification of complex data has drawn a lot of attention in recent years. This
statistical problem covers a broad class of application including classification of multivariate times
series (Ismail Fawaz et al., 2019). In particular, cutting-edge methodology for performing clas-
sification of time sequences of events is a matter of great interest. In this paper, we tackle the
task of supervised classification of sequences of events into K classes with K > 1. We therefore
consider that each class is characterized by its own underlying occurrence dynamics, and the aim
is to discriminate between them. In this work, observations in each class are assumed to come
from a multivariate Hawkes process (MHP), denoted N , of size M ≥ 1, for which the probability
distribution of events is given by the vector of intensity process. The shape of the vector of in-
tensity process is assumed to be common to all classes. Therefore, the classes are discriminated
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according to the parameters that describe their vector of intensity process: the baselines and the
adjacency matrix that governs the relations between the components of the process. For instance,
we can consider that the observations come from different groups of people observed over a given
time interval whose interactions are modeled through a MHP.

In this work, the observations consist in n independent repeated observations of a mixture
of the MHP observed on a fixed time interval [0, T ] and their associated label. In particular,
we do not assume that data have reached the stationary regime. Hence, the asymptotic is in n
the number of repetitions. Furthermore, we consider the high-dimensional framework, where the
dimension M := Mn of the MHP may be large with respect to the sample size n. In view of the
high-dimensional issue, we consider sparsity assumption on the adjacency matrix of the process.
We propose a classification procedure that take advantage of the estimation of the support of the
adjacency matrix.

Related works. Hawkes processes (HP) are a family of point processes introduced by Hawkes
(1971). Such processes model complex temporal dynamics, where the occurrence of events is
impacted by past activity. The multidimensional version of these processes, MHP, is a natu-
ral generalization that considerably enriches modeling possibilities. Indeed, in addition to model
self-exciting interactions, such a model takes into account positive interactions between connected
individuals within a network. These interactions are encoded in the adjacency matrix. Historically
applied in seismology (Ogata, 1988), they have since been used in a wide range of applications in-
cluding genomics (Reynaud-Bouret and Schbath, 2010), neuroscience (Bonnet et al., 2022), finance
(Embrechts et al., 2011), urban crime (Mohler et al., 2011), order book in finance (Bacry et al.,
2015) and football (Baouan et al., 2022). Another important application is the modeling of social
network activity, as in Zhang et al. (2018) and further works. In addition, the Hawkes processes
are frequently used as spike-trains models in neurosciences, for example in Reynaud-Bouret et al.
(2013); Spaziani et al. (2023); Bonnet et al. (2023). Recently, they have also been used in the
ecological field in Nicvert et al. (2024) for interaction between species and in Denis et al. (2024)
for bats monitoring. Recently, in the context of repeated observations with T fixed, Lotz (2024)
provides a likelihood ratio test for testing presence of interaction.

In the high-dimensional setting, meaning that the number of components M is large, it is
classical to impose sparsity assumptions on the adjacency matrix that characterizes the intensity
process. Therefore, it appears that reconstructing the support of the adjacency matrix or the
connectivity graph, is a matter of great interest, which is related to the Granger causality (see
Eichler et al., 2017; Sulem et al., 2024). In particular, this is a crucial issue for connectivity of
neurons, see for example Lambert et al. (2018), or in social network (Carstensen et al., 2010).

Let us focus on the Lasso literature in the classical Gaussian framework. The Lasso procedure
has been originally introduced in Tibshirani (1996) and Chen et al. (1998). It is a popular statistical
method for high-dimensional problems for which efficient implementation procedure have been
developed. Besides, the Lasso procedure has been widely studied from the theoretical point of
view (see e.g Meinshausen and Bühlmann, 2006; Tropp, 2006; Bühlmann and Van De Geer, 2011).
In particular, support recovery results has been investigated in Wainwright (2009) as well as
multi-class classification methods (see Abramovich and Grinshtein, 2018). Let us emphasize that
an induced and undesired effect of `1 penalization is the shrinkage of large coefficients. To bypass
this issue, refitting strategies are commonly used and well covered in the literature, see for example
Chzhen et al. (2019).

For Hawkes process, the work of Donnet et al. (2020) is dedicated to a nonparametric Bayesian
procedure to tackle high-dimensionality. Let us mention the work Zhou et al. (2013) which proposes
an efficient algorithm for a Lasso estimator for high-dimension Hawkes process, implemented in
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the Python library tick (Bacry et al., 2018). Later, in the work of Bacry et al. (2020), the
authors use a least-squares contrast penalized with an `1-norm together with a trace norm. The
resulting estimator benefits from a sparse structure with low rank. Its construction relies only
on an observation over a time interval [0, T ], with T → +∞. In particular, theoretical results
are obtained for the intensity process estimation under the asymptotic T → +∞. Under the
same observational setup, several sparse support recovery procedure has also been proposed in the
literature, for example a likelihood ratio testing procedure in Kim et al. (2011), or a group-Lasso
least-squares penalized estimator in Cai et al. (2024).

The present work falls in the supervised classification setting. In particular, we assume that the
learning sample of size n consists of i.i.d. labeled data where the features are the jump times of a
multivariate Hawkes process observed on the fixed time interval [0, T ]. In a different observational
setup, some works in natural language processing also tackle some similar issues as Lukasik et al.
(2016) and later Tondulkar et al. (2022). Closest to ours, the work of Denis et al. (2022) provides
a classification procedure for observations coming from a univariate HP where the classes are
discriminated by the kernel of the intensity process. In particular, this method is applied in Denis
et al. (2024), for modeling echolocation calls of bats recording in several sites throughout France.
In the present work, we generalize the approach developed in Denis et al. (2022) in the multivariate
setting (MHP) under sparsity assumptions.

Main contributions. In the present paper, we propose a novel classification algorithm, the
ERMLR algorithm that relies on a two-step procedure. A first step is dedicated to the estimation
of the support of the adjacency matrix as well as the weights of the mixture. Then, in a second
step, taking advantage of the estimated support, we build a classifier based on the empirical
risk minimization principle. We establish rates of convergence for both support estimator and
classification procedure. Furthermore, we show through a numerical study that our algorithm
exhibits good numerical properties. To sum up our contributions are threefold.

• First, we provide a general device to handle high-dimensional issue for MHP. Following Bacry
et al. (2020), the estimation of the parameters of the process as well as the support of the
adjacency matrix is based on the minimization of a Lasso-penalized contrast. We establish
rates of convergence of the estimated support and the estimated coefficients of the MHP.
Notably, our theoretical findings show that the established rates of convergence are compa-
rable to those obtained in the classical Gaussian setting. In particular, we extend the results
obtained in Bacry et al. (2020) and Cai et al. (2024) in the context of repeated observations.

• Second, we provide a general classification algorithm dedicated to the supervised classifica-
tion of MHP. A salient point of our procedure is that we handle high-dimensional issue by
leveraging the estimation of the support of the adjacency matrix. Specifically, we consider
a classifier that relies on the minimization of a L2-risk on a set of parameters that depends
only on the estimated support of the parameters. We show that the rates of convergence
of our classification algorithm is, up to a logarithmic factor, of order the square root of the
size of the support over the sample size n. Notably, we extend the results obtained in Denis
et al. (2022) to the high-dimensional framework.

• Finally, in view of the numerical complexity of our problem, the implementation of our
classification algorithm is a major challenge. The implementation of the overall procedure
relies on cutting-edge optimization algorithms. Specifically, the Lasso-penalized contrast
is optimized with the FISTA algorithm while the calibration of the l1 penalty is performed
using the EBIC criterion. Then, for the minimization of the L2-risk, we consider a parameter-
free projected adaptive gradient descent Free Adagrad recently introduced in Chzhen et al.
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(2023). We evaluate the performance of our procedure on synthetic data and show the good
performance of our algorithm. In particular, it reveals that our algorithm succeeds well for
both support recovery and classification accuracy.

Outline of the paper. Section 2 describes the model, along with the necessary assumptions.
Section 3 proposes the classification algorithm named ERMLR. Section 4 provides the main theo-
retical results on both Lasso estimator of the MHP parameters and the classification procedure.
Then, full implementation details about the procedure are given in Section 5 while Section 6 is
devoted to numerical results. We also provide a discussion in Section 7. Finally, the proofs are
relegated in Appendix.

Notations. For a matrixA ∈ RM×M , the Frobenius norm is defined as follows ‖A‖F = (Tr(A′A))1/2 =
(
∑

j,j′ a
2
j,j′)

1/2, where A′ denotes the transposition of the matrix A and Tr is the trace operator
that returns the sum of diagonal entries of a square matrix. Recall that ρ(A) ≤ ‖A‖2 ≤ ‖A‖F
where ‖A‖2 is the subordinate norm and ρ(A) is the spectral radius of A, which is the largest
singular value of A. For an integer L ≥ 1, the set {1, . . . , L} is denoted by [L].

2 General framework

Section 2.1 introduces the considered model, some notation, and the considered multiclass classi-
fication problem. Section 2.2 is dedicated to the presentation of the main assumptions. Finally, a
closed-form expression of the optimal classifier is provided in Section 2.3.

2.1 Formal definitions and notation

Let us first introduce the general linear multivariate Hawkes process and then the considered
multiclass classification model.

Multivariate counting process. Consider a M -dimensional counting process N observed on a
fixed time interval [0, T ], with M > 1 the dimension of the network. More specifically, we assume
that the counting process N = (N1(t), . . . , NM (t))t∈[0,T ] is a linear multivariate Hawkes process,
where for each j ∈ [M ], t ∈ [0, T ], Nj(t) denotes the number of events that have occurred before
time t at location j. The filtration (or history) at time t ∈ [0, T ] associated to the process N is
denoted by Ft. Informally, it contains the necessary information for generating the next points of
N . Finally, the set of observed jump times of N over [0, T ] is denoted by TT = (TT,1, . . . , TT,M ),
where for each j ∈ [M ], TT,j is the observed jump times associated to the process Nj . Each process
Nj can be characterized by its intensity function. Heuristically, at a given time, the intensity
function gives the infinitesimal probability of observing an event in the near future, conditionally
on the past of the process. For each j ∈ [M ], the predictable intensity of the process Nj is then
defined by

λ∗j (t) = µ∗j +

M∑
j′=1

a∗j,j′

∫ t

0
h(t− s) dNj′(s) = µ∗j +

M∑
j′=1

a∗j,j′
∑

T`∈Tt,j′

h(t− T`), (1)

where µ∗ = (µ∗j )j∈[M ] is the vector of exogenous intensities, A∗ = (a∗j,j′)1≤j,j′≤M is the matrix
of interactions, and h is the kernel function. For each j ∈ [M ], the coefficient µ∗j models the
arrival of spontaneous events for the j-th component. For each j, j′ ∈ [M ], the coefficient a∗j,j′
is non-negative and expresses the positive influence of the one-dimensional process Nj′ on the
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one-dimensional process Nj . Finally, the kernel h is a non-negative function supported on R+

such that ‖h‖1 = 1. It dictates how quick these influences vanish over time. In the following, the
kernel function h is assumed to be known. Finally, let us define the support of A∗, or the active
set, denoted S∗. It corresponds to the positions of the non-zero coefficients aj,j′ , meaning that
component j′ has an impact on component j.

Remark 1. The second equality in the definition of the intensity (1) is easily obtained by using
that, for any function f , j ∈ [M ], and t ∈ [0, T ], the following stochastic integral is defined as the
counting measure ∫ t

0
f(s) dNj(s) =

∑
T`∈Tt,j

f(T`).

Multiclass setting. We consider the multiclass classification problem, where each data point
is characterized by a couple (TT , Y ), where TT is the set of observed jump times of a counting
process N over [0, T ] and Y ∈ [K] is its label. In particular, we assume that N = (N1, . . . , NM )
is a mixture of a M -dimensional linear HP observed on the time interval [0, T ]. More precisely,
conditional on Y , the counting process N is a M -dimensional linear HP, where for each j ∈ [M ],
the predictable intensity of Nj depends on the label Y and is defined at time t ≥ 0 as follows

λ∗Y,j(t) = µ∗Y,j +
M∑
j′=1

a∗Y,j,j′

∫ t

0
h(t− s) dNj′(s). (2)

The vector µ∗Y = (µ∗Y,j)j∈[M ] is the vector of baselines associated to the class Y , and the matrix
A∗Y = (a∗Y,j,j′)1≤j,j′≤M is the M ×M adjacency matrix of the network associated to the label Y .
This choice of modeling is motivated by the fact that the classes are characterized by different
underlying network behavior, where an edge in the network matches a non-zero aj,j′ .

We assume in the following that the parameters (µ∗Y , A
∗
Y ) are unknown as well as the distri-

bution of Y which is denoted by p∗ = (p∗k)k∈[K]. Finally, the kernel function h is assumed to be
known and for the sake of simplicity, it does not depend on the classes or on the components of
the process. Note that in the numerical section, we consider the standard choice of exponential
kernel. However, more general choice of the kernel function may be investigated. For instance,
in Bacry et al. (2020) the authors consider the case where h is a sum of exponential functions,
which preserves the markovianity of the intensity process.

Objective. In the multiclass setup, the objective is to build a classifier, a measurable function g
such that g(TT ) belongs to [K], and provides an accurate prediction of the label Y . In particular,
the misclassification risk assesses the quality of such predictor g. It is defined as

R(g) := P (g(TT ) 6= Y ) .

The set of all classifiers is denoted by G. Naturally, we aim at considering the predictor g∗, namely
the Bayes classifier, that achieves the minimum risk over G. In Section 2.3, we provide an explicit
formula of the oracle classifier g∗. Nevertheless, since the distribution of the observation (TT , Y )
is assumed to be unknown, we build a predictor that relies on a training sample of size n which
consists of i.i.d. copies of (TT , Y ). At this step, we draw the reader attention to the fact that the
considered asymptotic is as follows. The horizon time T is fixed, while the sample size n goes to
infinity. Recall that the size M of the MHP is actually M = Mn and can increase with n. In
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the sequel, a predictor built on the training data is denoted by ĝ. In particular, we require that ĝ
satisfies the consistency property,

E [R(ĝ)−R(g∗)]→ 0,

when n tends to infinity. However, in our study, the intrinsic dimension of our problemM2 may be
much larger than the sample size of the learning dataset. In this case, predictor ĝ is not consistent.
Therefore, as it is usual in this high-dimensional setup, we introduce a sparsity assumption for our
model.

2.2 Assumptions

This section is dedicated to the main assumptions that are assumed throughout the paper. In
particular, in our multivariate framework, we allow the dimension parameter M to be large, which
may induces that M2 is much larger than the size of the training sample. To alleviate this issue,
we introduce a sparsity assumption on the matrices (A∗k)k∈[K].

Firstly, we introduce an assumption which ensures that each class occurs with non-zero prob-
ability.

Assumption 1. There exists p0 > 0 such that mink∈[K](p
∗
k) > p0.

We also assume that the parameters of the process belongs to a compact set.

Assumption 2. (Compactness)

(i) There exists 0 < µ0 < µ1 , s.t. for i ∈ [M ] and k ∈ [K], µ0 ≤ µ∗k,i ≤ µ1.

(ii) There exists CA > 0, s.t. maxk∈[K] ‖A∗k‖F < CA.

Furthermore, we consider the following assumptions, which imply that the process N admits
finite exponential moment.

Assumption 3. (Stability condition)

(i) The kernel function h belongs to the set H := {h : R+ → R+,
∫
h(t) dt = 1} and is bounded.

(ii) maxk∈[K] ρ(A∗k) < 1.

Let us notice here that if CA < 1 it implies that ρ(A) < 1.

Assumption 4. (Exponential moment) There exist a > 0, and C > 0 that do not depend on M ,
such that

sup
j∈[M ]

E[exp(aNj(T ))] < C.

Remark 2. Note that Leblanc (2024) proves that the exponential moment of the multivariate
Hawkes process is finite, under Assumption 3 and when the intensity process is stationary. Never-
theless, in the general case, the bound of the moment depends on M . Hence, we require a stronger
condition, such as Assumption 4 which is more suitable in the high-dimensional framework. For
instance, this assumption is satisfied if there exists a positive constant C, that does depend on M ,
such that

∑
j∈[M ] µj ≤ C.
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Finally, we assume that for each k ∈ [K], the adjacency matrix A∗k is sparse, meaning that a
few coefficients are non-zero. For each k ∈ [K], let us denote by

S∗k :=
{

(j, j′) ∈ [M ]2, a∗k,j,j′ 6= 0
}

the active set (or support) of A∗k, |S∗k | its cardinality, and S∗ck its complement. Throughout the
paper, we consider the following assumption.

Assumption 5. (Sparsity assumption) There exists a constant s∗ > 0 such that

max
k∈[K]

|S∗k | ≤ s∗.

In particular, in our high-dimensional setting, we assume that s∗ << M2. Since we do not
assume sparsity on the vectors µk, k ∈ [K], we consider the following interplay between parameter
M and the sample size of the training dataset. The dimension of the process M may depend on
n with M2 >> n. In this case, the sparsity assumption is crucial to overcome the high-dimension
issues. However, we assume that M satisfies M/n→ 0.

Remark 3. Note that we only assume sparsity on the adjacency matrix, but not on the vector µ∗.
It ensures that all the components of the process are active. However, as in Bacry et al. (2020),
it may be possible to consider also sparsity assumption on the vector of exogenous intensities.
Nevertheless, this is not the line taken in this work.

2.3 Bayes rule

In this section, we exhibit a closed-form expression of the Bayes classifier g∗ that minimizes the
misclassification risk over the set G. The Bayes classifier is characterized by,

g∗ (TT ) ∈ argmax
k∈Y

π∗k(TT ),

with π∗k (TT ) = P (Y = k|TT ). The following result is an extension of the result given in Denis et al.
(2022). It gives the expression of the conditional probabilities π∗k and then provides a closed form
of the Bayes classifier.

Proposition 1. Let T ≥ 0. For each k ∈ [K], we define,

F ∗k (TT ) := −
M∑
j=1

∫ T

0
λ∗k,j(s)ds+

M∑
j=1

∑
T`∈TT,j

log
(
λ∗k,j(T`)

)
. (3)

Therefore, the sequence of conditional probabilities satisfies

π∗k (TT ) =
p∗ke

F ∗k (TT )∑K
k′=1 p

∗
k′e

F ∗
k′ (TT )

P− a.s.,

where F ∗ = (F ∗1 , . . . , F
∗
K).

Proposition 1 exhibits an explicit link between the unknown parameters (µ∗k, A
∗
k)k∈[K] and

the Bayes classifier. In particular, it suggests that a classification rule can be easily obtained by
replacing the unknown parameters by estimators in Equation (3). However, the performance of
the resulting classifier strongly depends on the quality of the considered estimators. In the present
framework, without taking account Assumption 5, the high-dimension of the problem could lead
to bad estimates. To overcome this difficulty, we propose a classification algorithm tailored to our
setting, which involves Lasso-type estimators.
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3 Classification algorithm

In this section, we present the proposed classification algorithm that relies on a refitting strategy
(see e.g. Chzhen et al., 2019). The algorithm is referred as ERMLR for Empirical Risk Minimizer
with Lasso Refitting. Since the construction of the prediction rule goes in several steps and involves
a splitting of the training dataset, for the sake of the simplicity, we consider a dataset of size 2n.
More specifically, the learning dataset is denoted denoted Dn = {(T (i)

T , Y (i)), i = 1, . . . , 2n}, which
consists of 2n independent copies of (TT , Y ). For the estimation purpose, the data set Dn is divided
into two independent data sets D(1)

n and D(2)
n of same size n. For sake of simplicity in the following,

we index both sample using {1, . . . , n}.
To take advantage of Assumption 5, we then consider the following three-stages procedure.

• Based on the first data set D(1)
n , we estimate the distribution p∗ = (p∗k)k∈[K] by its empirical

counterpart p̂.

• Based on the second dataset D(2)
n , and for each k ∈ [K], we estimate by Ŝk the active set S∗k

with a Lasso-type criterion, described in Section 3.1.

• Based on the second dataset D(2)
n , then, we build a classifier ĝ that minimizes an empirical L2-

risk on a set of predictors that depends on the estimated support (Ŝk)k∈[K]. This construction
is detailed in Section 3.2.

3.1 Estimation of the active sets

Our classification procedure relies on the estimation of the active sets S∗k for all k ∈ [K]. To this
aim, we consider the least squares contrast with a Lasso penalty for repeated observations. The
considered contrast is an adaptation of the penalized criteria proposed in Bacry et al. (2020) in
the context of repeated observations with a fixed horizon time of observation T .

Let k ∈ [K]. Hereafter, we define the estimator of the active set S∗k . We denote
(
T (1)
T , . . . , T (nk)

T

)
the observations from class k coming from D(2)

n , with nk =
∑n

i=1 1{Y (i)=k} the random number
of observations from class k. First, we define the considered contrast. To this end, we introduce
the generic parameter θ = (θ1, . . . , θM )′ ∈ RM(M+1), such that for each j ∈ [M ], θj = (θj,`)0≤`≤M
writes as

θj := (µj , aj,1, . . . , aj,M ) .

The vector of true parameters is also denoted by θ∗k =
(
θ∗k,1, . . . , θ

∗
k,M

)′
∈ RM(M+1). For each

j ∈ [M ], it expresses as follows

θ∗k,j =
(
θ∗k,j,`

)
l∈{0,...,M} :=

(
µ∗k,j , a

∗
k,j,1, . . . , a

∗
k,j,M

)′ ∈ RM+1. (4)

Then, for each θ ∈ RM(M+1), and i ∈ [nk], we define the corresponding intensity function associated
to the observation T (i)

T that stems from class k for t ∈ [0, T ] as

λ
(i)
k,j,θ(t) = µk,j +

M∑
j′=1

ak,j,j′
∑

T
(i)
` ∈T

(i)

t,j′

h(t− T (i)
` ).

The considered penalized contrast is defined, for each θ ∈ RM(M+1), as follows,

RT,nk(θ) :=
1(nk≥1)

nk

nk∑
i=1

 1

T

M∑
j=1

∫ T

0
λ

(i)2
k,j,θ(t)dt−

2

T

M∑
j=1

∑
T

(i)
` ∈T

(i)
T,j

λ
(i)
k,j,θ

(
T

(i)
`

) . (5)
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Note that if nk = 0, we have θ̂ = 0. The Lasso estimator is then defined as

θ̂k ∈ argmin
θ∈RM(M+1)

RT,nk(θ) + κ

M∑
j=1

M∑
j′=1

|θj,j′ |

 . (6)

Finally, from the estimator θ̂k, we get the estimated support of A∗k

Ŝk = {(j, j′) ∈ [M ]2, θ̂k,j,j′ 6= 0}.

Note that Ŝk represents the estimated active set of A∗k since it does not involve the first column of
θ̂k that contains the vector of estimated baseline (µj)j∈[M ].

3.2 ERM classifier with refitting step

In this section, we present the last step of our estimation procedure, which is dedicated to the
construction of the final classifier. In particular, it involves the estimation of parameter θ∗ =
(θ∗k)k∈[K]. We highlight that this step relies on the estimated support Ŝk. To this end, we introduce
the constraint set of parameters

Θn :=

{
θ = (µ,A) ∈ RM+ × RM

2

+ , µj ∈
[

1

n
, log(n)

]
, j ∈ [M ], ‖A‖F ≤ log(n)

}
,

and finally the set of interest

Θ̂ :=
{
θ = (θ1, . . . , θK) ∈ ΘK

n , supp(Ak) = Ŝk

}
. (7)

Several comments can be made from the definition of the set of parameters Θ̂. First we observe that
conditional on the event {Ŝk = S∗k}, for n large enough, the true parameter θ∗ belongs to the set Θ̂.
Indeed, in view of Assumption 2, for n large enough, we may assume that 1/n < µ0 < µ1 < log(n),
and CA ≤ n. Furthermore, we emphasize that the choice of the bounds on the coefficients on the
parameters of Θ̂ allows to get rid of the unknown constants defined in Assumption 2. These choices
are also driven by technical aspects. In particular, such bounds are required to apply concentration
arguments. Additionally, let us mention that contrary to the previous step, the optimization is
performed on R+ for each coefficient.

Let us present the estimation of the parameter θ∗ and then the construction of the resulting
classifier ĝ. This construction follows the strategy provided in Denis et al. (2022) for M = 1, and
is based on the dataset D(2)

n . It relies on the empirical risk minimization principle. Specifically,
for each θ ∈ Θ̂, we introduce an associated score functions fθ = (f1

θ , . . . , f
K
θ ) such that for an

observed sequence of events TT

fθ(TT ) = 2πk,p̂,θ(TT )− 1, k ∈ [K],

with

πk,p̂,θ(TT ) =
p̂ke

Fk(TT )∑K
k′=1 p̂k′e

Fk′ (TT )

and

Fk,θ(TT ) = −
M∑
j=1

∫ T

0
λk,j,θ(s)ds+

M∑
j=1

∑
T`∈TT,j

log (λk,j,θ(T`)) .

9



Note that the form of the score function fθ is chosen according to the result provided in Proposi-
tion 1. Let θ ∈ Θ̂, and fθ its associated score function, we define its empirical L2-risk as

R̂2 (fθ) :=
1

n

n∑
i=1

K∑
k=1

(
Z

(i)
k − fkθ (T (i)

T )
)2
, Z

(i)
k = 21{Yi=k} − 1.

Then, we define the estimator of θ∗ as the minimizer of the empirical L2-risk,

θ̂R ∈ argmin
θ∈Θ̂

R̂2(fθ). (8)

From the estimator θ̂R of parameter θ∗, we define the ERMLR classifier as follows

ĝ(TT ) ∈ argmax
k∈Y

π
k,p̂,θ̂R

(TT ) (9)

Note that for computational purpose, as it is usual in classification, the 0−1 loss is then replaced by
the L2 convex surrogate (see e.g Zhang, 2004). In particular, the L2-loss is classification calibrated
and Zhang’s lemma Zhang (2004) ensures that

E [R(ĝ)−R(g∗)] ≤ 1√
2

(
E
[
R2(f

θ̂R
)−R2(fθ∗)

] )1/2
,

with R2 the oracle counterpart of the considered empirical risk R̂2 defined as

R2(fθ) = E
[
(Zk − fθ(TT ))2

]
, with Zk = 21{Y=k} − 1.

One of the main appealing property of our classification algorithm is that we take advantage of
the estimated support to perform the minimization of the empirical L2-risk on a set of parameter
whose dimension is much smaller than M2. Besides, rather than using the estimated parameters
obtained at the first step (Lasso-step), we consider the estimator of parameter θ∗ as the minimizer
of loss adapted to our multiclass classification setting.

4 Theoretical results

In this section, we first provide the consistency of the estimator of the active set in Section 4.1.
Then, in Section 4.2, we derive the rate of convergence of our classification procedure with respect
to the misclassification risk.

4.1 Support recovery for classification

In this section, we present the key result of the Lasso procedure. More precisely, we show that

P
(
Ŝk = S∗k

)
→ 1, n→∞,

which implies that for each k ∈ [K], the Lasso estimator θ̂k solution of Equation (6) has nonzero
entries at the same positions as the true parameter θ∗k. In particular, for the multivariate Hawkes
process, for j, j′ ∈ [M ]2, the Lasso step can be interpreted as interaction selection, where the
objective is to select whether a component j is impacted by a component j′.

Before, to give our main result, we introduce some notations for the Lagrangian version of the
Lasso criterion given in Equation (6).
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Notations. In the rest of the section, we fix a class k ∈ [K], and for simplicity we drop the
dependency on k. Besides, throughout this section, we work conditional on the event nk ≥ 1. We
also remind the reader that nk is the random number of observations from class k in the dataset
D(1)
n of size n. Then, we define for each t ∈ (0, T ] the random matrix Ht ∈ Rnk×(M+1) as follows

(Ht)i,j = H
(i)
j (t), with H

(i)
j (t) :=

∫ t

0
h(t− s) dN (i)

j (s), j 6= 0, H
(i)
0 ≡ 1. (10)

From the definition of the matrix Ht, we observe that

λ
(i)
j,θ(t) =

M∑
j′=0

H
(i)
j′ (t)θj,j′ ,

in other words,
Htθj =

(
λ

(i)
j,θ(t)

)
i=1,...,nk

.

For j ∈ [M ], and i ∈ {1, . . . , nk}, we consider M (i)
j the martingale associated to the counting

process N (i)
j through the Doob-Meyer decomposition. We then denote dM(t) =

(
dM (i)

j (t)
)
j,i
∈

RM×nk , and define the random martingale matrix Z as

Z :=

∫ T

0
( dM(t)Ht)

′ .

Besides, the j-th column of Z is denoted by Zj . Therefore, for j, j
′ ∈ [M ]× {0, . . . ,M}, the main

term of Z is the continuous-time martingale,

Zj,j′ =

nk∑
i=1

∫ T

0
H

(i)

j′
(t) dM (i)

j (t). (11)

We finally define the random matrix H of size (M + 1)× (M + 1) as

H :=
1

T

∫ T

0
H′tHt dt.

In the following, for S ⊂ [M ], we denote HS,S the matrix where the lines and the columns are
restricted to the set S.

Assumptions. Classical conditions in the `1 constraint framework are considered as, for instance,
in Bühlmann and Van De Geer (2011) and references therein. According to Equation (4), the true

parameter is denoted θ∗j =
(
θ∗j,`

)
`∈{0,...,M}

, and θ∗j =
(
µ∗j , a

∗
j,1, . . . , a

∗
j,M

)′
∈ RM+1. For each

j ∈ [M ], we also denote S∗θj the active set of θ∗j . Note that, since µ∗j > 0, it contains at least one
element.

The first assumption is the mutual incoherence, which is also referred as irrepresentability con-
dition. Heuristically, this imposes that the correlation between the non-active and active variables
must not be higher than the variations within the actives variables, otherwise the lasso estimator
would not be able to dissociate them. It involves an incoherence parameter γ ∈ (0, 1] that must
not be too small.
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Assumption 6 (Mutual incoherence (MI)). There exists some 0 < γ ≤ 1 such that, a.s.

max
j=1,...,M

‖HS∗cθj
,S∗θj

H−1
S∗θj

,S∗θj
‖∞ ≤ 1− γ.

The following condition ensures that the submatrix HS∗θj
,S∗θj

does not have its columns linearly
dependent (in which case it could be impossible to estimate θ∗ when the true active set is known).
The notation Λmin denotes the minimal eigenvalue.

Assumption 7 (Minimum eigenvalue (ME)). There exists Λ0 > 0 such that, a.s.,

min
j=1,...,M

Λmin

(HS∗θj
,S∗θj

nk

)
≥ Λ0.

Finally, the last condition of minimum signal ensures that the non-zero entries of the true
coefficients are large enough to be properly estimated. Specifically, it imposes that the minimum
value of the true parameter restricted to the support S∗ cannot decay to zero faster than the
regularization parameter, κ which is specified in Theorem 1.

Assumption 8 (Minimum signal condition (MS)).

min
j,j
′∈S∗

∣∣∣θ∗
j,j′

∣∣∣ > Λ0 max
j=1,...,M

√∣∣∣S∗θj ∣∣∣ log4(nM2)√
n

.

Support recovery result. The result provided by Theorem 1 is the main ingredient to derive
rate of convergence of our classification procedure. Nevertheless, it is an interesting result per se.
Under the above assumptions, for each class k ∈ [K], we establish the uniqueness of the Lasso
solution, the consistency of the estimated support, and the uniform consistency of the estimator
of θ∗.

Theorem 1. Assume that n > 2
p0
, and let κ =

log4(nM2)√
n

. Grant Assumptions (MI), (ME), and

(MS). There exists an event Ωn with P(Ωn) ≥ 1− C

n
, on which nk ≥ 1, and

min
θ∈RM(M+1)

RT,nk(θ) + κ

M∑
j=1

M∑
j′=1

|θj,j′ |

 ,

where RT,nk is given in Equation (5), admits a unique solution θ̂ which satisfies the following

(i) supp(θ̂) = supp(θ∗);

(ii) ∥∥∥θ̂ − θ∗∥∥∥
∞
≤

Λ0 maxj=1,...,M

√
|S∗θj | log4(nM2)

√
n

.

Several comments can be made from the above result. First, a straightforward consequence of
Theorem 1, is that for each k ∈ [K],

P
(
Ŝk = S∗k

)
≥ 1− C

n
.
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Hence, our result provides rate of convergence for the estimator of the support Ŝk. Furthermore,
in view of Assumption 8, we have that on the event Ωn, θ̂j,j′ > 0. Notably, Theorem 1 extends the
result of Bacry et al. (2020) in the context of repeated observations with fix observation time. In
particular, the work of Bacry et al. (2020) does not provide support recovery result. However, we
emphasize that our result requires stronger assumption than in Bacry et al. (2020). Let us notice
that the result holds also for κ larger that log4(nM2)/

√
n but in this case the rates of convergence

is slower.
Second, up to logarithmic factor, the condition on the tuning parameter κ = κn is of the same

order as in Wainwright (2009). Besides, up to a logarithmic factor, we obtain a rate of convergence
of order maxj=1,...,M |

√
S∗θj |/

√
n in sup-norm for the estimator θ̂, we can note that this rate is of

the same order than the one that would expect in the classical Gaussian framework Bühlmann and
Van De Geer (2011). We also highlight that in the logarithmic factor, the power of the log term is
in part due to the fact that the number of jump-times of the process is not bounded a.s.

Finally, the proof of this result is based on a preliminary lemma, which gives a control in
probability of the maximum of the martingale terms Zj,j′ defined in Equation (11). This inequality
is obtained using a Bernstein type inequality proven in Bacry et al. (2020). This data-driven
inequality and the sub-exponential property of the counting process (see Assumption 4) lead to
the concentration result. Then, we follow the primal-dual-witness method of proof (see for instance
Tibshirani and Wasserman, 2017).

4.2 Rate of convergence of the ERMLR classifier

In this section, we derive theoretical property of the ERMLR algorithm ĝ. To establish our result, we
take advantage of the support recovery result provided in Section 4.1. On the set {Ŝk = S∗k}, the
excess risk of ĝ is upper-bounded by applying classical arguments derived from the classification
framework. While we use Theorem 1 to bound the excess risk on the event {Ŝk 6= S∗k}. Then, we
obtain the following result.

Theorem 2. Grant Assumptions 1, 3 and 2. For n large enough, there exists a constant C > 0
such that,

E [R(ĝ)−R(g∗)] ≤ C
(

(M + s∗) log(nM)

n

)1/2

,

where C depends on T,K, ‖h‖∞, µ0, µ1, p0.

As expected, we highlight that, thanks to the Lasso step, we manage to obtain, up to a
logarithmic factor, a rate of order

√
(M + s∗)/n rather than

√
M +M2)/n. Notably, we show

that the proposed algorithm achieves the usual parametric rate.

5 Implementation

In this section, a comprehensive description of the implementation details is specified. As the ERMLR
procedure execution involves two minimization problems, these two steps are described separately
in Section 5.1 and Section 5.2. In both cases, each choice is discussed in terms of the state of the
art and its relevance in the context of its use. Besides, let us highlight that the implementation of
the procedure relies on state-of-the art algorithms and C++ codes wrapped in Python which serves
the purpose of rapid computation.
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5.1 Implementation details for the Lasso step

For the support recovery step, our strategy consists in the minimization of the least squares contrast
with Lasso penalty defined in Equation (6). This objective function is written as the sum of
two functions. While the least squares contrast is differentiable, convex and smooth (i.e.with a
Lipschitz continuous gradient), the `1-norm is non-differentiable at zero. To this extent, to carry
out the minimization of such objective function, we use first-order optimization algorithm based
on proximal methods with Nesterov’s momentum method, namely FISTA, see Beck and Teboulle
(2009). Compared to the classical proximal algorithm, the construction of a new iterate of the
descent is based on a specific linear combination of the previous two points. This makes FISTA
benefits from a significantly faster rate of convergence. A recommended choice of the descent step
is 1/L with L the Lipschitz constant of the gradient. We stop the descent after 200 iterations if
the stopping criterion, based on relative distance between two successive iterations, is not fulfilled
yet.

Another important aspect of the Lasso step concerns the calibration of the penalization constant
κ which controls the regularization. As our goal is to recover the true support, κ must be large
enough to set all non-active coefficients to zero. To this end, our strategy is the following: different
values of κ are explored through a grid of sufficiently fine size, denoted ∆, and the one that
minimizes a specific model selection criterion is chosen. The criterion used here is the Extended
Bayesian Information Criteria (EBIC) introduced by Chen and Chen (2008). For some γ ∈ [0, 1]
and κ ∈ ∆, this criterion takes the following form:

EBICγ(κ) := −2LT,n

(
θ̂(κ)

)
+
∣∣∣Sθ̂(κ)

∣∣∣ log(n) + 2γ log

((
M2∣∣∣Sθ̂(κ)

∣∣∣
))

where θ̂(κ) is the Lasso estimated with the tuning parameter κ, LT,n is the log-likelihood of the
model,

∣∣∣Sθ̂(κ)

∣∣∣ is the size of this support, namely the number of active coefficients of θ̂(κ).
Compared to a classical BIC criteria (namely γ = 0), an additional penalization is added to take

into account the number of possible active sets of the same size. As this quantity is also increasing
with this size, it seems to be very relevant in a high-dimensional setting. In the following, we
choose γ = 1 and |∆| = 40 as exploration grid size.

Finally, let us highlight that for both the least squares contrast and the log-likelihood functional,
computation such as gradient or loss evaluation are optimized and implemented in C++ which serves
the purpose of rapid computation.

5.2 Implementation details for the ERM step

For the classification step, our strategy consists in minimizing the convexified empirical risk defined
in Equation (9). According to the definition of the constraint set of parameters defined in Equa-
tion (7), each coefficient must be positive. To ensure that each coefficient ak,j,j′ remains in [0, c],
with c > 0, the minimization is done under inequality constraints and we use a projected gradient
descent algorithm. Nevertheless, since this objective function is non-smooth and non-convex w.r.t.
to the coefficients, its minimization requires particular care. In particular, the tuning of the step-
size in the descent is very tricky 1. On the other hand, adaptive gradient methods, such as AdaGrad
(see Duchi et al., 2011), have been widely used in large-scale optimization due to their ability to
adjust the step size for each feature according to the geometry of the problem. In practice, AdaGrad

1Furthermore, classical method such as backtracking line-search with Armijo-Wolfe condition cannot be used
due to the piece-wise constant nature of the projection operator (see Michael W. Ferry and Zhang (2023)).
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is known to be an efficient method in non-convex setting (in particular for training deep neural
networks optimization, see Gupta et al. (2014)). In addition, some theoretical guarantees for the
convergence of AdaGrad for non-convex functions have been provided in the literature (see Ward
et al., 2020; Wang et al., 2023). With this in mind, we use a parameter-free projected adaptive
gradient descent method, in the inspiration of AdaGrad, called Free AdaGrad and introduced in
Chzhen et al. (2023). Compared with the classical algorithm, its main advantage lies in the fact
that it is adaptive to the distance between the initialization and the optimum, and to the sum of
the square norm of the gradients. The initial starting point is chosen as the estimate given by the
Lasso step, the initial guess for the distance between the starting point and the optimum is taken
as γ0 = 0.1 and we stop the descent after 1000 iterations if the stopping criteria described before
is not fulfilled yet.

6 Numerical results

The goal of this section is to investigate the performance of our method from a numerical standpoint
using synthetic data. First, in Section 6.1, alternative strategies are proposed for comparison
purpose. Then, the simulation and evaluation scheme is thoroughly detailed in Section 6.2 and in
Section 6.3. Finally, the obtained results, for support recovery by the Lasso step in Section 6.4
and the classification procedure performance in Section 6.5 are presented.

6.1 Benchmark

Let us detail here the different competitors which are compared with our classifier.

Simple plug-in strategy. A full plug-in strategy consists in use the estimators θ̂ of the pa-
rameters, obtained by minimizing the least-squares contrast with Lasso penalty on the adjacency
matrix given in Equation (6). Then, we plug θ̂ into the Bayes classifier formula. Consequently,
the resulting classifier for a new observation TT is

ĝ
p̂,θ̂

(TT ) = argmax
k∈Y

p̂ke
F
µ̂k,Âk

(TT )∑K
k′=1 p̂k′e

F
µ̂k′ ,Âk′

(TT )
,

where p̂ is the estimated distribution of Y . This classifier is learned on the entire training sample
Dn of size 2n. This classifier is referred as PI.

Oracle on estimated support. We are also interested in another predictor, referred to as OES
for The Oracle on Estimated Support, which is defined as follows

ĝp̂,θ∗
Ŝ
(TT ) ∈ argmax

k∈Y
πk,p̂,θ∗

Ŝ
(TT ).

where

(θ∗
Ŝ

)k,j,j′ :=

{
θ∗k,j,j′ if (j, j′) ∈ Ŝk
0 otherwise

.

It corresponds to the best possible predictor that relies on the support recovered in the Lasso
step. Note that if the true support is recovered by the Lasso step, then it exactly corresponds to
the Bayes rule. By taking into account this predictor, we can quantify the effect of poor support
recovery in terms of classification error, while evaluating the gain that could be obtained by an
ERM step.
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6.2 Simulation scheme

In this section, we give some details on the panel of scenarios on which our Lasso estimator and
our classifier are evaluated.

MHP path generation. Concerning synthetic data generation, each path is simulated using
cluster representation algorithm (see Møller and Rasmussen (2005)). This sampling procedure
relies on the branching structure of the MHP, that can be viewed as Poisson cluster process. We
consider the classical choice of exponential kernel h(s) = β exp(−βs) with β = 3.

Scenarios. We consider two scenarios, referred to as Scenario 1 and Scenario 2. In both sce-
narios, different structures of the interaction matrix A∗ are explored. In Scenario 1, A∗ is chosen
to be a diagonal block matrix. In addition to self-exciting interaction, the block structure models
interaction between a group of connected components. Coefficient values, which gives the intensity
of influence, are the same within each block, but vary from one to another. For a larger value of
M , the blocks are expanded so that the parsimony rate remains the same for each value of M . In
Scenario 2, the coefficients are chosen randomly with different values. Due to the randomness of
the choice of the active set, the diagonal coefficients may be all set to zero. Thus, there may be
no self-excitation in this case. In both scenarios, the vector of exogenous intensity µ∗ is chosen
as constant for each component, meaning that spontaneous events occur in the same way for each
individual. In Figure 1, a visual representation of theses scenarios, for M = 25 is given in the
form of a heat map. In particular, the values of the coefficients of the matrix A∗ are given by the
color bar. We precise also the sparsity rate, which is the % of zero-coefficients in the matrix, i.e.
|S∗c|/M2.
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Figure 1: Visualization of θ∗ = (µ∗, A∗) in both scenarios for M = 25. The exogenous intensity
for each component: 0.4. Sparsity rate of A∗ in Scenario 1 : 85%; in Scenario 2 : 92%.

To illustrate the classification task, we consider the 3-classes classification setting, i.e. K = 3.
The three classes are created on the basis of the two scenarios described above. For Scenario
1, the blocks of different size are interchanged, as well as the values of the coefficients within
them. For Scenario 2, based on the same support for each class, the values of the coefficient are
interchanged. In both cases, the resulting classes are quite balanced and close from each other.
Finally, the exogenous intensity is chosen to be the same for each of the three classes. In Table 1,
we give for each scenario, the values of the Frobenius norm, the spectral radius and the sparsity
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rate as a function of the dimension and of the label. For terminology convenience, we refer to the
classification scenario resulting from Scenario 1 (resp. Scenario 2 ) as Scenario 1 (resp. Scenario
2 ).

Scenario 1 Scenario 2

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

M=10

‖A∗k‖F 1.37 1.37 1.39 1.44 1.54 1.31

ρ(A∗k) 0.76 0.76 0.76 0.00 0.00 0.00

|S∗ck | 0.86 0.86 0.86 0.89 0.89 0.89

M=25

‖A∗k‖F 1.63 1.63 1.68 2.07 2.25 2.07

ρ(A∗k) 0.90 0.90 0.90 0.50 0.55 0.44

|S∗ck | 0.85 0.85 0.85 0.92 0.92 0.92

M = 50

‖A∗k‖F 1.52 1.52 1.52 2.55 2.77 2.42

ρ(A∗k) 0.90 0.90 0.90 0.68 0.74 0.63

|S∗ck | 0.85 0.85 0.85 0.94 0.94 0.94

Table 1: Presentation of the different scenarios with K = 3. For each class k, the Frobenius norm,
the spectral radius and the sparsity rate of A∗k are specified.

6.3 Evaluation scheme

Hereafter, we present the evaluation scheme that relies on Monte-Carlo repetitions. We fix T = 5,
and p∗ ∼ U[3]. For each scenario described, each value of M ∈ {10, 25, 50}, and each value of
n ∈ {300, 600, 1500}, we repeat independently 30 times the following steps.

1. Simulate the data set Dntrain and Dntest ;

2. Based on Dntrain , for each k = 1, . . . ,K compute p̂k = 1
n

∑n
i=1 1{Y i=k};

3. Based on Dntrain , Lasso step:

(a) For each k ∈ [K], calibrate the penalization constant using EBIC1 criteria by exploring
values in the grid ∆. For each κ ∈ ∆ do:

i. using FISTA, compute θ̂k the Lasso estimate with tuning parameter κ;
ii. based on θ̂k, compute EBIC1(κ);

and choose κ̂k ∈ argmin
κ∈∆

EBIC1(κ);

(b) Given (κ̂k)k∈Y , for each k = 1, . . . ,K do:

i. using FISTA, compute the Lasso estimates θ̂k with tuning parameter κ̂k;

ii. get the estimated support Ŝk =
{

(j, j
′
) ∈ [M ], θ̂k,j,j′ 6= 0

}
.

(c) From (Ŝk)k∈Y compute the classifier ĝOES, from (θ̂k)k∈Y compute the classifier ĝPI
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4. For one arbitrary class k ∈ Y, assess the quality of the support recovery using Hamming
distance and `2 distance defined as

dH

(
A∗k, Âk

)
=

1

M2

M∑
j,j′=1

1{
A∗
k,j,j′ 6=Âk,j,j′

}, and d`2

(
A∗k, Âk

)
=

√√√√ M∑
j,j′=1

|A∗k,j,j′ − Âk,j,j′ |
2
;

5. From Dntrain , perform the ERM step:

(a) starting from (θ̂k)k∈Y as the initial point, we minimize the L2-risk defined in Equation
(8) using Free AdaGrad to obtain (θ̂R

k )k∈Y ;

(b) from θ̂R and p̂ we build the classifiers ĝERMLR.

6. Based on Dntest = {(T (i)
T , Y i), i = 1, . . . , ntest}, evaluate the error rate of the classifiers PI

and ERMLR using

ErrPI =
1

ntest

ntest∑
i=1

1{ĝPI(T iT )6=Y i}, and ErrERMLR =
1

ntest

ntest∑
i=1

1{ĝERMLR(T iT )6=Y i};

6.4 Numerical Results for support recovery

This section is devoted to the discussion of the obtained results of the Lasso procedure. These
results are provided in Table 2, in Table 3, in Figure 2 and in Figure 3.

M
dH d`2

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

Scenario 1

10 0.04 (0.03) 0.02 (0.02) 0.02 (0.02) 0.39 (0.07) 0.18 (0.04) 0.13 (0.02)

25 0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 0.91 (0.07) 0.40 (0.04) 0.29 (0.02)

50 0.11 (0.01) 0.07 (0.00) 0.07 (0.00) 1.80 (0.12) 1.60 (0.02) 1.64 (0.02)

Scenario 2

10 0.04 (0.02) 0.03 (0.02) 0.03 (0.02) 0.43 (0.07) 0.20 (0.03) 0.14 (0.02)

25 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.96 (0.11) 0.44 (0.04) 0.32 (0.04)

50 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 1.76 (0.09) 0.94 (0.07) 0.68 (0.04)

Table 2: Lasso results over 30 Monte-Carlo repetitions for both scenarios for three value of M .
The impact of n is investigated. The standard deviation is provided between parentheses. T = 5

Figure 2: True support supp(θ∗) and recovered support supp(θ̂) in Scenario 1.
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First, from Table 2, we can see that Hamming distance between the true support and the
estimated one is close to zero in all settings, therefore our procedure is able to correctly recover
the active set of A∗. This remains true even for small values of n and for high-dimensional
networks, for which the Hamming distance is quite small. As expected, the larger n is, the better
the support is reconstructed, whether in terms of Hamming distance or `2 distance. Thus, in
addition to reconstructing the support more accurately, a gain is also made in terms of point
parameter estimation, illustrating the theoretical result of support consistency and convergence
of the associated estimator established in Section 4. In particular, for large value of M , such
as M = 50, a clear decrease in the Hamming distance is noticeable for increasing values of n.
Finally, it is worth emphasizing that, in the case of Scenario 1, the Lasso procedure is successful in
recovering the underlying block structure of the interaction matrix A∗. This assertion is supported
by the Figure 2, which visually shows the convergence of the support to the actual structure as
the number of observations increases.
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Figure 3: Average execution time over 30 repetitions of the entire Lasso procedure as a function
of n for Scenario 1 with M = 25. The standard deviation is shown in shaded fill on either side of
the curve.

M
# events time (sec)

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

Scenario 1

10 6330 (197) 32079 (398) 63905 (666) 8.37 (0.09) 42.12 (0.35) 82.42 (0.53)

25 14221 (397) 71226 (773) 142073 (1789) 68.67 (0.46) 340.62 (1.36) 688.99 (3.70)

50 12993 (513) 64743 (839) 129969 (1252) 447.22 (4.21) 2290.80 (22.63) 4519.32 (49.73)

Scenario 2

10 4692 (125) 23367 (250) 46570 (402) 8.17 (0.09) 39.81 (0.34) 80.35 (0.58)

25 9524 (147) 47651 (354) 95737 (632) 68.64 (0.22) 334.13 (1.30) 670.51 (2.67)

50 12363 (254) 62228 (575) 124604 (1142) 459.69 (1.36) 2268.71 (7.69) 4522.17 (16.79)

Table 3: Number of observed events, average execution time over 30 Monte-Carlo repetitions for
both scenarios. The standard deviation is provided between parentheses. T = 5

Now let us discuss the computational cost of our procedure. It can be seen from Figure 3
and Table 3 that the execution time of the entire procedure is quite reasonable, even for a large
value of M . It is important noting that the execution time also includes the choice of κ with the
EBIC criterion, and this with a grid of fine size |∆| = 40. Thus, we can afford to explore with
great precision and still have a relatively short execution time. For comparison purposes, it is
worth noting that, as we are dealing with short-time path repetitions, our observations would be
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equivalent to a unique path of horizon time of n× T . Finally, as our procedure benefits from fast
computational properties, it appears therefore realistic to apply it to large-scale networks. This
could be a matter of great interest for real-world applications, which often involve a network of
huge dimension.

6.5 Numerical results for classification

This section is devoted to the discussion of the obtained results of the ERMLR procedure. These
results are provided in Table 4, and Figure 4.

M Bayes OES PI ERMLR

Scenario 1

10 0.134 (0.005) 0.135 (0.006) 0.155 (0.007) 0.152 (0.007)

25 0.087 (0.004) 0.107 (0.013) 0.143 (0.011) 0.134 (0.011)

50 0.092 (0.005) 0.313 (0.05) 0.218 (0.020) 0.219 (0.019)

Scenario 2

10 0.251 (0.007) 0.255 (0.008) 0.276 (0.012) 0.278 (0.010)

25 0.237 (0.008) 0.260 (0.014) 0.316 (0.016) 0.326 (0.012)

50 0.246 (0.008) 0.406 (0.031) 0.391 (0.026) 0.410 (0.032)

(a) n = 300

M Bayes OES PI ERMLR

Scenario 1

10 0.135 (0.006) 0.135 (0.006) 0.146 (0.007) 0.144 (0.008)

25 0.086 (0.004) 0.087 (0.004) 0.118 (0.005) 0.113 (0.005)

50 0.091 (0.004) 0.189 (0.021) 0.183 (0.008) 0.179 (0.009)

Scenario 2

10 0.247 (0.008) 0.248 (0.008) 0.260 (0.009) 0.262 (0.008)

25 0.236 (0.007) 0.237 (0.008) 0.276 (0.010) 0.276 (0.010)

50 0.245 (0.008) 0.309 (0.014) 0.333 (0.016) 0.349 (0.020)

(b) n = 600

M Bayes OES PI ERMLR

Scenario 1

10 0.135 (0.005) 0.136 (0.005) 0.139 (0.005) 0.139 (0.006)

25 0.087 (0.006) 0.087 (0.005) 0.100 (0.006) 0.098 (0.006)

50 0.093 (0.005) 0.183 (0.08) 0.179 (0.07) 0.173 (0.08)

Scenario 2

10 0.253 (0.009) 0.253 (0.009) 0.257 (0.009) 0.259 (0.010)

25 0.236 (0.009) 0.236 (0.009) 0.253 (0.008) 0.254 (0.008)

50 0.247 (0.008) 0.251 (0.009) 0.293 (0.012) 0.296 (0.011)

(c) n = 1500

Table 4: Empirical error over 30 Monte-Carlo repetitions for each classifier in the three scenarios
for three values ofM . The impact of n is investigated. The standard deviation is provided between
parentheses. The value of ntest = 3000 is chosen. T = 5

First, from Table 4, we can see that the ERMLR is close to the Bayes classifier in terms of error
rate, in both scenarios and for each value of M . In particular, note that for n = 1500, its error
rate is almost equal to that of the Bayes classifier. In fact, as expected the greater the number of

20



400 600 800 1000 1200 1400
n

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Er
ro

r

PI
ERMLR

Figure 4: Averaged Error rate over 30 repetitions of the ERMLR and PI procedure as a function of
n for Scenario 1 with M = 25. The standard deviation is shown in shaded fill on either side of
the curve.

data, the closer the classifier comes to the Bayes classifier, which illustrate the consistency of the
ERMLR procedure established in Section 4. This decreasing tendency of the error rate of ERMLR is
illustrated in Scenario 1 with M = 25 in Figure 4.

Another important point is the comparison with the PI classifier as a benchmark. Overall,
it can be seen that the PI exhibits good performance. This can be explained by the fact that
recovering the true support structure is sufficient for accurate class prediction. On the other hand,
poor support recovery also impacts the performance of the ERMLR predictor. This gap can be
quantified with the OES oracle classifier, which gives the gain that could be obtained by an ERM
step. For these reasons, it is not expected to see a big gap between the two. Nevertheless, it is
worth noting that, in case of Scenario 1, a significant gain by the ERM refitting step can be observed.
This assertion is supported by Figure 4, where it can be seen that the ERMLR classifier is better in
terms of error rate. This suggests that, for some particular structures, a refitting step leading to
a finer point estimate of the parameters is relevant and leads to better performance.

7 Discussion

In the present work, we propose a novel classification algorithm tailored to classify Multivariate
Hawkes Processes paths in high-dimension. For each class, a first step is dedicated to the sparse
estimation of the support of the adjacency matrix. Then, in a second step, we build a classifier
that takes of advantage of the estimated support. Specifically, the resulting classifier is based on
the minimization of a ERM criterion. We establish rates of convergence for both estimated support
and classification algorithm. Finally, we illustrate the numerical performance of our procedure
through a comprehensive simulation study.

A possible guideline for further research is to consider a more challenging model by including
inhibition interaction. From a theoretical aspect, it may be tricky since adding inhibition effect
induces complication due to the non linearity of the underlying intensity function. In particular,
providing a closed form of the compensator is a key aspect to compute the least-square contrast
or the likelihood function. The work of Bonnet et al. (2022) and Bonnet et al. (2023) should form
a theoretical basis for this future work. From a practical point of view, a procedure which is able
to deal with inhibition, may be applied to generalize the work of Denis et al. (2024). Indeed,
the use of MHP allows to model simultaneously different species echolocation calls and then the
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effects of inter-species cooperation. Furthermore, adding inhibition effects, potentially translates
the ecological aspect of inter-species competition.

Another direction could be to investigate a penalized ERM classifier. It would allow to deal
with the high-dimensional setting without the prior Lasso step. Indeed, this procedure relies on
a global penalized criterion dedicated to the classification task. This direction is left for further
investigations.

Finally, from a practical standpoint, sparkle, a full Python library for Hawkes process inference
in high-dimension and classification is in development. It consists in a toolkit for Hawkes process
modeling which relies on C++ codes wrapped in Python for fast computation.
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Appendix
This appendix gathers the proofs of the theoretical results of the paper. It is organized as fol-
lows. Appendix A provides useful technical results. The proof of the closed-form expression of the
Bayes classifier is established in Appendix B. The proof of the support recovery result is given in
Appendix C. Finally, the rate of convergence of the ERMLR algorithm is proved in Appendix D.

Throughout the proofs, the notation C refers to a generic positive constant, which may differ
from line to line. In particular, this generic constant C does not depend on n or on the dimension
M . However, it may depend on the other parameters. For the sake of simplicity we denote T for
TT .

Appendix A Technical results

Proposition A.1. For any classifier g ∈ G, we have

R(g)−R(g∗) = E

 ∑
1≤i 6=k≤K

|π∗i (T )− π∗k(T )|1{g∗(T )=i,g(T )=k}

 .
Proof. This result is established by Denis et al. (2022). Let g ∈ G a classifier. We observe that

R(g) = E
[
1{g(T ) 6=Y }

]
= 1− E

[
1{g(T )=Y }

]
= 1− E

[
π∗g(T )

]
.

Therefore, from the above equation and the definition of the Bayes classifier g∗, we get

R(g)−R(g∗) = E
[∣∣∣π∗g∗(T ) − π∗g(T )

∣∣∣] .
Since for each g ∈ G, g(T ) =

∑K
k=1 k1{g(T )=k}, the above equation yields the result.

Lemma A.1. Let A ∈ Rd×d (symmetric), and X ∈ Rd. Then,

‖AX‖∞ ≤
√
dρ(A) ‖X‖∞
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Lemma A.2 (Hoeffding). Let B ∼ B(n, p), with p ∈ (0, 1). We then have for all t > 0 and n > t
p ,

P(B ≤ t) ≤ exp
(
−2n(p− t/n)2

)
.

Appendix B Proof for Bayes classifier

We first denote for all k ∈ Y
Φk
t :=

dPk|FNt
dP0|FNt

,

with FNT := σ (TT ) = σ (Nt, 0 ≤ t ≤ T ). We classically obtain:

log(Φk
t ) = −

M∑
j=1

∫ t

0
(λ∗k,j(s)− 1) ds+

∫ t

0
log(λ∗k,j(s)) dNj(s),

by writing w.r.t. a Poisson process measure of intensity 1 (see Chapter 13 of Daley and Vere-Jones,
2003). Thus, for t ≥ 0, we have the following equation for the mixture measure

dP|FNt =
K∑
k=1

pk dPk|FNt =
K∑
k=1

pkΦ
k
t dP0|FNt

and then
dPk|FNt
dP|FNt

=
pkΦ

k
t dP0|FNt∑K

j=1 pjΦ
j
t dP0|FNt

=
pkΦ

k
t∑K

j=1 pjΦ
j
t

.

Finally, by using (3), it comes π∗k (TT ) =
p∗keF

∗
k∑K

j=1 p
∗
j e
F∗
j
, that concludes the proof.

Appendix C Proofs for support recovery

In this section, we gather the proof of the result provided in Section 4.1. We first recall and
introduce the main notations for the proof of the main result in Section C.1. Then, in section C.2
we establish a Bernstein lemma. This lemma is the cornerstone of the proof of the support recovery
which is given in Section C.3.

C.1 Notations

We recall that the learning sample is Dn = {
(
T iT , Yi

)
, . . . , (T nT , Yn)}. Let k ∈ Y be a fixed integer.

Throughout this section, all the results are established for a generic class k. Let us define the
random variables

nk =
n∑
i=1

1Y (i)=k.

Hence nk ∼ B(n, p∗k). We also recall that mink∈[K] p
∗
k ≥ p0 > 0.

For sake of simplicity, we remove the dependency w.r.t. k. To sum up, our parameters of
interests are µ,A, and we at our disposal a sample of (random) size nk. In the rest of this section,
we work conditional on {nk ≥ 1}.
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C.2 A Bernstein lemma

Lemma C.1 (Bernstein Lemma). Assume that n ≥ 2

p∗0
. Let us define the event

Ωn :=

{
1

nk
max
j,j′

∣∣Zj,j′∣∣ ≤ C log3
(
nM2

)
√
n

}⋂{
nk ≥

np∗k
2

}
.

There exists C‖h‖∞,p∗0 > 0, such that P (Ωn) ≥ 1−
C‖h‖∞,p∗0

n
.

Proof. Fore clarity of presentation, the proof is divided in two steps.

First step. In this step we work on the event {nk ≥ 1} and conditional on 1{Y1=k}, . . . ,1{Yn=k}.
For j, j′ ∈ [M ]× ({0} ∪ [M ]), we apply Theorem 4 in Bacry et al. (2020) to the real valued random
variable Zj,j′ . For clarity, we consider the same notations as in Bacry et al. (2020).

To this end, for a fixed (j, j
′
) ∈ [M ]×({0} ∪ [M ]) and t ∈ [0;T ], we define the tensor (see Bacry

et al. (2020) for its definition and related properties) Tt of shape 1× 1×M × nk as follows

(Tt)1,1,k,` =

{
H

(`)

j′
(t) if k = j

0 else,
(12)

for k ∈ [M ] and ` ∈ [nk]. We also recall that the matrix dM(t) is defined by the main term
dM(t)j,i = dM (i)

j (t). According to Bacry et al. (2020) we have that Zj,j′ = ZT(T ) ∈ R defined by

ZTt(T ) =

∫ T

0
Tt ◦ dMt

satisfies

ZTt(T ) =
M∑
k=1

nk∑
i=1

∫ T

0
(Tt)1,1,k,idMk,i(t) =

nk∑
i=1

∫ T

0
H

(i)

j′
(t) dM (i)

j (t). (13)

Furthermore, we observe that since the tensor Tt is symmetric we have

V̂T(t) :=

∫ t

0
T2
s ◦ dNs =

nk∑
i=1

∫ t

0

(
H

(i)

j′
(s)
)2

dN
(i)
j (s),

and
bTt := sup

0≤s≤t
max(‖Ts‖op,∞‖T′s‖op,∞) = sup

0≤s≤t
max

i=1,...,nk

∣∣∣H(i)

j′
(s)
∣∣∣

which both depend on (j, j′).
Applying Theorem 4 of Bacry et al. (2020) on the event {nk ≥ 1} and conditional on 1{Y1=k}, . . . ,1{Yn=k},

we then obtain that for x > 0 with probability at least 1− C exp(−x) the following holds∣∣∣Zj,j′ ∣∣∣ ≤ 2

√
λmax(V̂TT )(x+ `x(T )) + c(x+ `x(T )) (1 + bTT ) , (14)

since for all (j, j
′
) ∈ [M ]× {0, . . .M},

λmax

(
V̂T(T )

)
≤ V̂∞ := max

i,j′

(
H

(i)

j′
(T )
)2

max
i,j

N
(i)
j (T ), (15)
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and
bTT ≤ b∞ := max

i,j′

∣∣∣H(i)

j′
(T )
∣∣∣ , (16)

from Equation (14), setting x = log(nM2), with an union bound on j, j′ we obtain that the event

Z =

{
max
j,j′

∣∣∣Zj,j′ ∣∣∣ ≤ 2

√
V̂∞ (log(nM2) + `∞) + c

(
log(nM2) + `∞

)
(1 + b∞)

}
,

with

`∞ = 2 log log

(
4V̂∞

log(nM2)
∨ 2

)
+ 2 log log (4b∞ ∨ 2) , (17)

satisfies
1{nk≥1}P

(
Zc|1{Y (1)=k}, . . . ,1{Y (n)=k}

)
≤ 1{nk≥1}

C

n
≤ C

n
.

From the above inequality, we deduce that

P (Zc) = P (Zc, nk ≥ 1) + P (Zc, nk = 0)

≤ C

n
+ P (nk = 0)

≤ C

n
+ exp(n log(1− pk))

≤ C

n
+ exp(n log(1− p0) ≤ C

n
. (18)

Second step. In this step, we provide a bound for V̂∞, b∞, and `∞ respectively defined in
Equation (15), (16), and (17). To this end, we introduce the event

Ω =
{
nk ≥

npk
2

}⋂{
1{nk≥1}max

i,j
N

(i)
j (T ) ≤ log5/3(Mn)

}
.

Note that, in view of the definition of H(i)
j′ , we have that on the event {nk ≥ 1}, we have

V̂∞ ≤ max

(
nk ‖h‖∞max

i,j

(
N

(i)
j (T )

)3
, nk max

i,j
(N

(i)
j (T )

)
≤ C‖h‖∞nk log5(n).

With the same idea, we have that b∞ ≤ C‖h‖∞ log5/3(n). Finally, we observe that `∞ ≤ 2 log(nM2)

(as M ≥ 2). Hence, on the event Ω ∩ Z, it holds that nk ≥ 1 (since n ≥ 2
p0

), and,

1

nk
max
j,j′

∣∣∣Zj,j′ ∣∣∣ ≤ C log3
(
nM2

)
√
nk

≤ C log3
(
nM2

)
√
npk

≤ C log3
(
nM2

)
√
np0

.

To conclude the proof, since P (Ωc
n) ≤ P ((Z ∩ Ω)c), it remains to control P ((Z ∩ Ω)c).

Conditional on 1{Y1=k}, . . . ,1{Yn=k}, on the event {nk ≥ 1}, applying the sub-exponential
property of N (i)

j , and Proposition 2.7.1 in Vershynin (2018), we get

P
(

max
i,j

N
(i)
j (T ) > log5/3(Mn)

)
≤ Mnk exp

(
−c log5/3(nM)

)
≤ 1

n
.
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Therefore, from Lemma A.2,

P (Ωc) ≤ 1

n
+ P

(
nk ≤

npk
2

)
≤ 1

n
+ exp

(
−np0

2

)
≤ 1

n
.

Finally, combining the last equation with Equation (18), we deduce that,

P ((Z ∩ Ω)c) ≤ C

n
,

which yields the result.

C.3 Proof of the main result 1

Throughout the proof, we work on the event

Ωn :=

{
1

nk
max
j,j′

∣∣Zj,j′∣∣ ≤ C log3
(
nM2

)
√
n

}⋂{
nk ≥

npk
2

}
.

Note that on the event Ωn, since n ≥ 2
p0
, the random variable nk satisfies nk ≥ 1.

The proof follows the primal-dual witness method as in Hastie et al. (2015) Chapter 11, and
goes in several steps. Let us consider the penalized contrast

C(θ) := RT,nk(θ) + κ
M∑
j=1

M∑
j′=1

|θj,j′ |. (19)

An element z of the subgradient of C at some point θ writes as follows

∇RT,nk(θ) + κz,

where the concatenated vector z is z = (z1, . . . , zM )′ with zj,0 = 0 and zj,j′ = sign(θj,j′) for j′ ≥ 2

(with the convention that sign(0) ∈ [−1, 1]). We say that a pair (θ̂, ẑ) is optimal if it satisfies the
following zero-subgradient equation

∇RT,nk(θ̂) + κẑ = 0. (20)

First step. We first build an “oracle” pair (θ̂, ẑ) that satisfies Equation (20) and such that
θ̂S∗c = 0. First we define θ̂, and ẑS∗ as follows.

1. θ̂S∗c = 0,

2. θ̂S∗ ∈ argmin
θS∗

R̃T,nk(θS∗) + κ
∑M

j=1

∑
j′∈S∗θj

|θj,j′ |, where

R̃T,nk(θS∗) =
1

nkT

nk∑
i=1

M∑
j=1

∫ T

0

 ∑
j′∈S∗θj

θj,j′H
(i)
j′ (t)


2

dt−2

∫ T

0

 ∑
j′∈S∗θj

θj,j′H
(i)
j′ (t)

 dN (i)
j (t).
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In view of the above conditions, since θ̂S∗ is a minimizer, we have for each j ∈ [M ](
∇RT,nk(θ̂)

)
S∗θj

+ κẑS∗θj
= 0.

We then have to build for each j ∈ [M ], ẑSj∗c such that(
∇RT,nk(θ̂)

)
S∗cθj

+ κẑSj∗c = 0.

Hence, from the above equations and from the notation given in Equation (10), we deduce that
(θ̂, ẑ) must satisfies

2

nk
HS∗cθj

,S∗θj

(
θ̂j − θ∗j

)
S∗j

− 2

nk
(Zj)S∗cθj

+ κzS∗cθj
= 0,

and
2

nk
HS∗j ,S

∗
θj

(
θ̂j − θ∗j

)
S∗j

− 2

nk
(Zj)S∗j + κzS∗j = 0.

From the last equation, and as zS∗θj = sign((θ̂j)S∗θj
), we observe that

(
θ̂j − θ∗j

)
S∗θj

= H−1
S∗j ,S

∗
θj

(Zj)S∗j −
nkκ

2
H−1
S∗θj

,S∗θj
sign((θ̂j)S∗θj

). (21)

Therefore, we set for each j ∈ [M ],

zS∗cθj
= − 2

nkκ

(
HS∗cθj

,S∗θj
H−1
S∗j ,S

∗
θj

(Zj)S∗j − (Zj)S∗cθj

)
+ HS∗cθj

,S∗θj
H−1
S∗j ,S

∗
θj

sign((θ̂j)S∗θj
). (22)

We then have build an optimal solution (θ̂, ẑ) that satisfies the required condition.

Second step. The goal of the second step is to prove that ‖ẑS∗c‖∞ < 1 which implies the
following result.

Lemma C.2. Assume that ‖ẑS∗c‖∞ < 1. Then, any solution θ̃ of the minimization problem
minθ C(θ) satisfies θ̃S∗c = 0.

Proof. Let θ̃ another solution. Then, it holds that

RT,n(θ̂) + κ〈ẑ, θ̂〉 = RT,n(θ̃) + κ

M∑
j=1

M∑
j′=1

|θ̃j,j′ |,

we deduce that

RT,n(θ̂)− κ〈ẑ, θ̃ − θ̂〉 = RT,n(θ̃) + κ

 M∑
j=1

M∑
j′=1

|θ̃j,j′ | − 〈ẑ, θ̃〉

 .

Since the pair (θ̂, ẑ) satisfies Equation (20), we have that

κẑ = −∇RT,n(θ̂),
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which leads to

RT,n(θ̂)−RT,n(θ̃) + 〈∇RT,n(θ̂), θ̃ − θ̂〉 = κ

 M∑
j=1

M∑
j′=1

|θ̃j,j′ | − 〈ẑ, θ̃〉

 .

Hence, from the above equation and the convexity of RT,n we deduce that

κ

 M∑
j=1

M∑
j′=1

|θ̃j,j′ | − 〈ẑ, θ̃〉

 ≤ 0.

Therefore, we obtain that

M∑
j=1

M∑
j′=1

|θ̃j,j′ | ≤ 〈ẑ, θ̃〉 =
M∑
j=1

M∑
j′=1

ẑj,j′ θ̃j,j′ .

Since ‖ẑS∗c‖∞ < 1, if there exists θ̃j,j′ 6= 0 for (j, j′) ∈ S∗c we get

M∑
j=1

M∑
j′=1

|θ̃j,j′ | <
M∑
j=1

M∑
j′=1

|θ̃j,j′ |,

which leads us to a contradiction. Therefore θ̃S∗c = 0.

Now we show that for κ ≥ log4(nM2)√
n

, we have ‖ẑS∗c‖∞ < 1 on the event Ωn. From Equa-

tion (22), we deduce that for each j ∈ [M ]

‖ẑS∗cθj ‖∞ ≤ ‖HS∗cθj
,S∗θj

H−1
S∗θj

,S∗θj
‖∞ + ‖HS∗cθj

,S∗θj
H−1
S∗θj

,S∗θj
‖∞

2

nkκ
‖(Zj)S∗θj ‖∞ +

2

nkκ
‖(Zj)S∗cθj ‖∞.

From Assumption (MI), we get for some γ ∈ (0, 1)

‖ẑS∗c‖∞ ≤ (1− γ)

(
1 +

2

nkκ
‖(Zj)S∗θj ‖∞

)
+

2

nkκ
‖(Zj)S∗cθj ‖∞. (23)

From Lemma C.1 we have with probability larger than 1− CM

n
on an event Ωn that

1

nk
‖(Zj)S∗θj ‖∞ ≤

C log3(nM2)√
n

,
1

nk
‖(Zj)S∗cθj ‖∞ ≤

C log3(nM2)√
n

.

Hence, from Equation (23), for n large enough, we deduce that, with probability larger than on
Ωn,

‖ẑS∗c‖∞ < 1,

provided that
C log3(nM2)

κ
√
n

→ 0 as n → +∞. Therefore, the choice κ ≥ log4(nM2)√
n

yields the

desired result.
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Third step. In the second step, we show for n large enough that on Ωn, any solution of minθ C(θ)
(with C given in (19)) is a solution of

min
θS∗

R̃T,n(θS∗) + κ
M∑
j=1

∑
j′∈S∗θj

|θj,j′ |.

In this step, we establish the following result.

Lemma C.3. Let θ̂S∗ defined as

θ̂S∗ ∈ argmin
θS∗

R̃T,n(θS∗) + κ

M∑
j=1

∑
j′∈S∗θj

|θj,j′ |

 .

Under Assumption (ME), for κ =
log4(nM2)√

n
, it holds that on Ωn

∥∥∥θ̂S∗ − θS∗∥∥∥
∞
≤
CΛ0 maxj

√
|S∗θj | log4(nM2)
√
n

.

Proof. From Equation (21), we get for each j ∈ {1, . . . ,M}

∥∥∥θ̂S∗θj − θS∗θj ∥∥∥∞ ≤
∥∥∥∥∥∥
(HS∗j ,S

∗
θj

nk

)−1 (Zj)S∗θj
nk

∥∥∥∥∥∥
∞

+
κ

2

∥∥∥∥∥∥
(HS∗θj

,S∗θj

nk

)−1

sign((θ̂j)S∗θj
)

∥∥∥∥∥∥
∞

.

Applying Lemma A.1, and C.1 together with Assumption (ME), we obtain∥∥∥∥θ̂S∗θj − θ∗S∗θj
∥∥∥∥
∞
≤ Λ0

√∣∣∣S∗θj ∣∣∣ (C log3(nM2)√
n

+ κ

)
.

Therefore, the choice of κ =
log4(nM2)√

n
yields the desired result.

Fourth step. We deduce from Lemma C.3 and Assumption 8 that

sign(θ̂S∗) = sign(θ∗S∗).

Therefore, from Equation (21), we deduce that on Ωn for κ =
log4(nM2)√

n
,

θS∗ 7→ min
θS∗

R̃T,n(θS∗) + κ
M∑
j=1

∑
j′∈S∗θj

|θj,j′ |,

admits a unique minimizer θ̂S∗ which satisfies for each j ∈ {1, . . . ,M},

(θ̂j)S∗θj
= (θj)S∗θj

+ H−1
S∗θj

,S∗θj
(Zj)S∗θj

− nkκ

2
H−1
S∗θj

,S∗θj
sign((θ∗j)S∗θj

).
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Hence, in view of Steps 2, with the choice of κ =
log4(nM2)√

n
, we then have shown that there

is a unique solution θ̂ of minθ C(θ) which satisfies on Ωn

θ̂S∗c = 0, and sign(θ̂S∗) = sign(θ∗S∗),

and ∥∥∥θ̂S∗ − θS∗∥∥∥
∞
≤
CΛ0 maxj

√
|S∗θj | log4(nM2)
√
n

.

Appendix D Proofs for the rate of convergence of ERMLR algorithm

We first establish a technical result in Section D.1, then rate of convergence of the ERMLR algorithm
is given in Section D.2.

D.1 Technical result

We recall that the set Θn is defined as follows

Θn :=

{
θ = (µ,A) ∈ RM+ × RM

2

+ , µj ∈
[

1

n
, log(n)

]
, j ∈ [M ], ‖A‖F ≤ n

}
.

We also introduce the set Π of conditional probabilities

Π :=

πp,θ =

(
pke

Fθk (·)∑K
k′=1 pk′e

Fθk′
(·)

)
k∈[K]

: θ = (θ1, . . . , θK) ∈ ΘK
n ,

K∑
k=1

pk = 1, min
k
pk >

p0

2


The following result provides a bound on `1-distance between two elements of the set Π. It

shows that this distance can be bounded by the distance between the corresponding parameters
of the associated model.

Proposition D.1. Let π = πp,θ and π′ = πp′ ,θ′ two elements of Π. Grant Assumptions 3, 2 and
1, the following holds

E
[ ∥∥π − π′∥∥

1

]
≤ K

p0
‖p− p′‖1 + CK2n2 log(n)

(√
M max

k∈[K]
‖µk − µ′k‖1 +M max

k∈[K]
‖Ak −A′k‖F

)
,

where C is a constant depending on T , µ0, µ1 and ‖h‖∞.

Proof. Let us consider π, π′ ∈ Π with respective parameters (p, θ), and (p′, θ′). We have that∥∥π(T )− π′(T )
∥∥

1
≤

∥∥π(T )− πp,θ′(T )
∥∥

1
+
∥∥πp,θ′(T )− π′(T )

∥∥
1
. (24)

Since for any k, j and (x1, . . . , xK), ∣∣∣∣∂φpk(x1, . . . , xK)

∂pj

∣∣∣∣ ≤ 1

p0
,

we deduce by mean value inequality∥∥πp,θ′(T )− π′(T )
∥∥

1
≤ K

p0

∥∥p− p′∥∥
1
.
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Besides for any k, j and p, ∣∣∣∣∂φpk(x1, . . . , xK)

∂xj

∣∣∣∣ ≤ 1,

we also deduce ∥∥π(T )− πp,θ′(T )
∥∥

1
≤ K

K∑
k=1

∣∣∣Fθk(T )− Fθ′k(T )
∣∣∣ .

Therefore, from Equation (24), we obtain

E
[∥∥π(T )− π′(T )

∥∥
1

]
≤ K

p0

∥∥p− p′∥∥
1

+K
K∑
k=1

E
[∣∣∣Fθk(T )− Fθ′k(T )

∣∣∣] .
Hence, it remains to bound the second term in the r.h.s. of the above inequality. Using Cauchy-
Schwartz inequality, for each k, we have that

E
[∣∣∣Fθk(T )− Fθ′k(T )

∣∣∣]
= E

∣∣∣∣∣∣
M∑
j=1

(∫ T

0
log

(
λj,θk(t)

λj,θ′k(t)

)
dNj(t)−

∫ T

0

(
λj,θk(t)− λj,θ′k(t)

)
dt

)∣∣∣∣∣∣


≤ E

 M∑
j=1

∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣ dNj(t)

21/2

+ E

 M∑
j=1

∫ T

0

∣∣∣λj,θk(t)− λj,θ′k(t)
∣∣∣ dt
 . (25)

Now, we observe that

∣∣∣λj,θk(t)− λj,θ′k(t)
∣∣∣ ≤ |µk,j − µ′k,j |+ ‖h‖∞ M∑

j′=1

|ak,j,j′ − a′k,j,j′ |Nj′(T ).

Therefore, we deduce

E

 M∑
j=1

∫ T

0

∣∣∣λj,θk(t)− λj,θ′k(t)
∣∣∣ dt
 ≤ T M∑

j=1

|µk,j−µ′k,j |+T‖h‖∞
M∑
j′=1

M∑
j=1

|ak,j,j′−a′k,j,j′ |E
[
Nj′(T )

]
.

(26)
Now, we bound the first term in the r.h.s. of Equation (25). Using that x 7→ log(1 + x) is a

Lipschitz function, we obtain:∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣ ≤
∣∣∣∣∣log

(
µk,j
µ′k,j

)∣∣∣∣∣+

∣∣∣∣∣λj,θk(t)

µ′k,j
−
λj,θ′k(t)

µk,j

∣∣∣∣∣
≤ n

∣∣µk,j − µ′k,j∣∣+ n2
∣∣∣µk,jλj,θk(t)− µ′k,jλj,θ′k(t)

∣∣∣
≤ n

∣∣µk,j − µ′k,j∣∣+ n2
(
|µk,j − µ′k,j |λj,θ′k(t) + µ′n

∣∣∣λj,θk(t)− λj,θ′k(t)
∣∣∣)

≤ n
∣∣µk,j − µ′k,j∣∣+ n2

(
|µk,j − µ′k,j |λj,θ′k(t)

+ log(n)
(
|µ′k,j − µk,j |+ ‖h‖∞

M∑
j′=1

Nj′(T )|ak,j,j′ − a′k,j,j′ |
))

. (27)
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Besides, applying the Doob’s decomposition for the processes Nj , j ∈ [M ], and the Cauchy-
Schwartz’s inequality, we get

E

 M∑
j=1

∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣ dNj(t)

2 ≤ M
M∑
j=1

E

[∫ T

0
log2

(
λj,θk(t)

λj,θ′k(t)

)
λ∗Y,j(t) dt

]

+ M
M∑
j=1

E

(∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣λ∗Y,j(t) dt
)2
 .(28)

From Assumption 4, we have E
[(
λ∗Y,j(t)

)2
]
< ∞. Therefore, the first term in the r.h.s. in

Equation (28) can be bounded as follows

E

[∫ T

0
log2

(
λj,θk(t)

λj,θ′k(t)

)
λ∗Y,j(t) dt

]
≤

∫ T

0
E

[
log4

(
λj,θk(t)

λj,θ′k(t)

)]1/2

E
[(
λ∗Y,j(t)

)2]1/2
dt

≤ CT sup
t∈[0,T ]

E

[
log4

(
λj,θk(t)

λj,θ′k(t)

)]1/2

.

Similarly, we obtain:

E

(∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣λ∗Y,j(t) dt
)2
 ≤ TE

[∫ T

0
log2

(
λj,θk(t)

λj,θ′k(t)

)(
λ∗Y,j(t)

)2 dt

]

≤ CT 2 sup
t∈[0,T ]

E

[
log4

(
λj,θk(t)

λj,θ′k(t)

)]1/2

.

Then, by Assumption 3, from Equation (27) and Equation (28), we get

E

 M∑
j=1

∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣ dNj(t)

2
≤ CT 2M

M∑
j=1

sup
t∈[0;T ]

E
[
|µk,j − µ′k,j |4

(
n+ n2λj,θ′k(t) + n2 log(n)

)4

+n8 log(n)4‖h‖4∞

 M∑
j′=1

Nj′(T )|ak,j,j′ − a′k,j,j′ |

41/2

≤ CT 2M
M∑
j=1

([
n4 sup

t∈[0;T ]
E
[
(λj,θ′k(t))4

]1/2
+ n2 + n4 log(n)2

]
|µk,j − µ′k,j |2

+Cn4 log(n)2E

 M∑
j′=1

Nj′(T )|ak,j,j′ − a′k,j,j′ |

41/2

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where C is a constant depending on µ0, µ1 and ‖h‖∞. In view of Assumption 4 E
[
(λj,θ′k(t))4

]
≤ C.

Therefore, from the above equation, and Cauchy Schwartz’s inequality, we deduce

E

 M∑
j=1

∫ T

0

∣∣∣∣∣log

(
λj,θk(t)

λj,θ′k(t)

)∣∣∣∣∣ dNj(t)

2 ≤ CT 2M
(
n4 + n2 + n4 log(n)2

) M∑
j=1

|µk,j − µ′k,j |2

+ CT 2Mn4 log(n)2E

 M∑
j′=1

Nj′(T )2

21/2
M∑
j=1

M∑
j′=1

|ak,j,j′ − a′k,j,j′ |2.

From Assumption 4 we have that E
[(∑M

j′=1Nj′(T )2
)2
]
≤ CM2. Thus, gathering Equations (25)

and (26), it comes

E[‖π − π′‖1] ≤ K

p0
‖p− p′‖1

+KC
K∑
k=1

 M∑
j=1

|µk,j − µ′k,j |+
M∑
j=1

M∑
j′=1

|ak,j,j′ − a′k,j,j′ |


+KCn2 log(n)

K∑
k=1

M M∑
j=1

|µk,j − µ′k,j |2 +M2
M∑
j=1

M∑
j′=1

|ak,j,j′ − a′k,j,j′ |2
1/2

with C depending on µ0, µ1, ‖h‖∞ and T . Finally, using that ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2 for x ∈ Rd,

we obtain

E
[
‖π − π′‖1

]
≤ K

p0
‖p− p′‖1

+K2Cn2 log(n)2 max
k∈[K]

 M∑
j=1

|µk,j − µ′k,j |+
M∑
j=1

M∑
j′=1

|ak,j,j′ − a′k,j,j′ |


+K2Cn2 log(n)2 max

k∈[K]

√M M∑
j=1

|µk,j − µ′k,j |+M‖Ak −A′k‖F


thus

E
[
‖π − π′‖1

]
≤ K

p0
‖p− p′‖1 +K2Cn2 log(n)

√
M max

k∈[K]
‖µk − µ′k‖1

+K2CMn2 log(n) max
k∈[K]

‖Ak −A′k‖F .

Finally, combining the above equation, Equations (25) and (26) yields the desired result.

D.2 Proof of Theorem 2

We begin this section by a lemma that provides a bound on the ε-covering number of the set Θ̂
defined in Equation 7.
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Lemma D.1. Let ε > 0. There exists an ε-netMε ⊂ Θ̂ with

|Mε| ≤
(

(log(n)− 1/n)M

ε

)MK (3n

ε

)∑
k Ŝk

.

In particular, for all (µ,A) ∈ Θ̂ there exists (µε, Aε) ∈ Mε s.t. maxk∈[K] ‖µk − µk,ε‖1 ≤ ε and
‖Ak −Ak,ε‖F ≤ ε.
Proof of Lemma D.1. First, we observe that the set{

1

n
+ k

(log(n)− 1/n)

dM(log(n)−1/n)
ε e

, k ∈
{

1, . . . ,
M(log(n)− 1/n)

ε
− 1

}}
is and ε/M -cover of the interval [1/n log(n)]. Therefore, we deduce that there exists Mε,µ an
ε-cover of {µ ∈ RM , s.t. µ ∈ Θn} for ‖ · ‖1, such that

Mε,µ ≤
(

(log(n)− 1/n)M

ε

)M
. (29)

Let k ∈ [K]. For ε > 0, the covering number of the Euclidean ball centered in 0 and with
radius n in RŜk , satisfies

N (ε, B̄(0, n), ‖.‖2) ≤
(

3n

ε

)Ŝk
.

Hence, we deduce that there existsMε,A,k an ε-cover of {A ∈ Θn, s.t. supp(A) = Ŝk}, for ‖ · ‖F ,
such that

Mε,A,k ≤
(

3n

ε

)Ŝk
. (30)

From Equation (29) and (30) we obtain the desired result.

Proof of Theorem 2. We first recall that the construction of the ERMLR algorithm is based on a
dataset Dn = {(T (i)

T , Y (i)), i = 1, . . . , 2n} of size 2n which is split into two independent dataset of
same size n that are denoted respectively D(1)

n and D(2)
n .

Based on the first sample D(1)
n , we estimate the vector of weights p∗ by its empirical frequencies

p̂. Hence for each k, we have

p̂k =
1

n

n∑
i=1

1{Y (i)=k}

Then, based on sample D(2)
n , we build the estimator Ŝ :=

(
Ŝ1, . . . , ŜK

)
as described in Section 3.1.

Besides, we also build the estimator of the vector of score function f̂ = fθ̂R , and ĝ its associated
classifier. Since D(1)

n and D(2)
n are independent, we have that p̂ is independent on f̂ and ĝ.

Let us introduce the set A =
{
p̂ : min(p̂) ≥ p0

2

}
. Note that on Ac we have

|min(p∗)−min(p̂)| ≥ p0

2
,

which implies that there exists k ∈ Y s.t. |p∗k − p̂k| ≥ p0
2 . Thus, using Hoeffding’s inequality we

get

P(Ac) ≤
K∑
k=1

P
(
|p∗k − p̂k| ≥

p0

2

)
≤ 2Ke−np

2
0/2. (31)

34



Now, let us work on Ω = A⋂{Ŝ = S∗}, and denote

∆n :=
K∑
k=1

(p̂k − p∗k)2, (32)

which is a random variable independent from D(2)
n . We also recall that for each θ ∈ Θ̂, the score

function fθ is defined as follows

fθ(TT ) = 2πk,p̂,θ(TT )− 1, k ∈ [K].

We introduce
θ̃ = argmin

θ∈Θ̂

R2(fθ).

The oracle counterpart of f̂ . Our aim is to control

E
[
R2(f̂)−R2(f∗)

]
= E

[(
R2(f̂)−R2(f∗)

)
1{Ω}

]
+ E

[(
R2(f̂)−R2(f∗)

)
1{Ωc}

]
. (33)

Since for each θ ∈ Θ̂ defined by (7), R2(fθ) is bounded, from Theorem 1, and Equation (31), we
deduce that

E[
(
R2(f̂)−R2(f∗)

)
1{Ωc}] ≤ CP (Ωc) ≤ C

(
1

n
+ exp

(
−np2

0/2
))

. (34)

Therefore, it remains to bound the first term in the r.h.s. of Equation (33). Hence, we work on
the set Ω. We consider the following decomposition

R2(f̂)−R2(f∗) =
(
R2(f̂)−R2(fθ̃)

)
+
(
R2(fθ̃)−R2(f∗)

)
(35)

In a first step, we control the second term in the r.h.s. of the above equation. For n large
enough, we observe that on Ω, θ∗ ∈ Θ̂. Therefore, from the definition of θ̃, we deduce

R2(fθ̃)−R2(f∗) = R2(fθ̃)−R2(fθ∗) +R2(fθ∗)−R2(f∗)

≤ R2(fθ∗)−R2(f∗).

Then on Ω, we deduce from the mean value theorem that

R2(fθ̃)−R2(f∗) ≤ R2(fθ∗)−R2(f∗) ≤ C∆n, (36)

with ∆n given in Equation (32). Since, E [∆n] ≤ C

n
, from Equation (35), we deduce that

E
[(
R2(f̂)−R2(f∗)

)
1{Ω}

]
≤ E

[
R2(f̂)−R2(fθ̃)1{Ω}

]
+
C

n
. (37)

Now, we focus on the first term in the r.h.s. of Equation (35). We denote

Df := R2(f)−R2(fθ̃), and D̂f := R̂2(f)− R̂2(fθ̃).

And we want to control E[D
f̂
]. By Lemma D.1, there exists a subset Mε ⊂ Θ̂ such that for

θ̂R =
(
µ̂, Â

)
, there exists θε = (µε, Aε) ∈Mε satisfying

max
k∈[K]

‖µk,ε − µ̂k‖1 ≤ ε and max
k∈[K]

‖Ak,ε − Âk‖F ≤ ε.
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Then, the following decomposition holds

D
f̂
≤ D

f̂
− 2D̂

f̂

= (D
f̂
−Dfθε

) + (2D̂fθε
− 2D̂

f̂
) + (Dfθε

− 2D̂fθε
)

=: T1 + T2 + T3.

Applying Proposition D.1 with ε = 1/(n3M log(n)) we get

E [Ti] ≤
C

n
, for i = 1, 2.

Besides,
T3 ≤ max

θ∈Mε

(Dfθ − 2D̂fθ).

Therefore, gathering Equation (33), (34), (36), and (37), we deduce that

E[R2(f̂)−R2(f∗)] ≤ E
[

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ω}

]
+
C

n
. (38)

To finish the proof, it remains to control the first term in the r.h.s. of Inequality (38). Condi-
tional on D(1)

n , we have that

E
[

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ω}|D(1)
n

]
= 1{A}E

[
max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ŝ=S∗}|D(1)
n

]
.

Note that On the set {Ŝ = S∗}, the setMε is an ε-net of the deterministic set

Θ̃ =
{
θ = (θ1, . . . , θK) ∈ ΘK

n , supp(Ak) = S∗k
}
,

and then is also deterministic. Besides, from Lemma D.1, we deduce that for ε =
1

n3M log(n)

log (|Mε|) ≤ CK (M + s∗)
log(nM)

n
.

Furthermore, for u > 0 conditional on D(1)
n , it holds that

E
[

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ŝ=S∗}

]
≤ u+

∫ ∞
u

P
(

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ŝ=S∗} ≥ t
)

dt

≤ u+

∫ ∞
u

P
(

max
θ∈Mε

(Dfθ − 2D̂fθ) ≥ t
)

dt. (39)

Now, we have to bound the last term in the above equation. Let θ ∈ Mε, and f := fθ. Let us
introduce the least squares function

`f (Z, T ) :=
K∑
k=1

(Zk − fk(T ))2.

Since for each θ ∈ Θ̃, fθ is uniformly bounded by 1, we get from Bernstein’s inequality that,
conditionally on D(1)

n , for t ≥ 0

P
(
Df − 2D̂f ≥ t

)
≤ P

(
2(Df − D̂f ) ≥ t+Df

)
≤ exp

( −n(t+Df )2/8

Bf + (t+Df )4K/3

)
, (40)
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with
Bf := E

[(
`f (Z, T )− `fθ̃(Z, T )

)2
]
.

From the Cauchy-Schwartz inequality, we observe that conditionally on D(1)
n

E
[
(`f (Z, T )− `f∗(Z, T ))2

]
≤ CK

K∑
k=1

E
[
(fk(T )− f∗k(T ))2

]
= CK (R2(f)−R2(f∗)) .

Thus, since

Bf ≤ 2E
[(
`f (Z, T )− `f∗(Z, T )

)2
]

+ 2E
[(
`fθ̃(Z, T )− `f∗(Z, T )

)2
]
,

we deduce that
Bf ≤ CK

(
R2(f)−R2(f∗) +R2(fθ̃)−R2(f∗)

)
.

Then, as R2(f)−R2(f∗) = R2(f)−R2(fθ̃) +R2(fθ̃)−R2(f∗), on the event A and conditionally
on D(1)

n , we deduce from the above inequality and Equation (36) that

Bf ≤ CK (Df + ∆n) .

Hence, from Inequality (40), we get for t ≥ ∆n,

P
(
Df − 2D̂f ≥ t

)
≤ exp (−CKnt) ,

which leads to
P
(

max
θ∈Mε

(Df − 2D̂f ) ≥ t
)
≤ |Mε| exp (−CKnt) .

In view of Equation (39), we then obtain that, conditionally on D(1)
n ,

E
[

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ω}|D(1)
n

]
≤ max

(
∆n,

C log(|Mε|)
n

)
+

∫ +∞

C log(Mε)/n
|Mε| exp(−Cnt) dt.

As before, we use that E [∆n] ≤ C/n, and we deduce from the above inequality by integrating over
D(1)
n that

E
[

max
θ∈Mε

(Dfθ − 2D̂fθ)1{Ω}

]
≤ C log(|Mε|)

n
.

Since for ε = 1/(log(n)n3M) we have that log(|Mε|) ≤ C(M + s∗) log(nM), we obtain from the
above inequality and Equation (38) that

E[R2(f̂)−R2(f∗)] ≤ C (M + s∗) log(nM)

n
.

From the above inequality, we get the desired by applying the Zhang’s lemma

E[R(ĝ)−R(g∗)] ≤ 1√
2

(
E[R2(f̂)−R2(f∗)]

)1/2
.
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