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Invariant Elo’s law computed for 2 players

Computing the Invariant Measure for
a Two-Player Elo Rating System

David Arturo Man Castillo & Stéphane Junca

Labo. JAD, Université Côte d’Azur, Nice, France

Abstract

The Elo rating system, developed by Arpad Elo, is a prominent method for evaluating
player skill levels in two-player games. This research report investigates the stationary
distribution of player ratings in the Elo model, explores the "Elo conjecture," and exam-
ines the distribution’s characteristics, including symmetry and expected value - variance
dependence or independence on the famous K-factor.

We developed a numerical algorithm to approximate the cumulative distribution func-
tion (CDF) of the Elo distribution. Through extensive simulations, we validated the
algorithm’s precision and applicability. Our study included a grid convergence analysis,
symmetry tests,"Elo conjecture" analysis and comparisons with the normal CDF. The
results confirm the algorithm’s accuracy and suggest that the Elo’s assumption about
the expected match outcome and the rating difference may be accurate. Symmetry tests
revealed that the Elo distribution might be symmetric around its mean for most config-
urations, aligning with theoretical expectations.

Investigating the parameter K, which influences rating adjustment speed, revealed that
while the expected rating difference appears independent of K, the variance shows a
linear dependence on K. These insights enhance the understanding of the Elo rating
system and applicability.

Keywords: Elo rating system, Markov chain, stationary distribution, cumulative distri-
bution function, symmetry, numerical algorithm, grid convergence.
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Chapter 1

Introduction

1.1 Background and Problem Statement

The Elo rating system, developed by Arpad Elo, is a widely used method for calculating
the relative skill levels of players in two-player games such as chess. Elo’s system has
been adopted by the World Chess Federation (FIDE) and has seen applications in various
other sports and competitive activities due to its simplicity and reliability [1]. The system
updates players’ ratings based on match outcomes, reflecting their current performance
levels.

Despite its widespread use, the Elo rating system has certain limitations and unresolved
problems. This study aims to explore the stationary distribution of player ratings in
the Elo system and investigate Elo’s assumption that the expected score depends on
the difference of the rating [1]. The primary objective is to develop an algorithm that
approximates the cumulative distribution function (CDF) of the Elo distribution starting
from the Elo dynamic equations, and to evaluate the precision and applicability of this
scheme.

1.2 Objectives

The primary objectives of this study are:

• To analyze the mathematical constructs of the Elo rating system and its update
mechanism.

• To investigate the stationary distribution of player ratings within the Elo model.

• To numerically approximate the invariant distribution of the Elo rating system
dynamics.
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• To numerically demonstrate and verify Elo’s assumption about the expected score
and the difference of the ratings.

• To explore characteristics of the Elo distribution such as its symmetry, similarity
to the normal distribution, and the dependence/independence of E[∆ij] and V [∆ij]
with respect to K.

1.3 Structure of the Report

This report is structured as follows:

• Literature Review - Summarizes existing research and theories related to the Elo
rating system and its applications, including works by Avdeev on the stationary
distribution [2], and Krifa et al. on the convergence properties of the Elo rating
system [3].

• Chapter 2: Theoretical Framework - Explains the Elo rating system dynamics,
the definition and significance of the random variable ∆n

ij, and how the dynamics
can be viewed as a Markov chain process. It also details the original Elo conjecture
and how it is framed in this study.

• Chapter 3: Methodology - Describes the research design and analytical tech-
niques used in the study. This includes a method for numerically approximating the
cumulative distribution function (CDF) of the Elo rating system starting from its
dynamic equation, testing the convergence of the scheme, and analyzing properties
of the numerical approximation.

• Chapter 4: Results - Presents the findings from the numerical approximation
of the Elo rating system’s stationary distribution and the numerical study of the
Elo conjecture. This includes graphical representations of the numerical approxi-
mations.

• Chapter 5: Discussion and Conclusion - Interprets the results, compares them
with existing literature, discusses limitations, suggests areas for future research, and
summarizes the study’s key findings and their implications.
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1.4 Literature Review

Foundational Work on the Elo Rating System Arpad Elo’s seminal work, "The
Rating of Chess Players, Past and Present," laid the groundwork for the rating system
that bears his name [1]. Elo’s system was designed to provide a more accurate and
objective measure of a player’s skill by updating ratings based on match outcomes. The
key innovation of Elo’s system was the dynamic adjustment of ratings, which allowed for
continuous tracking of a player’s performance over time.

Theoretical Developments Few theoretical studies have explored the mathematical
properties of the Elo rating system. One key area of interest is the system’s ability to
achieve a stationary distribution, where player ratings stabilize over time. This stationary
distribution is crucial for understanding the long-term behavior of the rating system and
its ability to rank players accurately [2].

Krifa et al. investigated the convergence properties of the Elo rating system and demon-
strated that the system correctly sorts players’ strengths in round-robin tournaments
[3]. Junca’s work on contractions in the Elo rating update process further explored the
conditions under which the ratings converge [6]. Aldous also highlighted the need for
foundational research on the accuracy of Elo-type rating algorithms and questioned the
common claim that 30 matches suffice to rank players accurately [4].

Applications and Extensions The Elo rating system has been adapted and extended
for use in various other sports and competitive activities beyond chess. These adaptations
often involve modifications to the basic rating update equations to account for specific
characteristics of different games [4].

The Elo rating system have been applied to sports such as soccer, basket and online
gaming. Each adaptation typically involves tweaking the rating update formulas to better
reflect the scoring rules and match formats of the respective sports. Jabin and Junca
developed a continuous model for ratings, providing a new perspective on the evolution
of player ratings in large populations [7].
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Challenges and Unresolved Questions Despite its widespread use, the Elo rating
system faces several challenges and unresolved questions. One of the primary challenges
is the lack of a comprehensive computation of the invariant Elo distribution. While there
have been efforts to approximate the stationary distribution of player ratings, a complete
understanding of its form remains elusive [1]. Additionally, the symmetry properties of
the Elo distribution are not fully understood, except for specific cases where the winning
probability p is 0.5, as shown by Avdeev [2].

Another significant question pertains to Elo’s assumption regarding the expected outcome
of a match and its dependence on the rating difference [1]. This study aims to contribute
by exploring the stationary distribution of ratings and examining whether the expected
score can be accurately approximated by the difference of the rating.

Furthermore, the Elo rating system’s dependence on parameters such as K, which controls
the rate of rating adjustment, needs further exploration. Understanding the influence of
these parameters on the distribution of player ratings is crucial for improving the accuracy
and reliability of the rating system. Future research should also investigate the potential
for using stochastic algorithms to provide a comparison with the numerical deterministic
approach on the cumulative distribution function (CDF) developed in this work.
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Chapter 2

Theoretical Framework

This chapter discusses the theoretical basis of the Elo rating system, its dynamics, and
the mathematical constructs used in this report. We will explore the system’s behavior,
the concept of the rating difference as a random variable, and our reformulation of Arpad
Elo’s assumptions into what we term the Elo conjecture. The discussion is grounded in
the works of Krifa, Spinelli, and Junca (2021) [3], Junca (2021) [6], and Jabin and Junca
(2015) [7].

2.1 Elo Rating System Dynamics for Two Players

The Elo rating system for two players is designed to calculate the relative skill levels of
players in competitor-versus-competitor games such as chess. The key equations that
describe the update mechanism for players’ ratings after a match are as follows:

2.1.1 Rating Update Equations

For two players, i and j, the ratings after a match are updated using the equations:

Rn+1
i = Rn

i + K
(
Sn

ij − b(Rn
i − Rn

j )
)

(2.1)

Rn+1
j = Rn

j + K
(
Sn

ji − b(Rn
j − Rn

i )
)

(2.2)

where Sn
ij +Sn

ji = 1 represents the outcome of the game, and b is the bonus-malus function,
which is bounded by b ∈ [0, 1] [3].

The modern bonus-malus function, primarily the logistic Elo function, used in practice
is defined as:

b(x) = 1
1 + 10−x/400 (2.3)
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2.1.2 Rating Difference

The difference in ratings and its update are defined as:

∆n
ij = Rn

i − Rn
j (2.4)

∆n+1
ij = ∆n

ij + 2K
(
Sn

ij − b(∆n
ij)
)

(2.5)

The sum of Elo ratings is conserved:

2Rn
i = R0

i + R0
j + ∆n

ij (2.6)

2Rn
j = R0

i + R0
j − ∆n

ij (2.7)

The update process for the Elo ratings can be modeled as a Markov chain, where the state
of the system at any given time is represented by the rating difference ∆n

ij. The transition
probabilities depend on the outcome of each game and the current rating difference [7].

Define the increasing function:

g(x) = x − 2Kb(x) (2.8)

where K > 0 is a constant, not too large, and b(x) is the bonus-malus function. This
function is key in updating the CDF for the next game. The inverse function h(x) =
g−1(x) exists if g(x) is strictly increasing, requiring g′(x) > 0 for all x. The derivative is:

g′(x) = 1 − 2Kb′(x) (2.9)

Given b′(x) from (2.3), at x = 0,

b′(0) = ln(10)
1600 ≈ 0.00144 (2.10)

Thus, for g′(x) > 0,

1 − 2K · ln(10)
1600 > 0 ⇒ K <

800
ln(10) ≈ 347.4 (2.11)

This ensures g(x) is strictly increasing and invertible [6].
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2.2 Cumulative Distribution Function (CDF)

Let p and q be the probabilities of winning and losing respectively, with p + q = 1. The
CDF of the Elo distribution after n games is:

Fn(x) = P (∆n ≤ x) (2.12)

To update the CDF for the next game, we consider the law of total probabilities. By
applying this law, we develop the following recurrence relation:

Fn+1(x) = p · P (∆n+1
ij ≤ x | Sn

ij = 1) + q · P (∆n+1
ij ≤ x | Sn

ij = 0) (2.13)
= p · P (∆n

ij + 2K(1 − b(∆n
ij)) ≤ x) + q · P (∆n

ij + 2K(0 − b(∆n
ij)) ≤ x)

= p · P (g(∆n
ij) ≤ x − 2K) + q · P (g(∆n

ij) ≤ x)
= p · Fn(h(x − 2K)) + q · Fn(h(x))

Fn+1(x) = p · Fn(h(x − 2K)) + q · Fn(h(x)) (2.14)

This equation is crucial for understanding the dynamics of the Elo rating system, as it
describes the evolution of the CDF over successive games. The operator L is defined as:

L(F )(x) = p · (F ◦ h)(x − 2K) + q · (F ◦ h)(x) (2.15)

Thus, the CDF at step n + 1 is:

Fn+1 = L(Fn) (2.16)

The operator L leads to a recursive update process for the CDF. The fixed point of L, a
distribution F ∗ such that

L(F ∗) = F ∗, (2.17)

represents the invariant distribution of the Elo ratings. While g is not contractant (as
discussed in [6]), it has been proven that L is contractant for a suitable norm for two
players [2]. The existence and uniqueness of the invariant distribution F ∗ have been
established by Avdeev [2]. This implies that iterative application of L to any initial CDF
F0 will converge to the invariant distribution F ∗.

In this Markovian process, the state of the system at any given time is represented by
the rating difference ∆n

ij. This invariant law for two players, resulting from the infinite
recurrence, provides the steady-state behavior of the Elo rating system.

10



Invariant Elo’s law computed for 2 players

2.3 Symmetry of the Invariant Law

In this section, we aim to prove the symmetry of the cumulative distribution function
F ∗(x) for the case where the probability p = 1

2 and the mean difference µ = 0. While
this symmetry has already been established by Avdeev [2] using a Gaussian bonus-malus
function, we will demonstrate it here using the logistic bonus-malus function symmetry.
Our approach leverages the symmetry properties of the logistic function to show that the
invariant distribution F ∗(x) satisfies F ∗(x) + F ∗(−x) = 1.

Proposition 1. If p = 1
2 and F (x) is symmetric such that F (x) + F (−x) = 1, then the

operator L(F ) preserves this symmetry, i.e., L(F )(x) + L(F )(−x) = 1.

Proof. First, we show the symmetry of g(x):

g(x) = x − 2Kb(x)

g(−x) = −x − 2Kb(−x)

Adding these, we get:

g(x) + g(−x) = (x − 2Kb(x)) + (−x − 2Kb(−x)) = −2K(b(x) + b(−x))

Since b(x) + b(−x) = 1:
g(x) + g(−x) = −2K

Given g(h(x)) = x and g(h(−x)) = −x. Next, we show the symmetry of h(x):

g(h(x)) + g(−h(x)) = −2K

Since g(h(x)) = x, we have:
x + g(−h(x)) = −2K

Thus:
g(−h(x)) = −x − 2K

Since h is the inverse of g, we can write:

−h(x) = h(−x − 2K)

Similarly, evaluating g(−h(−x)):

g(h(−x)) = −x

11
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g(−h(−x)) = x − 2K

Thus:
−h(−x) = h(x − 2K)

Finally, we prove the symmetry of the invariant law: Assume F (x) is symmetric such
that F (x) + F (−x) = 1 for p = 0.5 and µ = 0:

L(F )(x) = 1
2F (h(x − 2K)) + 1

2F (h(x))

Similarly:
L(F )(−x) = 1

2F (h(−x − 2K)) + 1
2F (h(−x))

Adding these equations:

L(F )(x) + L(F )(−x) = 1
2F (h(x − 2K)) + 1

2F (h(x)) + 1
2F (h(−x − 2K)) + 1

2F (h(−x))

Using the symmetry properties of h:

h(x − 2K) = −h(−x) and h(−x − 2K) = −h(x)

Grouping the terms we get:

1
2F (−h(−x)) + 1

2F (h(−x)) + 1
2F (h(x)) + 1

2F (−h(x))

Thus:
1
2[F (−h(−x)) + F (h(−x))] + 1

2[F (h(x)) + F (−h(x))]

Since F is symmetric:

F (−h(−x)) + F (h(−x)) = 1 and F (h(x)) + F (−h(x)) = 1

Simplifying:
1
2 · 1 + 1

2 · 1 = 1

Hence, we have shown that:

L(F )(x) + L(F )(−x) = 1
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As a consequence of the proposition, we can deduce that the invariant Elo distribution,
for p = 1

2 , is also symmetric. This is formally stated in the following corollary:

Corollary 1.1. If p = 1
2 , then the unique fixed point F ∗ of L, representing the invariant

Elo distribution, is also symmetric. That is, F ∗(x) + F ∗(−x) = 1.

Proof. Since F ∗ is a fixed point of the operator L, we have: F ∗ = L(F ∗).

Now, let F0 be an initial symmetric distribution such that: F0(x) + F0(−x) = 1.

We apply the recursion operator L iteratively to F0. Define the sequence {Fn} by:
Fn+1 = L(Fn) for n ≥ 0.

By the hypothesis of the proposition, if Fn is symmetric, then L(Fn) is also symmetric.
Hence, for all n ≥ 0: Fn(x) + Fn(−x) = 1.

As n tends to infinity, the sequence {Fn} converges to the unique fixed point F ∗ of the
operator L, as established by Avdeev [2].

Taking the limit as n → ∞, we get, almost everywhere:

lim
n→∞

Fn(x) = F ∗(x) and lim
n→∞

Fn(−x) = F ∗(−x).

Since each Fn is symmetric, we have: L(Fn)(x) + L(Fn)(−x) = 1, and then Fn+1 is also
symmetric.

Passing to the limit, we obtain: F ∗(x) + F ∗(−x) = 1.

Thus, the unique fixed point F ∗, representing the invariant Elo distribution, is symmetric.

2.4 Elo Conjecture

Arpad Elo did not directly propose what we now refer to as the "Elo Conjecture." Instead,
in his book [1], Elo suggested that the rating difference between two players is sufficient
to estimate the probability of winning in an encounter between them.

In our model, the real strength of player i is represented by E[R∞
i ]. This allows us

to reformulate Elo’s idea into a conjecture about the limit distribution of the random
variable ∆∞

ij = R∞
i − R∞

j , which represents the steady-state rating difference between
two players i and j after an infinite number of games. For notation simplification, we
will refer to ∆∞

ij simply as ∆ij from now on.

13
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We aim to verify numerically if:

E[b(∆ij)] = b(E[∆ij])

Where b is the bonus-malus function (2.3).

This conjecture, inspired by Elo’s original ideas, suggests that the long-term rating dif-
ference between two players can be used to accurately assess their relative strengths. By
investigating this, we seek to provide a deeper understanding of the theoretical under-
pinnings of the Elo rating system and its applicability to estimating long-term player
strengths.

From the proposition regarding symmetry, we can also deduce that the Elo conjecture
holds true for p = 1

2 , as stated in the following corollary:

Corollary 1.2. If p = 1
2 and the hypotheses of the proposition are satisfied, then the Elo

conjecture holds true. That is, E[b(∆ij)] = b(E[∆ij]).

Proof. First, recall that F ∗ is the fixed point of the operator L, representing the invariant
Elo distribution. For p = 1

2 , we have shown that F ∗ is symmetric, i.e., F ∗(x) + F ∗(−x) =
1.

We begin by noting that the bonus-malus function b(x) respects the symmetry b(x) +
b(−x) = 1 and thus,

(
b(x) − 1

2

)
is an odd function. Additionally, since F ∗ is symmetric,

dF ∗(x) is an even measure.

We then compute the expected value E[b(∆ij)] as follows:

E[b(∆ij)] =
∫ ∞

−∞
b(x)dF ∗(x)

We can decompose the integral:

E[b(∆ij)] =
∫ ∞

−∞

(
b(x) − 1

2

)
dF ∗(x) +

∫ ∞

−∞

1
2dF ∗(x)

Since
(
b(x) − 1

2

)
is odd and dF ∗(x) is even, the integral of their product over the sym-

metric limits is zero: ∫ ∞

−∞

(
b(x) − 1

2

)
dF ∗(x) = 0

The second term simplifies to:
∫ ∞

−∞

1
2dF ∗(x) = 1

2

∫ ∞

−∞
dF ∗(x) = 1

2 · 1 = 1
2
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Thus:
E[b(∆ij)] = 0 + 1

2 = 1
2

On the other hand, for p = 1
2 , the expected value of the rating difference is zero due to

symmetry:
E[∆ij] = 0

Hence:
b(E[∆ij]) = b(0) = 1

2

Therefore, we have shown that:

E[b(∆ij)] = b(E[∆ij]) = 1
2

This completes the proof.
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Chapter 3

Methodology

3.1 Invariant Law Computational Algorithm

The goal of this section is to compute the invariant cumulative distribution function
(CDF) of the Elo rating system’s rating differences. This involves discretizing the space
of rating differences and linearized update operator L(·). The following steps outline the
methodology employed:

Discretization and Mesh Generation To begin, we discretize the domain of possible
rating differences, x, into a finite set of points:

{x0, x1, . . . , xN+1} (3.1)

where N is the number of discretization points chosen based on the desired resolution
and computational constraints. The grid spacing δx is set to δx = 2K

m
, ensuring that the

point x − 2K falls into the grid. This precise spacing facilitates accurate computations
and aligns with the dynamic transformations of the system.

Using the Newton-Raphson method, we directly compute the inverse transformations
dictated by the system’s dynamics for h(x) and h(x − 2K):

h(xi) and h(xi − 2K) for each i = 0, 1, . . . , N + 1. (3.2)

This approach allows us to obtain the necessary points for our computations without
generating much complexity.

Interpolation and Matrix Construction Given the monotonic nature of the cu-
mulative distribution function F ∗, and the transformations h(x) derived from g(x) =

16
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x − 2Kb(x) with b(x) = 1
1+10−x/400 , we can estimate F ∗ at any non-mesh point through

linear interpolation. The bonus-malus function b(x), specific to the Elo context, ensures
that g(x) and hence h(x) are well-behaved and bounded within predictable limits. We
choose a K value that makes g′(0) > 0 and maintains its increasing properties. Specifi-
cally, we know:

x − 2K < g(x) < x and x < g(x + 2K) < x + 2K, (3.3)

implying that:

x < h(x) < x + 2K and x − 2K < h(x − 2K) < x (3.4)

This property allows us to interpolate values of F at h(x) and h(x − 2K) using neigh-
bouring mesh points. For each xi in our discrete mesh, we identify points xa and xb such
that xa ≤ h(xi) ≤ xb. The weights for interpolation are then calculated as:

wi = h(xi) − xa

xb − xa

, (3.5)

Similarly, we determine xa′ and xb′ for h(xi − 2K), and compute corresponding weights.

The matrix A for the linear approximation of F (x) is constructed as follows, taking into
account the correct indices for each case based on the interpolation:

Aij =



p(1 − w′
i) if j = a′,

pw′
i if j = b′,

q(1 − wi) if j = a,

qwi if j = b,

0 otherwise.

(3.6)

This effectively linearizes the operator L such that:

Fn+1(xi) = pFn(h(xi − 2K)) + qFn(h(xi))
≈ p(1 − w′

i)Fn(xa′) + pw′
iFn(xb′) + q(1 − wi)Fn(xa) + qwiFn(xb)

F⃗n+1 = AF⃗n (3.7)

where F⃗n is the (infinite) vector approximating Fn on the grid: F⃗napprox(Fn(xi)).

Here are schematic representations of how A looks, where the rows correspond to discrete
points xi and columns correspond to indices j which may be a, a′, b, b′ based on the
interpolation:
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A =



. . .
...

...
...

...
...

...
...

. . .

· · · p(1 − w′
i−1) pw′

i−1 0 · · · 0 q(1 − wi−1) qwi−1 · · ·
· · · 0 p(1 − w′

i) pw′
i 0 · · · 0 q(1 − wi) · · ·

· · · 0 0 p(1 − w′
i+1) pw′

i+1 0 · · · 0 · · ·
. . .

...
...

...
...

...
...

...
. . .



This first matrix shows the center of A, highlighting the structure and interpolation
weights at a given point. It focuses on a central portion of the matrix, illustrating how
entries are populated based on the interpolation weights p(1 − w′

i), pw′
i, q(1 − wi), and

qwi.

A =



q(1 − w0) qw0 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

p(1 − w′
m) pw′

m 0 · · · 0 q(1 − wm) qwm 0 · · · · · · · · · · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 p(1 − w′
i−1) pw′

i−1 0 · · · 0 q(1 − wi−1) qwi−1 0 · · · · · ·
. . .

. . . 0 0 p(1 − w′
i) pw′

i 0 · · · 0 q(1 − wi) qwi 0 · · ·
. . .

. . . 0 0 0 p(1 − w′
i+1) pw′

i+1 0 · · · 0 q(1 − wi+1)
. . . · · ·

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · · · · 0 p(1 − w′
N−m) pw′

N−m 0 · · · 0 q(1 − wN−m) qwN−m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 p(1 − w′
0) pw′

0



The second, larger matrix representation includes the entire structure of A, capturing
the beginning and the end of the matrix. It demonstrates how the interpolation weights
apply not only at the center but across all discrete points xi from the start to the end of
the matrix. This comprehensive view provides a full schematic, detailing how each entry
in A is populated with non-zero entries at indices related to xa′ , xb′ , xa, xb for each xi.

3.1.1 Finding the Invariant Law

Once convergence is reached, F∞ approximates the fixed point F ∗. To directly find F ∗,
we solve:

F ∗ = AF ∗, (3.8)

(I − A)F ∗ = 0, (3.9)

which involves finding the null space of the matrix I − A, where I is the identity matrix.
This solution represents the stationary distribution F ∗ of the system.

Theoretically, if the matrix A could be as large as needed, we could compute the null space
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directly to find F ∗. However, due to the finite grid, we must truncate the computational
space. This truncation results in incomplete information at the boundaries, as the infinite
nature of the problem is approximated by a finite grid.

To address the missing information caused by this truncation, we introduce a source term
b. The system can be written as:

F ∗ = AF ∗ + b, (3.10)

Solving this system gives us the invariant cumulative distribution for the linearized model:

(I − A)F ∗ = b (3.11)

The source term b is constructed to approximate the boundary values at the mesh limits,
ensuring that the solution adheres to the theoretical behavior of the cumulative distri-
bution function (CDF) at infinity. Specifically, b is filled corresponding to terms that
are outside the matrix A, which happens when h(x) is out of the mesh (either at the
beginning or the end).

These points typically correspond to m points within the first and last 2K values, aligning
with the bounds of h(x) and h(x−2K). At the beginning of the grid, where x0 represents
−∞, we have h(x0) and h(x0−2K). Given x < h(x) < x + 2K and h(x0−2K) ≈ x0−2K,
the first 2K values fall outside the grid, representing m points. This is because ∆x =
2K/m, where m is the number of points dividing 2K.

Similarly, at the other extreme, where xN+1 represents +∞. Given x < h(x) < x + 2K

and h(xN+1) ≈ xN+1 + 2K, the values for 2K again fall outside the grid, representing m

points.

Specifically, terms F ∗ ◦h(x) corresponding to x values that effectively represent ∞ (corre-
sponding to values close to 1) in our grid are set to 1, ensuring the appropriate boundary
conditions at the upper bound. Similarly, terms F ∗ ◦h(x−2K) corresponding to x values
that effectively represent −∞ (corresponding to values close to 0) in our grid are set to
0, ensuring the appropriate boundary conditions at the lower bound.

A reference of the b source term is:
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b =



p · F ∗ ◦ h(x0 − 2K)
...

p · F ∗ ◦ h(xm−1 − 2K)
0
...

0
...

0
...

0
q · F ∗ ◦ h(xN−m+1)

...

q · F ∗ ◦ h(xN+1)



≈



p · 0
...

p · 0
0
...

0
...

0
...

0
q · 1

...

q · 1


This ensures that the invariant cumulative distribution F ∗ correctly approximates the
theoretical CDF within the chosen grid limits. By carefully selecting the grid boundaries,
we ensure that the extremities of the grid reflect the behavior of the CDF at −∞ and
∞, allowing for an accurate and stable solution.

Box Size Discussion To balance computational capacity and precision, we choose a
box where b(x) is close to 0 and 1 with three figures of precision. This box corresponds
to the range [−1200, 1200], ensuring that the values outside this range are appropriately
approximated by the boundaries set in the source term b.

3.2 Grid Convergence Study

A grid convergence study is crucial in numerical analysis to verify the accuracy of a
numerical scheme by evaluating its behavior as the grid resolution is refined. Given
the absence of an analytical solution, this study assesses the reliability and order of
convergence of our numerical model, as described in [8]. The principles underlying this
method are extensively discussed in numerical analysis literature, including works such
as Schatzman’s textbook [9].

The primary objective is to determine the order of convergence of our numerical scheme.
We solve the system for different grid resolutions, denoting the solutions with grid spac-
ings δx and δx/2 as Fδx and Fδx/2, respectively. The maximum absolute error between
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these solutions at corresponding points is measured using the L∞ norm:

∥Fδx − Fδx/2∥∞

Assuming the numerical scheme has an error of the form C(δx)α, we perform a logarithmic
regression to determine the order of convergence α. By testing various values of δx, we
plot the error on a logarithmic scale against the grid spacing and fit a linear regression
model:

log(∥Fδx − Fδx/2∥∞) = α log(δx) + log(C)

The slope of the log-log plot provides the order of convergence α of the numerical scheme.
This rigorous method allows us to evaluate the convergence properties and accuracy of
our model, ensuring its reliability for practical applications.

Exact order of convergence computation The idea of grid convergence is simple
yet powerful. It helps in verifying that as the grid is refined, the numerical solution
converges to a consistent result.

To illustrate how grid convergence works, consider a solution F that we approximate
using numerical methods. Let Fδx and Fδx/2 be the numerical solutions obtained with
grid spacings δx and δx/2, respectively. Assuming our numerical method is of order α

where α ∈ R+
0 , the errors in these approximations can be expressed as:

Fδx = F + C(δx)α + o((δx)α),

Fδx/2 = F + C

(
δx

2

)α

+ o((δx)α),

where C is a constant and o((δx)α) represents higher-order terms. Here, δx ∝ 1
m

since
δx = 2K

m
. The difference between these solutions can be used to estimate the error:

Fδx − Fδx/2 = (F + C(δx)α) −
(

F + C

(
δx

2

)α)
+ o((δx)α)

Simplifying, we get:

Fδx − Fδx/2 = C(δx)α − C

(
δx

2

)α

+ o((δx)α)

Factoring out C(δx)α:
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Fδx − Fδx/2 = C(δx)α
(

1 − 1
2α

)
+ o((δx)α)

This expression shows that the difference between the solutions at two different grid
resolutions is proportional to (δx)α, and by analyzing this difference, we can estimate the
order of convergence α.

To determine the order of convergence α, we can use the ratio of errors at different grid
spacings. Suppose we have solutions at three grid spacings: δx, δx/2, and δx/4. Denote
the corresponding solutions as Fδx, Fδx/2, and Fδx/4.

The errors between these solutions can be written as:

E1 = ∥Fδx − Fδx/2∥∞,

E2 = ∥Fδx/2 − Fδx/4∥∞

Given the proportional relationship between the errors and the grid spacings, we have:

E1 ≈ C(δx)α
(

1 − 1
2α

)
,

E2 ≈ C

(
δx

2

)α (
1 − 1

2α

)

Taking the ratio of these errors:

E1

E2
≈

C(δx)α
(
1 − 1

2α

)
C
(

δx
2

)α (
1 − 1

2α

) = 2α

Solving for α:
α ≈ log2

(
E1

E2

)

Therefore, by calculating the errors E1 and E2 at different grid resolutions and taking
their ratio, we can estimate the order of convergence α.

3.3 Symmetry Study

To examine the symmetry properties of the Elo distribution, we perform a symmetry
test. For a symmetric distribution, the CDF should satisfy the condition:

FX(µ − y) + FX(µ + y) = 1
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where µ is the mean of the distribution, and y is any value on the x-axis. For the Elo
distribution, if p and q are not equal, the mean µ will not be zero. Thus, we calculate
the mean of FElo and use it in a symmetry test.

Symmetry test To examine the symmetry properties of the Elo distribution, we per-
form a symmetry test where we first calculate the mean µ of FElo. With this mean value,
we then verify the symmetry around µ by checking if the condition FX(µ−y)+FX(µ+y) =
1 holds for various values of y within our selected box. The second part of this symmetry
test involves taking the norm infinity (∥ · ∥∞) of the difference for different grid spacings.
This allows us to observe how the symmetry behavior evolves as the grid becomes finer.
By analyzing the symmetry property of FElo, we can further understand the characteris-
tics of the Elo invariant law.

3.4 Expected Value Computation Using the CDF

To compute the expected value E[ϕ(X)] using the cumulative distribution function (CDF)
FX(x), we generalize our approach to cover various functions ϕ(x) because this allows us
to derive important statistical measures like the expected value, the second moment, and
the expected value of the bonus-malus function from a single unified framework. By doing
so, we can apply the same methodology to different functions of X without repeating the
entire derivation process each time. This not only simplifies our computations but also
ensures consistency in the approach.

We leverage the fact that we can split the integral into two parts and apply integration
by parts to simplify the computation. Since we do not have the density function, we use
the CDF directly.

The expected value E[ϕ(X)] [5] is defined as:

E[ϕ(X)] =
∫ ∞

−∞
ϕ(x) dFX(x)

We split the integral into two parts:

E[ϕ(X)] =
∫ 0

−∞
ϕ(x) dFX(x) +

∫ ∞

0
ϕ(x) dFX(x)

Using the complementary CDF GX(x) = 1−FX(x), and noting that dFX(x) = −dGX(x),
we proceed with integration by parts.
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For the integral over (−∞, 0):
∫ 0

−∞
ϕ(x) dFX(x) = [ϕ(x)FX(x)]0−∞ −

∫ 0

−∞
FX(x)ϕ′(x) dx

Evaluating at the boundaries, we get:

[ϕ(x)FX(x)]0−∞ = ϕ(0)FX(0) −
(

lim
x→−∞

ϕ(x)FX(x)
)

Assuming ϕ(x)FX(x) → 0 as x → −∞, this simplifies to:
∫ 0

−∞
ϕ(x) dFX(x) = ϕ(0)FX(0) −

∫ 0

−∞
FX(x)ϕ′(x) dx

For the integral over (0, ∞):
∫ ∞

0
ϕ(x) dFX(x) = −

∫ ∞

0
ϕ(x) dGX(x)

Applying integration by parts:

−
∫ ∞

0
ϕ(x) dGX(x) = − [ϕ(x)GX(x)]∞0 +

∫ ∞

0
GX(x)ϕ′(x) dx

Evaluating at the boundaries, we get:

− [ϕ(x)GX(x)]∞0 = − (0 − ϕ(0)GX(0)) = ϕ(0)GX(0)

Thus:
−
∫ ∞

0
ϕ(x) dGX(x) = ϕ(0)GX(0) +

∫ ∞

0
GX(x)ϕ′(x) dx

Combining both integrals, we get:

E[ϕ(X)] = ϕ(0)FX(0) −
∫ 0

−∞
FX(x)ϕ′(x) dx + ϕ(0)GX(0) +

∫ ∞

0
GX(x)ϕ′(x) dx

Since GX(0) = 1 − FX(0), we can further simplify:

E[ϕ(X)] = ϕ(0) (FX(0) + 1 − FX(0)) −
∫ 0

−∞
FX(x)ϕ′(x) dx +

∫ ∞

0
GX(x)ϕ′(x) dx

Thus:
E[ϕ(X)] = ϕ(0) −

∫ 0

−∞
FX(x)ϕ′(x) dx +

∫ ∞

0
(1 − FX(x))ϕ′(x) dx
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Expected Value Computation For the expected value [5] E[X], we set ϕ(x) = x:

E[X] = −
∫ 0

−∞
FX(x) dx +

∫ ∞

0
(1 − FX(x)) dx (3.12)

Variance Computation Using the Moments Using the first moment E[X] and the
second moment E[X2], the variance [5] is computed as:

V [X] = E[X2] − (E[X])2 (3.13)

For the second moment E[X2], we set ϕ(x) = x2:

E[X2] = −
∫ 0

−∞
2xFX(x) dx +

∫ ∞

0
2x(1 − FX(x)) dx (3.14)

Expected Value of the Bonus-Malus Function For the expected value E[b(X)],
we set ϕ(x) = b(x) and with b(0) = 1

2 :

E[b(X)] = 1
2 −

∫ 0

−∞
FX(x)b′(x) dx +

∫ ∞

0
(1 − FX(x))b′(x) dx (3.15)

3.5 Elo Conjecture Study

We test the Elo conjecture by analyzing the differences between Ep,q[b(∆ij)] and b(Ep,q[∆ij])
using the equations we developed for computing the expected value (3.12) and (3.15).
Specifically, we test the condition Ep,q[b(∆ij)] = b(Ep,q[∆ij]):

difference = Ep,q[b(∆ij)] − b(Ep,q[∆ij]) (3.16)

We compute the L1 norm of the differences obtained in Equation (3.16) across different
grid spacings and values of p and q, examining how these differences behave as the grid
becomes finer.

This approach allows us to thoroughly evaluate the Elo conjecture, offering a detailed
understanding of the relationship between Ep,q[b(∆ij)] and b(Ep,q[∆ij]).

3.6 Comparing the Elo CDF to the Normal CDF

In addition to testing the Elo conjecture, we compare the computed Elo’s cumulative
distribution function (CDF) FElo(x) to the CDF of a normal distribution to assess the
distributional properties of X.
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We compute the mean µ and variance σ2 of ∆ij using the CDF FElo(x) and equations
(3.12), (3.13):

E[∆ij] = µ = −
∫ 0

−∞
FElo(x) dx +

∫ ∞

0
(1 − FElo(x)) dx

V [∆ij] = σ2 = E[∆2
ij] − (E[∆ij])2

Using these parameters, we generate the CDF of a normal distribution N (µ, σ2) and
compare it to FElo(x).

We assess the differences between FElo(x) and the normal CDF computing the infinity
norm (∥ · ∥∞) for different grid spacings and various values of p and q.

Normal Residual Error Analysis We analyze the residual error by inserting the
normal distribution into the Elo dynamic equation:

residualx = p · FNormal(h(x − 2K)) + q · FNormal(h(x)) − FNormal(x)

Then we compute the infinity norm (∥·∥∞) of these residuals to quantify the discrepancies.
This norm is determined for different grid spacings δx and values of p (and q). By
performing this residual error analysis, we can evaluate the adherence of the normal
distribution to the Elo dynamic equation.

3.7 E[∆ij] and V[∆ij] vs K

To investigate the dependence of the expected value E[∆ij] and variance V[∆ij] on the
parameter K in the Elo rating system, we used numerical methods to compute these
quantities for various configurations (values of p) and values of K.

We varied K from 10 to 40, and for each configuration and value of K, we computed the
expected value E[∆ij] and variance V[∆ij].

To determine if E[∆ij] is independent of K, we performed a linear regression on the plot
of E[∆ij] vs. K and calculated the slope and the coefficient of determination R2 value to
assess the fit. For the variance, we similarly performed linear regression on the plot of
V[∆ij] vs. K.

The slope and R2 value were calculated to provide insights into the relationship between
E[∆ij] and K, and V[∆ij] and K. By analyzing the slope and R2 value, we gain insights
into the dependence of E[∆ij] and V[∆ij] on the parameter K.
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Chapter 4

Results

In this chapter, we present the results of our numerical simulations and analyses related
to the Elo rating system. The key findings are organized as follows:

4.1 Invariant Law Computational Algorithm

Figure 4.1 shows the computed cumulative distribution function (CDF) for different com-
binations of probabilities p and q. These graphs demonstrate that the numerical scheme
correctly approximates a CDF, confirming the validity of our approach.

Figure 4.1: Computed CDF for different p and q values. Each plot represents the distri-
bution function derived from the Elo rating system for different winning probabilities.

The figure also shows the expected value E[∆ij] and the variance V [∆ij] for the different
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configurations. For the case p = 0.5, our simulation shows that E[∆ij] = 0, a result
that aligns with the theoretical expectation that both opponents have the same strength.
Additionally, the definition of ∆ij indicates that when the probability of winning is greater
than 0.5, the expected value is positive, and when it is less than 0.5, the value is negative.
This consistency with real-world expectations validates the model’s reliability.

4.2 Grid Convergence Study

The results of the grid convergence study are shown in Figure 4.2. The study, presented
on a log-log scale, indicates an approximate second-order convergence with a regression
slope of 1.98. This demonstrates the reliability and accuracy of the numerical scheme as
the grid resolution is refined.

Figure 4.2: Grid convergence study showing second-order convergence with a regression
slope of 1.98. The graph plots the log of the error against the log of the grid spacing.

To further validate the convergence behavior, an exact computation of the order of con-
vergence was performed. The errors between solutions at different grid spacings were
calculated, and the ratio of these errors was used to estimate the order of convergence, α.
This rigorous approach involved solving the system for several grid spacings and taking
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the ratio of errors at each step. The average order of convergence was found to be 1.98,
as shown in Figure 4.3.

Figure 4.3: Exact computation of the order of convergence for different grid spacings.
The average order of convergence is 1.98.

The results confirm the numerical scheme’s robustness and highlight its accuracy as the
grid spacing is refined. This order of convergence may be attributed to the sparsity of
the matrix used in our numerical scheme and the careful selection of grid spacings.

4.3 Symmetry Study

To examine the symmetry properties of the Elo distribution, we performed a symmetry
test. Figure 4.4 verifies the symmetry condition FX(µ − y) + FX(µ + y) = 1 for various y

values. The results confirm that symmetry holds for most values, except for those close
to the symmetric point of the CDF.

Although we observe some values that are not exactly 1, this can be attributed to numer-
ical errors. These differences are relatively small compared to the expected error of the
scheme. Specifically, for p = 0.5, the difference is minimal, confirming the theory that
the Elo distribution is symmetric for this case [2] and as we saw in Corollary 1.1.
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Figure 4.4: Symmetry test for different p and q values. The results confirm the expected
symmetry of the distribution for most values.

L∞ Symmetry Test Figure 4.5 presents the difference symmetry analysis. The L∞

norm difference for different p and q combinations shows that the differences are small,
indicating a good fit with the expected symmetry condition.

As the grid spacing becomes finer, these differences further decrease. For p = 0.5, the
symmetry is evident. In other cases, the error is proportional to δx. This error arises
from the approximation of the expected value, which has an error of order δx. The results
suggest that the Elo distribution is also symmetric for cases where p ̸= 0.5.

Figure 4.5: Difference symmetry analysis for different p and q values.
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4.4 Elo Conjecture Study

We tested the Elo conjecture by analyzing the condition Ep,q[b(∆ij)] = b(Ep,q[∆ij]). Here,
Ep,q represents the expected value for 0 < p < 1 fixed, with p + q = 1. The analysis
is presented in Figure 4.6, which shows the difference between E[b(X)] and b(E[X]) as
a function of the grid spacing. The results indicate that the difference decreases as the
grid spacing becomes finer, suggesting that the Elo conjecture may hold with some level
of imprecision.

Figure 4.6: Error of the Elo conjecture vs. grid spacing. The decrease in error as the
grid spacing becomes finer suggests that the conjecture may hold approximately.

Our numerical scheme confirms the Elo conjecture for p = 0.5, as the difference is very
close to zero. This result is consistent with theory, as we proved the conjecture for this
case in Corollary 1.2. For other cases, the differences are also small and less than the
expected numerical error, suggesting that the results nearly support the conjecture.

However, for p ̸= 0.5, the Jensen inequality for a convex function ϕ and a non-constant
random variable X,

ϕ(E(X)) < E(ϕ(X)),

indicates that the Elo conjecture is mathematically incorrect. To explain this paradox,
consider the following calculation:

|E(b(∆ij)) − b(E(∆ij))| = |E(b(µ + (∆ij − µ))) − b(µ)| ≤ LE(|∆ij − µ|),
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where L is a Lipschitz constant of b, which is of the order of 0.001. This is precisely
the remaining error, independent of δx, as shown in Figure 4.6. On the other hand,
the standard deviation is approximately

√
K, as discussed at the end of this chapter.

Therefore, although the Elo conjecture is not perfectly exact, it is practically true with
a small error of around 10−3.

4.5 Comparing the Elo CDF to the Normal CDF

Arpad Elo believed that the invariant law follows a normal distribution. We suspect
this may not be true due to the functional equation satisfied by the invariant law. We
conducted a numerical test, which appears to confirm Arpad Elo’s belief. However, at
the end of this section, we will explain why this numerical test is not conclusive.

In Figure 4.7, we compare the computed Elo CDF with the CDF of a normal distribu-
tion, calculated using the expected value and variance. The comparison indicates that
the Elo CDF closely approximates the normal CDF, suggesting that the distribution of
player ratings in the Elo system may closely follow a normal distribution under certain
conditions.

Figure 4.7: Comparison between the computed Elo CDF and the normal CDF for different
p and q values. The close fit suggests that the Elo rating system approximates a normal
distribution.

The figure shows the Elo CDF in blue and the normal CDF in orange dashed lines. For
p = 0.5, the fit is almost perfect, while for more extreme cases like p = 0.1, the differences
are larger. This suggests that the normal distribution closely models the Elo dynamics

32



Invariant Elo’s law computed for 2 players

for p = 0.5 but not as well for more extreme probabilities.

Normal Residual Error Analysis The residual error analysis for different p and q

combinations is shown in Figure 4.8. We analyze the residual error by inserting the
normal distribution into the Elo dynamic equation:

residualx = p · FNormal(h(x − 2K)) + q · FNormal(h(x)) − FNormal(x)

Figure 4.8 shows the residual error analysis for this scenario. The results indicate that
the error decreases as the grid spacing becomes smaller, and for p = 0.5, the residual
error is almost zero.

Figure 4.8: Residual error analysis for the normal distribution in the Elo dynamic equa-
tion.

The residual error decreases as the grid spacing becomes finer. However, further investi-
gation into this type of analysis indicates that consistency does not imply convergence.
Since 2K is approximately 40, which is small relative to the scheme, we can approximate
h(x) ≈ x. Using the identity developed earlier, −h(−x) = h(x − 2K), we substitute in
the Elo equation at the fixed point:

F (x) = p · F (h(x − 2K)) + q · F (h(x)) = p · F (−h(−x)) + q · F (h(x))

Approximating h(x) ≈ x, we get:

F (x) = p · F (x) + q · F (x) = (p + q)F (x) = (1)F (x) = F (x)

This holds for all F (x), indicating that this test is not useful for confirming or denying
that the Elo distribution is a normal distribution.
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4.6 E[∆ij] and V[∆ij] vs K

Figure 4.9 shows the results of the expected value E[∆ij] for different values of K. The
analysis of the slope and R2 value provides insights into the relationship between E[∆ij]
and K.

Figure 4.9: Expected value E[∆ij] vs. parameter K. The analysis shows the independence
of this statistical measure on the parameter K for different values of p.

For p = 0.5, it is clear that E[∆ij] and K are independent. For other cases, there
appears to be a good linear correlation. However, computing the difference between the
maximum and minimum expected values and dividing by the standard deviation shows
that the difference is minimal. Thus, we can say (without confirming) that the numerical
scheme indicates that the expected value is independent of K.
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Figure 4.10 shows the results of the variance V[∆ij] for different values of K. The analysis
of the slope and R2 value provides insights into the relationship between V[∆ij] and K.

Figure 4.10: Variance V[∆ij] vs. parameter K. The analysis shows the dependence of
this statistical measure on the parameter K for different values of p.

In contrast, the variance shows a significant change and a high linear correlation (with
R2 near 1). The change is substantial, as the variance ranges from 2000 to nearly 8000.
This suggests that the numerical scheme indicates a linear dependence of the variance on
K with a slope of around 200.
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Chapter 5

Discussion and Conclusion

In this chapter, we analyze and interpret the results presented in the previous section.
Our discussion will cover the implications of the findings, compare them with existing
literature, and identify potential limitations and areas for future research.

Invariant Law Computational Algorithm The computed cumulative distribution
function (CDF) for different p and q values demonstrated that our numerical scheme
accurately approximates the Elo rating system’s invariant distribution. This finding
aligns with theoretical expectations and confirms the validity of our approach. The
expected values and variances observed for different configurations further validate the
model’s consistency with real-world scenarios. For instance, the result E[∆ij] = 0 for
p = 0.5 reflects the theoretical balance when both players have equal skill levels.

Grid Convergence Study The grid convergence study revealed an approximate second-
order convergence with a regression slope of 1.98. Additionally, an exact computation
of the order of convergence confirmed this result, with an average order of 1.98 across
multiple grid spacings. This result suggests that our numerical scheme is both reliable
and accurate as the grid resolution is refined. The observed order of convergence, at-
tributed to the sparsity of the matrix and the careful selection of grid spacings, supports
the robustness and precision of the numerical method.

Symmetry Study The symmetry study confirmed that the Elo rating system’s distri-
bution is symmetric, particularly for p = 0.5, where the symmetry was almost perfect.
This aligns with Avdeev’s theoretical predictions and indicates that our numerical ap-
proach accurately captures the underlying symmetry of the Elo distribution. Some minor
deviations from symmetry were observed for p ̸= 0.5, these can be attributed to the nu-
merical error to compute the expectation.
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Elo Conjecture Study The analysis of the Elo conjecture revealed that the difference
between Ep,q[b(∆ij)] and b(Ep,q[∆ij]) decreases as the grid spacing becomes finer. For
p = 0.5, the difference was very close to zero, suggesting that the conjecture holds for
this case. For other probabilities, the differences were also small, indicating that the
conjecture may hold approximately. Moreover, we are able to explain why the conjecture
is not exactly true but almost true and enough for applications.

Comparing the Elo CDF to the Normal CDF The comparison between the com-
puted Elo CDF and the normal CDF showed a close residual fit, especially for p = 0.5.
For extreme probabilities like p = 0.1, the differences were larger, indicating that the
normal distribution may not perfectly model the Elo dynamics in such cases.

The residual error is indeed quite small when p is far 0 and 1. However, it is important
to note that consistency in residuals does not imply convergence, and this type of analysis
may not be the best method for testing the Elo distribution’s normality.

In fact, the authors believe that the Elo CDF is not normal and the comparison needs
other tools such the precise study of the tails which seems smaller for the Elo CDF than
for a gaussian distribution as suggested by the behavior of max Rn

i in [3].

E[∆ij] and V[∆ij] vs K Our investigation into the dependence of E[∆ij] and V[∆ij]
on the parameter K revealed interesting insights. For p = 0.5, the expected value E[∆ij]
appeared to be independent of K, while for other probabilities, a linear correlation was
observed. However, the differences in expected values were minimal, suggesting that K

does not significantly affect the expected value of ∆ij.

In contrast, the variance V[∆ij] showed a clear linear dependence on K, with a high R2

value indicating a strong correlation. This finding suggests that K significantly influ-
ences the spread of the Elo rating differences, with higher values of K leading to greater
variance.

Limitations and Future Research While our numerical approach has provided valu-
able insights into the Elo rating system’s behavior, several limitations must be acknowl-
edged. The presence of numerical errors and the need for more refined grid resolutions
indicate that further optimization of the numerical scheme is necessary. Additionally, our
findings suggest that while the Elo distribution closely approximates a normal distribu-
tion, this may not hold under all conditions, particularly for extreme probabilities.

Future research should focus on developing more precise numerical techniques, such as
Richardson extrapolation, to minimize errors and provide a more definitive confirmation
of the Elo conjecture. Investigating the tail behavior of the distribution and comparing
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it to the normal distribution could yield additional insights. Additionally, stochastic
algorithms should be explored to provide a comparison with the deterministic approach
developed in this work, offering a broader validation of the results. Our research has
been limited to two players and binary outcomes (win or lose). It would be interesting
to extend the model to include ties and analyze its implications.

5.1 Conclusion

In conclusion, our study has validated the accuracy and reliability of the numerical scheme
used to approximate the Elo rating system’s invariant distribution. The results confirmed
the system’s consistency with theoretical expectations like symmetry and its close approx-
imation to a normal distribution. While the Elo conjecture holds approximately, further
refinement of numerical methods is needed for a more definitive confirmation. Our find-
ings contribute to a deeper understanding of the Elo rating system and its potential
applications across various competitive domains.
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Appendix A

Code

Code Available on GitHub: https://github.com/K10K30/Elo-CDF-Computation.git
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