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Abstract

Online advertising banners are sold in real-time through auctions.
Typically, the more banners a user is shown, the smaller the marginal
value of the next banner for this user is. This fact can be detected by
basic ML models, that can be used to predict how previously won auctions
decrease the current opportunity value. However, learning is not enough to
produce a bid that correctly accounts for how winning the current auction
impacts the future values. Indeed, a policy that uses this prediction to
maximize the expected payoff of the current auction could be dubbed
impatient because such policy does not fully account for the repeated
nature of the auctions. Under this perspective, it seems that most bidders
in the literature are impatient. Unsurprisingly, impatience induces a cost.
We provide two empirical arguments for the importance of this cost of
impatience. First, an offline counterfactual analysis and, second, a notable
business metrics improvement by mitigating the cost of impatience with
policy learning.

1 Introduction

1.1 RTB auctions
Display advertising is a multibillion market, where online banners are typically
sold through real-time bidding (RTB) platforms. While an internet user browses
a website, an RTB platform hosts an online auction for each banner that could be
displayed to the user. Because each auction occurs in real-time, some advertising
intermediaries — also known as demand-side platforms (DSP) — are in charge
of bidding on behalf of the advertisers. In what follows, we will prefer the term
bidders over DSP as it is more generic.

To do its job, a bidder assesses, for each auction, the ad potential effect
on the advertisers’ objectives using contextual features. The typical industry
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practice consists in multiplying the estimated probability of a conversion by
the advertiser’s value for a conversion. For instance, in the case of a campaign
optimized toward sales, letting α be the amount the advertiser pays the DSP for
each sale, S and D be the conversion event and the display event for a given ad,
the expected payoff of the display would typically be:

α︸︷︷︸
revenue per sales

× P(S|D)︸ ︷︷ ︸
probability that a display will lead to a sale

. (1)

Once the display value is computed according to a rule like Equation (1), the
bidder outputs a bid which maximizes the immediate expected payoff1, which
is not equivalent to maximizing the long term payoff over the whole timeline.
For example, in a second price auction, this means bidding directly the value
α×P(S|D). In general (when the auction is not second price) the bid optimization
requires an estimation of the competition. In practice, the probability is estimated
using logs of past display data, which contain features describing the displays and
whether they lead to a conversion. An implementation of a logistic regression
model to estimate the probability P(S|D) is described in [CMR15].

1.2 A short story to illustrate the cost of impatience
Suppose you are offered the possibility to bid in a second price auction for a
ticket that you can then exchange against a 100$ bill. How much should you
bid? It is classical from auction theory (see for example [Kri09]) that — since
the ticket value is 100$— your bid should be 100$.

Now, suppose that there will be two auctions: one in the morning and one in
the afternoon. Also, you cannot exchange more than one ticket against a 100$
bill, that is, the afternoon ticket has no value if you won the morning auction.
Again, "how much should you bid?" The answer is that you will be probably
better off if you bid a bit less than 100$ in the first auction. This phenomenon,
that becomes stronger as the number of auctions during the day increases, is
morally close to the cost of impatience we introduce next.

1.3 Connection with the users’ fatigue
It is largely accepted that showing too many displays to the same user generates
’display fatigue’ (see Figure 1), in other words the value of one additional display
is decreasing with the number and/or frequency of the previous displays. A
common practice in the industry is to use ’fatigue’ variables in the prediction
models, such as counters of past displays on the same user to improve the
predictions. However, an optimal bidding policy should also foresee that display
fatigue reduces the value of the next displays on the same user2.

1value - cost
2Intuitively, if the user has several similar display opportunities shortly after, then the

current opportunity should be valued less than its immediate expected reward since we could
always try winning the display right after.
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Figure 1: Empirical Click-Through-Rates (CTR) and predicted CTR computed
on the Criteo Attribution Modeling for Bidding Dataset [DMGL17]. The green
predictor uses a fatigue variable (the time since the last display), while the black
one does not. We observe that the predictor without fatigue variable tends to
overpredict on recently exposed users.

More generically, the fact that the outcome of an auction has an impact on
the future ones is largely ignored in display advertising. We propose to call this
effect the cost of impatience. In [BGH21, BDH24, DMGL17], the authors
argue that, when the value for an opportunity is impacted by past auctions
outcome, then learning to bid for repeated auctions shall be performed over the
full timeline, and not at the auction level. However, they do not provide any
operational tools to mitigate the cost of impatience. Taking a complementary
perspective, [HGCR23] presents a solution to the cost of impatience problem
in a stylized setting.

1.4 Our contribution
In this paper we quantify the cost of impatience using counterfactual methods
on real data from a major DSP. We then introduce a method inspired by policy
learning [SB18] to mitigate the cost of impatience and test this solution on live
traffic. We were able to accurately predict the (online) effect of the changes at
scale thanks to an (offline) Inverse Propensity Score estimator.
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2 Marginal analysis

2.1 IPS-based estimators
We collected a dataset where we randomised a parameter Θ of the bidder,
by drawing for each user i ∈ [1..n] a randomized value θi from a lognormal
distribution. We denote by mi a quantity of interest for a given user i3 (such as
the cost or the value generated by the won auctions) and we set M(S) =

∑
i∈S mi

the aggregation of this quantity over a set of user S ⊆ [1..n]. The randomization
allows the counterfactual estimation of outcomes when the bidder changes the
policy, and draws Θ from another distribution. This counterfactual estimation
relies on the importance weighting estimators described in Proposition 2.1.1.
More precisely, let M(S, α) be the expected value taken by M(S) when the
lognormal random parameter Θ of each bidder is multiplied by α, i.e.:

M(S, α) := EΘ∼α×Lognormal(µ,σ)

[
M(S)

]
Proposition 2.1.1 (Counterfactual estimator). Let S ⊆ [1..n] independent from
Θ and α > 0, then

M̂(S, α) :=
∑
i∈S

mi × exp

(
2 ln (α) (ln(θi)− µ)− ln(α)2

2σ2

)
(2)

is an unbiased estimator of M(S, α).

Note that the set of users S must be defined independently of the random factor
Θ for the proposition to hold. To ensure that, we split the users in groups
depending on their state (i.e. in our case their fatigue variable) at the beginning
of the data collection4.

2.2 Linear approximation and marginal ROI
For policy changes significantly larger than the standard deviation of the ran-
dom exploration, estimator M̂(S, α) from Proposition 2.1.1 has a large vari-
ance [BPQC+13]. To avoid this variance, we used a linearized version of the
importance weighting estimator. This linearised estimator trades of the variance
for some bias, which we can expect to be reasonably small if the outcome is suf-
ficiently regular with respect to the policy. This linearised estimator is obtained
by computing the derivative ∂M(S, α)/∂α at α = 1 instead of directly using the
IPS estimator M̂(S, α). This is possible by taking the derivative with respect to
α at α = 1 in Proposition 2.1.1, as in the following proposition:

3we insist that the index is on the user, not the auction
4More precisely, we looked at the state of the user at the time of the first bid-request after

a random factor is drawn for this user.
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Figure 2: This figure shows the standard deviation of exact importance weights
appearing in proposition 2.1.1 as a function of the multiplicative factor α;
computed empirically from lognormal samples. It grows exponentially with
α− 1. On the other hand, the weights of the linearised estimator (in proposition
2.2.1) are directly proportional to α− 1, their standard deviation therefore grows
linearly.

Proposition 2.2.1 (Marginal counterfactual estimator). Let S ⊆ [1..n] inde-
pendent from the θi set

D̂M(S) :=
∑
i∈S

mi ×
ln(θi)− µ

σ2
, (3)

then D̂M(S) is an unbiased estimator of the derivative of α → M(S, α) at α = 1.

Figure 2 shows how the importance weights standard deviation grows as α moves
away from 1. As expected, standard deviation of exact importance weights
quickly explodes, while standard deviation of the linear approximation grows
linearly.

Given two quantities of interest V and C, where V is some form of value
observed in the outcome, and C is the money spent by the bidder, we can now
compute the marginal ROI on a given scope. Indeed, by the chain rule and
Proposition 2.2.1, we have the following proposition.

Proposition 2.2.2 (marginal ROI). Let S ⊆ [1..n] independent from θi, set

mROI(S) =
D̂V (S)

D̂C(S)
, (4)

then mROI(S) is a consistent estimator of the marginal ROI on S

The marginal ROI mROI(S) can be interpreted as the incremental value ∆V
the bidder gets from S by spending one additional unit of money on S.
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2.3 Maximising the value at constant cost
We assume the bidder’s task is to maximize the value Vπ for a given budget B:

max
π

Vπ (5)

s.t. Cπ ≤ B (6)

where Vπ and Cπ are the overall value and spend generated by the bidder’s
policy. Clearly, if there exists two set of users S1 and S2 such that

S1 ∩ S2 = ∅ and (7)
mROI(S1) ≤ mROI(S2), (8)

then the bidder can improve the criterion by rebalancing some budget from S1

to S2. Said otherwise, if two groups of users have different marginal ROIs, the
value can be increased by spending more on the users with a high ROI and
less on users with a smaller ROI. More generally, suppose we have a clustering
S1, S2 . . . Sk of [1..n] such that

mROI(Si) ≤ mROI(Si+1), ∀i ∈ [1, k − 1]. (9)

A naive idea could be to increase 5 away from 1 the factor α to a high value on
Sk and to decrease it everywhere else. This is obviously not a wise idea: the
mROI only tells what happens for small perturbations of the parameter Θ. In
practice the marginal ROI is usually a decreasing function of the spend, so that
at some point Sk won’t be the best cluster to spend on. We thus propose a
straightforward decision rule that consists in capping α at a reasonable level
around 1 6 on the different clusters, and then to choose for each cluster S a value
αS within this range such that, according to the linearised estimator, the total
cost variation

∑
S

∑
i∈S

(αS − 1) · ci · log(θi)−µ
σ2 is 0 and the total value is maximised.

3 Experiments

3.1 Analytics
Proxy for the reward The value in the bidding system is defined as the
number of conversion events matched to the displays, multiplied by a predefined
value per conversion. However, these conversion events are scarce, which means
that the estimator of the policy value have a significant variance. To reduce this
variance, we replaced the actual count of conversions by the expected number of
conversions, computed with the prediction model already used by our baseline
bidder. 7

5Assuming here that cost and value are increasing with α
6In our experiments we capped the factor α to the [0.8, 1.2] interval
7This idea of replacing actual reward by predicted reward is a common used in RL in

’actor-critic’ algorithms.
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Observed marginals We computed the marginal ROI estimator from (4) as a
function of the user’s ad exposure8 on several randomised datasets coming from
different time periods. We report some results in Figure 3. We note that the
marginal return on investment is decreasing with the ad exposure. In a nutshell,
increasing the spend by one unit for users with little ad exposure results in a
steeper increase in the value than doing the same for users more exposed to the
ad, and this is consistent with our initial intuition.
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Figure 3: The plots 3a and 3b represent the confidence intervals of the marginal
ROI computed for different levels of ad exposure. Each plot uses sampled data
from one month. We processed only the data for which we have access to the
ad exposure. The bucket 5 corresponds to extreme values for which we have
fewer samples, resulting in larger confidence intervals. Intuitively — because
winning an auction decreases the values of the future auctions — the bidder
should decrease the bid when it forecasts to receive many bidding opportunities.

3.2 Pre-A/B test offline estimation of the resulting policy
We did a counterfactual estimation of the value and cost generated by some
changes of policy using the linear and exact IPS formulas. We used three months
of data to build the policies and 2 month of data to estimate the resulting
performances. The results are displayed in Figure 4. We observe that it is likely
that the setup will decrease the cost and increase the value generated.

3.3 Live experiments
We tested the modified bidding module by doing a random split of the traffic,
and assigning the new module to one of the user group. In the online experiment
however, we used the current state of the user fatigue at each display opportunity
to retrieve the factor α. This policy can thus change the factor on a user who
viewed many displays: this is not strictly identical to the policy we tested offline,

8with the definition of ad exposure we found the most relevant
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Figure 4: Pre-A/B test offline estimation of the resulting policy, ∆ on the x
axis is the maximum amplitude of the change of parameter.The green vertical
line corresponds to the amplitude of change tested during the online A/B test.
We see that the linearization drastically reduce the confidence intervals (dotted
lines).
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where the user was assigned to a fatigue bucket once at the beginning of the
data collection process.

There are two reasons for this discrepancy. One is simplicity, as it is in
practice much easier to access the current user fatigue variable than to retrieve
its value at the beginning of the A/B test. The other reason is that it is intuitively
much more relevant to use the current state. Actually, the reason why our offline
policy had fixed bid factors per users was because the randomised data we
collected only contained a randomisation at the user level, and thus did not
allow simulating richer policies which would change the bid factor during a user
sequence. We thus view the offline policy with fixed factors as an easy-to-simulate
approximation of the intuitively better dynamic policy which we A/B tested. In
accordance with our offline estimations, the A/B test was positive, producing an
increase of around 0.7% in value and a decrease of around −1% in cost. In a
system as mature as the one on which this test was performed, such an outcome
is a great achievement.

4 Wrapping-up
We use this section to summarize the ideas we used in this experimental study.

1. get randomized data on the parameter to be fine tuned → unlock counter-
factual analysis

2. rely on the prediction of reward rather than the reward → reduce the
variance in the decision problem

3. do a first order approximation of the IPS → tame the variance of the IPS
estimator

4. compute the marginal ROI on the different clusters → decide where to
reallocate the budget

5. check the effect of the new policy with IPS and bootstraps → predict the
online effect

6. test online

It is notable that this recipe is close to a manual step of reinforce. We believe
this approach to be generic and that it could be adapted to other use cases. As a
consequence, further work includes extending the design to allow for automated
multi-step learning.
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