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Abstract—Multivariate autoregressive modeling is widely con-
sidered in neuroscience, especially when effective connectiv-
ity is concerned. In high-dimensional space, the conventional
least-squares estimation of the autoregressive coefficients is no
more consistent, hence the interest in regularizing the solution.
Therefore, regularized approaches have been developed such
as the Least Absolute Shrinkage Selection Operator (LASSO)
promoting sparsity, which performs well provided that it is
combined with the extended Bayesian Information Criterion
(eBIC) to jointly estimate the MVAR model order and penalty
parameter. Unfortunately, this need for eBIC requires much more
computation time, making such approaches unsuitable for iden-
tifying high-dimensional MVAR models. The method proposed
in this paper, named SOCAR (Simultaneous identification of
the Order and the Coefficients of multivariate AutoRegressive
models), estimates both the order and the coefficients of the
model by combining mixed-norm regularization with classical
sparse priors (e.g. LASSO). Weighted penalties are minimized in
order to drive more easily sparsity to the right place. Experiments
carried out on simulated signals show that SOCAR offers a good
compromise between performance and numerical complexity.

Index Terms—Multivariate autoregressive model, model order
estimation, high dimension, sparsity, LASSO, mixed-norm.

I. INTRODUCTION

AUTOREGRESSIVE modeling is widely considered in
various domains [1], [2]. Some applications deal with a

large amount of data, requiring MultiVariate AutoRegressive
(MVAR) analysis [3], [4]. For instance, the MVAR model has
been explored in ElectroEncephaloGraphy (EEG) to derive
measures of effective connectivity [5], [6]. This connectivity
makes it possible to identify directed brain networks involved
in healthy functioning and in pathologies such as Parkinson’s
disease.

The Least Squares (LS) approach is the most well-known
method to estimate the MVAR coefficients [7]. Burg and
Yule-Walker methods are also widely used [8], [9]. However,
these classical algorithms fail in managing moderate or high
dimensions [10]. Consequently, regularized LS approaches
have been introduced such as the Least Absolute Shrinkage
Selection Operator (LASSO) promoting sparsity [11], [12],
and many of its variants [13], [14], [15], [16], [17]. Note
that this sparse structure of the MVAR model is relevant in
applications such as EEG analysis [18], [19], [20], [21]. Now,
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for all these methods, the estimation of the MVAR model
order is crucial. Choosing MVAR order using model selection
criterion is quite well-established in literature [22], [23], [24].
Unfortunately, since these criteria need to identify the MVAR
coefficients for a suitably refined set of candidate orders, a
regularized strategy provides an unfeasible solution in terms
of computational cost for high dimensions. Hence the need for
a coupled approach estimating simultaneously the order and
the coefficients of the MVAR model in order to reduce the
numerical cost.

In this paper, we propose such a coupled approach, called
SOCAR (Simultaneous identification of the Order and the
Coefficients of multivariate AutoRegressive models), which
promotes group sparsity in a different way from that generally
used to infer sparse causal networks modeled by MVAR
processes [25]. Indeed, the introduction of the mixed-norm
[26] allows for an efficient estimation of the model order.
Note that weights are inserted in order to drive more easily
sparsity to the right place like in [17]. In addition, imposing
sparsity of the MVAR model coefficients by means of the
L1 norm [27] illustrates the possibility of combining our
model order estimation strategy with classical regularized
techniques assuming structural constraints [17]. An iterative
optimization procedure based on the Alternating Direction
Method of Multipliers (ADMM) [28] is implemented avoiding
the calculus of sub-gradients [29], [30].

Section II formulates the MVAR estimation problem and
describes the SOCAR algorithm. Our method is applied to
simulated, and compared with LS-like techniques: results are
discussed in section III. A conclusion and some perspectives
are provided in section IV.

II. METHODOLOGY

A. Problem formulation and classical approaches

Let {x(n)} be a realization of an N -sample MVAR se-
quence of order p:

x(n) =
∑p

ℓ=1 A
⋆
ℓ x(n− ℓ) + ε(n) (1)

where {ε(n)} is a realization of an M -dimensional white
Gaussian noise sequence with zero mean and covariance ma-
trix σ2I and where A⋆

ℓ is the ℓ-th submatrix of the (M×pM )
coefficient matrix A⋆ = [A⋆

1,A
⋆
2, . . . ,A

⋆
p]. We assume in the

sequel that the p matrices A⋆
ℓ (1 ≤ ℓ ≤ p) are linearly inde-

pendent and that the order p is lower than or equal to M2. The
matrix A⋆ can be estimated using the LS method [7], which
minimizes the Frobenius norm ∥X −AB∥2F with respect to
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the A variable where X = [x(p + 1),x(p + 2), · · · ,x(N)]
and

B =


x(p) x(p+ 1) · · · x(N − 1)

x(p− 1) x(p) · · · x(N − 2)
...

...
. . .

...
x(1) x(2) · · · x(N − p)


provided that we have N ≥ pM . Then, the LS solution is
given by A∗ = XBT (BBT )−1 [31]. As mentioned above,
the sparse regularized version of the LS method, LASSO, has
been proposed [13]. It consists in minimizing the following
objective function:

f(A) = ∥X −AB∥2F + λ∥A∥1 (2)

where λ is a hyperparameter balancing between the data fitting
term and the penalty term. Note that the L1 norm penalty
term can be replaced with another term based on the L2,q

norm, which promotes a common zero among all MVAR-lag
parameters when Granger Causality has to be measured [17].
In practice, the MVAR model order p is unknown and needs
to be estimated.

B. The SOCAR algorithm

We first introduce the (M2 × p) matrix A⋆ given by
A⋆ = (vec(A⋆

1), vec(A
⋆
2), . . . , vec(A

⋆
p)). Note that the vec

operator consists in vectorizing every (M × M ) matrix A⋆
ℓ

into an M2-dimensional column vector obtained by stacking
the columns of the matrix A⋆

ℓ one below the other. Under the
assumption that the p matrices A⋆

ℓ (1 ≤ ℓ ≤ p) are linearly
independent with p ≤M2, the A⋆ matrix is full column rank.
So, estimating the order p of the MVAR model is equivalent to
estimating the rank of the A⋆ matrix. Then we can modify the
LASSO objective function (2) by adding an additional term
based on the nuclear norm, classically used to estimate the
rank of a matrix. A link between the L1,2 mixed-norm and
the nuclear norm can be derived from [32, proposition 1],
showing that the L1,2 mixed-norm is a better candidate for
the role of convex envelope of the rank when matrices are full
column rank. Consequently, a solution aiming at estimating
simultaneously the order and the coefficients of the MVAR
model can be obtained by minimizing the following objective
function:

g(A) =
1

2
∥X −AB∥2F + λ1∥A∥1 + λ2∥A∥1,2 (3)

This function can be reformulated as follows:

g(A) =
1

2
∥X−

q∑
ℓ=1

Aℓ Bℓ∥2F+λ1∥A∥1+λ2

q∑
ℓ=1

∥Aℓ∥F (4)

where q is chosen sufficiently high to overestimate p. It
is noteworthy that Aℓ (resp. Bℓ) is the ℓ-th matrix block
of A (resp. B), such as A = [A1,A2, · · · ,Aq] (resp.
B = [BT

1,B
T
2, · · · ,BT

q ]
T). Note also that using the Frobenius

norm of each matrix block Aℓ allows us to promote group
sparsity within the whole matrix. According to equation (1),
the q−p last matrix blocks Aℓ of A should be zero. This can
be obtained using a suitable penalty parameter λ2, which can

be difficult to get. Another solution proposed in [17] consists in
using weights in order to drive more easily sparsity to the right
place. In our case, an increasing sequence {αℓ} of weights
should be chosen by the user in order to promote more sparsity
in the last matrix blocks Aℓ of A, leading to the following
cost function:

h(A) =
1

2
∥X −

q∑
ℓ=1

Aℓ Bℓ∥2F + λ1∥A∥1 + λ2

q∑
ℓ=1

αℓ ∥Aℓ∥F

(5)
Now let’s consider the strategy adopted to minimize equa-

tion (5), leading to the SOCAR method. The L1 and Frobenius
norms are non-smooth and cannot be solved in a closed form.
This would require the use of iterative proximal algorithms
such as the ADMM technique, which is fast and accurate
for convex optimization problems of large dimensions [28].
However, the ADMM convergence is not guaranteed when
we split the objective function in more than two terms.
Consequently, we replace the minimization of (5) with that
of the following cost function:

h̃(A) =
1

2
∥X −

q∑
ℓ=1

Aℓ Bℓ∥2F + λ2

q∑
ℓ=1

βℓ ∥Aℓ∥2F + λ1∥A∥1

(6)
with βℓ = αℓ/∥Aℓ∥F. By assuming first that βℓ does not
depend on A, the convex objective function (6) appears now
as the sum of a differentiable term and a non-differentiable
one, which can be minimized by ADMM. Next, by updating
βℓ from the last estimate of A, it allows us to take into account
their dependence. Such an iterative procedure has been proven
to converge to minimize mixed norms in order to avoid the
calculus of sub-gradients [29], [30], which is more complex
and might not ensure the ADMM convergence as explained
above. More particularly, in order to achieve an estimate of Aℓ

using the ADMM method, we define the following Lagrangian
function:

L(A,C,V ) =
1

2
∥X −

q∑
ℓ=1

Aℓ Bℓ∥2F +

q∑
ℓ=1

(λ1∥Cℓ∥1

+λ2βℓ ∥Aℓ∥2F +
ρ

2
∥Cℓ −Aℓ∥2F + ⟨Vℓ,Aℓ −Cℓ⟩) (7)

where ⟨G,H⟩ = trace(GTH) denotes the inner product,
Vℓ is a Lagrangian multiplier, and C = [C1,C2, · · · ,Cq].
Then, following the optimization strategy used in [29], [30],
we derive L with respect to each matrix Aℓ by considering
first that βℓ is constant with respect to Aℓ:

∂L(A,C,V )

∂Aℓ
=

q∑
i ̸=ℓ

AiBiB
T
ℓ −XBT

ℓ + 2λ2βℓAℓ

+Vℓ +AℓBℓB
T
ℓ + ρ(Aℓ −Cℓ) (8)

From this derivative, we get an update rule for each Aℓ:

A
(k+1)
ℓ = (XBT

ℓ + ρCℓ − Vℓ −
q∑

i ̸=ℓ

A
(j)
i BiB

T
ℓ )

×
(
BℓB

T
ℓ + (2λ2βℓ + ρ)I

)−1
(9)
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with j = k+1 if i < ℓ and j = k if i > ℓ. Now, remembering
that βℓ depends on Aℓ, we use the following update rule:

β
(k+1)
ℓ = αℓ/∥A(k+1)

ℓ ∥F (10)

Regarding the update rule of C, it is derived from the
minimization of the Lagrangian function L (7) with respect
to C, by solving the following problem:

min
C

2λ1

ρ
∥C∥1 + ∥

1

ρ
V + (A−C)∥2F (11)

The solution of (11) is thus derived using the proximal
operator of the L1 norm [33], which is the soft thresholding
operator. The update of C is then given by:

C(k+1) = Sλ1/ρ(A
(k+1) + V (k)/ρ) (12)

where S is the soft-thresholding operator [33] defined by:

(Sη(A))i1,i2 =

 Ai1,i2 − η if Ai1,i2 > η
0 if |Ai1,i2 | ≤ η
Ai1,i2 + η if Ai1,i2 < −η

(13)

The update of the Lagrangian multiplier is given by:

V (k+1) = V (k) + ρ(A(k+1) −C(k+1)) (14)

All these variables are alternately updated until convergence.
More particularly, the SOCAR algorithm stops when the
primal and dual residuals, given by r(k+1) = A(k+1)−C(k+1)

and s(k+1) = −ρ(C(k+1)−C(k)), respectively, are lower than
ϵ
(k+1)
pri and ϵ

(k+1)
dua , respectively, with:

ϵ
(k+1)
pri =

√
Nϵabs + ϵrel max{∥A(k+1)∥F , ∥C(k+1)∥F }

ϵ
(k+1)
dua =

√
Nϵabs + ϵrel∥V (k+1)∥F

where ϵabs and ϵrel are absolute and relative tolerances,
respectively, and N is the number of time samples of the
MVAR sequence {x(n)}. If we call A

(c)
ℓ the estimate of

A⋆
ℓ after convergence, the estimate p(c) of the order p is

got by counting the first non-zero columns of A(c) =

(vec(A
(c)
1 ), vec(A

(c)
2 ), . . . , vec(A

(c)
q )). The different steps of

SOCAR are summarized in Algorithm 1, which gives the
estimate A(c) of A⋆ as output. Parameters λ1 and λ2 are
set experimentally. The penalty parameter ρ is fixed to 1. In
practice, we propose to run SOCAR a second time based on
the previously estimated values (A(c) and p(c)), using a small
λ2 parameter in order to refine the solution. It is noteworthy
that, as in [17], the convergence analysis of the proposed
algorithm is left as an open question, while the ADMM-based
optimization approach always converged in the experiments.

III. RESULTS

In this section, we are interested in assessing the perfor-
mance of the SOCAR method and comparing it with classical
approaches such as LS [7], Yule-Walker [34], Burg [35]
and LASSO [12]. Regarding LS, Yule-Walker and Burg, the
MVAR model order is estimated using the eBIC criterion
[24]. It is noteworthy that the latter was also used to estimate
both the MVAR model order and the penalty parameter of
regularized cost functions [17] and thus implemented in the
LASSO method [12].

Algorithm 1 SOCAR

Input: X , B, {αℓ}1≤ℓ≤q , A(0), C(0), V (0), ρ, λ1 and λ2

1: β
(0)
ℓ ← αℓ/∥A(0)

ℓ ∥F
2: repeat
3: k ← k + 1
4: for ℓ = 1 to q do
5: Update A

(k+1)
ℓ using (9)

6: end for
7: Build A(k+1) from the q matrices A

(k+1)
ℓ

8: Update β
(k+1)
ℓ using (10)

9: Update C(k+1) using (12)
10: Update V (k+1) using (14)
11: until ∥r(k+1)∥F≤ ϵ

(k+1)
pri and ∥s(k+1)∥F≤ ϵ

(k+1)
dua

12: p(c) given by counting the first non-zero columns of A(c)

Output: MVAR coefficient matrix C(k+1)

A. Performance criteria

In order to evaluate the robustness and accuracy of SOCAR,
three performance criteria are considered. Firstly, we compare
the estimated order with the true one. Secondly, the degree of
similarity is computed as follows:

S(A⋆,A(c)) =∑
i

∑
j(A

⋆
i,j − Ā⋆)(A

(c)
i,j − Ā(c))√

(
∑

i

∑
j(A

⋆
i,j − Ā⋆)2)(

∑
i

∑
j(A

(c)
i,j − Ā(c))2)

(15)

where K̄ denotes the mean of the components of matrix
K. Thirdly, the computation time is estimated for the five
methods.

We are also interested in comparing the true Power Spectral
Densities (PSDs) with the estimated ones as explained after-
wards. We calculate the true spectral matrix as follows:

P (ν) = H(ν)ΣxH(ν)† (16)

where Σx is the true residual covariance matrix of the MVAR
model and H(ν)† is the Hermitian transpose of H(ν) with
H the transfer function of the system given by [31]:

H(ν) = (I −
p∑

ℓ=1

A⋆
ℓe

−j2πℓν)−1 (17)

The true PSDs of the channels are computed from the diagonal
components of the spectral matrices. The PSDs estimated from
the five methods are obtained using (16) and (17) by replacing
A⋆ with its estimate and Σx with the following estimated
residual covariance matrix:

Σ̂x =
1

N − p

N∑
n=p+1

(x(n)− x̂(n)) (x(n)− x̂(n))
T (18)

where x(n) is given by (1) and x̂(n) is computed by replacing
A⋆ with A(c).

B. Performance analysis

We generated 100-channel MVAR signals for two orders
(p = 5 and p = 15) to test the robustness of our approach.
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Method p = 5 p = 15

p(c) S p(c) S

SOCAR 5.00 0.994 15.00 0.997
LASSO 5.00 0.994 15.05 0.997

OLS 1.25 0.683 1.00 0.578
Yule-Walker 1.10 0.684 1.05 0.579

Burg 1.15 0.684 1.05 0.579

TABLE I: Quantitative estimation of the order and the coeffi-
cients for two MVAR models with 100 channels

Method p = 5 p = 15

SOCAR 17 mn 37 mn
LASSO 15 h 15 h

OLS 15 s 1 mn
Yule-Walker 16 s 1 mn

Burg 15 s 1 mn

TABLE II: Computation time to identify two MVAR models
with 100 channels

The sampling frequency was set to 1 kHz and signals were 10
seconds long. Sparsity was randomly applied on the coefficient
matrices. The signals have been constructed in such a way that
some of them exhibit oscillations in the [8 Hz - 12 Hz] band
(well-known as the alpha band which is of interest in EEG).
The stability of the model was verified before any experiment.
The order and the degrees of similarity were estimated for
the five aforementioned methods. Twenty independent Monte-
Carlo simulations were carried out to get the results. Note that
the degree of similarity was only computed from the signals
exhibiting oscillations in the alpha band.

Quantitative results are given in Tables I and II. Unlike LS,
Yule-Walker and Burg, LASSO and SOCAR are much more
consistent, the estimated order being equal to the true one
whatever its value (p = 5 and p = 15). Clearly, the LS, Yule-
Walker and Burg methods underestimate the order. Regarding
the degrees of similarity, LASSO and SOCAR are the only
techniques which properly estimate the coefficient matrix of
the MVAR model, allowing for an efficient reconstruction of
the channel PSDs as shown in Table I. However, LASSO is
much more time consuming than SOCAR, by a factor of 25
to 55 (see Table II). This is due to the introduction of eBIC
to jointly estimate the MVAR model order and the LASSO
penalty parameter. In the light of our experiments, this is the
only guarantee of success for LASSO, which is very sensitive
to the choice of its penalty parameter. Our approach, on the
other hand, is much less sensitive to the choice of its penalty
parameters, and therefore does not require the use of eBIC.
Note that the poor behavior of the non regularized methods is
due to the small k-ratio value of our scenario. Recall that the
k-ratio is defined by k = N/Mp [36]. Such a k-ratio value is
not large enough in our context [37] contrarily to some rules
of thumb given for lower dimensional models [36].

The good behavior of SOCAR and LASSO in terms of es-
timation accuracy is illustrated in Figure 1. More particularly,
we compare the PSDs obtained from the five methods with
the true one. As we can see, the LS, Yule-Walker and Burg
methods do not bring out the information present in the low
frequencies. Regarding the LASSO and SOCAR techniques,
the difference with the reference is negligible, resulting in

(a) For a model order p = 5

(b) For a model order p = 15

Fig. 1: PSDs estimated from the five methods

more consistent and reliable estimates.

IV. CONCLUSION

In this paper, we proposed a coupled approach, called SO-
CAR, estimating simultaneously the order and the coefficients
of an MVAR model. SOCAR amounts to the combination of
two penalization strategies, namely the LASSO technique and
the minimization of the mixed-norm which aims at making our
method robust with respect to an overestimation of the model
order. The simulations showed a better trade-off between
performance and numerical complexity of SOCAR compared
to classical approaches such as LS, Yule-Walker, Burg and
LASSO. LASSO succeeded in achieving high performance
like SOCAR provided that it was combined with eBIC to
jointly estimate the MVAR model order and penalty parameter.
In fact, unlike SOCAR, an arbitrary choice of penalty parame-
ter cannot guarantee LASSO such good results. Unfortunately,
this need for eBIC requires much more computation time,
making LASSO unsuitable for identifying high-dimensional
MVAR models. In addition, the spectral information is well
preserved by our new approach.

In a future work, we plan to estimate adaptively both
hyperparameters λ1 and λ2 guided by the estimation technique
proposed in [38], which strikes a balance between the data
fitting term and the regularization terms. The idea would
be to achieve a closed form to update the hyperparameters
in each iteration, forcing the solution to satisfy Morozov’s
discrepancy principle. Besides, we aim to replace the LASSO
regularization of SOCAR by other ones proposed in the
literature by promoting more specific structural priors about
the MVAR model.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3418712

ACCEPTED MANUSCRIPT / CLEAN COPY



JOURNAL OF IEEE SIGNAL PROCESSING LETTERS 5

REFERENCES

[1] C.-S. Ouyang, R.-C. Yang, C.-T. Chiang, R.-C. Wu, and L.-C. Lin, “EEG
autoregressive modeling analysis: A diagnostic tool for patients with
epilepsy without epileptiform discharges,” Clinical Neurophysiology,
vol. 131, no. 8, pp. 1902–1908, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1388245720303497

[2] R. Annamma George and R. Periyasamy, “Modelling of electrocardio-
gram using autoregressive moving average model and linear predictive
coefficient a comparative study,” in 2021 Seventh International confer-
ence on Bio Signals, Images, and Instrumentation (ICBSII), 2021, pp.
1–4.

[3] C. W. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica: journal of the Econometric
Society, pp. 424–438, 1969.

[4] O. Paiss and G. F. Inbar, “Autoregressive modeling of surface emg and its
spectrum with application to fatigue,” IEEE Transactions on Biomedical
Engineering, vol. BME-34, no. 10, pp. 761–770, 1987.

[5] C. Yang, R. Le Bouquin Jeannès, G. Faucon, and H. Shu, “Extracting
information on flow direction in multivariate time series,” IEEE Signal
Processing Letters, vol. 18, no. 4, pp. 251–254, 2011.

[6] A. K. Abbas, G. Azemi, S. Amiri, S. Ravanshadi, and A. Omidvarnia,
“Effective connectivity in brain networks estimated using eeg
signals is altered in children with adhd,” Computers in Biology
and Medicine, vol. 134, p. 104515, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010482521003097

[7] P. Jantana and P. Sudasna-na-Ayudthya, “Least squares and discounted
least squares in autoregressive process,” Silpakorn University Open
Journal Systems, vol. 2, pp. 122–135, 2002.

[8] R. A. Roberts and C. T. Mullis, Digital signal processing. Addison-
Wesley Longman Publishing Co., Inc., 1987.

[9] S. M. Kay, Modern spectral estimation: theory and application. Pearson
Education India, 1988.

[10] Y. Wang, C.-M. Ting, and H. Ombao, “Modeling effective connectivity
in high-dimensional cortical source signals,” IEEE Journal of Selected
Topics in Signal Processing, vol. 10, no. 7, pp. 1315–1325, 2016.

[11] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[12] P. A. Valdés-Sosa, J. M. Sánchez-Bornot, A. Lage-Castellanos,
M. Vega-Hernández, J. Bosch-Bayard, L. Melie-Garcı́a, and E. Canales-
Rodrı́guez, “Estimating brain functional connectivity with sparse multi-
variate autoregression,” Philosophical Transactions of the Royal Society
B: Biological Sciences, vol. 360, no. 1457, pp. 969–981, 2005.

[13] S. Haufe, K.-R. Müller, G. Nolte, and N. Krämer, “Sparse causal
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