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MMSE-Driven Signal Constellation Scatterplot
Using Neural Networks-Based Nonlinear Equalizers

Abraham Sotomayor , Vincent Choqueuse, Erwan Pincemin, Michel Morvan

Abstract—This study investigates a phenomenon observed
in signal constellation diagrams when using neural networks
(NNs) based nonlinear equalizers optimized with the Minimum
Mean Squared Error (MMSE) criterion. This phenomenon is
characterized by a concentration of the symbols around the
original constellation points, with some scattered along straight
lines connecting neighboring points of the original constellation.
We refer to this effect as “MMSE-driven signal constellation
scatterplot” (MMSE-scatterplot). This phenomenon has harmful
implications for subsequent signal processing, particularly in
Soft-Decision (SD) Forward Error Correction (FEC) schemes,
which require reliable soft information. Indeed, the MMSE-
scatterplot behaves like a hard decision or denoiser, resulting
in the removal of soft-information. In this paper, we explicitly
relate the MMSE-scatterplot with a function named here Soft-
Thresholding (STH). Additionally, to avoid the MMSE-scatterplot
emergence on the equalized symbols, we propose the inclusion
of the STH function as a nonlinear activation function after the
NN during the training stage. This approach permits separating
the equalization stage, performed by the NN, and the denoising
stage, performed by the STH function, the latter giving rise to
the MMSE-scatterplot. Consequently, to recover the equalized
symbols in the evaluation stage, we remove the STH function,
giving as a result a constellation diagram free of MMSE-
scatterplot. To assess the effectiveness of this technique, we
use a numerical setup DP-64QAM transmission system with 14
× 50 km of SSMF for various input signal powers. We also
compare our results, in terms of bit error rate (BER) and Mutual
Information (MI), with the obtained ones using an NN optimized
with the recently proposed MSE-X loss function. Our results
show that both NN+STH (using MSE) and NN (using MSE-X)
efficiently permit to recover the equalized signal constellation free
of MMSE-scatterplot, with good MI and with a slightly better
BER using the NN+STH (MSE) than using the NN (MSE-X).

Index Terms—Neural networks, nonlinear equalizers, nonlin-
ear optics, mean square error, Gaussian distribution.

I. INTRODUCTION

THE application of Machine Learning (ML) in chan-
nel equalization has been extensively explored the past

two decades. Some ML techniques for channel equalization
were already proposed in the mid-90s [1]–[3]. The use of
such “data-driven” techniques, which are capable of learning
from an “input-output” relationship [4], has demonstrated
superior efficiency compared to traditional adaptive methods.
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In optical communications, ML has found applications for
channel equalization under linear and nonlinear impairments
(NLI). Particularly interesting is its application against NLI,
which often act as barriers to approaching Shannon’s capacity
[5]. Classical deterministic techniques, such as the Digital
Backpropagation (DBP), are challenging to apply due to the
considerable computation involved [6]–[8].

To address NLI compensation using ML, one promising
approach is the use of Neural Networks (NNs). For instance,
different types of NNs, such as the Multilayer Perceptron
(MLP) [9], [10], Convolutional NNs (CNNs) [11], [12], Re-
current NNs (RNNs) [6], [13], and CNN+RNN [14], have
been tested in various numerical and experimental scenarios.
A comparison of different NNs architectures in terms of
statistical performance and complexity was presented in [15].
In [16], an NN architecture was proposed for optical/electrical
nonlinearity compensation, while [7], [17] proposed NNs for
digital pre-distortion at the transmitter side. Additionally, sev-
eral physics-based complex-values NNs, such as the Learned
DBP (LDBP), were proposed in [18]–[21]. A comparison
between the MLP and the LDBP was also conducted in [22].

When using ML algorithms, there are two main tasks:
classification and regression. In classification, the aim is to
categorize the output into different target signal classes, usu-
ally expressed in terms of probabilities. On the other hand, in
regression, the goal is to reconstruct the transmitted signal.

The learning process involves using a loss or cost function
to measure the difference between the predicted and the
expected result. Based on that difference, the NN parameters
are optimized, for instance using a gradient-descent-based ap-
proach. While classification tasks are typically associated with
the Cross-Entropy Loss (CEL), regression tasks commonly
employ the Mean Squared Error (MSE).

NNs-based signal equalizers in classification tasks (here-
inafter NN-Class) perform two sub-tasks: signal equalization
and soft-demapping concurrently. On the other hand, NNs-
based signal equalizers in regression tasks (hereinafter NN-
Reg) conduct only signal equalization. The NN-Class has
proven to be optimal in the sense that it maximizes the infor-
mation content [23], [24]. The benefits of using an NN-Class
were also highlighted in [25]. Nevertheless, they also revealed
that an NN-Class using a CEL faces additional ML-related
challenges. These include issues like overfitting, a tendency to
converge to local minima losses, and unsuitability for highly
accurate systems, as is the case for optical transmissions.
Another reason that could blur the NN-Class is the loss of
access to the equalized signal, which is crucial for tasks
such as carrier phase estimation and synchronization [26]. The
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interest in using NN-Reg, therefore, relies on the accessibility
of the equalized signal.

Of special interest is the use of NNs as nonlinear equalizers.
Focusing on nonlinear NN-Reg equalizers using the MSE
loss function in the learning process, it has been observed,
particularly in QAM constellations, that the constellation di-
agram exhibits a specific distortion, referred to as the “jail
window” pattern in [27] or the “MSE-grid scatterplot” in
[16], [26]. These terms highlight the rectangular nature of
QAM constellations. This effect appears as a concentration
of the equalized symbols around the original constellation
points with some scattered along the straight lines between
the neighboring points of the original constellation. This effect
is called here “MMSE-driven signal constellation scatterplot”
(MMSE-scatterplot) because it appears when using the min-
imum MSE (MMSE) criterion in the NN-Reg optimization.
While the MMSE-scatterplot has been noted in multiple works
on NN-Reg using the MSE loss function [9], [16], [28]–[31],
the focus on this phenomenon has gained more attention in
recent works [26], [27], [32].

The presence of the MMSE-scatterplot can have detrimental
consequences on subsequent signal processing blocks, espe-
cially on Soft-Decision (SD) Forward Error Correction (FEC)
schemes [26], [27], which require reliable soft information1.
Furthermore, in the classical Digital Signal Processing (DSP)
coherent receiver, this soft-information is provided by the
demapper based on the equalized signal but also on the
optical channel law [33]. However, since this latter is usually
unknown, an auxiliary memoryless Additive White Gaussian
Noise (AWGN) channel is commonly assumed [33], which
even proves to be a good assumption in the nonlinear regime
[34]. Therefore, the role of the equalizer is to reconstruct the
transmitted signal and provide the necessary information to
the demapper in the form of constellation with Gaussian-like
noise. The MMSE-scatterplot, however, completely disrupts
the Gaussian-like properties expected by the demapper.

Besides this, the MMSE scatterplot also affects the Achiev-
able Information Rate (AIR) estimations, such as the Mutual
Information (MI) and the Generalized Mutual Information
(GMI), necessary for the Bit Error Rate (BER) after the
FEC (postFEC-BER) predictions [33], [35]. Indeed, the MI
and GMI, are commonly estimated through closed-form ex-
pressions using the auxiliary memoryless AWGN channel
[35]–[37], proven to be lower bounds of the MI/GMI of
the true channel with memory [38]. The MMSE-scatterplot
effect induces a significant alteration in the equalized signal
constellation, reducing the precision of these closed-form
expressions2. Therefore, is required that the noise distribution
of the equalized signal approximates a Gaussian.

Some techniques have been proposed to mitigate the
MMSE-scatterplot effect. Particularly, in [27] was proposed
the monitoring of the MI’s lower bound (MI-LB) in a vali-
dation dataset, stopping the training when the MI-LB reaches

1Soft: a continuous range of probabilities of belonging to a determined
class or category. Hard: a real specific value (e.g. 0 or 1 in binary codes)

2A similar reasoning could be made for the Q-factor estimate, which is
calculated using a Gaussian noise assumption, being not valid when the
MMSE-scatterplot appears.

its maximum value (early stopping). Another alternative, pre-
sented in [26], introduces a novel loss function called MSE-X,
which combines the MSE with a regularization term based on
the AIR maximization. This term ensures that the noise of the
equalized signal follows a Gaussian distribution. However, this
regularization term requires a fine-tuning of its noise variance
parameter, otherwise, the loss function might fail to converge.

This paper aims to delve deeper into this MMSE-scatterplot
effect, building upon previous studies’ findings [25]–[27], [32]
and proposing an alternative solution to prevent its occurrence.

The main contributions of this work could be summarized
as follows:

• We explicitly associated a mathematical expression de-
rived from the MMSE analysis in previous works with
the MMSE-scatterplot effect. This equation is called the
Soft-Thresholding (STH) function.

• We proposed to use the STH function as a nonlinear acti-
vation function placed after the NN during the training. In
the evaluation, the equalized signal, free of the MMSE-
scatterplot effect, is obtained before the STH function.

The rest of this paper is organized as follows: In Section II
we describe the MMSE-scatterplot effect. Section III explains
the fundamental origin of this phenomenon and its equivalent
mathematical function. Section IV presents the related works
and describes the proposed technique to avoid the MMSE-
scatterplot effect. Section V details the numerical setup con-
sidered in this study, and Section VI presents the results. The
paper concludes by summarizing key findings and suggesting
future perspectives.

II. MMSE-DRIVEN SIGNAL CONSTELLATION
SCATTERPLOT

When employing an NN-Reg based nonlinear equalizer us-
ing the MSE loss function, it has been observed in QAM mod-
ulated signals, a phenomenon termed “jail window pattern” in
[27] and “MSE-grid scatterplot” in [26]. These names were
given due to the rectangular nature of QAM constellations.
To illustrate this phenomenon, let us consider the case of an
AWGN channel and a simple NN-Reg. Since we employed
the NN-Reg throughout the rest of the paper, let us simplify
its notation and denote it as NN.

Let X be a discrete random variable that represents the
sequence of transmitted symbols with an alphabet X consisting
of M discrete symbols, i.e. X = {x1, · · · , xM}, and let R be
also a discrete random variable that represents the sequence
of received samples. An AWGN channel has the form:

R = X + Z, (1)

where Z is a complex Gaussian-distributed random variable
with zero mean and total variance σ2, Z ∼ CN (0, σ2).

Consider an NN with parameters θ, with input R and output
Y = f(R;θ), where f represents the NN and Y is the estimate
of the transmitted sequence X . An illustration of this setup is
shown in Fig. 1, where the equalized signal Y is the demapper
input and QX|Y (·|y) is the soft-information in the form of a
posterior distribution that feeds the SD-FEC [26], [33].
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Fig. 1. Classical transceiver model with an NN-based nonlinear equalizer
(regressor) in an AWGN channel represented by Z.

The objective of the NN is to bring Y closer to X . The
MSE is commonly used to measure the difference between Y
and X , and can be expressed as [24], [25]:

MSE(X,Y ) = E[|X − Y |2], (2)

where E[.] is the expectation operator.
For simplicity, consider NNs using real number parameters.

Therefore, the complex inputs were separated into their I and
Q components. Consequently, the outputs also corresponded to
the separated I and Q parts of the predicted complex symbols.

The chosen NN was the MLP because it is known that
it could approximate any nonlinear function [39], but as we
will see later, there are not restrictions for the NN-based
nonlinear equalizer architecture. The MLP consists of an
input layer, one or more hidden layers, and an output layer.
Each layer comprises multiple units or neurons. Following
the format used in other studies, we represent the MLP as
Ni|N1|fa|...|NL|fa|No, where Ni signifies the number of
neurons in the input layer, Nh denotes the number of neurons
in the hidden layer h (with 1 ≤ h ≤ L), L signifies the
total number of hidden layers, and No represents the number
of neurons in the output layer. After each layer (linear part),
we applied a nonlinear activation function fa, except for the
output layer. In the case of the regression task, the number
of neurons in the output layer is fixed to No = 2 (in the
case of one polarization), as we aimed to recover the real and
imaginary parts of the equalized symbol. The NN architecture
utilized in this study for the AWGN channel is outlined in
Table I with the specifications for the training.

Fig. 2a and 2c show R (NN input) for squared 16QAM
and rectangular 8QAM, respectively. The noise variance σ2

was set to achieve a received BER of 10−3. Meanwhile,
Fig. 2b and 2d show Y (NN output), that correspond to the
observed phenomenon in rectangular constellations. A similar
experiment was done in [25], where a pure AWGN channel
with only Chromatic Dispersion (CD) was employed to show
the MMSE-scatterplot emergence after some epochs using an
NN-based nonlinear equalizer.

This phenomenon, to the best of our knowledge, has pri-
marily been attributed to rectangular QAM constellations.
However, this effect is not exclusive to QAM signals; a similar
one also appears in PSK constellations. For example, if we
used an 8PSK signal (Fig. 2e), using a similar NN as in
the previous example, we found the outcome presented in 2f.
For this constellation, the NN output on the right adopts the
geometric shape of an octagon, corresponding to the eight
points of the constellation in this case. Comparable results
could be achieved with any other PSK constellation.

TABLE I
NN ARCHITECTURE AND TRAINING SPECIFICATIONS USED IN SECTION II

FOR AN AWGN CHANNEL.

NN Activation Learning Training Loss
architecture function fa rate epochs function

2|30|fa|30|fa|2 Tanh 10−3 1000 MSE

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. MMSE-scatterplot effect on signal constellations in an AWGN
channel. On the left: NN inputs R, on the right: NN outputs Y . (a,b) 16QAM,
(c,d) 8QAM, (e,f) 8PSK, (g,h) 8QAM (optimal)

In general, this phenomenon could be observed in any
signal constellation with an equal probability of occurrence
for all the symbols. For instance, in the optimal 8QAM signal
constellation [40] (Fig. 2g), we can also note a distortion in
the NN output constellation (2h). Once again, it is observed
that the NN induces a specific alteration of the constellation.
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All the previously mentioned results share a common char-
acteristic: the NN induces a concentration of the symbols
around the original constellation points, with some scattered
along straight lines connecting neighboring points of the
original constellation. This effect is referred to here as the
“MMSE-Driven Signal Constellation Scatterplot” (MMSE-
scatterplot). Notably, this phenomenon is consistently observed
in experiments involving M-PSK (M = 4, 8, 16), M-QAM (M
= 4, 8, 16, 32, 64), and any signal constellation with a uniform
probability of occurrence for all the symbols. It is worth
mentioning that this phenomenon is a direct consequence of
the choice of the MSE as a loss function.

In the subsequent section, we delve into the fundamental
origin of the MMSE-scatterplot effect by means of its equiv-
alent mathematical expression.

III. ORIGIN OF THE MMSE-SCATTERPLOT

The emergence of the MMSE-scatterplot effect when using
the MSE loss function in NN-based nonlinear equalizers ne-
cessitated further investigations. This section aims to establish
a relationship between the results obtained from the MMSE
criterion and the characteristics observed in the MMSE-
scatterplot.

Is not worth mentioning that the MMSE-scatterplot only
appears when using nonlinear equalizers, i.e. general functions
whose outputs are not linear with respect to their inputs, with
the MMSE criterion. Therefore, we focus our study on nonlin-
ear equalizers and also we restrain our study to Gaussian-like
channels, which is the case of nonlinear channels that could
be considered as a Gaussian noise source [34].

A. MSE Loss Function

The optimization criterion when training an NN using the
MSE loss function is to minimize the MSE, referred to as
the MMSE criterion. The rationale behind employing the
MSE lies in its functional properties, as discussed in [41]:
i) MSE is a differentiable function, making it suitable for
gradient backpropagation during the optimization stage. ii)
In the case of linear problems, MSE is a convex function,
ensuring convergence to the global minima. However, it is
still widely used in non-convex optimization problems, where
acceptable local minima are achievable [42].

Moreover, a significant property is the relationship between
the MSE and the conditional Maximum Likelihood Estimation
(MLE). The conditional MLE aims to find the optimal set of
parameters θ, maximizing the posterior probability to estimate
X given R, PX|R(x|r), i.e. θML = arg max

θ
PX|R(x|r).

Assuming that PX|R(x|r) is Gaussian distributed, it has been
demonstrated that the conditional MLE and the MMSE crite-
rion are equivalent [41], [42].

B. MMSE estimate

The optimal estimate of X , i.e. Y = X̂ , under the MMSE
criterion, was studied, for instance, in [43]–[45]3. It has been

3In the context of MIMO detection, the MMSE estimate has been referred
to as the optimal denoiser [45].

demonstrated that the MMSE is attained when Y is the mean
of the posterior probability PX|R(x|r), i.e.

Y = E[X|R]. (3)

In the scenario where x ∈ X , with PX(x) = 1
M uniform

∀x ∈ X and zero elsewhere, and assuming Z ∼ CN (0, σ2), it
has been shown in [46, Eq. 3.11], [45, Eq. 5] [43, Eq. 10.9]
that the optimal estimate of X is given by

Y = SX (R;σ2), (4)

where SX (R;σ2) is a Soft-Thresholding (STH) projector onto
X . This expression is called here STH function and for R = r
is defined as follows:

SX (r;σ2) =

∑
x∈X xe−

1
σ2 |r−x|2∑

x∈X e−
1
σ2 |r−x|2

. (5)

In [24, Eq 6.24], the authors analyzed the case of the
optimal equalizer using the MMSE criteria. They considered
no restrictions on the equalizer, i.e., not necessarily linear, and
assumed Gaussian noise and BPSK symbols. They found that
the MSE minimization reduces the equalizer function to

f(r;σ2) = tanh
( r

σ2

)
, (6)

which is equivalent to the equation (5) for x ∈ {−1,+1} [Eq.
3.14] [46].

As the noise variance approaches zero (σ2 → 0), one can
note that the STH function reduces to the Hard-Thresholding
function HX (r), defined by

HX (r) = lim
σ2→0

SX (r;σ2) = argmin
x∈X

|r − x|2. (7)

Note that this function corresponds to the optimal Hard
Decision (HD) detector into the signal constellation.

For illustrative purposes, the Soft and Hard-thresholding
functions are depicted in Fig. 3 for the particular case of
a PAM4 constellation. Observe that, for small values of the
noise variance σ2, most points will concentrate around x1,
x2, x3 and x4, whereas for large values of σ2, these points
will spread more along the straight lines between neighboring
symbols x1 − x2, x2 − x3, and x3 − x4.

Consider the inputs R of the previous examples whose
constellations are depicted in Fig. 2a, 2c, 2e and 2g. When
using the STH function of (5) with a σ2 equals to the AWGN
variance, the outputs show the constellations depicted in Fig.
4 for each case. Upon simple inspection, it is clear that these
results exhibit the same distribution as those when using the
NN, shown in Fig. 2b, 2d, 2f, and 2h, and the MMSE criterion
during the training.

Therefore, we can conclude that in an AWGN channel,
a nonlinear equalizer, e.g. an NN, with the objective of
minimizing MSE (MMSE criterion) simplifies to the STH
function in (5).

It must be mentioned that the use of such a function (5) was
also investigated in [46], but in the pursuit of a less complex
NN that provides the optimal estimator for the transmitted
signal, specifically for PAM constellations.
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Fig. 3. Soft and Hard-thresholding functions for a PAM4 constellation with
alphabet X = {x1, x2, x3, x4}.

(a) (b)

(c) (d)

Fig. 4. Estimate of X using the STH function in (5), where R are the inputs in
Fig. 2a, 2c, 2e and 2g. (a) 16QAM, (b) 8QAM, (c) PSK, (d) 8QAM (optimal).

IV. MITIGATION TECHNIQUES OF THE
MMSE-SCATTERPLOT EFFECT

This section describes in detail the related works concerning
the MMSE-scatterplot effect and presents another alternative
to avoid its appearance.

A. Related works

In [27], the authors provided some insights about the
MMSE-scatterplot effect, which they called the “jail-window”
pattern. They highlighted the fact that this phenomenon ap-
pears due to the Euclidean distance minimization between
the target and predicted symbols performed by the NN when
minimizing the MSE loss function. Additionally, they provided
possible reasons for its appearance from an ML perspective,
e.g. the mismatch between the ultimate goal of the NN-
based equalizer (BER improvement) and the NN loss function

(MSE), and the use of not enough large mini-batch sizes. Other
important observations were made on that paper. For instance,
the necessity of carefully training the NN, being aware to avoid
overfitting at most, and making the different datasets employed
for training/validation/test highly uncorrelated. In that work, it
was also proposed the use of the L2 regularization technique to
mitigate the MMSE-scatterplot effect. However, it was pointed
out that it could only partially mitigate the MMSE-scatterplot
effect and it still needed large mini-batch sizes.

Another study in [25], provides other solutions to mitigate
the MMSE-scatterplot effect. In particular, an early stopping
routine based on the maximum AIR estimated in a validation
dataset. The AIR estimated in that work was the MI-LB.
Indeed, monitoring the MI-LB on the validation dataset is
indicated as the best approach to selecting a model that avoids
the MMSE-scatterplot effect. However, a signal could still
have a good AIR but not be fully equalized. From our point
of view, the NN could in effect, avoid the MMSE-scatterplot
effect by selecting the model with a good AIR, but not
necessarily improving the BER, which is also the goal of the
equalizer.

Other authors in [26] also specifically investigated how to
mitigate the MMSE-scatterplot effect using a regularization
term. They proposed the use of a regularization term based
on the a posteriori probability distribution QX|Y (x|y) of
the demapper, where X is the transmitted data and Y is
the received data after equalization. This function was called
MSE-X and defined as

MSE-X(X, f(R)) = MSE(X, f(R))− 2σ2E[−logQY (f(R))],
(8)

where Y = f(R), f represents the NN channel equalization,
and σ2 is the noise power.

The MSE-X loss function requires to set a parameter σ2

related to the variance of the equalized signal. We found that
this parameter is difficult to set as the expected quality of the
equalized signal is unknown.

In this paper, we propose an alternative approach to mitigate
the MMSE-scatterplot effect, by using the STH function as a
nonlinear layer at the end of the NN.

B. Soft Thresholding-based Output Layer

We propose a new approach that involves adding the STH
function (5) after the NN. Instead of directly producing two
real numbers as the predicted symbol, we introduce the STH
function as an additional nonlinear function immediately after
the output layer. A similar “staircase” function was proposed
in [28], [47] as a nonlinear activation function to handle
nonlinearities in M-QAM systems. They showed that this
function effectively minimizes the MSE with BER improve-
ments. However, when observing the MMSE-scatterplot in
their results, is clear that the AIR is very poor.

In [46], this function was used as an optimal4 NN. Indeed,
the STH function can be used as a single-layer NN with
only a few neurons, with the minimal number of neurons

4Notice that the term “optimal” referred to the minimum MSE.
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Flatten

NN-Reg

STH
equalized
signal

(a)

equalized
signal

Flatten

NN-Reg

STH

(b)

Fig. 5. Proposed NN followed by the STH function. (a) NN + STH, (b) NN
+ STH with residual connection to solve vanishing gradient problem. Flatten:
reshapes input r into a vector of shape (B, :), where B is the mini-batch size.
Color blue indicates only training mode, red indicates only evaluation mode,
and purple indicates both training and evaluation modes.

being
√
M − 1 for a real-valued NN in squared M-QAM

constellations. However, this ultra-short NN is not useful as it
does not perform any equalization.

We require an NN that can perform equalization, thereby
increasing the AIR and decreasing the BER by minimizing the
MSE during the training stage. The key to adding the STH
function as a nonlinear layer after the NN is the following:
on the one hand, the NN addresses the equalization with MI
and BER improvement. On the other hand, the STH function
takes the role of the MMSE-scatterplot. Indeed, the NN alone
plays both roles. Why not separate both roles if the MMSE-
scatterplot expression is known?

The NN followed by the STH (NN + STH) architecture is
illustrated in Fig. 5a. During the training stage, the output Y
is the outcome of the NN + STH and is used to calculate
the MSE(X,Y ). However, during the evaluation stage, the
equalized signal, denoted as R2, is the signal recovered before
the STH function, and is free of the MMSE-scatterplot.

The STH-based layer relies on a parameter σ2, which must
be appropriately set to generate the MMSE-scatterplot. Since
the gradient loss tends to become null for small σ2 due to
this “soft staircase” function, it becomes susceptible to block
the gradient backpropagation. To tackle the issue of blocking
backpropagation, we can employ a well-known technique,
based on a residual connection [48]. Residual connections
were initially introduced to alleviate the vanishing gradient
issue in deep NNs. In this context, the vanishing gradient
problem does not arise from a deep structure but rather from
the STH function. A residual connection facilitates gradient
propagation through two connections. A modified architecture,
featuring a residual connection, is depicted in Fig. 5b. More
formally, let L be the loss, i.e., L = E[|R3 −X|2], then the
variation of NN parameters θ will occur through the gradient

descent of L with respect to θ:

∂L
∂θ

=
∂L
∂r3

∂r3
∂θ

(9a)

∂L
∂θ

=
∂L
∂r3

(
∂r2
∂θ

+
∂y

∂θ

)
(9b)

∂L
∂θ

=
∂L
∂r3

(
∂r2
∂θ

+
∂y

∂r2

∂r2
∂θ

)
(9c)

∂L
∂θ

=
∂L
∂r3

∂r2
∂θ

(
1 +

∂y

∂r2

)
. (9d)

In this manner, even if the gradient ∂y
∂r2

becomes zero, ∂L
∂θ

can still propagate due to the second connection. Notice that
in the first architecture (Fig. 5a), ∂L

∂θ becomes zero when ∂y
∂r2

approaches zero.
The selection of σ2 using the residual connection was

empirically approached in two different ways:
• Calculating the value of σ2 for each batch by using the

equalized signal before the STH function along with the
transmitted signal. This method requires feeding the NN
with the transmitted signal to calculate σ2.

• Treating σ2 as a learnable parameter of the NN.
In practice, we noticed that the first option did not provide

the desired results, as the calculated value of σ2 was too large
to generate the required MMSE-scatterplot effect. Therefore,
we opted for the second option. However, during the training
process, there comes a point where the gradient is unable to
backpropagate, due to the very small values of σ2, even with
the residual connection. This eventually stops the training.
Nevertheless, this is not an issue as long as the equalization
has been performed.

Another alternative that we explored is the use of Kurtosis
as a regularization term. Indeed, Kurtosis tends to approach
zero for Gaussian-distributed random variables [49], [50].
The idea was to encourage the minimization of the Kurtosis
during the training. In doing so, we aimed to force the noise
to be Gaussian-distributed, avoiding the MMSE-scatterplot
appearance. However, we decided not to use this approach
because a Kurtosis value close to zero does not necessarily
indicate a Gaussian distribution. While it worked in some
cases, it was not easily applicable to other cases.

V. DESCRIPTION OF THE NUMERICAL SETUP

In this section, we describe the transmission setup under
study, the datasets building, the NN architecture, and the
training/validation process.

A. Transmission setup

To investigate the conditions leading to the MMSE-
scatterplot effect, we initiated a numerical study based on
a dual-polarization transmission setup illustrated in Fig. 6.
In this setup, the transmitted symbols X are oversampled
to 8 samples/symbol (SpS) to simulate the digital-to-analog
conversion. After pulse shaping using Root-Raised Cosine
(RRC) filters, the combined dual-polarization signal propa-
gates through the optical channel. At the receiver, DSP tech-
niques are applied exclusively to address linear impairments.
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Fig. 6. Dual-Polarization Transmission Setup. SpS: samples per symbol, RRC: root-raised cosine, PBC: polarization beam combiner, EDFA: erbium-doped
fiber amplifier, LPF: low pass filter, CDC: chromatic dispersion compensation, DBP: digital backpropagation, MIMO: multiple-input multiple-output, CFOE:
carrier frequency offset estimation, CPR: carrier phase recovery.

The resulting signal, denoted as R, is used as the input for
the NN represented by f . We denote the output of the NN as
Y = f(R).

The optical channel consisted of 14 spans of standard
single-mode fibers (SSMF) with a span length of 50 km.
After each span, an erbium-dopped-fiber amplifier (EDFA)
fully compensates for the fiber loss. To simulate the signal’s
propagation, we numerically solved the Manakov-PMD equa-
tion [51], [52] using the split-step Fourier method (SSFM)
[53]. The Rx-DSP low-pass filters the signal to the effective
bandwidth. Subsequently, the signal undergoes an undersam-
pling to 4 SpS for full CD compensation (CDC), or using
the DBP [52], followed by an identical RRC pulse shaping
to mitigate inter-symbol interference. Subsequently, a polar-
ization demultiplexing technique based on a 2x2 Multiple-
Input-Multiple-Output (MIMO) equalizer combined with a
Fractionally-Spaced Equalizer (FSE) and sequentially using
the Constant Modulus Algorithm (CMA) [54] and Radius-
Directed Equalizer (RDE) [55], was applied to recover the
signal at the symbol rate (1 SpS) [56]. This processing was
followed by an estimation of frequency offset [57] and carrier
phase [58]. The resulting output R, is still affected by the
interplay between fiber nonlinearity, CD, PMD, and amplified
spontaneous-emission (ASE) noise originated by EDFAs. In-
deed, this setup allowed us to analyze the impact of significant
accumulated fiber nonlinearity, in the widely deployed SMF-
28 fiber type. The specific simulation parameters are outlined
in Table II.

B. Datasets

For the training and validation process, we used 14 different
datasets. Each dataset was generated with a different random
pattern and contained 233,274 symbols, after the classical DSP
described in the precedent subsection. For each dataset, 50%
of the data was used for training, and the following 50% was
used for validation. Then, similar to [27], we reshaped each
part in the form (B,S, 4), where B is the mini-batch size equal
to 4096, S accounts for N neighboring symbols of the input

TABLE II
PARAMETERS OF NUMERICAL SIMULATION.

PARAMETER VALUE
System Dual-Polarization

Modulation 64QAM
Baud Rate 32 Gbaud
Wavelength 1552 nm

Laser linewidth 100 KHz
Frequency offset 200 MHz

Pulse shaper RRC
RRC roll-off 0.1

SpS (TX) 8
SpS (RX) 4
Nspans 14
Lspan 50 km

Fiber loss 0.2 dB/km
CD coeff. -21.7 ps2/km

PMD coeff. 0.05 ps/
√
km

Fiber nonlinear coeff. 1.4 W−1.km−1

GEDFA 20 dB
NFEDFA 4.5 dB

LPF cutoff freq. 20 GHz
SSFM resolution 1 km/step

TABLE III
NUMBER OF BATCHES AND SYMBOLS USED IN TRAINING AND

VALIDATION.

Training Validation
Batches (NB) 392 392
Batchsize (B) 4096 4096

Batches NB /epoch 192 192

symbol (S = 2N + 1) and 4 for the real and imaginary parts
of each polarization. Under this configuration, the number
of neurons of the input layer Ni = 4S = 4(2N + 1).
After this distribution, the training batches of each dataset
were concatenated producing a final training dataset in the
form (NB , B, S, 4), where NB is the number of batches. An
identical procedure was done with the corresponding parts for
the validation dataset. Table III details the total number of
batches and symbols used during the training.

However, due to limitations in computational resources,
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TABLE IV
ARCHITECTURE OF THE NN-BASED NONLINEAR EQUALIZER.

NN architecture Activation function fa
86|646|fa|319|fa|365|fa|4 Tanh

we could not use the 392 batches. Therefore, we randomly
selected 192 batches from 392 batches at each epoch.

For testing purposes, we used a different unseen dataset
consisting of 633,177 effective symbols.

C. NN hyperparameters and Training Process

In this study, we selected an MLP architecture with carefully
adjusted hyperparameters to get the lowest MSE values during
training and to improve the BER as much as possible in
the validation dataset. We utilized the Optuna framework for
hyperparameter optimization [59] with 50 trials (candidates),
setting the following ranges: the number of taps N should
range from 10 to 20 symbols, the number of hidden layers
should range from 1 to 3, and the number of hidden units
should range from 15 to 1000.

We concur with the viewpoint outlined in [27] regarding
the necessity for careful consideration of several crucial factors
during NN training. In particular, the following aspects should
be taken into account:

• Considering large enough datasets for highly accurate
systems, as is the case of optical transport networks.

• Employing distinct data generation patterns for training,
validation, and testing datasets, or using cross-fold val-
idation. We opted for cross-fold validation using the 14
datasets.

• Utilizing large mini-batch sizes, with the mini-batch size
being as large as possible to ensure it is representative of
the entire dataset.

During the training, at each epoch, the training mini-batches
were shuffled. This approach was adopted to prevent the
NN from learning specific patterns (even if this was highly
improbable due to the various datasets with different dataset
generation patterns), ensuring a more generalized model. The
learning process involved the minimization of the loss func-
tion, through an optimization step using Adam optimization,
followed by the updating of NN parameters [41]. We found
that a learning rate of 10−4 and a large minibatch B = 4096
yielded better BER improvements.

We found the NN hyperparameters indicated in Table IV.
The numbers in the NN architecture indicate the neurons per
layer, with the first and last numbers corresponding to the
input and output layers, respectively. The numbers in between
are the hidden units and fa states for the activation function
which is the hyperbolic tangent.

VI. RESULTS

In this section, we have compared the performance of an
NN trained with MSE, an NN trained with MSE-X, an NN
+ STH trained with MSE, and a DBP at 1 step/span. The
validation dataset was utilized to monitor the performances

TABLE V
PARAMETER σ2 UTILIZED IN NNS WITH MSE-X AND NN+STH WITH

MSE.

P/ch (dBm) -4 -2 0 2
σ2 (MSE-X) 0.0027 0.0027 0.0027 0.005

σ2 initial (STH) 0.025 0.025 0.025 0.03

during the learning process. Finally, the testing dataset was
used to calculate accuracy metrics on an unseen dataset.

We selected the model that provides the lowest MSE in the
validation dataset for each case. We monitored the MSE in
the training and validation datasets and stopped the training
process if no MSE improvement was observed in the validation
dataset or if we observed overfitting.

The MSE-X loss function requires to set a parameter σ2

related to the variance of the equalized signal. We found
this parameter difficult to set as the expected quality of the
equalized signal is unknown. Despite that, guided by the
details provided in [26], [60], we performed the following
steps:

• We fixed σ2 and we trained the NN for a period.
• When we observed a training stabilization or overfitting,

we stopped the training and calculated σ2 using a testing
dataset.

• We updated σ2 with the recovered value (which corre-
sponded to an equalized signal). The final training of the
NN was then performed using this adjusted σ2.

Table V provides the details of the parameters utilized for
σ2 for both the MSE-X and the STH function.

In all configurations, we chose the model that provided the
lowest loss in the validation dataset. For instance, for P/ch
= 0 dBm, we obtained the curves illustrated in Fig. 7. As
we can observe in this example, the NN using MSE shows
a gradual loss descent up to eventually occurring overfitting.
On the other hand, the NN with MSE-X shows lower training
losses compared to the MSE case. This is due to the entropy
regularization term added to the MSE, as explained in [26].
The NN + STH using MSE was early stopped owing to the
blocking backpropagation. For MSE-X as well as for NN +
STH with MSE, the validation losses are calculated using the
MSE between the transmitted and equalized symbols.

In Fig. 8 we plot the input constellations denoted previously
as R, followed by the equalized signals Y = f(R) using
the NN with MSE, the NN with MSE-X, and NN + STH
with MSE. Notice that both, the NN with MSE-X and NN +
STH with MSE, avoid the MMSE-scatterplot. The last column
corresponds to the equalized signal using the DBP 1 step/span.

For each launch power and each equalizer, we calculated
the BER and the MI-LB using (14). The results are depicted
in Fig. 9a and 9b.

In terms of BER, all the NNs performed worse than the DBP
1 step/span. However, the reader should take into account the
performance-computational complexity trade-off between the
DBP and the NN. This comparison is out of the scope of the
present work but the reader could refer, for instance, to [15],
[22]. The NN (MSE) is slightly better in the linear regime,
at P/ch = -4 and -2 dBm, than the NN (MSE-X) and the NN
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(a) (b) (c)

Fig. 7. Curve of losses (average of training batches per epoch) for each equalizer for P/ch = 0 dBm. (a) NN using MSE, (b) NN using MSE-X, (c) NN +
STH using MSE.

Equalized signal Y = f(R)

Input R NN (MSE) NN (MSE-X) NN+STH (MSE) DBP 1 StPS

(a)

(b)

(c)

(d)

Fig. 8. Symbol constellation diagrams of the received signal (NN input) R and constellations of equalized signal Y = f(R) for each NN-based equalizer
and using a DBP 1 StPS. (a) P/ch = -4dBm, (b) P/ch = -2dBm, (c) P/ch = 0dBm, (d) P/ch = 2dBm.

+ STH (MSE), which both show similar performances, with
the NN+STH (MSE) slightly outperforming the NN (MSE-
X). In the linear regime, both methods hardly improve the
CDC or even worsen it. This was not due to the methods
themselves but because training an NN in the linear regime

is very challenging, requiring a large amount of data and
computational power.

Regarding the MI I(X;Y ), the NN (MSE) method results
in a loss of soft information, showing a very poor MI. On the
other hand, all the tested NNs increased the MI, but the DBP
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(a) BER vs. P/ch

(b) MI-LB I(X;Y ) vs. P/ch

Fig. 9. Performances obtained for each equalizer.

method was always superior.

VII. CONCLUSIONS

In this study, our goal was to offer more insights about
the MMSE-scatterplot phenomenon that occurs when using
nonlinear equalizers based on NNs.

Firstly, we explained the fundamental origin of the MMSE-
scatterplot and presented its equivalent mathematical expres-
sion, which is the Soft Thresholding (STH) function.

Secondly, we used the STH function as an alternative to
avoid the MMSE-scatterplot. The STH function is placed after
the NN during the training. In the evaluation, the equalized
signal, free of the MMSE-scatterplot, is obtained before the
STH function. A comparison between the NN+STH (using
MSE) and the NN (using MSE-X), showed slightly better
BER using the NN+STH (MSE) than using the NN (MSE-X)
with similar MI. The NN+STH approach requires initializing
the parameter σ2 with sufficiently small values capable of

generating the MMSE scatterplot. The MSE-X also requires
setting a parameter σ2, however it must be carefully set up. If
is too small, the training loss could become negative.

Finally, other strategies could also be explored. For instance
a kurtosis-based regularization term, or different hyperpa-
rameters optimization strategies with different objectives, for
instance, the BER minimization or MI maximization, both
requiring more in-depth justifications.
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APPENDIX A
INFORMATION THEORY

Let X be the transmitted data from an information source,
belonging to a discrete alphabet X and with probability mass
function pX(x), and let Y be the received data with probability
density function fY (y)

5. The entropy of X measures the
amount of information generated by the source [63] in bits
per symbol or bits per second. It is also interpreted as the
amount of information (bits) needed to describe X [64]. The
entropy of X , H(X), is calculated as follows,

H(X) = E[−log2pX(x)]

= −
∑
x∈X

pX(x)log2pX(x)

≈ − 1

K

K∑
i=1

log2pX(xi)

(10)

where E is the real expectation and the third equation is the
empirical expectation for K samples from pX(x) [24].

The entropy of Y (differential entropy for the continuous
case) is denoted as h(Y ) and is calculated as follows,

h(Y ) = E[−log2fY (y)]

= −
∫
y∈Y

fY (y)log2fY (y)dy

≈ − 1

K

K∑
i=1

log2fY (yi)

(11)

Nevertheless, the meaning of the differential entropy is
different from the entropy of the discrete case, as it does
not represent an amount of information to describe a random
variable. Indeed, the differential entropy could even be neg-
ative [63]. The meaning of the differential entropy is related
to the log-scale of the smaller set that contains most of the
probability [64], meaning a low entropy (more negative) a

5Here we considered Y continuous, though it could be also considered
discrete as in [61], [62] by means of an ADC.

more confined set, and high entropies (less negative) a more
dispersed set.

The conditional entropy of X knowing Y (also called
equivocation), H(X|Y ), measures the uncertainty of X by
the knowledge of Y .

H(X|Y ) = E[−log2pX|Y (x|y)]

≈ − 1

K

K∑
i=1

log2pX|Y (xi|yi)
(12)

Similarly, the equivocation of Y given X is defined as,

h(Y |X) = E[−log2fY |X(y|x)]

≈ − 1

K

K∑
i=1

log2fY |X(yi|xi)
(13)

The reduction in uncertainty of X due to the knowledge of
Y is the MI, I(X;Y ) which is defined as [63], [64],

I(X;Y ) = H(X)−H(X|Y ) = h(Y )− h(Y |X) (14)

where the first equality means the amount of information
sent less the uncertainty of this information regarding the
received data. The second equality is obtained because of the
symmetry and means the amount of information received less
the uncertainty corresponding to the noise of the channel [63],
[64].

The channel capacity is max I(X;Y ). In an AWGN chan-
nel, this definition leads to the maximization of the Signal-to-
Noise ratio (SNR) [63]. Moreover, it is possible to estimate
the BER (Q-factor) given the SNR [65], e.g. for a square M-
QAM:

BER =
2

log2M

(
1− 1√

M

)(√
3

2(M − 1)
SNR

)
Q-factor = 20log

[√
2erfc−1(2BER)

]
(dB)

(15)
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