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Abstract

Purpose: Micro-electrode recordings (MERs) are a key intra-operative modality
used during deep brain stimulation (DBS) electrode implantation, which allow
for a trained neurophysiologist to infer the anatomy in which the electrode is
placed. As DBS targets are small, such inference is necessary to confirm that
the electrode is correctly positioned. Recently, machine learning techniques have
been used to augment the neurophysiologist’s capability. The goal of this paper
is to investigate the generalisability of these methods with respect to different
clinical centres and training paradigms.
Methods: Five deep learning algorithms for binary classification of MER sig-
nals have been implemented. Three databases from two different clinical centres
have also been collected with differing size, acquisition hardware, and annotation
protocol. Each algorithm has initially been trained on the largest database, then
either directly tested or fine-tuned on the smaller databases in order to estimate
their generalisability. As a reference, they have also been trained from scratch
on the smaller databases as well in order to estimate the effect of the differing
database sizes and annotation systems.
Results: Each network shows significantly reduced performance (on the order
of a 6.5% to 16.0% reduction in balanced accuracy) when applied out-of-
distribution. This reduction can be ameliorated through fine-tuning the network
on the new database through transfer learning, although even for these small
databases, it appears that retraining from scratch may still offer equivalent per-
formance as fine-tuning with transfer learning. However, this is at the expense of
significantly longer training times.
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Conclusion: Generalisability is an important criterion for the success of machine
learning algorithms in clinic. We have demonstrated that a variety of recent
machine learning algorithms for MER classification are negatively affected by
domain shift, but that this can be quickly ameliorated through simple transfer
learning procedures that can be readily performed for new centres.

Keywords: Micro-electrode recordings, machine learning, generalisability

1 Introduction

Deep brain stimulation (DBS) is an interventional treatment used to control the
symptoms of several neurological disorders. The most common of these is undoubt-
edly Parkinson’s disease. Although the small subcortical structures targeted in DBS
interventions, such as the subthalamic nucleus (STN), are visible on a pre-operative
MRI, sources of error arising from brain shift and small uncontrollable deviations from
the pre-planned electrode trajectory necessitate an intra-operative data modality to
inform the interventionalist as to if the electrode is correctly positioned [1].

One of these potential modalities is Micro-Electrode Recording (MER) in which a
listening electrode is first implanted, allowing for the clinical team to hear the neural
behaviour happening at a particular depth along the trajectory. From this information,
a trained neurophysiologist could then determine what anatomy lies underneath the
electrode’s current position and infer whether or not said depth is appropriate for
final electrode positioning. Furthermore, recent studies have show than using MER
as an intra-operative data modality produces similarly patient outcomes as the use of
intra-operative MRI, despite much lower cost and wider accessibility [1].

However, the use of MER also implies a longer intervention duration [2]. This is
because the interpretation of an MER signal is difficult and time-consuming as well
as necessitates a large amount of experience and judgement on the part of the human
expert. Recently, several machine learning algorithms [3–13] have been proposed as
decision-making support tools for this task in order to better control for this subjec-
tivity and to make the overall DBS electrode implantation intervention more efficient.
These algorithms have relied on a variety of different machine learning paradigms.
Most recent methods use traditional approaches which classify signals based on spe-
cific features that are known to be of interest to the neuroscientific community, such
as the power in particular frequency bands [5, 6, 8, 11] or various spike-dependant
or spike-independent features [3, 4] as well as more technical features such as wavelet
decompositions [7]. Others [9, 10, 12, 13] have taken a more modern, deep learning
approach in which the entire signal is provided to the algorithm rather than reducing
it to a smaller vector of features.

One of the key limitations to all of these approaches does not lie specifically in
the paradigm or machine learning architecture chosen, but in methodological design.
Each of these studies [8–13] was performed with databases arising from a uniform
protocol in a singular clinical centre with the annotations provided by a singular
expert neurophysiologist. In addition, these studies (as well as many others in the
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field of machine learning in DBS research) use a variety of different procedures for
quantitatively validating their algorithms, leading to a large degree of uncertainty in
comparing their numerical results [14]. Given the technical and relatively early stage
of this research, such study designs are par for the course but do lead to questions
regarding their generalisability as well as comparative performance [14].

As deep learning algorithms are known to be sensitive to subtle or impercepti-
ble differences in dataset distributions, generalisability and comparative performance
studies are crucial for determining the performance of algorithms outside of their train-
ing conditions in those that are more similar to diverse clinical contexts [15]. Such an
investigation of simpler binary problems, such as MER signal classification, is impor-
tant in order to ensure that more complex and ambiguous tasks, such as optimal
placement planning [16], can also be constructed in a more robust and generalisable
manner.

1.1 Contributions

This article examines a series of recently published deep learning algorithms [8–10, 12,
13] that are all designed to classify whether or not a given MER arises from inside the
STN or from outside of it. In order to do so, we have re-implemented each of these
algorithms in order to control what data they access during training, what data they
are evaluated against, as well as the training paradigm used to potentially correct
these domain shift errors.

2 Methods

2.1 Patient Data

The primary database used for initially training the STN classification algorithms
consists of 57 Parkinsonian patients undergoing either single or bilateral DBS elec-
trode implantation. The MER signals arising through five channels (anterior, posterior,
medial, lateral, and central) were recorded using the Leadpoint 5 (Medtronic) station.
The MER signals were captured from 10.0mm prior to the pre-operatively estimated
STN boundary to 4.0/5.0mm after said boundary, leading to the acquisition of 11,162
signals each 9s (or 192000 samples) long. Each signal was recorded at 24kHz and
then bandpass filtered (500-5000Hz, notch: 60Hz). In order to mitigate for artefacts,
amplitude clipping was performed and the signal intensity rescaled to a -249 to 250
range. The collection and use of this data was approved by the Research Ethics Board
at Western University, Canada (REB # 109045). From now on, this dataset will be
referred to as the London database.

The first of the secondary Rennes databases used for evaluating the generalisability
of the algorithms was acquired at the Rennes University Hospital Centre between
2015 and 2022 from 63 patients undergoing DBS electrode implantation. A Ben-Gun
configuration with three channels (anterior, central, and posterior) was used and the
signals were recorded using the Dantex Keypoint G station at 24kHz. 20-40 MER
signals were collected per channel per patient leading to a total of 8,630 signals, each
3 seconds in length. The data was then digitally bandpass filtered (500-5000Hz, notch:
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50Hz). Similar to the London database, amplitude clipping was applied with the same
parameters. This data collection was approved by the Rennes University Hospital
Centre ethics committee (Ethical authorisation declaration n2205295).

The second, smaller secondary database was also collected at the Rennes Uni-
versity Hospital Centre between 2005 and 2015 from 50 patients. This configuration
included 5 channels (anterior, posterior, medial, lateral, and central) recorded using
the Dantex Keypoint G station at 24kHz and then bandpass filtered (500-5000Hz,
notch: 50Hz). This database is smaller, consisting of 1880 signals, each 10 seconds
long. This data collection was also approved by the Rennes University Hospital Centre
ethics committee (Ethical authorisation declaration n2205295).

Each of the databases were provided with manual annotations regarding whether
or not the signal arose from the STN. For the London database, this annotation was
performed by an expert neurosurgeon at University Hospital (Western University,
London, Canada) and for the two Rennes databases, it was performed by an expert
neurophysiologist at the Rennes University Hospital Centre (Rennes, France).

These databases differ in terms of their size, length, acquisition system, bandpass
filter parameters, number of channels, and class balance. This allows for different
aspects of generalisability and retrainability to be evaluated.

2.2 Algorithms

Five recent machine learning algorithms were selected from the literature. The primary
requirement of these algorithms is that they be based on artificial neural networks of
some variety with sufficient explanation of their methods to replicate them or code
provided either open source or via communication with the paper authors. These
algorithms reflect the many conceptual evolutions in deep learning, starting with
multi-layer perceptrons applied to a vector of engineered features [8] before expand-
ing to convolutional networks [9, 12], recurrent networks [10], and finally transformers
[13]. Each of these networks were given the same data as input, considering their
pre-processing steps (e.g. feature extraction, short-time Fourier transforms, etc...) as
fundamentally part of the individual method given how much these steps vary across
the selected algorithms.

ANN with engineered features by Khosravi et al. (2019)

Khosravi et al. [8] were one of the first to apply artificial neural networks to the
problem of MER signal classification during DBS, although other common machine
learning frameworks such as random forests and support vector machines have been
applied to the problem since 2006 [17]. As with these earlier ML approaches, Khosravi
et al. ’s framework was designed to be feature-based, using the power of a number
of specific frequency bands, several statistical features regarding spike (i.e. spike rate,
standard deviation of inter-spike pauses, etc...), and raw signal features (i.e. curve
length, number of zero-crossings, etc...) which were commonly used in previous frame-
works [17]. The network created by Khosravi et al. [8] contains 10 hidden layers each
with 50 neurons leading to a total of 6,025,601 weights. In order to control for potential
overfitting, both L1 regularisation and DropOut are used during the training process.
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As stated earlier, this algorithm is reminiscent of the traditional feedforward arti-
ficial neural networks architecture, the multi-layer perceptron, in that the input to
the network is treated as a fixed-length vector with each layer having direct access to
all the neurons in the previous layer. This has distinct advantages in that the MER
signal is actively reduced to a (relatively) small number of components that either
efficiently summarise the signal as a whole (i.e. power, number of zero crossings), have
some known causal relationship with the underlying anatomy (i.e. spike frequency), or
both (i.e. frequency band powers). In theory, this should render the framework more
generalisable, provided that said input representations can be computed in the exact
same way for different databases. However, this is complicated by differences in the
acquisition parameters of the databases (notably the bandpass filter parameters) and
the fact that differing class probabilities may effect the ideal parameters in the neural
network even if the input representations were exactly equivalent.

Separable CNNs by Peralta et al. (2020) and their Bayesian
extensions by Martin et al. (2021)

Shortly after the first application of artificial neural networks to MER classification,
Peralta et al. [9] were the first to apply convolutional neural networks to the same
problem. The first step in their approach was to represent the signal as a spectro-
gram, capturing the frequency related information from previous ML approaches while
maintaining the entire signal. Afterwards, a series of five “computation blocks,” each
consisting of a drop-out, convolution, non-linear activation, and max-pooling layer.
The final output is then calculated by a single linear layer applied to the flattened
results. Separable convolutions were used to limit the number of parameters in the
model, leading to a total of 16,752 weights.

By treating the MER signal as a full signal rather than summarising it through a
series of engineered features, it is possible for the neural network itself to discover more
immediately informative or less redundant features connecting the MER signal to the
underlying anatomy. It should be noted that augmenting the input (e.g. by providing
the entire signal spectrogram, rather than only the signal itself) can sometimes simplify
this process.

This network architecture was then extended by Martin et al. [10], using a recurrent
neural networks and a Bayesian frameworks to update the prediction of the network as
more signal became available, leading to a framework capable of classifying arbitrary
length MERs while increasing the number of weights to 25,208. Martin et al. found that
the Bayesian approach, despite several simplifying assumptions, worked significantly
better than the use of recurrent units, as the necessary features could be learnt in
the initial convolutional layers and aggregated across time in a simple way without
necessitating the greater flexibility (and parameterisation) of recurrent units.

In comparison to previous approaches, both of these networks were designed to
be lightweight and use an order of magnitude fewer parameters than the network
proposed by Khosravi et al. [8].
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Traditional CNN by Hosny et al. (2021)

Hosny et al. [12] also independently created a CNN architecture for MER classification,
although following more closely to a traditional CNN architecture (i.e. alternating
between convolution, non-linear activation, and max-pooling before applying a small
fully-connected network to the flattened results) although with the addition of Batch
Normalisation to make the training process more stable. The architecture contained
three convolutional layers and two linear layers, leading to a total of 11,277,149 weights.
Unlike in the previous architecture proposed by Peralta et al. [9], the signal was not
pre-processed into a spectrogram but rather provided directly to the network. The lack
of spectrogram input likely required the addition of more convolutional layer blocks in
order to develop sufficient expressiveness to capture different features in the frequency-
domain, leading to the highest degree of parameterisation seen in the investigated
networks.

CNN with self-attention by Xiao et al. (2022)

A more recent conceptual addition to artificial neural networks is the concept of self-
attention, which was first applied to the problem of MER classification by Xiao et
al. [13]. This network has a similar structure as the CNNs described in the previous
two subsections, although it uses addition “CBAM” layers (which combine a chan-
nel self-attention module followed by a spatial self-attention module) multiple times
throughout the network. These modules involve a much larger amount of non-linearity
thus allowing for a lower number of channels to be used for the intermediate images
in the network.

The benefit of this narrower architecture is that it requires fewer weights, a total of
2,158,607, making it lighter than the previous CNN approach [13] despite still having
a larger total number of layers. This is because, unlike Hosny et al. , spectrogam input
was used to simplify the initial network, allowing for a relatively narrow network to
be used without diminishing its capability to learn important signal features.

2.3 Training Approaches

Generalisability is a particularly important area of research for deep learning as net-
works often show a high sensitivity to distributional shifts between the training data
and the data on which they are eventually applied [18]. Some aspects of distributional
shifts can be estimated and thus addressed by augmenting the training procedure.
However, characterising distributional shifts in real data, especially for highly spe-
cialised problems such as MER signal classification, to a degree where they can be
modelled in the training process is not always possible. Given that, it is often hard to
distinguish between the degree of generalisability of a framework from the unknown
degree of distributional shift used to measure said generalisability.

The most immediate test of generalisability for any particular trained model is to
apply it directly to previously unseen from a new distribution. By applying a trained
model directly, one can heuristically evaluate the robustness of the patterns learned in
said model to the distribution shift between the training and testing databases. How-
ever, such a test lacks baseline information such as whether or not the two databases
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are fundamentally different in terms of inherent difficulty. This limitation, along with
the desire to improve performance on the new database, motivation fine-tuning the
network in order to overcome this distributional shift.

Transfer learning

In the context of CNNs, transfer learning is a technique used for training in which the
weights for a network trained on a particular problem are used to initialise the weights
for a new network for a different problem [19]. The motivation behind this is that
many problems share a common set of useful features, especially low-level ones, and
thus relatively little additional data is required to adapt these features to new problem
domains. In the parlance of distribution shift, transfer learning allows for the fine-
tuning of representations to adhere to proximal ones in the new shifted distribution
using limited additional data.

The last set of experiments performed thus uses the weights learnt using the
larger London database with fine-tuning being performed using the smaller Rennes
databases.

Train-from-scratch

In order to determine a reference accuracy for each database, we have also retrained the
network from a purely random initialisation. By performing this type of re-training,
we can also measure the change in accuracy with respect to the number of training
iterations in order to determine how much time (i.e. number of training epochs) is
saved through training techniques such as transfer learning.

2.4 Evaluation metric and statistical analysis

The performance of each method is calculated via the Balanced Accuracy:

BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
which avoids the issue of class imbalance as significantly more signals were collected
from outside the STN rather than inside it, noting that the balanced accuracy is
equivalent to regular accuracy if the number of signals in each class is equal.

To analyse the quantitative results given the number of factors in the experiment,
we use a multifactorial analysis of variance model using scipy’s statsmodel library’s 1

ordinary least squares (OLS) model. The factors in this model include the algorithm,
the training type, the database being evaluated on, the interactions between these
three factors, and finally the specific fold id (in order to account for inter-fold vari-
ability). Given these interaction terms, we used Type 1 ANOVA. This analysis was
performed only over the Rennes datasets with the results from the London database
being given as a reference for the optimum model quality.

All experiments were performed using 5-fold cross-validation due to the rela-
tively small sizes of the databases involved. Each network received a set 550 training

1https://www.statsmodels.org/stable/index.html
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iterations which was considered sufficient to ensure the convergence of network
training.

3 Results

The quantitative results from the 5-fold cross-validation are shown in Table 1. For each
database, the folds were split according to the patient (i.e. all data arising from a single
patient appears in a single fold) in order to prevent data leakage. For the generalisation
experiments, the final network trained on the London database (i.e. the one trained on
the last fold) was used to initialise the network for the Rennes databases. The results
of the multifactorial ANOVA test are given in Table 2 specifically showing that the
algorithm, dataset, training type, and interaction between the dataset and training
type are the only significant factors affecting the performance.

Rennes 1 (2015-2022)
Algorithm London D.A.L. T.L. T.F.S.
Khosravi et al. [8] 68.1±9.1 51.3±1.3 63.9±11.4 68.5±9.3
Peralta et al. [9] 79.9±1.8 67.4±6.3 79.2±2.6 79.1±2.6
Martin et al. [10] 81.0±2.4 72.8±3.4 79.1±2.3 79.8±1.6
Hosny et al. [12] 77.5±1.9 73.8±1.9 72.7±11.1 77.5±1.5
Xiao et al. [13] 74.6±2.1 68.1±2.5 75.8±1.1 75.3±1.4

Rennes 2 (2005-2015)
D.A.L. T.L. T.F.S.

Khosravi et al. [8] 54.9±5.2 50.6±1.1 57.1±6.8
Peralta et al. [9] 67.1±8.9 68.8±10.0 69.6±6.1
Martin et al. [10] 65.0±6.2 69.2±10.8 73.1±3.0
Hosny et al. [12] 64.0±6.6 62.2±8.8 64.1±6.6
Xiao et al. [13] 65.3±4.8 66.8±6.8 62.3±1.1

Table 1: Quantitative results for Balanced Accuracy (%)
across algorithms and database or generalisation types
(D.A.L. - direct application from London database, T.L. -
transfer learning, T.F.S. - train from scratch). Values are
shown as mean ± standard deviation across the testing folds.

Factor DoF F p-value
Algorithm 4 24.23 1.85× 10−14

Dataset 1 55.24 2.27× 10−11

Training 2 9.04 2.28× 10−4

Algorithm × Dataset 4 0.56 6.86× 10−1

Algorithm × Training 8 0.99 4.47× 10−1

Dataset × Training 2 4.84 1.10× 10−2

Algorithm × Dataset × Training 8 0.88 5.34× 10−1

Testing Fold ID 9 1.13 3.47× 10−1

Residual 112

Table 2: Multifactoral ANOVA results table. Rows marked
in bold are considered statistically significant.
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Fig. 1: Training curve showing the evolution of the BACC for the network proposed
by Peralta et al. [9] for the Rennes database (2015-2022) initialised random (green
- train from scratch) or from the weights learned from the London database (blue -
transfer learning).

Figure 1 shows the evolution of the BACC over the course of the training process
on a secondary dataset. It would appear that transfer learning’s primary advantage is
that it improves the speed at which these networks can be adapted to a new, similar
domain, rather than reflective of a particular improvement in the final accuracy. This
latter point is further confirmed by the numerical results in Table 1 where the difference
between transfer learning and training from scratch is not only insignificant (as per a
paired two-tailed t-test giving a value of p = 0.181) but does not even have a consistent
sign. This speed increase can be highly beneficial as network training usually incurs a
higher computational burden and energy cost.

4 Discussion

As hypothesised, generalisation is indeed problematic as given by the decrease of 9.54%
on average for the first Rennes database and 12.96% for the second Rennes database
when using parameters learnt on the London database. Although the domain shift
appears to always result in a reduction in accuracy, the amount of said reduction is
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highly variable with some results, such as the network proposed Hosny et al. [12],
differing by less than 5%.

According to our analysis, there was a significant interaction between the database
and the training type, meaning that the specifics of the dataset affect how much
performance can be regained by modifying the training type. Regardless of the original
algorithm, the reduction in accuracy caused by the domain shift can be corrected
for on larger databases using re-training techniques, notably transfer learning, which
improve the performance to a degree comparable to the original database, a difference
of between -1.2% to 0.7% in terms of balanced accuracy. For smaller databases, such
as the second Rennes database, the improvements resulting from re-training are much
more modest to non-existent. This could be the result of fundamental annotation
differences between the datasets, with one including more annotation uncertainty and
thus fundamentally lower maximum accuracies.

Unsurprisingly given the large differences in network structure and parameteri-
sation, some methods significantly outperformed others in general according to our
ANOVA results. In terms of differences between algorithms, with the exception of [8],
the difference in performance between algorithms is reduced when applied directly to
a new database. Despite not finding significant evidence of this (i.e. the interaction
between algorithm and training type was not significant), it does appear that certain
algorithms appear to improve faster after retraining on a smaller dataset (specifically
[9, 10] possibly due to their much lighter parameterisation making them less susceptible
to overfitting. Further investigation would be needed to verify this observation.

One of the limitations of this work is a large portion of the literature on MER
classification still uses more traditional machine learning techniques rather than deeply
learned artificial neural networks [3–6, 11, 17]. Although the first test of generalisation
(the direct application of a method trained on a different dataset) can still easily be
applied, it is more difficult to determine if simple methods for retraining using these
previous parameters as a starting-point can be applied as well.

4.1 Future work

This study into the generalisability of deep learning approaches to MER classifica-
tion in the context of DBS electrode implantation provides a preliminary look into
some of the challenges one needs to consider for the implementation of these algo-
rithms in practice. It also raises several important theoretical questions that could
further contextualise and inform the results. Notably, we have evidence that distri-
bution shift within similar domains (e.g. MERs acquired and annotated in different
centres using different protocols) not only affects the distribution of the input but
also the annotation uncertainty. One area of future work is to collect this informa-
tion through measuring the inter- and intra-operator variability of the annotations in
these databases. This additional information would not only verify whether or not the
automated approaches perform with equivalent accuracy as human operators, but also
provide a basis for improving these algorithms through better adaptation towards noisy
labels [20] or even leveraging Bayesian approaches [21] for predicting the annotation
uncertainty for a given input MER signal directly rather than a singular label.
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5 Conclusion

Generalisability is a critical concern in the application of modern deep learning
methods to biomedical signal processing. Measuring how an algorithm copes with dis-
tribution shifts that may exist between the context in which its training data was
collected and the context in which it is applied is crucial to ensuring its safe applica-
tion. Certain aspects of distribution shift can however be corrected for, notably using
transfer learning as a computationally efficient approach to update learned weights to
adapt to their new context.

In this article, several algorithms which span the gamut of deep learning approaches
towards signal processing have been implemented, trained, evaluated, and re-trained
across three different databases of interventional micro-electrode recordings collected
during deep brain stimulation electrode implantation. This experiment quantifies the
degree of generalisability and susceptibility to distribution shift across similar domains
characteristic of how these algorithms may be used in clinic. Although every algorithm
we investigated was susceptible to performance degradation (and many to approx-
imately the same degree) we also found that simply fine-tuning the weights (i.e.
transfer learning) can allow these algorithms to quickly regain their previous higher
performance.
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