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ABSTRACT

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from
paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is
crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making.
Deep learning methods demonstrate superiority in TSS classification. However, they

Keywords: Acute ischemic stroke anal- often overfit task-irrelevant features due to insufficient paired labeled data, resulting in

ysis, Multi-modal MRI imaging, Multi— poor generalization. We observed that unpaired data are readily available and inherently
grained contrastive learning, Prior repre- carry task-relevant cues, but are less often considered and explored. Based on this, in this
sentation paper, we propose to fully excavate the potential of unpaired unlabeled data and use them

to facilitate the downstream AIS analysis task. We first analyse the utility of features at
the varied grain and propose a multi-grained contrastive learning (MGCL) framework to
learn task-related prior representations from both coarse-grained and fine-grained levels.
The former can learn global prior representations to enhance the location ability for the
ischemic lesions and perceive the healthy surroundings, while the latter can learn local
prior representations to enhance the perception ability for semantic relation between
the ischemic lesion and other health regions. To better transfer and utilize the learned
task-related representation, we designed a novel multi-task framework to simultaneously
achieve ischemic lesion segmentation and TSS classification with limited labeled data.
In addition, a multi-modal region-related feature fusion module is proposed to enable
the feature correlation and synergy between multi-modal deep image features for more
accurate TSS decision-making. Extensive experiments on the large-scale multi-center
MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is
promising that it helps better stroke evaluation and treatment decision-making.

*Corresponding author e-mail: xuji@seu.edu.cn (Xu Ji), jiangliang0402 @ 163.com (Liang Jiang)
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1. Introduction

Stroke is a common cerebrovascular disease with the fifth
leading cause of death (Vijayan and Reddy, 2016). Acute is-
chemic stroke (AIS) is the most common subtype, which leads to
2.7 million deaths worldwide every year (Benjamin et al., 2019).
Treatment of AIS is strictly dependent on the time since stroke
onset (TSS). According to the AIS treatment guidelines, TSS
within 4.5 hours is the golden time window of tissue plasmino-
gen activator (tPA) thrombolysis due to increased hemorrhage
risk when administered beyond that time interval (Campbell
et al., 2019). However, approximately 30% of AIS patients are
excluded from tPA treatment because of unknown TSS while
they may be within the time window of the tPA thromboly-
sis (Moradiya and Janjua, 2013). Thus, the guidelines from
American Stroke Association (ASA) recommend using paired
multi-modal MRI imaging to classify TSS to determine throm-
bolysis eligibility of the unwitnessed AIS patients (Powers et al.,
2019).

The mismatch pattern of the diffusion-weighted imaging
(DWI)-fluid attenuated inversion recovery (FLAIR) imaging is
the most common way of classifying TSS (Powers et al., 2019).
The DWI-FLIAR mismatch pattern is based on the fact that
ischemic lesions are immediately visible on the DWI imaging,
but it usually takes about 4 hours to find the ischemic lesion on
FLAIR imaging (Thomalla et al., 2011; Ebinger et al., 2010;
Emeriau et al., 2013). As depicted in Fig.1, it can be observed
that the high-intensity signal on DWI imaging is not visible in
the corresponding location of FLAIR imaging, which means
DWI-positive FLAIR-negative lesions. Therefore, TSS can be
classified via the DWI-FLAIR mismatch pattern. Besides, cur-
rent studies have demonstrated MR perfusion-weighted imaging
(PWI) contains information encoding TSS (Murphy et al., 2007;
McLeod et al., 2011; Thomalla and Gerloff, 2015; Jiang et al.,
2024). Moreover, related clinical studies have shown that about
80% of AIS patients have ischemic penumbra caused when TSS
is less than 3 hours (Davis et al., 2008). As described in Fig.1, it
can be observed that the high-intensity signal regions on DWI
and PWI imaging are not matched in shape and size, which
means the DWI-PWI mismatch pattern. Therefore, TSS can
also be more strictly classified via the DWI-PWI mismatch pat-
tern. Especially, under the guidance of the PWI-DWI mismatch
pattern, tPA thrombolysis treatment may be more reliable and
have a better prognosis (Wolman et al., 2018). While the two
mismatch patterns are the current advanced method for clini-
cally determining TSS for unwitnessed AIS patients, computing
mismatch using paired DWI-FLAIR or DWI-PWI imaging is a
difficult and time-consuming task that requires extensive clinical
training. Thus, assessing this mismatch is naturally subject to
high variability across multiple inter-observers and radiologists
(Ziegler et al., 2012; Thomalla et al., 2011; Galinovic et al.,
2014). Besides, it may miss some individuals who would ben-
efit from tPA thrombolysis treatment because of overly strict
mismatch conditions (Odland et al., 2015).

Data-driven methods (Ho et al., 2019; Thomalla et al., 2009;
Zhu et al., 2021; Zhang et al., 2021; Jiang et al., 2022) demon-
strate great potential for AIS analysis due to the high capability
in excavating representative features. These methods utilize

TSS of the patient is 7h , which is not within the time window of tPA thrombolysis

Fig. 1: Paired multi-modal MRI sequences of two AIS patients are presented.
The ischemic lesions are delineated in different colors including purple for
FLAIR, red for DWI, and orange for PWI. In the above figure, there is the
presence of DWI-FLAIR and DWI-PWI mismatches (ie., TSS of the given AIS
patient is 3h), and the absence of DWI-FLAIR and DWI-PWI mismatches (ie.,
TSS of the given AIS patient is 7h).

hand-crafted, radionics, or deep learning-driven features ex-
tracted from multi-modal MRI images, and these features are
incorporated into machine learning models for TSS classifica-
tion. As for the data-driven methods, the location information of
ischemic lesions is crucial because feature extraction typically
relies on lesion regions and healthy surroundings (Bang, 2011).
On the other hand, current studies (Murphy et al., 2007; McLeod
etal., 2011; Thomalla and Gerloff, 2015; Ho et al., 2019) demon-
strate that PWI images contain important information encoding
TSS, and combining it with FLAIR and DWI imaging can in
turn boost and improve TSS classification performance. Inspired
by the above, our work focuses on employing paired multi-
modal MRI imaging (DWI, FLAIR and PWI sequences) for
the comprehensive AIS analysis, including the ischemic lesion
segmentation and TSS classification of the unwitnessed AIS
patients. However, two inherent limitations hinder the develop-
ment and cause performance bottlenecks. Limitation 1: Limited
by the urgency of AIS onset and medical conditions, collecting
large-scale paired multi-modal MRI imaging, including DWI,
FLAIR and PWI sequences, is very difficult. Therefore, existing
data-driven deep learning methods based on image- (Zabihollahy
et al., 2020; Pedersen et al., 2020) or lesion-level (Yu et al., 2016)
tend to overfit task-irrelevant features due to the interference
of the chaotic background or inefficient edge feature extraction
for the lesion regions, which leads to poor generalization ability.
(Xu et al., 2020; Chen et al., 2021; Kong et al., 2022). Limita-
tion 2: Current TSS classification methods usually rely on the
simple fusion of the extracted multi-modal image features and
typically fail to explicitly consider the clinal diagnostic knowl-
edge in the deep features fusion process (e.g., DWI-FLAIR or
DWI-PWI mismatch patterns in Fig.1), resulting in the lower
feature utilization.

For limitation 1. For image analysis tasks, emerging con-
trastive representation learning shows great potential in exploit-
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ing massive unlabeled data, which helps models obtain a better
generalization ability with limited annotation data (Azizi et al.,
2021; Yang et al., 2022; Li et al., 2020; Han et al., 2022; Wu et al.,
2022). We reasonably made use of the fact: compared to paired
multi-modal MRI data, a large amount of the unpaired data is
readily available yet underutilized and under-explored. Thus,
we proposed a novel multi-grained contrastive learning (MGCL)
framework to learn task-related prior representations via develop-
ing large-scale unpaired data. As a result, learned representations
can boost efficient utilization of the limited segmentation and
classification labels of paired multi-modal MRI data. Especially,
MGCL learns and transfers prior representations via two cascade
stages. In stage 1, models learn task-related prior representa-
tions from the massive unlabeled unpaired data based on two
task-specific contrastive learning versions: a) Coarse-grained
version encourages the models to learn global prior represen-
tations to enhance the location ability for the ischemic lesions
while perceiving the healthy surroundings, which helps capture
the task-related features in AIS analysis. b) Fine-grained version
encourages the models to learn local prior representations to
enhance the perception ability for semantic relation between the
ischemic lesion and other health regions, which helps supple-
ment the lesion details. In stage 2, the learned task-specific prior
representations are reasonably transferred into a designed multi-
task learning architecture, which comprehensively improves the
performance of the ischemic lesion segmentation and TSS clas-
sification with limited paired MRI data.

For limitation 2. We propose a multi-modal region-related
feature fusion (MRFF) module to adequately consider the fea-
ture relationship between paired multi-modal MRI images with
sub-region as the basic unit, which can explicitly integrate the di-
agnostic knowledge of two mismatch patterns into TSS decision-
making. Especially, it can capture the correlation and synergy
among corresponding image regions of the paired multi-modal
MRI sequences, which improves generalization ability by alle-
viating overfit task-irrelevant features from feature correlation
calculation of non-corresponding regions. Finally, the calculated
feature correlation is mapped into a multi-modal fusion feature
to support efficient TSS classification.

In general, our contributions include the following:

o For the first time, we propose a multi-grained contrastive
learning framework based on two cascade stages. In stage
1, the model learns task-related prior representations to
exploit massive unlabeled MRI data. In stage 2, the learned
prior representations are reasonably transferred into the
designed multi-task learning architecture.

o We propose two task-specific contrastive feature enhance-
ment strategies for the representation learning in MGCL.
The coarse-grained version learns global prior represen-
tations to enhance the location ability for the ischemic
lesions and perceives the healthy surroundings, while the
fine-grained version learns local prior representations to en-
hance the perception ability for semantic relation between
the ischemic lesion and other health regions.

e We propose a multi-modal region-related feature fusion
module to adequately capture the feature relationship be-

tween multi-modal MRI images, which can explicitly in-
tegrate the clinical diagnostic knowledge of multiple mis-
match patterns into TSS classification.

e We construct a large-scale multi-center multi-modal (DWI,
FLAIR and PWI) MRI dataset for the AIS analysis, which
includes the labeled part and the unlabeled part. The la-
beled part contains 327 paired multi-modal MRI images
with the patient-level TSS classification label (TSS<4.5hrs)
and strict pixel-level ischemic lesion annotations. The unla-
beled part contains massive unpaired MRI images.

e Extensive experiments also show the superiority of the
proposed framework. The data will be made public at
https://github.com/JiaRuiS/MGCL.

2. Related Work

In this section, we review automatic TSS classification and
self-supervised contrastive learning (SSCL) literature that are
closely relevant to our work.

2.1. Automatic TSS classification

Machine learning methods (Zhu et al., 2021; Jiang et al., 2022;
Ho et al., 2019; Lee et al., 2020; Jiang et al., 2024) extract image
features by hand-crafted, radiomics or deep learning (DL), and
then utilize classifiers (eg., support vector machine, Bayesian
classifier, and logistic models) to achieve the TSS classification.
Zhu (Zhu et al., 2021) and Jiang (Jiang et al., 2022) et al. use DL
methods to calculate the regions of interest (ROI) of ischemic
lesions from DWI and FLAIR images, extract radiomics feature,
and finally classify TSS by voting from the results of multiple
machine learning classifiers. Ho et al. (Ho et al., 2019) proposed
a deep autoencoder model to extract hidden representations from
the PWI images and combine the baseline features of DWI and
FLAIR images to jointly classify TSS. Jiang et al. (Jiang et al.,
2024) proposed a segmentation-classification model to automati-
cally identify stroke within 4.5 h based on DWI and PWI fusion
images. With the rapid development of DL in medical image
analysis, DL-based methods reduce the trouble of designing
task-related feature extraction methods and achieve better perfor-
mance (Zhang et al., 2021; Polson et al., 2022). Relying on the
feature extraction ability obtained from the pre-training task of
stroke detection, Zhang et al. (Zhang et al., 2021) employed the
modified 2D and 3D CNN architectures to classify TSS. Polson
et al. (Polson et al., 2022) propose a novel 2.5D CNN based
on the improved ResNet-34 (He et al., 2016). It incorporates
the inter-slice information into 2D CNNss to extract the different
modal features and aggregate each source feature via a multi-
modal information fusion manner to improve TSS classification
performance.

Unlike the natural image classification tasks, the dataset size
of the TSS classification task is usually smaller because of med-
ical conditions. Thus, DL-based methods are easier to overfit,
which leads to poor generalization ability. Besides, current
TSS classification methods typically fail to explicitly integrate
the diagnostic information including DWI-FLAIR or DWI-PWI
mismatch patterns, which may impede further performance im-
provement.
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2.2. Self-Supervised Contrastive Learning

Self-supervised learning (SSL) aims to develop massive unla-
beled data. The key to SSL is to design reasonable proxy tasks
to generate supervisory signals for unlabeled data (Kolesnikov
et al., 2019). SSL is usually categorized into generative and dis-
criminative approaches depending on the proxy tasks (Liu et al.,
2021). As a representative discriminative approach, emerging
contrastive learning (CL) shows great potential. The core idea
is to contrast the similarity of sample pairs via a contrastive
loss, pull semantically nearby image samples (positive pairs)
closer, and push dissimilar image samples (negative pairs) apart.
Self-supervised contrastive learning (SSCL) provides a standard
paradigm for the image analysis field: the model learns image
representations with massive unlabeled data through pre-training.
Then, the pre-trained model can be used as the initialization for
improving the performance of the downstream supervised task
(ie ., image classification (Azizi et al., 2021; Misra and Maaten,
2020) and image segmentation (Wu et al., 2022; Araslanov and
Roth, 2021)).

2.2.1. SSCL for natural images

In the natural image analysis field, two well-known methods
including MOCO (He et al., 2020) and SimCLR (Chen et al.,
2020) were first proposed, which learn knowledge representa-
tions from large-scale unlabeled data by contrastive learning to
boost the performance of downstream supervised tasks. The
results suggested that they significantly narrowed the gap in
downstream task performance between self-supervised learning
and fully-supervised learning. They believe that the magnitude
of negative pairs plays an important role in performance im-
provement. Soon after, Grill and Chen et al. (Grill et al., 2020;
Chen and He, 2021) proposed BYOL and SimSiam, which also
demonstrated that negative pairs are not necessary for contrastive
learning.

Contrastive learning shows great potential in natural image
analysis. However, the above methods are all specially designed
for natural images and do not take into account the domain-
specific knowledge (eg., anatomical structure knowledge, topol-
ogy knowledge) of medical images.

2.2.2. SSCL for medical images

Compared to natural image analysis, the annotation of medical
images requires a large amount of domain-specific knowledge
to guide, which makes it very expensive. However, it is easier to
collect a large amount of unlabeled data than manually labeling
an accurate large-scale dataset. Therefore, it is quite necessary
to develop the SSCL methods for medical image analysis. Zeng
et al. (Zeng et al., 2021) proposed a positional contrastive learn-
ing (PCL) method, which generated contrastive data pairs by
leveraging the position information of different slices in volu-
metric medical images. They also proved the effectiveness on
the downstream segmentation tasks based on several CT or MRI
datasets. Considering that slice-level contrastive learning may
lack distinctive representations of local regions, Chaitanya and
Hu et al. (Chaitanya et al., 2020; Hu et al., 2021) propose to
capture the global and local representations, which find domain-
specific and problem-specific cues. Besides, Chaitanya et al.

(Chaitanya et al., 2023) provides a new perspective on how to
learn the semantic-guided local representations by contrastive
learning for improving segmentation performance with very
limited annotation.

Considering the importance of domain-specific prior knowl-
edge for medical image tasks, current methods usually exists a
certain semantic knowledge gap between the upstream supervi-
sory signals generated for unlabeled data and the downstream
expert annotation (ie., Learning the position relationship rep-
resentations between different patches on upstream unlabeled
data may not be very helpful for the downstream medical image
segmentation task). Thus, the learned representations may fail
to fully motivate the downstream task performance with limited
labeled data sufficiently.

3. Methodology

Fig.2 depicts the pipeline of the proposed MGCL framework
for AIS analysis including ischemic lesion segmentation (Task 1)
and TSS classification (Task 2) via two cascade stages. Stage 1
learns task-related prior representations to explore large-scale un-
paired data via the multi-grained version CL. Stage 2 reasonably
transfers learned prior representations to a multi-task learning
architecture to efficiently promote the fine-tuning process on
Task 1 and Task 2 with limited paired data.

3.1. Overall Architecture

Before stage 1, three independent u-net (Ronneberger et al.,
2015) networks (for DWI, FLAIR and PWI sequences) were
firstly trained respectively to construct the supervision signal
for massive unpaired unlabeled data. Especially, these trained
models were employed to generate two types of pseudo-labels
for describing ischemic lesions on the slice-level and patch-level.
In stage 1, the models gain prior representations based on two
task-specific CL versions. The coarse-grained CL version em-
ploys the slice-level supervisory signal to incentivize the models
to learn the global prior representation. The fine-grained CL
version employs the patch-level supervisory signal to incentivize
the models to learn local prior representation. In stage 2, the
implementation of Task 1 and Task 2 follows the multi-task
learning architecture. By transferring learned task-specific prior
representations to this multi-task learning architecture, which
efficiently promotes the fine-tuning process on Task 1 and 2 with
limited paired data. Especially, MRFF computes the correlation
and synergy between the multi-modal deep image features on
the feature level and makes the feature correlation between dif-
ferent MRI sequences mapped into a fused multi-modal feature
to support final TSS decision-making.

3.2. Multi-Grained Contrastive Learning

3.2.1. Supervisory Signal Construction

First, three independent u-net networks (Ronneberger et al.,
2015) including an encoder and a decoder are trained separately
for the three MRI sequences via a supervised learning fashion
respectively (refer to Section 4.2). Then, utilizing the trained
u-net networks, the segmentation pseudo labels can be generated
by inferencing large-scale unpaired unlabeled data of the three
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Fig. 2: The schematic illustration of the proposed Multi-Grained Contrastive Learning (MGCL) framework. It includes two cascade stages: (a) Stage 1 sequentially
performs coarse and fine-grained contrastive learning to gain global and local prior representation. In this stage, each in the three different MRI modals (DWI,
FLAIR and PWI) maintains an independent set including an encoder and a decoder separately. (b) Stage 2 utilizes learned representations from stage 1 as a
pertinent initialization for the given multi-task learning architecture to transfer task-specific prior knowledge into the ischemic lesion segmentation (Task 1) and
TSS classification (Task 2) tasks. As(-), Ap(-), Af(-) denote the online data augmentation of coarse-grained version, fine-grained version, and multi-task learning,
respectively. z}, , means the patch-level embedding at the u-th column and v-th row of the given slice.

MRI sequences respectively. Pseudo labels can indicate the
lesion region on each slice of a given MRI sequence. Thus, these
pseudo labels can determine whether the ischemic lesion occurs
at three different sample levels including slice-level, patch-level,
and pixel-level. Naturally, it also can be used as the supervisory
signal to indicate whether the ischemic lesion occurs on three
sample levels. Especially, the pixel-level supervision signals are
excluded, because they cause more noise than the slice-level and
patch-level. Then, the slice-level and patch-level supervisory
signals are reserved to guide the representations learning of
different versions. Finally, on the unlabeled part of every MRI
sequence, two supervisory signal sets on two different levels

are constructed: (a) Dy:= {(x;.", y“‘)}M consists of the M slice-
{(xu Ve ybl V)}
the N patch-level sample-label pairs. For each of the three

MRI sequences, an independent set including an encoder and a
decoder is always maintained in stage 1, which can better pay

level sample-label pairs. (b) D,: - consists of

attention to and retain the modal specificity between different
sequences during the representation learning of the MGCL.

3.2.2. Coarse-Grained Version

As described in stage 1 of Fig.2, utilizing slice-level supervi-
sory signal set Dy, the coarse-grained CL version aims to make
the models gain the global prior representations by a learnable
encoder way. Firstly, the slice x] in Dj is projected to latent
space M as a L2-normalized d-dimension embedding v, which
can be defined as:

vi = Hy(fo(As(x))) M

where A,(-) is the online data augmentation of coarse-grained
version, fy(-) is the learnable encoder, and H(-) is the projection
head in the coarse-grained version. To measure the distance be-
tween the given two slices in My, cosine similarity is utilized to
calculate the similarity between the given two slice embeddings
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Given a randomly sampled batch, 7 denotes the slice indexes.
Set x; as the anchor sample, P(i):={j € I |y} =y}, j # i}
represents the set of indexes for all augmented positive samples
that are with the same label as y;. Naturally, the negative sam-
ples are these augmented slices with different labels to anchor
sample x!. The indexes of these negative samples are defined as
N@G@)={j € I|y;#y: j# i}. To pull positive samples closer
together and push negative pairs further in Mj, the learning goal
of f4(-) is to minimize the similarity between positive samples
and maximize the similarity between positive and negative sam-
ples. To optimize f4(-) close to the goal, the contrastive loss of
the coarse-grained version is defined as:
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where | - | denotes the element number of the given set, 7 € R* is
a temperature scaling parameter.

3.2.3. Fine-Grained Version

The fine-grained version in MGCL was conducted around
the same time as the semi-supervised learning method LCLPL
(Chaitanya et al., 2023) and had similar inspirations, which
fully show the importance of learning local semantic relations.
The difference is that we design a lesion-specific fine-grained
contrastive strategy, in which representation grains, contrastive
classes, and sampling way focus more on learning lesion-related
local representations. As described in stage 1 of Fig.2, utiliz-
ing patch-level supervisory signal set D, the fine-grained CL
version aims to make the models gain the local prior represen-
tations by a learnable decoder way. To make models focus on
the local regions, the weights of the encoder fy(-) learned from
the coarse-grained version are first frozen to reserve the global
perception ability for the ischemic lesions on the slice level.
In the fine-grained version, the patches are augmented online
by the manner of augmenting the given single slice, which im-
proves the computational efficiency of the GPU. An augmented
slice x] is projected to latent space M, as n? L2-normalized
d-dimension patch-level embedding z,. 7/, is embedding at
the u-th column and v-th row of the decoder output. Thus, the
given slice-level embedding Z7:={z} |0 < u,v < n} including
n? patch-level embedding z} , is calculated as:

ZP = Hy(fo(f3(Ap(x)))) , &)

where A, () is the online data augmentation of coarse-grained
version, fy(-) is the learnable decoder, and H,(-) is the projection
head in the fine-grained version. The similarity between the
given two patch embeddings 75, and zg’f, is measured as.
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Given a randomly sampled batch, Q denotes the patch indexes.
Set xy,,, as the anchor sample, Q(u, v):={@t, ¥ € Q|y; , =y, i1 #
u Vv # v} represents the set of indexes for all augmented
positive samples that are with the same label as y”, . The negative
samples are these augmented patches with different labels to
anchor sample x/, . To optimize f(-) to pull patches of the same
category together and push the different apart in latent space
M,,, the contrastive loss of the fine-grained version is defined
as:

-1 u,v
L= 2 L ™

(u,v)eQ

-1
Lu,v —
f Z
Q. v) (@,7)eQ(u,v)

®)

exp(s(zy» 25 ,)/7)
g P :
2 i)e\ ) EXP(S(Zus Z5)/T)

As illustrated in Fig.2, the encoder f4(-) and the decoder fy(-)
were respectively pre-trained by different grained versions via
the slice-level and patch-level supervisory signals. The learnable
encoder fy(-) updates the weights to incentivize the model to
learn the global prior representations by optimizing L., which
enhances the location ability for the ischemic lesions while
perceiving the healthy surroundings. Then, the learnable encoder
fo(-) updates the weights to incentivize the model to learn the
local prior representations by optimizing Ly, which enhances
the perception ability for semantic relation between the ischemic
lesion regions and other health regions. In stage 2, the pre-
trained encoder f4(-) and decoder fy(-) of every MRI imaging
sequence are inherited into the designed multi-task learning
architecture to transfer task-specific prior knowledge into the
ischemic lesion segmentation (Task 1) and TSS classification
(Task 2) tasks, which will boost efficient utilization of limited
paired MRI data.

lo

3.3. Multi-Modal Region-Related Feature Fusion

Inspired by the idea of Transformer(Vaswani et al., 2017), a
multi-modal region-related feature fusion (MRFF) module is
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designed, which also includes the multi-head self-attention. As
shown in Fig. 3, MRFF can capture the feature correlations
among corresponding image regions of the paired multi-modal
MRI sequences with sub-region as the basic unit, which re-
duces the undesirable effects from feature correlation calculation
of non-corresponding regions to improve generalization abil-
ity. Therefore, it can further facilitate TSS decision-making by
refining the process of multi-modal feature fusion.

The encoders f(-)?, f5()F, and f4(-)? first extract deep image
features F2, F¥, and F” from paired volumetric MRI sequences
L,F e Rbxior (DWI, FLAIR and PWI), where b, h, and
w are the slice number, height, and width of the input MRI
sequence, respectively. FP, FF and F? are calculated as:

= [P (AP, FF =

[ AN FP = 1A, )

where A f(-) is the online data augmentation of TSS classification.
Then, the deep image features F2, F¥, and F¥ € RP*exdxd are
mapped into a unified feature space and are concatenated on the
channel direction, where ¢ and d are the channel number and the
size of the extracted feature maps. This process is defined as:

F = cat(g(FP), g(FF), g(F?)), (10

where g(-) is the global average pooling (GAP) function and
cat(-) is the concatenation operation. Fe R3*?*? s the shal-
low fusion feature not containing multi-modal feature correla-

. Ay d ™
tion. Then, F is reshaped and divided into {F | € R > W}
i=1

where m is the number of divided sub-regions with the same size.
Intuitively, each F; represents the shallow multi-modal features
at given each sub-region. To obtain the low-dimensional feature
. _ 2\
representation, {F i}l,nl is flatten linearly to be {F i € [R3b><%}
i=

i=1
which is defined as: l

{F; = Flanen(F)|" (an

Subsequently, m F; are fed into m transformer encoders with
the multi-head self-attention to capture the feature correlations
among multi-modal MRI in each sub-region. Especially, F; is
first send to k parallel heads of multi-head self-attention and
then is transformed to query Q; ; € R**% key K; ; € R3**% and
value V; ; € R¥*% by using three learnable projection matrices

G.e., WQ/ € IdeX* WK € I]QdkX , and WVI € R&*% ) in each
head j, where dk and d are the feature dimensions of projection
matrices (dy = d, = d/2). Then, the outputs of the self-attention
from all k heads are concatenated to generate the multi-modal
fusion feature F; for the corresponding sub-region, which is
formulated as:

AK; 0i i Vi) f (Q”ijT)V (12)
i.i» Qij» Vi.j) = softmax ij s
LJ» i Vij NZA J
hij =AK;;, Qi) Vij), (13)
Fi= cat(hy j, ..., hm,_,‘)Wio +F;, (14)

a2
where Vdy is the scaling factor, and W2 € R™*% are the
projection matrice. Besides, the residual connection is employed

to avoid the vanishing gradient problem during the training phase.
Then, all m F ; are combined to obtain the final multi-modal

N 2
fusion feature £ € R3*% . which captures the correlations
among of multi-modal MRI in each independent sub-region.
A A M
F=car{F;) ), (15)
Finally, £ is fed into a classification head (Cls Head in Fig. 3)
to achieve precise TSS decision-making, which is defined as:

p = o(WrIn(g(F)))) , (16)

where In(-) is the layernorm operation, WX € R'™3" are the
weights of the fully connection layer, and o(-) is the sigmoid
activation function. p € [0, 1] is the predicted probability for
TSS < 4.5h.

4. Experiment Setup

Multi-modal MRI datasets for AIS analysis are very rare.
To support this study, we constructed a standard multi-center
MRI acute ischemic stroke dataset (MMIS) via data acquisition
and processing. The study (data acquisition and processing)
was approved by the Medical Ethical Committee of involved
hospitals and was adherent to the tenets of the Declaration of
Helsinki.

4.1. Datasets

4.1.1. Data acquisition

To construct the dataset that meets clinical criteria, the in-
cluded patients met multiple inclusion criteria: (a) The AIS
patients are within 24 hours of clear symptom onset. (b) The vol-
ume of the ischemic lesions needs to be greater than 1 cc (c) The
time of the stroke symptom onset and MRI imaging on admission
are recorded (d) The images with severe artifacts were excluded.
MRI imaging data of all AIS patients meeting the above crite-
ria were retrospectively collected from several stroke centers in
China (Nanjing First Hospital, Nanjing, and Affiliated Jiangn-
ing Hospital of Nanjing Medical University, Nanjing) during
2016- 2022 in this study. These data are acquired on the Philips
echo planar scanner (Ingenia: 3.0-Tesla, 8-channel receiver array
head coil). MMIS currently includes three MRI imaging modals:
DWI, FLAIR and PWI. The pixel dimension of DWI images
varies from 0.893x0.893x6.6 to 1.198x1.198x7.3 mm>. The
pixel dimension of FLAIR images varies from 0.411x0.411x7
t0 0.599x0.599x7.3 mm?>. The pixel dimension of PWI images
varies from 1.75x1.75x4 to 1.75x1.75x6 mm?. DWI, FLAIR
and PWI images have 18, 18 and 21 slices respectively to cover
the cerebrum from top to bottom. As shown in Table 1, the
characteristics distribution of enrolled AIS patients is diverse,
which supports that the study about MMIS can be as close to the
real clinical diagnosis scenario as possible.

MMIS consists of the labeled part M! and an unlabeled part
M". The labeled part M! includes paired multi-modal MRI
sequences, which contain pixel-level annotations for ischemic
lesions on each MRI modal and patient-level TSS classification
labels (ie., TSS < 4.5h or TSS > 4.5h ). The unlabeled part
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Table 1: Statistical characteristics distribution of AIS patients on MMIS.

Characteristics Unlabeled Part Labeled Part
Demographic
Patients 425 327
Male 261 201
Female 164 126
Age 65.1 £ 18.7 63.7 £ 16.5
Clinical indicators
TSS - 7.26 £9.24
NIHSS - 9.12 +7.36
Lesion location
left 202 155
right 225 172
TSS label
positive (<4.5 hrs) - 209
negative (> 4.5hrs) - 118

Table 2: The detailed statistics of labeled and unlabeled part on MMIS. (v / s)
means volumes / slices.

Modal | Unlabeled Part (v/s) Labeled Part(v/s) Total (v/s)
DWI 364 / 6552 327 /5886 691 /12438
FLAIR 291/5238 327 /5886 618 /11124
PWI 366 /9150 327 /5886 693 /15036

M" includes massive unpaired MRI data, which is without any
expert annotations and is utilized to learn prior representations.
M" includes three sub-parts M",, M Il,, M}, which represent three
MRI sequences respectively. Similarly, M* includes three sub-
parts MY, MZ,M;Z. The detailed statistics of the MMIS are listed

in Table 2.

4.1.2. Data processing

For M, Elastix tool (Klein et al., 2009) firstly is employed to
perform rigid registration between DWI in M',, PWI in M/, and
FLAIR in M}, and each voxel in the DWI and PWI images was
made to correspond to the same anatomical position in FLAIR
image. Then, the DWI, FLAIR and PWI images are respaced
to 1x1x6 mm> and are resampled 512x512x18. Based on pro-
cessed images, pixel-level semantic labels for ischemic lesions
and patient-level labels for TSS classification can be annotated
respectively. Especially, Ischemic lesions were manually anno-
tated on each MRI modal using 3D slicer software (Fedorov
et al., 2012), and this process was performed strictly by three
radiologists with beyond 6-year of clinical experience. Besides,
a senior imaging expert with 15-years experience performed
annotation quality control. TSS of each patient was calculated
by subtracting the time at which the stroke symptoms were first
observed from the time at which the first MRI imaging was
obtained. Then, TSS is binarized into two classes: positive
(<4.5 hrs) and negative (> 4.5hrs). Finally, the patient-level TSS
classification labels can be obtained. For M*, all images are
resampled 512x512xN(18/21) and standardized via the z-score
way to meet the input requirement of MGCL training.

4.2. Implementation Details

The proposed MGCL is implemented by PyTorch 1.8.0
(Paszke et al., 2019) and runs on NVIDIA GeForce RTX 3090

GPUs with 24 GB memory. The segmentation network includ-
ing encoder f4(-) and decoder fj(-) follows the architecture of
the u-net network (Ronneberger et al., 2015). Before stage 1, the
pseudo-label quality refinement strategy based on self-training
is employed to help obtain a higher-quality pseudo-label. To
generate the pseudo-labels for each sub-part My, M}, M in the
unlabeled part M“, the iterative steps are conducted as follows:
(1) First, a segmentation network is trained for 80 epochs on
the labeled part M'. (2) Then, the pseudo labels are generated
for the unlabeled part M* (3) Next, the segmentation network
is retrained on the combination of M" with the pseudo labels
of high confidence samples and M’ with ground truth to jointly
train the segmentation model for 120 generations. (4) Finally,
the higher-quality pseudo labels are re-generated for M"*. Espe-
cially, the above process only iterates once, and the confidence
threshold for pseudo labels is set to 0.7. In each stage, each
network employs Adam optimizer (Kingma and Ba, 2014) for
parameter optimization, in which the learning rate, moment, and
weight decay are set to 1 x e™*, 0.9, 1 x ¢, 0.1, respectively.
In stage 1, the parameters of the encoder f3(-) are updated by
optimizing £, in which the batch size is set to 70 and training
epoch is set to 120. Then, the parameters of the decoder fy(-)
are updated by optimizing L, in which the batch size is 6 and
training epoch is 200. In the fine-grained CL version, the patch-
level supervisory signal set is generated based on an area-ratio
threshold ¢ (the area ratio of corresponding lesion mask and
patch), which aims to reduce label errors caused by the false
positive noise of lesion masks. Therefore, these patches still are
considered negative samples when the area ratio is below the
threshold #, and otherwise, it is a positive sample. The threshold
t and patch size are set to 0.1 and 16 X 16 (refer to Section 5.7).
Besides, the temperature scaling parameter 7 is 0.1 in the two
CL versions. In stage 2, the entire network including the encoder
f#(-) and the decoder fy(-) is fine-tuned to achieve task 1 and
task 2 by the multi-task learning mode. In task 1, the parameters
of encoder f,(-) and the decoder fy(-) are updated by optimizing
the hybrid loss including Dice Loss (Milletari et al., 2016) and
Cross-Entropy Loss (weighted ratio 1:1), in which the learning
rate is 3 X e~%, and the batch size is 16. In task 2, the parameters
of the encoder f,(-) are first frozen, and then the parameters of
the MRFF module are updated by optimizing Focal Loss (Lin
et al., 2017), in which the learning rate is 1 X e73,24, and the
batch size is 24. Especially, online data augmentation including
random flipping, rotating, and zooming was utilized to alleviate
overfitting in each stage.

4.3. Comparison Settings

The proposed framework is compared to task-specific deep-
learning algorithms respectively due to the absence of estab-
lished methods to simultaneously segment ischemic lesions and
classify TSS. The best results of all compared methods were
retained to achieve the performance after enough parameter ad-
justment experiments.

4.3.1. Ischemic lesion segmentation task

To illustrate the superiority of the proposed MGCL for the
ischemic lesion segmentation task, three different types of meth-
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ods are compared. For fairness, these methods are both imple-
mented based on the u-net network (Ronneberger et al., 2015).
Besides, all compared methods were pre-trained on M*, and are
fine-tuned on M’ to achieve ischemic lesion segmentation.

i. Supervised Learning (BaseLine). The parameters of the
encoder and decoder were randomly initialized. During the
model fine-tuning process, extensive online data augmenta-
tion was performed, which yielded a strong baseline.

ii. Self-Supervised Contrastive Learning Four well-known
contrastive learning methods (SimCLR (Chen et al., 2020),
SimSiam (Chen and He, 2021), BYOL (Grill et al., 2020),
PCL (Zeng et al., 2021), GCL (Chaitanya et al., 2020)) are
employed to pre-train and fine-tune the whole network.

iii. Semi-supervised Learning A classic (Mixup (Zhang et al.,
2017)) and two state-of-the-art (Semi-CL (Hu et al., 2021),
LCLPL (Chaitanya et al., 2023)) semi-supervised learning
methods are employed to pre-train the encoder and decoder
respectively. Then, the whole network was fine-tuned.

4.3.2. TSS classification task

To illustrate the superiority of the proposed MGCL for the
TSS classification task, the proposed method is compared with
DWI-FLAIR mismatch, Radiomics features + SVM, 3D ResNet,
3D DenseNet, 3D ResNet-mask, and 3D DenseNet-mask. The
DWI-FLAIR mismatch represents the classification way of ex-
perienced radiologists using the DWI-FLAIR mismatch model.
Radiomics features + SVM employs Pyradiomics open-source li-
brary (Van Griethuysen et al., 2017) to extract radionics features
and then utilizes support vector machine (SVM) (Burges, 1998)
for classification. ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017) are universal classification DL-based methods con-
sisting of multiple convolutional layers and skip connections.
Especially, because the classification task branch of the proposed
method shares the feature extraction backbone with the segmen-
tation task branch, the classification task also indirectly utilizes
the annotation information of lesions. For fairness, the ischemic
lesion masks multiplied with original MR images are fed into
3D ResNet (ie., 3D ResNet-mask) and 3D DenseNet (ie., 3D
DenseNet-mask) to classify TSS.

4.4. Evaluation Strategy and Metrics

To objectively evaluate the performance between different
methods on Task 1 and Task 2, fivefold cross-validation is
adopted. Especially, the unlabeled part M* is only used for
upstream self-supervised representation learning. The labeled
part M! is utilized for the performance evaluation of the down-
stream Task 1 and Task 2. M is divided into five folds equally.
One of the folds is used for testing, and the remaining four folds
are used for training. In Table 3, the partial datasets includ-
ing 10% or 50% data respectively are obtained by randomly
sampling the corresponding percentage on each training set of
five-fold cross-validation. We repeated the experiment 5 times
until all folds were used as the testing set. The final result of
each method is the average of five predictions.

To demonstrate the advantages of the proposed method, com-
parative experiments and ablation studies are performed via

quantitative metrics. The performance of ischemic lesion seg-
mentation is evaluated by Dice similarity coefficient (DSC). DSC
calculates the similarity of foreground regions in the two MRI
images according to Eq.13:

2|Rp N Rg|
DS C(Rp,R:) R0+ IRol 17)
where Rp represents the segmentation region of the predicted
result and R represents the ground truth region of the ischemic
lesion.
The performance of TSS classification is evaluated by ac-
curacy (ACC), sensitivity (SEN), and specificity (SPE). The
aforementioned metrics are calculated by Eq.14-16:

TP+TN
ACC = 1
cc TP+FN+FP+TN (18)
SEN = rp (19)

T TP+FN

TN

SPE= ——— (20)

TN + FP

where TP, TN, FP, and FN were regarded as true positive, true
negative, false positive, and false negative values, respectively.
Besides, the area under the receiver operating characteristic
curve (AUROC) is also calculated to evaluate the TSS classifi-
cation ability of the different models. In all quantitative experi-
ments, the higher metrics mean better performance. Besides, the
paired t-test is applied in statistical significant analysis.

5. Experiment Results

5.1. Segmentation Comparison With Limited Labels

Table 3 depicts the segmentation results of the comparative
study on M, M}, and M ; respectively, and the best results are
highlighted with boldface. The training data with different sizes
(10%, 50%, and 100%) is utilized to comprehensively compare
the segmentation performance of different methods. The final
results of different methods are presented in the way of the aver-
age scores and standard deviations. Firstly, Baseline means the
trained U-net network using randomly initialized parameters and
strong online data augmentation. These universal contrastive
learning methods including SimCLR (Chen et al., 2020), BYOL
(Grill et al., 2020), and SimSiam (Chen and He, 2021) are only
better than the Baseline. This indicates that the commonly ap-
plied contrastive learning settings are inefficient for ischemic le-
sion segmentation because they only learned slice-level represen-
tations and unmined medical images of data characteristics. PCL
(Zeng et al., 2021) obtained some performance improvements,
which reasonably leveraged the position information in volumet-
ric medical images to generate contrastive sample pairs. GCL
(Chaitanya et al., 2020) achieved more competitive performance
because it additionally learned local representation. Compared
to GCL (Chaitanya et al., 2020), Semi-CL (Hu et al., 2021) can
achieve better segmentation because it additionally learns local
representations. Similarly, LCLPL (Chaitanya et al., 2023) also
learns a semantic-guided local representation. For the training
setting with different sizes (10%, 50%, and 100%), our MGCL
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Table 3: Performance comparison (Dice) between other methods and our MGCL with limited training data on three datasets Mm! M;, and M[f) (Mean + Standard

Deviation). Best results are marked in bold.

d’

] ] I
Method M, M, M)
10% data 50% data 100% data 10% data 50% data 100% data 10% data 50% data 100% data
Supervised Learning (BaseLine)
Random init 0.614+0.053  0.735+0.048 0.778+0.039  0.636+0.041  0.759+0.037 0.795+0.033 0.375+0.111 0.484+0.082 0.646+0.069
Self-Supervised Contrastive Learning
SimCLR (Chen et al., 2020) 0.621+0.045 0.729+0.042 0.771+0.036  0.640+0.038  0.764+0.034  0.798+0.028 0.373+0.105 0.485+0.081 0.648+0.066
BYOL (Grill et al., 2020) 0.637+0.038  0.735+0.034 0.781+0.033 0.667+0.041 0.773+£0.032  0.799+0.027 0.381+0.098 0.489+0.071  0.647+0.068
SimSiam (Chen and He, 2021)  0.642+0.049  0.736+0.035 0.777+0.037 0.671+£0.036 0.778+0.029 0.796+0.031 0.378+0.106 0.486+0.075 0.649+0.067
PCL (Zeng et al., 2021) 0.654+0.046  0.742+0.037 0.779+0.035 0.687+0.034 0.781+0.028 0.803+0.029 0.402+0.095 0.497+0.067 0.655+0.052
GCL (Chaitanya et al., 2020) 0.672+0.050  0.747+0.039 0.787+0.032 0.689+0.033 0.783+0.031 0.811+0.028 0.413+0.081 0.508+0.068 0.658+0.062
Semi-supervised Learning
Mixup (Zhang et al., 2017) 0.665+0.034  0.743+0.035 0.771+0.031 0.681+0.036  0.777+0.026  0.806+0.024  0.397+0.078  0.492+0.080 0.651+0.067
Semi-CL (Hu et al., 2021) 0.681+0.043  0.753+0.036  0.794+0.033 0.702+0.032  0.789+0.029 0.815+0.027 0.433+0.085 0.518+0.072 0.664+0.051
LCLPL (Chaitanya et al., 2023)  0.694+0.045 0.761+0.039 0.785+0.034 0.721+0.039 0.788+0.024 0.813+£0.022 0.424+0.089 0.505+0.069 0.659+0.069
MGCL(ours) 0.729+0.036  0.776+0.033  0.809+0.032  0.753+0.035 0.803+0.025 0.826+0.026 0.431+0.084 0.532+0.066 0.667+0.054

(a) Image

(b) Random (c) Semi-CL (d) SImCLR

(e) BYOL (f) GCL (9) MGCL(Ours) (f) Ground Truth

Supervised Semi-Supervised

Fig. 4: Visualized comparison of segmentation results on M[’,,
the segmentation results of other methods and our MGCL.

observably outperforms BaseLine by 11.5%, 5.1% and 2.1%
Dice on M, 11.7%, 4.4% and 3.1% Dice on M;, 5.6%, 4.8% and
2.1% Dice on M’/., respectively. Besides, MGCL achieved the
best performance among the above contrastive/semi-supervised
learning methods in almost all settings and this may be because
of the followings: (a) These methods ((Chen et al., 2020; Grill
et al., 2020; Chen and He, 2021)) only learn global representa-
tions and it is usually not sufficient for dense prediction tasks. (b)
They fully consider domain knowledge to construct contrastive
sample pairs for anatomical structure segmentation, but these
methods (((Zeng et al., 2021; Chaitanya et al., 2020))) usually
cannot be transferred naively when there are significant domain
differences. (c) Differences in task scenarios lead to differences
in performance. These latest methods ((Hu et al., 2021; Chai-
tanya et al., 2023)) are designed for very limited labeled settings,
such as 2 and 8 samples. For our MGCL, two interesting obser-
vations can be found in Table 3: 1) Performance gains is more
significant with less training data. This is because the model

Self-Supervised

Mﬁ, and le with 50% training data. (a) and (b) represent input slice and ground truth. (b) (g) represent

fully learns prior representations that are closely related to the
ischemic lesion segmentation problem in advance. The perfor-
mance gains become lesser be saturated when the number of
training samples gradually increases. This is because with more
training samples, the information difference between the training
set for fine-tuning and the training set for self-supervised learn-
ing becomes small and the fine-tuning performance saturates.
2) On Mfi and M;,, ours with 50% training data can approach
or surpass the Baseline performance with 100% training data,
which demonstrates that the learned prior representations from
MGCL can efficiently mine label information. Thus, the above
observations show that our method can significantly alleviate
model dependence on training data.

Fig. 4 visualizes the segmentation results of the different
methods. Each method is fine-tuned on M é(the first row), M ’p (the
second row), and M. (the third row) with 50% training data. (a)
is the input image of three MRI modals, (b)~(g) are the predicted
segmentation results of the other methods and ours, and (f) are



Table 4: Performance comparison of different methods for TSS classification task (Mean + Standard Deviation). P-values of the proposed MGCL vs. other methods
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are indicated by * (<0.05) and * (>0.05). Best results are marked in bold.

Classification

Method
ACC SEN SPE AUROC
DWI-FLAIR mismatch 0.688+0.038"  0.629+0.034*  0.759+0.018"*  0.719+0.037*
Radiomics features + SVM (Van Griethuysen et al., 2017)  0.703+0.061*  0.639+0.055*  0.786+0.030*  0.741+0.035*
ResNet (He et al., 2016) 0.721£0.015*  0.763+0.020°  0.661+0.024*  0.799+0.019*
ResNet-mask 0.765+0.045*  0.722+0.046"  0.821+0.046*  0.818+0.066"
DenseNet (Huang et al., 2017) 0.734+0.054*  0.829+0.054*  0.621+0.022*  0.803+0.011*
DenseNet-mask 0.797+0.047*  0.759+0.035*  0.806+0.021*  0.842+0.031*
Ours 0.844+0.029  0.824+0.032  0.867+0.025  0.861+0.028

11

Comparison of Dice when the DWI training data is
DSC (%) gradually increasing
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Fig. 5: As the number of DWI training data decreases, ablation studies of the
different grained versions in our MGCL are conducted to show the performance
superiority on the lesion segmentation task.

Comparison of Dice when the FLAIR training data is

DSC (%) gradually increasing
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6 Course-grained Version | 65.2 64.6
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Fig. 6: As the number of FLAIR training data decreases, ablation studies of the
different grained versions in our MGCL are conducted to show the performance
superiority on the lesion segmentation task.

the ground truth annotations. It can be easily seen that the
visualized results predicted by MGCL are more consistent with
ischemic lesion boundaries of ground truth than other methods,
which are also consistent with the quantitative results in Table 3.
Especially, the visual comparison also shows that MGCL is also
quite effective in locating boundaries of ischemic lesions.

5.2. Classification Comparison With Other Methods

Table 4 lists the classification performance of the different
methods. Experimental results demonstrate that our MGCL per-
forms other methods in the TSS classification task. The proposed
MGCL yields 0.844 accuracy, 0.824 sensitivity, 0.867 specificity,
and 0.861 auroc. Moreover, the analysis of statistical signifi-
cance for the p-values shows that the performance difference be-
tween the proposed MGCL and the other six advanced methods
is significant. The radiologist-derived DWI-FLAIR mismatch
model obtains 0.688 accuracy, 0.629 sensitivity, and 0.759 speci-
ficity. It can be seen that almost all methods based on machine
features outperform the DWI-FLAIR mismatch model from Ta-
ble 4. This indicates that efficient utilization of image features
is important in TSS classification. Radiomics features (Van Gri-
ethuysen et al., 2017) + SVM (Burges, 1998) method performs
multi-radiomics feature extraction on multi-modal MRI images,
and then SVM performs TSS classification based on the ex-
tracted multi-radiomics features. The radiomics-based method
achieved 0.703 accuracy, 0.639 sensitivity, and 0.786 specificity,
but the performance was less than satisfactory. Compared to the
radiomics-based method, ResNet (He et al., 2016) and DenseNet
(Huang et al., 2017) obtained better performance (0.721 accu-
racy and 0.734 accuracy) because convolutional neural networks
usually can extract richer deep image features. ResNet-mask and
DenseNet-mask can achieve modest performance improvement
of 4.4% and 6.3% accuracy respectively because the mask infor-
mation of lesion annotation can help suppress excessive noise
and task-unrelated features in the image background, improv-
ing the ability to distinguish effective features from the entire
image. Although they can remove noise from the background,
lacking the contrast feature between the lesion and the healthy
surroundings still limits the performance. Compared to the
above methods, our method focuses on task-related regions and
perceives healthy surroundings, extracting the contrast feature
between the lesion and the surroundings, which achieves the
most competitive performance.

5.3. Ablation Studies of MGCL

5.3.1. Ablation Studies on lesion segmentation task

Fig.5-7 demonstrates that our innovations bring significant
improvements to the lesion segmentation task, which makes
our MGCL more competitive. Specifically, the effectiveness
of different grained versions in MGCL is demonstrated on M?,
M;,, and M}. As shown in Fig.5-7, 0%, 50%, 80%, and 90% of
training data are removed respectively on each dataset. It can
be seen that with the rapid reduction of the number of training
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Fig. 7: As the number of PWI training data decreases, ablation studies of the
different grained versions in our MGCL are conducted to show the performance
superiority on the lesion segmentation task.

Table 6: Performance comparison with different MRI modal combination on
TSS classification task.

modals Classification
DWI FLAIR PWI ACC SEN SPE  AUROC

v 0.738 0.667 0.861 0.766
v 0.619 0.614 0.828 0.594

v 0.580 0.363 0.768 0.642

v v 0.813 0.804 0.828 0.824
v v 0.769 0.686 0.867 0.801
v v v 0.844 0.824 0.867 0.861

Table 5: Ablation studies on TSS classification task.

BackBone ClsHead ACC SEN SPE AUROC
MLP 0742 0.806 0.667  0.745
. Transformer 0.763 0.735 0.778 0.779
MGCL (Random Init) MRFF 0803 0.743 0871 0.831
MLP 0761 0743 0.781  0.763
. Transformer 0.798 0.757 0.828  0.823
MGCL (Pre-trained) MRFF  0.844 0.824 0867 0.861

data, the performance of models with different modules starts
to decline to different degrees: the random initialized model
falls the fastest, the model pre-trained by the coarse-grained CL
version is the second, and the model pre-trained by the coarse
and fine-grained CL version is the slowest. Compared to the
randomly initialized model, MGCL takes the weights pre-trained
by the coarse-fined CL version to gain obvious dice improvement
of the 11.5% on M’ 11.7% on Mf,, and 5.6% on M'. when the
number of training data is reduced to 10%. It is worth noting
that our MGCL with only 10% training data can approach the
performance of the random initialized model with only 50%
training data on M' fl and M' Il,. Therefore, the experiment results
indicate that our innovation including the coarse-grained and
the fine-grained CL versions of MGCL can both improve the
performance of the ischemic lesion segmentation task.

5.3.2. Ablation Studies on TSS classification Task

Table 5 demonstrates our innovations display significant im-
provements for the TSS classification task. The backbone of
the classification task (Fig.2) is reserved to investigate the in-
fluence of each innovation (ie., coarse-grained CL version of
MGCL, MRFF). First, the effect of the coarse-grained CL ver-
sion is demonstrated by comparison with the backbone with
random initialized weights. Second, in each backbone with
different initialization weights, well-known classifiers are com-
pared to demonstrate the effect of MRFE. With the backbone of
the random initialized weights, our MRFF achieves the best per-

formance in all classifiers, which obtains 0.803 accuracy, 0.743
sensitivity, 0.871 specificity, and 0.831 auroc. Compared to MLP
or Transformer(Vaswani et al., 2017), MRFF can obtain 6.1%
and 4.0% accuracy improvement respectively in two different
backbones. Results indicate that MRFF explicitly computes and
represents the DWIF-LAIR and DWI-PWI mismatch patterns
on the feature level, and fuses this information to extracted deep
features finally, which can promote TSS classification perfor-
mance. With the backbone pre-trained by the coarse-grained CL
version, MLP, Transformer(Vaswani et al., 2017), and MRFF
achieved 1.9%, 2.5%, and 4.1% accuracy improvements, re-
spectively. Results indicate that the coarse-grained version of
MGCL utilizes the learned global prior representations to locate
the ischemic lesions while perceiving the healthy surroundings,
extract task-related features, and finally contribute to accurate
TSS classification.

5.4. Comparison with Different Modals Combination

Table 6 shows the TSS classification performance for each
combined case of different MRI modals using our proposed
method (single or multiple modal branches in Fig.2), which
investigates the contribution of different modals for TSS classifi-
cation. Classification performance is inefficient when predicting
TSS using a single DWI, FLAIR, or PWI image. There is a
certain performance improvement compared to a single modal
when leveraging the combination of two modals. This indicates
that the TSS classification performance can be improved when
the model incorporates the latent knowledge of DWI-FLAIR
or DWI-PWI mismatch patterns using the MRFF module. It
achieves the best performance when all modals are available.
This indicates that the model incorporates the diagnostic knowl-
edge of multiple mismatch patterns and fuses this knowledge to
extracted deep features, which further facilitates TSS classifica-
tion performance.

5.5. Representation Analysis of Different Grained Versions

The learned prior representations from coarse-grained and
fine-grained CL versions of MGCL are visualized on M!, M;,
and M ’f without using the annotation information to demonstrate
the discrimination ability for different lesion samples on the slice
level and patch level. Specifically, the proposed MGCL is firstly
trained on My, My, and Mj’f.. After passing randomly selected
data on M/, M;, and M} using the trained MGCL, the learned dif-
ferent level representations are obtained from the projection head
H,(-) and H ,(-) respectively. Finally, the t-Distributed Stochastic
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Fig. 8: Visualize the global representations learned from the coarse-grained
version of MGCL. (a), (b), (c) mean applying t-SNE for the DWI, FLAIR and
PWTI slices respectively.

Neighbor Embedding (t-SNE) method (Van der Maaten and Hin-
ton, 2008) is employed to visualize the learned representations.

Slice-Level Global Representation. Fig.8 visualizes learned
representations after applying t-SNE on slice-level for three
MRI modal data. In each column, the first cluster (from top
to bottom) is the slice-level representations generated by the
randomly initialized model, the second cluster is generated from
the model pre-trained by the coarse-grained CL version. It
can be easily seen that slice-level representations of different
categories (the slice with/without ischemic lesions) generated by
the randomly initialized model are mixed in the low latent space,
while these slice representations from the coarse-grained CL
version are clustered into two meaningful groups. In this cluster,
most of the slices in each group belong to the same categories.
Besides, it can be seen that the representations of the same class
slices are pulled closely (indicated by their coordinates) and the
different are pushed apart in low latent space. This indicates that
the coarse-grained CL version can facilitate the model to gain
the global discriminative ability for lesions.

Patch-Level Local Representation. Fig.9 visualizes learned
representations after applying t-SNE on patch-level for three
modal data. Fig.9 is consistent with the description structure of
Fig.8. The fine-grained CL version can facilitate pushing the
patches of different categories (the patch with/without ischemic
lesions) apart according to the extracted semantic information,
and pull patches belong to the same categories closer together to
form different clusters. This indicates that the fine-grained CL
version can facilitate the model to gain local perception ability
for semantic relation between the ischemic lesion region and
other health regions.

Therefore, the learned global and local prior representations
can promote easily achieving competitive segmentation and clas-
sification performance in limited annotation settings.

5.6. Perception Ability Analysis of Task-Related Regions

Fig. 10 shows that EigenCAM (Muhammad and Yeasin, 2020)
is employed to generate the perception maps that analyze the
perception for different areas on three MRI modal. As described
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Fig. 9: Visualize the local representations learned from the fine-grained version

of MGCL. (a), (b), (c) mean applying t-SNE for the DWI, FLAIR and PWI
patches respectively.

(b) FLAIR (c) PWI

Table 7: Performance comparison (Dice) at different area-ratio thresholds 7 on
three datasets (M, M!, and M}) (Mean =+ Standard Deviation).

! ! |
M, M, M

f
10% data 50% data 10% data 50% data 10% data 50% data

0.05  0.717£0.039  0.766+0.032  0.759+0.034  0.804+0.027 0.425+0.088  0.528+0.073
0.1 0.729+0.036  0.775+0.033  0.753+0.035 0.803+0.025 0.431+0.084 0.532+0.066
0.2 0.713+0.044  0.759+0.037 0.738+0.033  0.793+0.029  0.422+0.069  0.524+0.072
03 0.692+0.042 0.751+£0.040 0.721+0.037  0.780+0.030  0.411+£0.071  0.521+0.068

in Fig. 10 (a), the lesion regions are delineated on three different
MRI models by the red circle. For the observation sake, the
perception maps are overlapped with the corresponding input
slices. I¥ represents the perception map from the k-th layer of the
encoder. /™! represents the perception map from the last layer
of the encoder. In Fig.10 (b), it can be seen that the randomly
initialized model can not perceive the lesion regions. Compared
to (b), the model trained by MGCL can efficiently locate the is-
chemic lesions while perceiving the healthy surroundings. With
the increment of k (from (c) to (f) in Fig. 10), the perception for
the ischemic lesions is gradually enhanced, which can generate
accurate perception in the last layer of the encoder. Therefore,
the model that transfers the global prior representations can lo-
cate ischemic lesions and perceive healthy surroundings, guiding
the segmentation and classification tasks to efficiently find task-
related regions, and extracting the task-related features, which
mitigates overfitting caused by the limited training data.

5.7. Efficiency Analysis of Area-ratio Threshold

To investigate the efficiency of the area-ratio threshold ¢ on
the lesion segmentation task, the performance at different thresh-
olds is compared quantitatively on three datasets (M, Mﬁ, and
M j.). As listed in Table 7, the lesion segmentation task achieves
optimal performance when threshold ¢ is set to 0.1. When the
threshold t is set larger, the performance starts to drop gradually.
This fact is attributed to (1) These patches with relatively big
lesions also start to be set to negative samples when ¢ increases.
The caused label errors are detrimental to the local representa-
tion learning in the fine-grained CL version. (2) The area ratio of
the lesion mask and patch is relatively small, and these patches
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Fig. 10: Perception ability analysis of task-related regions. I¥ represents the perception map from the k-th layer of the encoder. With the increment of k<, MGCL can
progressively perceive the precise task-related regions including ischemic lesion region and healthy surroundings.

usually contain rich edge information. Therefore, when ¢ be-
comes larger, these patches are considered as negative samples
and then the learning efficiency for edge features may become
lower gradually.

6. Discussion and Conclusion

Identifying the unknown TSS for unwitnessed AIS patients
from multi-modal MRI imaging is a challenging, but clini-
cally meaningful task for better stroke evaluation and treatment
decision-making. DWI-FLAIR mismatch model is now clini-
cally recommended to classify TSS for guiding tPA thrombolysis.
However, the mismatch model may not find all patients within
4.5 hrs because of its simplicity (Odland et al., 2015). Due to
the advantages of convolutional neural networks in feature ex-
traction, related deep learning-based methods were developed
to improve the TSS classification performance. Limited by the
urgency of AIS onset and medical conditions, it is difficult to
collect large-scale paired multi-modal MRI imaging sequences.
Thus, data-driven methods are easier to learn irrelevant fea-
tures in the TSS classification because of the lack of sufficient
training data, which leads to poor generalization ability. We
observed that unpaired MRI data are available, but are less of-
ten considered and underexplored. Thus, we proposed a novel
multi-grained contrastive learning (MGCL) framework to fully
develop large-scale unpaired unlabeled data to incentivize ef-
ficient utilization of the limited paired data, which facilitates
the performance improvement of the ischemic lesion segmenta-
tion and TSS classification tasks. Specifically, MGCL achieves
efficient AIS analysis via two cascade stages: Stage 1 encour-
ages the models to learn prior representations from massive
unlabeled unpaired data based on two task-specific contrastive
learning versions: (a) The coarse-grained CL version encour-
ages the models to learn global prior representations to enhance
the location ability for the ischemic lesions while perceiving
the healthy surroundings, which helps extract the task-related

deep features. (b) The fine-grained CL version encourages the
models to learn local prior representations to enhance the dis-
criminative ability for the ischemic lesion regions, which helps
supplement the lesion details. Finally, learned global and local
prior representations are transferred reasonably into a designed
multi-task framework, which comprehensively improves the per-
formance of ischemic lesion segmentation and TSS classification
tasks. In this process, the proposed multi-modal region-related
feature fusion (MRFF) module explicitly calculates the feature
correlations among corresponding image regions of the paired
multi-modal MRI sequences, which can explicitly integrate the
clinical diagnostic knowledge including DWI-FLAIR and DWI-
PWI mismatch patterns into TSS decision-making. Extensive
experiments on the large-scale multi-center MRI dataset demon-
strate the superiority of the proposed MGCL. Our method can
simultaneously segment ischemic lesions and classify TSS in
an end-to-end multi-task way and outperforms the conventional
radiologist-derived DWI-FLAIR mismatch model. Therefore,
it is very promising that it helps better stroke evaluation and
treatment decision-making.

Recent works (Srinidhi et al., 2022; Gao et al., 2022; Chai-
tanya et al., 2019, 2021) provide evidence that integrating self-
supervised and semi-supervised learning methods usually further
boosts the potential of massive unlabeled data. Therefore, how
to efficiently integrate these two learning paradigms will become
one of our future work.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Key
Project of Research and Development Plan under Grants



JiaRui Sun et al. /Medical Image Analysis (2024) 15

2022YFC2401600, 2022YFC2408500, and 2022YFE0116700,
and in part by the National Natural Science Foundation of China
under Grant T2225025 and 82202128, in part by the Key Re-
search and Development Programs in Jiangsu Province of China
under Grant BE2021703 and BE2022768.

References

Araslanov, N., Roth, S., 2021. Self-supervised augmentation consistency for
adapting semantic segmentation, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 15384-15394.

Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh,
A., Karthikesalingam, A., Kornblith, S., Chen, T., et al., 2021. Big self-
supervised models advance medical image classification, in: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3478-3488.

Bang, O. Y., SJL.K.SJKGM.C.C.S.0.B..L.D.S., 2011. Collateral flow
predicts response to endovascular therapy for acute ischemic stroke. Stroke
90, 101926.

Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W.,
Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Das, S.R., et al.,
2019. Heart disease and stroke statistics—2019 update: a report from the
american heart association. Circulation 139, e56-528.

Burges, C.J., 1998. A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery 2, 121-167.

Campbell, B.C., Ma, H., Ringleb, P.A., Parsons, M.W., Churilov, L., Bendszus,
M., Levi, C.R., Hsu, C., Kleinig, T.J., Fatar, M., et al., 2019. Extending
thrombolysis to 4- 5-9 h and wake-up stroke using perfusion imaging: a
systematic review and meta-analysis of individual patient data. The Lancet
394, 139-147.

Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E., 2020. Contrastive learning
of global and local features for medical image segmentation with limited
annotations. Advances in Neural Information Processing Systems 33, 12546—
12558.

Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E., 2023. Local contrastive
loss with pseudo-label based self-training for semi-supervised medical image
segmentation. Medical Image Analysis 87, 102792.

Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu,
E., 2019. Semi-supervised and task-driven data augmentation, in: Information
Processing in Medical Imaging: 26th International Conference, IPMI 2019,
Hong Kong, China, June 2-7, 2019, Proceedings 26, Springer. pp. 29—41.

Chaitanya, K., Karani, N., Baumgartner, C.F., Erdil, E., Becker, A., Donati, O.,
Konukoglu, E., 2021. Semi-supervised task-driven data augmentation for
medical image segmentation. Medical Image Analysis 68, 101934.

Chen, C., Wang, Y., Niu, J., Liu, X., Li, Q., Gong, X., 2021. Domain knowledge
powered deep learning for breast cancer diagnosis based on contrast-enhanced
ultrasound videos. IEEE Transactions on Medical Imaging 40, 2439-2451.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A simple framework for
contrastive learning of visual representations, in: International conference on
machine learning, PMLR. pp. 1597-1607.

Chen, X., He, K., 2021. Exploring simple siamese representation learning, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15750-15758.

Davis, S.M., Donnan, G.A., Parsons, M.W., Levi, C., Butcher, K.S., Peeters, A.,
Barber, P.A., Bladin, C., De Silva, D.A., Byrnes, G., et al., 2008. Effects
of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic
evaluation trial (epithet): a placebo-controlled randomised trial. The Lancet
Neurology 7, 299-309.

Ebinger, M., Galinovic, 1., Rozanski, M., Brunecker, P., Endres, M., Fiebach,
J.B., 2010. Fluid-attenuated inversion recovery evolution within 12 hours
from stroke onset: a reliable tissue clock? Stroke 41, 250-255.

Emeriau, S., Serre, 1., Toubas, O., Pombourcq, F., Oppenheim, C., Pierot, L.,
2013. Can diffusion-weighted imaging—fluid-attenuated inversion recovery
mismatch (positive diffusion-weighted imaging/negative fluid-attenuated in-
version recovery) at 3 tesla identify patients with stroke atj 4.5 hours? Stroke
44, 1647-1651.

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C.,
Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al., 2012. 3d
slicer as an image computing platform for the quantitative imaging network.
Magnetic resonance imaging 30, 1323-1341.

Galinovic, I., Puig, J., Neeb, L., Guibernau, J., Kemmling, A., Siemonsen,
S., Pedraza, S., Cheng, B., Thomalla, G., Fiehler, J., et al., 2014. Visual

and region of interest—based inter-rater agreement in the assessment of the
diffusion-weighted imaging—fluid-attenuated inversion recovery mismatch.
Stroke 45, 1170-1172.

Gao, Z., Jia, C., Li, Y., Zhang, X., Hong, B., Wu, J., Gong, T., Wang, C., Meng,
D., Zheng, Y., et al., 2022. Unsupervised representation learning for tissue
segmentation in histopathological images: From global to local contrast.
IEEE Transactions on Medical Imaging 41, 3611-3623.

Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E.,
Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al., 2020. Boot-
strap your own latent-a new approach to self-supervised learning. Advances
in neural information processing systems 33, 21271-21284.

Han, Y., Chen, C., Tewfik, A., Glicksberg, B., Ding, Y., Peng, Y., Wang, Z.,
2022. Knowledge-augmented contrastive learning for abnormality classifica-
tion and localization in chest x-rays with radiomics using a feedback loop,
in: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 2465-2474.

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for
unsupervised visual representation learning, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9729-9738.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770-778.

Ho, K.C., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., Arnold, C.W., 2019.
A machine learning approach for classifying ischemic stroke onset time from
imaging. IEEE transactions on medical imaging 38, 1666-1676.

Hu, X., Zeng, D., Xu, X., Shi, Y., 2021. Semi-supervised contrastive learning
for label-efficient medical image segmentation, in: International Conference
on Medical Image Computing and Computer-Assisted Intervention, Springer.
pp. 481-490.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely
connected convolutional networks, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4700-4708.

Jiang, L., Sun, J., Wang, Y., Yang, H., Chen, Y.C., Peng, M., Zhang, H., Chen, Y.,
Yin, X., 2024. Diffusion-/perfusion-weighted imaging fusion to automatically
identify stroke within 4.5 h. European Radiology , 1-12.

Jiang, L., Wang, S., Ai, Z., Shen, T., Zhang, H., Duan, S., Chen, Y.C., Yin, X.,
Sun, J., 2022. Development and external validation of a stability machine
learning model to identify wake-up stroke onset time from mri. European
Radiology 32, 3661-3669.

Kingma, D.P, Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P., 2009. Elastix:
a toolbox for intensity-based medical image registration. IEEE transactions
on medical imaging 29, 196-205.

Kolesnikov, A., Zhai, X., Beyer, L., 2019. Revisiting self-supervised visual
representation learning, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1920-1929.

Kong, J., He, Y., Zhu, X., Shao, P., Xu, Y., Chen, Y., Coatrieux, J.L., Yang, G.,
2022. Bke-net: Bi-knowledge contrastive learning for renal tumor diagnosis
on 3d ct images. Knowledge-Based Systems 252, 109369.

Lee, H., Lee, E.J., Ham, S., Lee, H.B., Lee, J.S., Kwon, S.U., Kim, J.S., Kim,
N., Kang, D.W., 2020. Machine learning approach to identify stroke within
4.5 hours. Stroke 51, 860-866.

Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L., 2020. Self-supervised feature
learning via exploiting multi-modal data for retinal disease diagnosis. IEEE
Transactions on Medical Imaging 39, 4023-4033.

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dolldr, P., 2017. Focal loss for dense
object detection, in: Proceedings of the IEEE international conference on
computer vision, pp. 2980-2988.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J., 2021.
Self-supervised learning: Generative or contrastive. IEEE Transactions on
Knowledge and Data Engineering .

Van der Maaten, L., Hinton, G., 2008. Visualizing data using t-sne. Journal of
machine learning research 9.

McLeod, D.D., Parsons, M.W., Levi, C.R., Beautement, S., Buxton, D., Roworth,
B., Spratt, N.J., 2011. Establishing a rodent stroke perfusion computed
tomography model. International Journal of Stroke 6, 284—289.

Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-net: Fully convolutional
neural networks for volumetric medical image segmentation, in: 2016 fourth
international conference on 3D vision (3DV), IEEE. pp. 565-571.

Misra, 1., Maaten, L.v.d., 2020. Self-supervised learning of pretext-invariant
representations, in: Proceedings of the IEEE/CVF Conference on Computer



16 JiaRui Sun et al. / Medical Image Analysis (2024)

Vision and Pattern Recognition, pp. 6707-6717.

Moradiya, Y., Janjua, N., 2013. Presentation and outcomes of “wake-up strokes”
in a large randomized stroke trial: analysis of data from the international
stroke trial. Journal of Stroke and Cerebrovascular Diseases 22, e286—e292.

Muhammad, M.B., Yeasin, M., 2020. Eigen-cam: Class activation map using
principal components, in: 2020 International Joint Conference on Neural
Networks (IICNN), IEEE. pp. 1-7.

Murphy, B., Chen, X., Lee, T.Y., 2007. Serial changes in ct cerebral blood
volume and flow after 4 hours of middle cerebral occlusion in an animal
model of embolic cerebral ischemia. American Journal of Neuroradiology
28, 743-749.

QOdland, A., S@rvoll, P., Advani, R., Kurz, M.W., Kurz, K.D., 2015. Are the
current mri criteria using the dwi-flair mismatch concept for selection of
patients with wake-up stroke to thrombolysis excluding too many patients?
Scandinavian journal of trauma, resuscitation and emergency medicine 23,
1-6.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information
processing systems 32.

Pedersen, M., Andersen, M.B., Christiansen, H., Azawi, N.H., 2020. Clas-
sification of renal tumour using convolutional neural networks to detect
oncocytoma. European Journal of Radiology 133, 109343.

Polson, J.S., Zhang, H., Nael, K., Salamon, N., Yoo, B.Y., El-Saden, S., Stark-
man, S., Kim, N., Kang, D.W., Speier, W., et al., 2022. Deep learning
approaches to identify patients within the thrombolytic treatment window.
medRxiv .

Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C.,
Becker, K., Biller, J., Brown, M., Demaerschalk, B.M., Hoh, B., et al.,
2019. Guidelines for the early management of patients with acute ischemic
stroke: 2019 update to the 2018 guidelines for the early management of acute
ischemic stroke: a guideline for healthcare professionals from the american
heart association/american stroke association. Stroke 50, e344—418.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation, in: International Conference on Medical
image computing and computer-assisted intervention, Springer. pp. 234-241.

Srinidhi, C.L., Kim, S.W., Chen, ED., Martel, A.L., 2022. Self-supervised
driven consistency training for annotation efficient histopathology image
analysis. Medical Image Analysis 75, 102256.

Thomalla, G., Cheng, B., Ebinger, M., Hao, Q., Tourdias, T., Wu, O., Kim, J.S.,
Breuer, L., Singer, O.C., Warach, S., et al., 2011. Dwi-flair mismatch for
the identification of patients with acute ischaemic stroke within 4- 5 h of
symptom onset (pre-flair): a multicentre observational study. The Lancet
Neurology 10, 978-986.

Thomalla, G., Gerloff, C., 2015. Treatment concepts for wake-up stroke and
stroke with unknown time of symptom onset. Stroke 46, 2707-2713.

Thomalla, G., Rossbach, P., Rosenkranz, M., Siemonsen, S., Kriitzelmann, A.,
Fiehler, J., Gerloff, C., 2009. Negative fluid-attenuated inversion recovery
imaging identifies acute ischemic stroke at 3 hours or less. Annals of Neu-
rology: Official Journal of the American Neurological Association and the
Child Neurology Society 65, 724-732.

Van Griethuysen, J.J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan,
V., Beets-Tan, R.G., Fillion-Robin, J.C., Pieper, S., Aerts, H.J., 2017. Com-
putational radiomics system to decode the radiographic phenotype. Cancer
research 77, e104—107.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I., 2017. Attention is all you need. Advances in
neural information processing systems 30.

Vijayan, M., Reddy, P.H., 2016. Peripheral biomarkers of stroke: focus on
circulatory micrornas. Biochimica et Biophysica Acta (BBA)-Molecular
Basis of Disease 1862, 1984-1993.

Wolman, D.N., Iv, M., Wintermark, M., Zaharchuk, G., Marks, M.P., Do,
H.M., Dodd, R.L., Albers, G.W., Lansberg, M.G., Heit, J.J., 2018. Can
diffusion-and perfusion-weighted imaging alone accurately triage anterior
circulation acute ischemic stroke patients to endovascular therapy? Journal
of neurointerventional surgery 10, 1132-1136.

Wu, Y., Zeng, D., Wang, Z., Shi, Y., Hu, J., 2022. Distributed contrastive learning
for medical image segmentation. Medical Image Analysis 81, 102564.

Xu, X., Wang, C., Guo, J., Gan, Y., Wang, J., Bai, H., Zhang, L., Li, W., Yi, Z.,
2020. Mscs-deepln: Evaluating lung nodule malignancy using multi-scale
cost-sensitive neural networks. Medical Image Analysis 65, 101772.

Yang, P, Yin, X., Lu, H., Hu, Z., Zhang, X., Jiang, R., Lv, H., 2022. Cs-co: A

hybrid self-supervised visual representation learning method for h&e-stained
histopathological images. Medical Image Analysis 81, 102539.

Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A., 2016. Automated melanoma
recognition in dermoscopy images via very deep residual networks. IEEE
transactions on medical imaging 36, 994-1004.

Zabihollahy, F., Schieda, N., Krishna, S., Ukwatta, E., 2020. Automated classi-
fication of solid renal masses on contrast-enhanced computed tomography
images using convolutional neural network with decision fusion. European
Radiology 30, 5183-5190.

Zeng, D., Wu, Y., Hu, X., Xu, X., Yuan, H., Huang, M., Zhuang, J., Hu, J.,
Shi, Y., 2021. Positional contrastive learning for volumetric medical image
segmentation, in: International Conference on Medical Image Computing
and Computer-Assisted Intervention, Springer. pp. 221-230.

Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2017. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412 .

Zhang, H., Polson, J.S., Nael, K., Salamon, N., Yoo, B., El-Saden, S., Scalzo, F.,
Speier, W., Arnold, C.W., 2021. Intra-domain task-adaptive transfer learn-
ing to determine acute ischemic stroke onset time. Computerized Medical
Imaging and Graphics 90, 101926.

Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., Chen, Y., 2021. An automatic
machine learning approach for ischemic stroke onset time identification based
on dwi and flair imaging. NeuroIlmage: Clinical 31, 102744.

Ziegler, A., Ebinger, M., Fiebach, J.B., Audebert, H.J., Leistner, S., 2012.
Judgment of flair signal change in dwi—flair mismatch determination is a
challenge to clinicians. Journal of neurology 259, 971-973.



In general, our contributions include the following:

We propose a novel multi-grained contrastive learning (MGCL) framework based
on two cascade stages for the AIS analysis task.

We design two task-specific contrastive feature enhancement strategies, which help
to enhance the global location ability for the ischemic lesions and the local
perception ability for semantic relation respectively.

We develop a multi-modal region-related feature fusion module to adequately
capture the feature relationship between multi-modal MRI images.

Extensive experiments also show the superiority of the proposed framework on a
constructed large-scale multi-center multi-modal MRI dataset.
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