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A B S T R A C T

Ischemic lesion segmentation and the time since stroke (TSS) onset classificati
paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) pa
crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-
Deep learning methods demonstrate superiority in TSS classification. Howev
often overfit task-irrelevant features due to insufficient paired labeled data, resu
poor generalization. We observed that unpaired data are readily available and in
carry task-relevant cues, but are less often considered and explored. Based on thi
paper, we propose to fully excavate the potential of unpaired unlabeled data and u
to facilitate the downstream AIS analysis task. We first analyse the utility of fea
the varied grain and propose a multi-grained contrastive learning (MGCL) frame
learn task-related prior representations from both coarse-grained and fine-graine
The former can learn global prior representations to enhance the location ability
ischemic lesions and perceive the healthy surroundings, while the latter can lea
prior representations to enhance the perception ability for semantic relation b
the ischemic lesion and other health regions. To better transfer and utilize the
task-related representation, we designed a novel multi-task framework to simulta
achieve ischemic lesion segmentation and TSS classification with limited labe
In addition, a multi-modal region-related feature fusion module is proposed to
the feature correlation and synergy between multi-modal deep image features f
accurate TSS decision-making. Extensive experiments on the large-scale mult
MRI dataset demonstrate the superiority of the proposed framework. Therefo
promising that it helps better stroke evaluation and treatment decision-making.
author e-mail: xuji@seu.edu.cn (Xu Ji), jiangliang0402@163.com (Liang Jiang)
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a common cerebrovascular disease with the fifth
e of death (Vijayan and Reddy, 2016). Acute is-

(AIS) is the most common subtype, which leads to
eaths worldwide every year (Benjamin et al., 2019).
AIS is strictly dependent on the time since stroke
According to the AIS treatment guidelines, TSS
urs is the golden time window of tissue plasmino-
(tPA) thrombolysis due to increased hemorrhage
ministered beyond that time interval (Campbell
However, approximately 30% of AIS patients are
m tPA treatment because of unknown TSS while
within the time window of the tPA thromboly-

a and Janjua, 2013). Thus, the guidelines from
roke Association (ASA) recommend using paired
MRI imaging to classify TSS to determine throm-
ility of the unwitnessed AIS patients (Powers et al.,

atch pattern of the diffusion-weighted imaging
attenuated inversion recovery (FLAIR) imaging is
mon way of classifying TSS (Powers et al., 2019).
IAR mismatch pattern is based on the fact that

ions are immediately visible on the DWI imaging,
takes about 4 hours to find the ischemic lesion on
ing (Thomalla et al., 2011; Ebinger et al., 2010;
l., 2013). As depicted in Fig.1, it can be observed
-intensity signal on DWI imaging is not visible in
nding location of FLAIR imaging, which means
e FLAIR-negative lesions. Therefore, TSS can be
the DWI-FLAIR mismatch pattern. Besides, cur-

ave demonstrated MR perfusion-weighted imaging
ns information encoding TSS (Murphy et al., 2007;
l., 2011; Thomalla and Gerloff, 2015; Jiang et al.,
over, related clinical studies have shown that about
atients have ischemic penumbra caused when TSS
hours (Davis et al., 2008). As described in Fig.1, it
ved that the high-intensity signal regions on DWI
aging are not matched in shape and size, which
WI-PWI mismatch pattern. Therefore, TSS can
strictly classified via the DWI-PWI mismatch pat-
lly, under the guidance of the PWI-DWI mismatch
thrombolysis treatment may be more reliable and
prognosis (Wolman et al., 2018). While the two

tterns are the current advanced method for clini-
ning TSS for unwitnessed AIS patients, computing
ing paired DWI-FLAIR or DWI-PWI imaging is a
ime-consuming task that requires extensive clinical
s, assessing this mismatch is naturally subject to

ity across multiple inter-observers and radiologists
l., 2012; Thomalla et al., 2011; Galinovic et al.,
es, it may miss some individuals who would ben-
thrombolysis treatment because of overly strict

nditions (Odland et al., 2015).
n methods (Ho et al., 2019; Thomalla et al., 2009;
21; Zhang et al., 2021; Jiang et al., 2022) demon-

FLAIR DWI PW

DWI-FLAIR Mismatch

DWI-PWI Mismatch

TSS of the patient is 3h, which is within the time window of tPA thr

FLAIR DWI PW

No DWI-FLAIR Mismatch

No DWI-PWI Mismatch

TSS of the patient is 7h , which is not within the time window of tPA t

Fig. 1: Paired multi-modal MRI sequences of two AIS patients
The ischemic lesions are delineated in different colors includin
FLAIR, red for DWI, and orange for PWI. In the above figure
presence of DWI-FLAIR and DWI-PWI mismatches (ie., TSS of
patient is 3h), and the absence of DWI-FLAIR and DWI-PWI mi
TSS of the given AIS patient is 7h).

hand-crafted, radionics, or deep learning-driven f
tracted from multi-modal MRI images, and these fe
incorporated into machine learning models for TSS
tion. As for the data-driven methods, the location info
ischemic lesions is crucial because feature extractio
relies on lesion regions and healthy surroundings (B
On the other hand, current studies (Murphy et al., 200
et al., 2011; Thomalla and Gerloff, 2015; Ho et al., 20
strate that PWI images contain important informatio
TSS, and combining it with FLAIR and DWI imag
turn boost and improve TSS classification performanc
by the above, our work focuses on employing pa
modal MRI imaging (DWI, FLAIR and PWI sequ
the comprehensive AIS analysis, including the ische
segmentation and TSS classification of the unwitn
patients. However, two inherent limitations hinder th
ment and cause performance bottlenecks. Limitation
by the urgency of AIS onset and medical conditions,
large-scale paired multi-modal MRI imaging, inclu
FLAIR and PWI sequences, is very difficult. Therefo
data-driven deep learning methods based on image- (Z
et al., 2020; Pedersen et al., 2020) or lesion-level (Yu e
tend to overfit task-irrelevant features due to the in
of the chaotic background or inefficient edge feature
for the lesion regions, which leads to poor generaliza
(Xu et al., 2020; Chen et al., 2021; Kong et al., 2022
tion 2: Current TSS classification methods usually
simple fusion of the extracted multi-modal image fe
typically fail to explicitly consider the clinal diagno
edge in the deep features fusion process (e.g., DWI
DWI-PWI mismatch patterns in Fig.1), resulting in
feature utilization.
otential for AIS analysis due to the high capability
g representative features. These methods utilize

For limitation 1. For image analysis tasks, emerging con-
trastive representation learning shows great potential in exploit-
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abeled data, which helps models obtain a better
bility with limited annotation data (Azizi et al.,
., 2022; Li et al., 2020; Han et al., 2022; Wu et al.,
nably made use of the fact: compared to paired

RI data, a large amount of the unpaired data is
e yet underutilized and under-explored. Thus,
ovel multi-grained contrastive learning (MGCL)
arn task-related prior representations via develop-
npaired data. As a result, learned representations
ent utilization of the limited segmentation and
els of paired multi-modal MRI data. Especially,
d transfers prior representations via two cascade
1, models learn task-related prior representa-

massive unlabeled unpaired data based on two
ntrastive learning versions: a) Coarse-grained
ges the models to learn global prior represen-
ce the location ability for the ischemic lesions

g the healthy surroundings, which helps capture
features in AIS analysis. b) Fine-grained version
models to learn local prior representations to

ception ability for semantic relation between the
and other health regions, which helps supple-

details. In stage 2, the learned task-specific prior
are reasonably transferred into a designed multi-
chitecture, which comprehensively improves the
the ischemic lesion segmentation and TSS clas-
imited paired MRI data.
n 2. We propose a multi-modal region-related

MRFF) module to adequately consider the fea-
between paired multi-modal MRI images with

e basic unit, which can explicitly integrate the di-
dge of two mismatch patterns into TSS decision-
ally, it can capture the correlation and synergy
nding image regions of the paired multi-modal
, which improves generalization ability by alle-
ask-irrelevant features from feature correlation
n-corresponding regions. Finally, the calculated
on is mapped into a multi-modal fusion feature
ent TSS classification.
r contributions include the following:

t time, we propose a multi-grained contrastive
amework based on two cascade stages. In stage
el learns task-related prior representations to

ssive unlabeled MRI data. In stage 2, the learned
sentations are reasonably transferred into the
ulti-task learning architecture.

e two task-specific contrastive feature enhance-
gies for the representation learning in MGCL.
-grained version learns global prior represen-
enhance the location ability for the ischemic
perceives the healthy surroundings, while the

d version learns local prior representations to en-
erception ability for semantic relation between

ic lesion and other health regions.

tween multi-modal MRI images, which can expli
tegrate the clinical diagnostic knowledge of multi
match patterns into TSS classification.

• We construct a large-scale multi-center multi-moda
FLAIR and PWI) MRI dataset for the AIS analysi
includes the labeled part and the unlabeled part.
beled part contains 327 paired multi-modal MRI
with the patient-level TSS classification label (TSS
and strict pixel-level ischemic lesion annotations. T
beled part contains massive unpaired MRI images

• Extensive experiments also show the superiority
proposed framework. The data will be made p
https://github.com/JiaRuiS/MGCL.

2. Related Work

In this section, we review automatic TSS classificat
self-supervised contrastive learning (SSCL) literature
closely relevant to our work.

2.1. Automatic TSS classification
Machine learning methods (Zhu et al., 2021; Jiang et a

Ho et al., 2019; Lee et al., 2020; Jiang et al., 2024) extrac
features by hand-crafted, radiomics or deep learning (D
then utilize classifiers (eg., support vector machine, B
classifier, and logistic models) to achieve the TSS classi
Zhu (Zhu et al., 2021) and Jiang (Jiang et al., 2022) et al.
methods to calculate the regions of interest (ROI) of is
lesions from DWI and FLAIR images, extract radiomics
and finally classify TSS by voting from the results of m
machine learning classifiers. Ho et al. (Ho et al., 2019) p
a deep autoencoder model to extract hidden representatio
the PWI images and combine the baseline features of D
FLAIR images to jointly classify TSS. Jiang et al. (Jian
2024) proposed a segmentation-classification model to a
cally identify stroke within 4.5 h based on DWI and PW
images. With the rapid development of DL in medica
analysis, DL-based methods reduce the trouble of de
task-related feature extraction methods and achieve bette
mance (Zhang et al., 2021; Polson et al., 2022). Relyin
feature extraction ability obtained from the pre-training
stroke detection, Zhang et al. (Zhang et al., 2021) emplo
modified 2D and 3D CNN architectures to classify TSS
et al. (Polson et al., 2022) propose a novel 2.5D CNN
on the improved ResNet-34 (He et al., 2016). It inco
the inter-slice information into 2D CNNs to extract the d
modal features and aggregate each source feature via
modal information fusion manner to improve TSS class
performance.

Unlike the natural image classification tasks, the data
of the TSS classification task is usually smaller because
ical conditions. Thus, DL-based methods are easier to
which leads to poor generalization ability. Besides,
TSS classification methods typically fail to explicitly i
the diagnostic information including DWI-FLAIR or DW
e a multi-modal region-related feature fusion
adequately capture the feature relationship be-

mismatch patterns, which may impede further performance im-
provement.
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ervised Contrastive Learning

vised learning (SSL) aims to develop massive unla-
he key to SSL is to design reasonable proxy tasks
upervisory signals for unlabeled data (Kolesnikov
SSL is usually categorized into generative and dis-
pproaches depending on the proxy tasks (Liu et al.,
representative discriminative approach, emerging
arning (CL) shows great potential. The core idea

t the similarity of sample pairs via a contrastive
antically nearby image samples (positive pairs)

sh dissimilar image samples (negative pairs) apart.
ed contrastive learning (SSCL) provides a standard
the image analysis field: the model learns image

ns with massive unlabeled data through pre-training.
-trained model can be used as the initialization for
e performance of the downstream supervised task
lassification (Azizi et al., 2021; Misra and Maaten,
age segmentation (Wu et al., 2022; Araslanov and
.

for natural images
ral image analysis field, two well-known methods
OCO (He et al., 2020) and SimCLR (Chen et al.,
rst proposed, which learn knowledge representa-

rge-scale unlabeled data by contrastive learning to
rformance of downstream supervised tasks. The
sted that they significantly narrowed the gap in

task performance between self-supervised learning
ervised learning. They believe that the magnitude
airs plays an important role in performance im-
oon after, Grill and Chen et al. (Grill et al., 2020;
, 2021) proposed BYOL and SimSiam, which also
that negative pairs are not necessary for contrastive

e learning shows great potential in natural image
ever, the above methods are all specially designed

mages and do not take into account the domain-
ledge (eg., anatomical structure knowledge, topol-

ge) of medical images.

for medical images
to natural image analysis, the annotation of medical
res a large amount of domain-specific knowledge
ch makes it very expensive. However, it is easier to
e amount of unlabeled data than manually labeling
arge-scale dataset. Therefore, it is quite necessary
e SSCL methods for medical image analysis. Zeng
t al., 2021) proposed a positional contrastive learn-
ethod, which generated contrastive data pairs by
e position information of different slices in volu-
al images. They also proved the effectiveness on

am segmentation tasks based on several CT or MRI
sidering that slice-level contrastive learning may

ve representations of local regions, Chaitanya and
haitanya et al., 2020; Hu et al., 2021) propose to

(Chaitanya et al., 2023) provides a new perspective
learn the semantic-guided local representations by c
learning for improving segmentation performance
limited annotation.

Considering the importance of domain-specific p
edge for medical image tasks, current methods usua
certain semantic knowledge gap between the upstrea
sory signals generated for unlabeled data and the do
expert annotation (ie., Learning the position relatio
resentations between different patches on upstream
data may not be very helpful for the downstream med
segmentation task). Thus, the learned representation
to fully motivate the downstream task performance w
labeled data sufficiently.

3. Methodology

Fig.2 depicts the pipeline of the proposed MGCL
for AIS analysis including ischemic lesion segmentati
and TSS classification (Task 2) via two cascade stag
learns task-related prior representations to explore larg
paired data via the multi-grained version CL. Stage 2
transfers learned prior representations to a multi-tas
architecture to efficiently promote the fine-tuning
Task 1 and Task 2 with limited paired data.

3.1. Overall Architecture

Before stage 1, three independent u-net (Ronnebe
2015) networks (for DWI, FLAIR and PWI sequen
firstly trained respectively to construct the supervis
for massive unpaired unlabeled data. Especially, th
models were employed to generate two types of pse
for describing ischemic lesions on the slice-level and
In stage 1, the models gain prior representations ba
task-specific CL versions. The coarse-grained CL v
ploys the slice-level supervisory signal to incentivize
to learn the global prior representation. The fine-g
version employs the patch-level supervisory signal to
the models to learn local prior representation. In s
implementation of Task 1 and Task 2 follows the
learning architecture. By transferring learned task-sp
representations to this multi-task learning architect
efficiently promotes the fine-tuning process on Task 1
limited paired data. Especially, MRFF computes the
and synergy between the multi-modal deep image f
the feature level and makes the feature correlation b
ferent MRI sequences mapped into a fused multi-mo
to support final TSS decision-making.

3.2. Multi-Grained Contrastive Learning

3.2.1. Supervisory Signal Construction
First, three independent u-net networks (Ronnebe

2015) including an encoder and a decoder are trained
for the three MRI sequences via a supervised learni
respectively (refer to Section 4.2). Then, utilizing
lobal and local representations, which find domain-
problem-specific cues. Besides, Chaitanya et al.

u-net networks, the segmentation pseudo labels can be generated
by inferencing large-scale unpaired unlabeled data of the three
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tic illustration of the proposed Multi-Grained Contrastive Learning (MGCL) framework. It includes two cascade stages: (a) Stage 1 se
d fine-grained contrastive learning to gain global and local prior representation. In this stage, each in the three different MRI mod

aintains an independent set including an encoder and a decoder separately. (b) Stage 2 utilizes learned representations from sta
ion for the given multi-task learning architecture to transfer task-specific prior knowledge into the ischemic lesion segmentation (Ta
Task 2) tasks. As(·), Ap(·), A f (·) denote the online data augmentation of coarse-grained version, fine-grained version, and multi-task
eans the patch-level embedding at the u-th column and v-th row of the given slice.

respectively. Pseudo labels can indicate the
each slice of a given MRI sequence. Thus, these
n determine whether the ischemic lesion occurs
t sample levels including slice-level, patch-level,
Naturally, it also can be used as the supervisory
te whether the ischemic lesion occurs on three
specially, the pixel-level supervision signals are
se they cause more noise than the slice-level and
en, the slice-level and patch-level supervisory
rved to guide the representations learning of

ns. Finally, on the unlabeled part of every MRI
supervisory signal sets on two different levels
: (a) DsB

{
(xs

i , y
s
i )
}M
i=1

consists of the M slice-

bel pairs. (b) DpB
{
(xp

u,v, y
p
u,v)
}N
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consists of
el sample-label pairs. For each of the three

, an independent set including an encoder and a

attention to and retain the modal specificity between d
sequences during the representation learning of the MG

3.2.2. Coarse-Grained Version
As described in stage 1 of Fig.2, utilizing slice-level

sory signal setDs, the coarse-grained CL version aims
the models gain the global prior representations by a le
encoder way. Firstly, the slice xs

i in Ds is projected t
spaceMs as a L2-normalized d-dimension embedding v
can be defined as:

vs
i = Hs( fϕ(As(xs

i ))) ,

where As(·) is the online data augmentation of coarse-
version, fϕ(·) is the learnable encoder, and Hs(·) is the pr
head in the coarse-grained version. To measure the dist
ys maintained in stage 1, which can better pay
tween the given two slices inMs, cosine similarity is utilized to
calculate the similarity between the given two slice embeddings
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vs
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i || re

Given a ra
Set xs

i as the
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where | · | den
a temperatur
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s(vs
i , v

s
j) =

(vs
i )Tvs

j

||vs
i ||||vs

j||
, (2)

presents the L2 norm of the given embedding vs
i .

ndomly sampled batch, I denotes the slice indexes.
anchor sample, P(i)B{ j ∈ I | ys

j = ys
i , j , i}

e set of indexes for all augmented positive samples
the same label as ys

i . Naturally, the negative sam-
e augmented slices with different labels to anchor
he indexes of these negative samples are defined as
| y j , yi, j , i}. To pull positive samples closer

push negative pairs further inMs, the learning goal
minimize the similarity between positive samples
e the similarity between positive and negative sam-
mize fϕ(·) close to the goal, the contrastive loss of
ained version is defined as:

Lc =
−1
|I|
∑

i∈I
Li

c, (3)

=
−1
|P(i)|

∑

j∈P(i)

log
exp(s(vs

i , v
s
j)/τ)∑

k∈I\i exp(s(vs
i , v

s
k)/τ)

. (4)

otes the element number of the given set, τ ∈ R+ is
e scaling parameter.

rained Version
rained version in MGCL was conducted around
e as the semi-supervised learning method LCLPL
t al., 2023) and had similar inspirations, which
e importance of learning local semantic relations.

ce is that we design a lesion-specific fine-grained
trategy, in which representation grains, contrastive
ampling way focus more on learning lesion-related
ntations. As described in stage 1 of Fig.2, utiliz-
el supervisory signal set Dp, the fine-grained CL
to make the models gain the local prior represen-
earnable decoder way. To make models focus on
ons, the weights of the encoder fϕ(·) learned from
ained version are first frozen to reserve the global
bility for the ischemic lesions on the slice level.
rained version, the patches are augmented online
er of augmenting the given single slice, which im-
mputational efficiency of the GPU. An augmented
ojected to latent space Mp as n2 L2-normalized
patch-level embedding zp

u,v. zp
u,v is embedding at

mn and v-th row of the decoder output. Thus, the
evel embedding ZpB{zp

u,v|0 ≤ u, v ≤ n} including
l embedding zp

u,v is calculated as:

Zp = Hp( fθ( fϕ(Ap(xs
i )))) , (5)

is the online data augmentation of coarse-grained
is the learnable decoder, and Hp(·) is the projection

Multi-modal Region-related Feature Fusion (MRFF)
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Fig. 3: The overall pipeline of the proposed Multi-modal Region-re
Fusion module.

s(zp
u,v, z

p
û,v̂) =

(zp
u,v)Tzp

û,v̂

||zp
u,v||||zp

û,v̂||
,

Given a randomly sampled batch, Ω denotes the pat
Set xp

u,v as the anchor sample, Q(u, v)B{û, v̂ ∈ Ω | yp
û,v̂

u ∨ v̂ , v} represents the set of indexes for all a
positive samples that are with the same label as yp

u,v. T
samples are these augmented patches with differen
anchor sample xp

u,v. To optimize fθ(·) to pull patches o
category together and push the different apart in la
Mp, the contrastive loss of the fine-grained version
as:

L f =
−1
|Ω|
∑

(u,v)∈Ω
Lu,v

f ,

Lu,v
f =

−1
|Q(u, v)|

∑

(û,v̂)∈Q(u,v)

log
exp(s(zp

u,v, z
p
û,v̂)/τ)

∑
(ũ,ṽ)∈Ω\(u,v) exp(s(zp

u,v, z
p
ũ,ṽ)/τ)

.

As illustrated in Fig.2, the encoder fϕ(·) and the de
were respectively pre-trained by different grained v
the slice-level and patch-level supervisory signals. Th
encoder fϕ(·) updates the weights to incentivize the
learn the global prior representations by optimizing
enhances the location ability for the ischemic les
perceiving the healthy surroundings. Then, the learnab
fθ(·) updates the weights to incentivize the model t
local prior representations by optimizing L f , which
the perception ability for semantic relation between th
lesion regions and other health regions. In stage
trained encoder fϕ(·) and decoder fθ(·) of every MR
sequence are inherited into the designed multi-tas
architecture to transfer task-specific prior knowled
ischemic lesion segmentation (Task 1) and TSS cla
(Task 2) tasks, which will boost efficient utilization
paired MRI data.

3.3. Multi-Modal Region-Related Feature Fusion

ne-grained version. The similarity between the

tch embeddings zp
u,v and zp

û,v̂ is measured as.
Inspired by the idea of Transformer(Vaswani et al., 2017), a

multi-modal region-related feature fusion (MRFF) module is
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also includes the multi-head self-attention. As
3, MRFF can capture the feature correlations
nding image regions of the paired multi-modal
with sub-region as the basic unit, which re-

irable effects from feature correlation calculation
nding regions to improve generalization abil-
t can further facilitate TSS decision-making by
cess of multi-modal feature fusion.
fϕ(·)D, fϕ(·)F , and fϕ(·)P first extract deep image

, and FP from paired volumetric MRI sequences
h×w (DWI, FLAIR and PWI), where b, h, and
number, height, and width of the input MRI
ctively. FD, FF , and FP are calculated as:

(zD)), FF = f F
ϕ (A f (zF)), FP = f P

ϕ (A f (zP)) , (9)

e online data augmentation of TSS classification.
image features FD, FF , and FP ∈ Rb×c×d×d are
nified feature space and are concatenated on the
n, where c and d are the channel number and the
cted feature maps. This process is defined as:

F = cat(g(FD), g(FF), g(FP)) , (10)

e global average pooling (GAP) function and
catenation operation. F∈ R3b×d×d is the shal-

ure not containing multi-modal feature correla-

reshaped and divided into
{
Ḟi ∈ R3b× d√

m× d√
m

}m
i=1

,

umber of divided sub-regions with the same size.
Ḟi represents the shallow multi-modal features

b-region. To obtain the low-dimensional feature{
Ḟi

}m
i=1

is flatten linearly to be
{
F̃i ∈ R3b× d2

m

}m
i=1

,

as:
{
F̃i = Flatten(Ḟi)

}m
i=1
, (11)

F̃i are fed into m transformer encoders with
self-attention to capture the feature correlations
odal MRI in each sub-region. Especially, F̃i is
arallel heads of multi-head self-attention and
ed to query Qi, j ∈ R3b×dk , key Ki, j ∈ R3b×dk and
×dv by using three learnable projection matrices
× d2

m , WK
i, j ∈ Rdk× d2

m , and WV
i, j ∈ Rdv× d2

m ) in each
k and dv are the feature dimensions of projection
v = d/2). Then, the outputs of the self-attention
s are concatenated to generate the multi-modal
F̂i for the corresponding sub-region, which is

, j,Qi, j,Vi, j) = so f tmax(
Qi, jKT

i√
dk

)Vi, j , (12)

hi, j = A(Ki, j,Qi, j,Vi, j) , (13)

F̂i = cat(h1, j, ..., hm, j)WO
i + F̃i , (14)

d2

to avoid the vanishing gradient problem during the trainin
Then, all m F̂i are combined to obtain the final mult
fusion feature F̂ ∈ R3mb× d2

m , which captures the corr
among of multi-modal MRI in each independent sub-re

F̂ = cat(
{
F̂i

}m
i=1

) ,

Finally, F̂ is fed into a classification head (Cls Head in
to achieve precise TSS decision-making, which is defin

ρ = σ(WR(ln(g(F̂)))) ,

where ln(·) is the layernorm operation, WR ∈ R1×3mb

weights of the fully connection layer, and σ(·) is the
activation function. ρ ∈ [0, 1] is the predicted probab
TSS < 4.5h.

4. Experiment Setup

Multi-modal MRI datasets for AIS analysis are ve
To support this study, we constructed a standard mult
MRI acute ischemic stroke dataset (MMIS) via data acq
and processing. The study (data acquisition and pro
was approved by the Medical Ethical Committee of i
hospitals and was adherent to the tenets of the Declar
Helsinki.

4.1. Datasets

4.1.1. Data acquisition
To construct the dataset that meets clinical criteria

cluded patients met multiple inclusion criteria: (a) T
patients are within 24 hours of clear symptom onset. (b)
ume of the ischemic lesions needs to be greater than 1 cc
time of the stroke symptom onset and MRI imaging on ad
are recorded (d) The images with severe artifacts were e
MRI imaging data of all AIS patients meeting the abo
ria were retrospectively collected from several stroke ce
China (Nanjing First Hospital, Nanjing, and Affiliated
ing Hospital of Nanjing Medical University, Nanjing)
2016- 2022 in this study. These data are acquired on the
echo planar scanner (Ingenia: 3.0-Tesla, 8-channel receiv
head coil). MMIS currently includes three MRI imaging
DWI, FLAIR and PWI. The pixel dimension of DWI
varies from 0.893×0.893×6.6 to 1.198×1.198×7.3 mm
pixel dimension of FLAIR images varies from 0.411×0
to 0.599×0.599×7.3 mm3. The pixel dimension of PWI
varies from 1.75×1.75×4 to 1.75×1.75×6 mm3. DWI,
and PWI images have 18, 18 and 21 slices respectively
the cerebrum from top to bottom. As shown in Tabl
characteristics distribution of enrolled AIS patients is
which supports that the study about MMIS can be as clo
real clinical diagnosis scenario as possible.

MMIS consists of the labeled part Ml and an unlabe
Mu. The labeled part Ml includes paired multi-mod
sequences, which contain pixel-level annotations for is
he scaling factor, and WO
i ∈ Rmdv× m are the

ce. Besides, the residual connection is employed
lesions on each MRI modal and patient-level TSS classification
labels (ie., TSS < 4.5h or TSS ≥ 4.5h ). The unlabeled part
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he encoder
task 1 and
parameters
optimizing
2016) and
e learning

parameters
ameters of
Loss (Lin
4, and the
including

to alleviate

cific deep-
e of estab-
esions and
hods were
ameter ad-
Jo
ur

na
l P

re
-p

ro
of

istical characteristics distribution of AIS patients on MMIS.

acteristics Unlabeled Part Labeled Part
ographic
atients 425 327
Male 261 201
emale 164 126
Age 65.1 ± 18.7 63.7 ± 16.5
l indicators
TSS - 7.26 ± 9.24
IHSS - 9.12 ± 7.36
n location
left 202 155

right 225 172
S label
e (<4.5 hrs) - 209
e (≥ 4.5hrs) - 118

tailed statistics of labeled and unlabeled part on MMIS. (v / s)
/ slices.

labeled Part (v / s) Labeled Part (v / s) Total (v / s)
364 / 6552 327 / 5886 691 / 12438
291 / 5238 327 / 5886 618 / 11124
366 / 9150 327 / 5886 693 / 15036

massive unpaired MRI data, which is without any
tions and is utilized to learn prior representations.
hree sub-parts Ml

d, Ml
p, Ml

f , which represent three
es respectively. Similarly, Mu includes three sub-
,Mu

f . The detailed statistics of the MMIS are listed

processing
astix tool (Klein et al., 2009) firstly is employed to
registration between DWI in Ml

d, PWI in Ml
p, and

l
f , and each voxel in the DWI and PWI images was
espond to the same anatomical position in FLAIR
, the DWI, FLAIR and PWI images are respaced
3 and are resampled 512×512×18. Based on pro-
s, pixel-level semantic labels for ischemic lesions

evel labels for TSS classification can be annotated
Especially, Ischemic lesions were manually anno-

h MRI modal using 3D slicer software (Fedorov
and this process was performed strictly by three
ith beyond 6-year of clinical experience. Besides,

ging expert with 15-years experience performed
uality control. TSS of each patient was calculated
g the time at which the stroke symptoms were first
m the time at which the first MRI imaging was
hen, TSS is binarized into two classes: positive
d negative (≥ 4.5hrs). Finally, the patient-level TSS

labels can be obtained. For Mu, all images are
2×512×N(18/21) and standardized via the z-score
the input requirement of MGCL training.

entation Details

GPUs with 24 GB memory. The segmentation netw
ing encoder fϕ(·) and decoder fθ(·) follows the arch
the u-net network (Ronneberger et al., 2015). Before
pseudo-label quality refinement strategy based on se
is employed to help obtain a higher-quality pseudo
generate the pseudo-labels for each sub-part Mu

d , Mu
p

unlabeled part Mu, the iterative steps are conducted
(1) First, a segmentation network is trained for 80
the labeled part Ml. (2) Then, the pseudo labels are
for the unlabeled part Mu (3) Next, the segmentatio
is retrained on the combination of Mu with the pse
of high confidence samples and Ml with ground trut
train the segmentation model for 120 generations. (
the higher-quality pseudo labels are re-generated for
cially, the above process only iterates once, and the
threshold for pseudo labels is set to 0.7. In each s
network employs Adam optimizer (Kingma and Ba
parameter optimization, in which the learning rate, m
weight decay are set to 1 × e−4, 0.9, 1 × e−5, 0.1, re
In stage 1, the parameters of the encoder fϕ(·) are u
optimizing Lc, in which the batch size is set to 70 a
epoch is set to 120. Then, the parameters of the de
are updated by optimizing L f , in which the batch si
training epoch is 200. In the fine-grained CL version
level supervisory signal set is generated based on an
threshold t (the area ratio of corresponding lesion
patch), which aims to reduce label errors caused b
positive noise of lesion masks. Therefore, these patch
considered negative samples when the area ratio is
threshold t, and otherwise, it is a positive sample. Th
t and patch size are set to 0.1 and 16 × 16 (refer to S
Besides, the temperature scaling parameter τ is 0.1
CL versions. In stage 2, the entire network including t
fϕ(·) and the decoder fθ(·) is fine-tuned to achieve
task 2 by the multi-task learning mode. In task 1, the
of encoder fϕ(·) and the decoder fθ(·) are updated by
the hybrid loss including Dice Loss (Milletari et al.,
Cross-Entropy Loss (weighted ratio 1:1), in which th
rate is 3 × e−4, and the batch size is 16. In task 2, the
of the encoder fϕ(·) are first frozen, and then the par
the MRFF module are updated by optimizing Focal
et al., 2017), in which the learning rate is 1 × e−3, 2
batch size is 24. Especially, online data augmentation
random flipping, rotating, and zooming was utilized
overfitting in each stage.

4.3. Comparison Settings

The proposed framework is compared to task-spe
learning algorithms respectively due to the absenc
lished methods to simultaneously segment ischemic l
classify TSS. The best results of all compared met
retained to achieve the performance after enough par
justment experiments.

4.3.1. Ischemic lesion segmentation task

sed MGCL is implemented by PyTorch 1.8.0

., 2019) and runs on NVIDIA GeForce RTX 3090
To illustrate the superiority of the proposed MGCL for the

ischemic lesion segmentation task, three different types of meth-
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ed. For fairness, these methods are both imple-
n the u-net network (Ronneberger et al., 2015).
pared methods were pre-trained on Mu, and are
l to achieve ischemic lesion segmentation.

d Learning (BaseLine). The parameters of the
d decoder were randomly initialized. During the
-tuning process, extensive online data augmenta-
erformed, which yielded a strong baseline.

vised Contrastive Learning Four well-known
learning methods (SimCLR (Chen et al., 2020),

Chen and He, 2021), BYOL (Grill et al., 2020),
et al., 2021), GCL (Chaitanya et al., 2020)) are

to pre-train and fine-tune the whole network.

rvised Learning A classic (Mixup (Zhang et al.,
two state-of-the-art (Semi-CL (Hu et al., 2021),

haitanya et al., 2023)) semi-supervised learning
e employed to pre-train the encoder and decoder
y. Then, the whole network was fine-tuned.

sification task
the superiority of the proposed MGCL for the
on task, the proposed method is compared with
smatch, Radiomics features + SVM, 3D ResNet,
D ResNet-mask, and 3D DenseNet-mask. The
ismatch represents the classification way of ex-
logists using the DWI-FLAIR mismatch model.
res + SVM employs Pyradiomics open-source li-
thuysen et al., 2017) to extract radionics features
s support vector machine (SVM) (Burges, 1998)
. ResNet (He et al., 2016) and DenseNet (Huang
universal classification DL-based methods con-
ple convolutional layers and skip connections.
use the classification task branch of the proposed
he feature extraction backbone with the segmen-
ch, the classification task also indirectly utilizes
nformation of lesions. For fairness, the ischemic
ultiplied with original MR images are fed into
, 3D ResNet-mask) and 3D DenseNet (ie., 3D
) to classify TSS.

Strategy and Metrics
ly evaluate the performance between different
sk 1 and Task 2, fivefold cross-validation is
cially, the unlabeled part Mu is only used for
upervised representation learning. The labeled
ed for the performance evaluation of the down-
nd Task 2. Ml is divided into five folds equally.
is used for testing, and the remaining four folds
ining. In Table 3, the partial datasets includ-

data respectively are obtained by randomly
rresponding percentage on each training set of

validation. We repeated the experiment 5 times
ere used as the testing set. The final result of

the average of five predictions.

quantitative metrics. The performance of ischemic les
mentation is evaluated by Dice similarity coefficient (DSC
calculates the similarity of foreground regions in the tw
images according to Eq.13:

DS C(RP,RG) =
2|RP ∩ RG |
|RP| + |RG |

where RP represents the segmentation region of the p
result and RG represents the ground truth region of the i
lesion.

The performance of TSS classification is evaluated
curacy (ACC), sensitivity (SEN), and specificity (SP
aforementioned metrics are calculated by Eq.14-16:

ACC =
T P + T N

T P + FN + FP + T N

S EN =
T P

T P + FN

S PE =
T N

T N + FP
where TP, TN, FP, and FN were regarded as true posit
negative, false positive, and false negative values, resp
Besides, the area under the receiver operating chara
curve (AUROC) is also calculated to evaluate the TSS
cation ability of the different models. In all quantitative
ments, the higher metrics mean better performance. Bes
paired t-test is applied in statistical significant analysis.

5. Experiment Results

5.1. Segmentation Comparison With Limited Labels

Table 3 depicts the segmentation results of the com
study on Ml

d, Ml
p, and Ml

f respectively, and the best res
highlighted with boldface. The training data with differe
(10%, 50%, and 100%) is utilized to comprehensively c
the segmentation performance of different methods. T
results of different methods are presented in the way of
age scores and standard deviations. Firstly, Baseline m
trained U-net network using randomly initialized parame
strong online data augmentation. These universal con
learning methods including SimCLR (Chen et al., 2020)
(Grill et al., 2020), and SimSiam (Chen and He, 2021)
better than the Baseline. This indicates that the comm
plied contrastive learning settings are inefficient for isch
sion segmentation because they only learned slice-level r
tations and unmined medical images of data characteristi
(Zeng et al., 2021) obtained some performance improv
which reasonably leveraged the position information in v
ric medical images to generate contrastive sample pair
(Chaitanya et al., 2020) achieved more competitive perfo
because it additionally learned local representation. Co
to GCL (Chaitanya et al., 2020), Semi-CL (Hu et al., 20
achieve better segmentation because it additionally lear
representations. Similarly, LCLPL (Chaitanya et al., 20
te the advantages of the proposed method, com-
ments and ablation studies are performed via

learns a semantic-guided local representation. For the training
setting with different sizes (10%, 50%, and 100%), our MGCL



Journal Pre-proof

10 JiaRui Sun et al. /Medical Image Analysis (2024)

Table 3: Perform n ± Standard
Deviation). Bes

Method
00% data

Random init 646±0.069

SimCLR (Chen 648±0.066
BYOL (Grill et 647±0.068
SimSiam (Chen 649±0.067
PCL (Zeng et a 655±0.052
GCL (Chaitany 658±0.062

Mixup (Zhang e 651±0.067
Semi-CL (Hu e 664±0.051
LCLPL (Chaita 659±0.069

MGCL(ours) 667±0.054
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ance comparison (Dice) between other methods and our MGCL with limited training data on three datasets (Ml
d , Ml

p and Ml
f ) (Mea

t results are marked in bold.

Ml
d Ml

p Ml
f

10% data 50% data 100% data 10% data 50% data 100% data 10% data 50% data 1

Supervised Learning (BaseLine)
0.614±0.053 0.735±0.048 0.778±0.039 0.636±0.041 0.759±0.037 0.795±0.033 0.375±0.111 0.484±0.082 0.

Self-Supervised Contrastive Learning
et al., 2020) 0.621±0.045 0.729±0.042 0.771±0.036 0.640±0.038 0.764±0.034 0.798±0.028 0.373±0.105 0.485±0.081 0.
al., 2020) 0.637±0.038 0.735±0.034 0.781±0.033 0.667±0.041 0.773±0.032 0.799±0.027 0.381±0.098 0.489±0.071 0.
and He, 2021) 0.642±0.049 0.736±0.035 0.777±0.037 0.671±0.036 0.778±0.029 0.796±0.031 0.378±0.106 0.486±0.075 0.

l., 2021) 0.654±0.046 0.742±0.037 0.779±0.035 0.687±0.034 0.781±0.028 0.803±0.029 0.402±0.095 0.497±0.067 0.
a et al., 2020) 0.672±0.050 0.747±0.039 0.787±0.032 0.689±0.033 0.783±0.031 0.811±0.028 0.413±0.081 0.508±0.068 0.

Semi-supervised Learning
t al., 2017) 0.665±0.034 0.743±0.035 0.771±0.031 0.681±0.036 0.777±0.026 0.806±0.024 0.397±0.078 0.492±0.080 0.

t al., 2021) 0.681±0.043 0.753±0.036 0.794±0.033 0.702±0.032 0.789±0.029 0.815±0.027 0.433±0.085 0.518±0.072 0.
nya et al., 2023) 0.694±0.045 0.761±0.039 0.785±0.034 0.721±0.039 0.788±0.024 0.813±0.022 0.424±0.089 0.505±0.069 0.

0.729±0.036 0.776±0.033 0.809±0.032 0.753±0.035 0.803±0.025 0.826±0.026 0.431±0.084 0.532±0.066 0.

age (b) Random (c) Semi-CL (d) SimCLR (e) BYOL (f) GCL (g) MGCL(Ours) (f) 

Supervised Semi-Supervised Self-Supervised

d comparison of segmentation results on Ml
d , Ml

p and Ml
f with 50% training data. (a) and (b) represent input slice and ground truth. (b)

n results of other methods and our MGCL.

utperforms BaseLine by 11.5%, 5.1% and 2.1%
1.7%, 4.4% and 3.1% Dice on Ml

p, 5.6%, 4.8% and
n Ml

f , respectively. Besides, MGCL achieved the
ance among the above contrastive/semi-supervised
ods in almost all settings and this may be because

ings: (a) These methods ((Chen et al., 2020; Grill
Chen and He, 2021)) only learn global representa-
usually not sufficient for dense prediction tasks. (b)
nsider domain knowledge to construct contrastive
for anatomical structure segmentation, but these
eng et al., 2021; Chaitanya et al., 2020))) usually
nsferred naively when there are significant domain
c) Differences in task scenarios lead to differences
ce. These latest methods ((Hu et al., 2021; Chai-
023)) are designed for very limited labeled settings,
8 samples. For our MGCL, two interesting obser-

e found in Table 3: 1) Performance gains is more

fully learns prior representations that are closely rel
ischemic lesion segmentation problem in advance. T
mance gains become lesser be saturated when the
training samples gradually increases. This is because
training samples, the information difference between t
set for fine-tuning and the training set for self-superv
ing becomes small and the fine-tuning performanc
2) On Ml

d and Ml
p, ours with 50% training data can

or surpass the Baseline performance with 100% tra
which demonstrates that the learned prior representa
MGCL can efficiently mine label information. Thus
observations show that our method can significantl
model dependence on training data.

Fig. 4 visualizes the segmentation results of th
methods. Each method is fine-tuned on Ml

d(the first ro
second row), and Ml

f (the third row) with 50% trainin

ith less training data. This is because the model is the input image of three MRI modals, (b)∼(g) are the predicted

segmentation results of the other methods and ours, and (f) are



Journal Pre-proof

JiaRui Sun et al. /Medical Image Analysis (2024) 11

Table 4: Performan r methods
are indicated by ∗ (

60

65

70

75

80

85

10%

DSC (%)

72.9

64.5

6

Cour

Cour

Rand

Co

Fig. 5: As the num
different grained ve
superiority on the le

35

40

45

50

55

60

65

70

10%

Cou

Cour

Ran

DSC (%)

43.1

39.3

Com

Fig. 6: As the numb
different grained ve
superiority on the le

the ground trut
visualized resul
ischemic lesion
which are also c
Especially, the v
quite effective i

ifferent
CL per-
roposed
ecificity,
signifi-

ence be-
ethods

ismatch
9 speci-
achine

rom Ta-
features
Van Gri-
erforms
images,
the ex-

method
ecificity,
d to the
enseNet
1 accu-

etworks
ask and
vement

sk infor-
e noise
improv-
e entire
ground,
healthy

to the
ons and
feature
ves the

nificant
makes

tiveness
on Ml

d,
90% of
Jo
ur

na
l P

re
-p

ro
of

ce comparison of different methods for TSS classification task (Mean ± Standard Deviation). P-values of the proposed MGCL vs. othe
<0.05) and + (>0.05). Best results are marked in bold.

Method Classification

ACC SEN SPE AUROC

DWI-FLAIR mismatch 0.688±0.038∗ 0.629±0.034∗ 0.759±0.018∗ 0.719±0.037∗

Radiomics features + SVM (Van Griethuysen et al., 2017) 0.703±0.061∗ 0.639±0.055∗ 0.786±0.030∗ 0.741±0.035∗

ResNet (He et al., 2016) 0.721±0.015∗ 0.763±0.020∗ 0.661±0.024∗ 0.799±0.019∗

ResNet-mask 0.765±0.045∗ 0.722±0.046∗ 0.821±0.046∗ 0.818±0.066+

DenseNet (Huang et al., 2017) 0.734±0.054∗ 0.829±0.054+ 0.621±0.022∗ 0.803±0.011∗

DenseNet-mask 0.797±0.047+ 0.759±0.035∗ 0.806±0.021∗ 0.842±0.031+

Ours 0.844±0.029 0.824±0.032 0.867±0.025 0.861±0.028

20% 50% 100%

74.4

77.6

80.9

68.1

75.2

78.6

1.4

64.5

73.5

77.8

se and Fine-grained Version

se-grained Version

om

mparison of Dice when the DWI training data is

gradually increasing

ber of DWI training data decreases, ablation studies of the
rsions in our MGCL are conducted to show the performance
sion segmentation task.

20% 50% 100%

rse and Fine-grained Version

se-grained Version

dom

44.9

53.2

66.7

42.7

49.5

65.2

37.5
39.1

48.4

64.6

parison of Dice when the FLAIR training data is

gradually increasing

er of FLAIR training data decreases, ablation studies of the
rsions in our MGCL are conducted to show the performance
sion segmentation task.

h annotations. It can be easily seen that the
ts predicted by MGCL are more consistent with
boundaries of ground truth than other methods,
onsistent with the quantitative results in Table 3.

5.2. Classification Comparison With Other Methods

Table 4 lists the classification performance of the d
methods. Experimental results demonstrate that our MG
forms other methods in the TSS classification task. The p
MGCL yields 0.844 accuracy, 0.824 sensitivity, 0.867 sp
and 0.861 auroc. Moreover, the analysis of statistical
cance for the p-values shows that the performance differ
tween the proposed MGCL and the other six advanced m
is significant. The radiologist-derived DWI-FLAIR m
model obtains 0.688 accuracy, 0.629 sensitivity, and 0.75
ficity. It can be seen that almost all methods based on m
features outperform the DWI-FLAIR mismatch model f
ble 4. This indicates that efficient utilization of image
is important in TSS classification. Radiomics features (
ethuysen et al., 2017) + SVM (Burges, 1998) method p
multi-radiomics feature extraction on multi-modal MRI
and then SVM performs TSS classification based on
tracted multi-radiomics features. The radiomics-based
achieved 0.703 accuracy, 0.639 sensitivity, and 0.786 sp
but the performance was less than satisfactory. Compare
radiomics-based method, ResNet (He et al., 2016) and D
(Huang et al., 2017) obtained better performance (0.72
racy and 0.734 accuracy) because convolutional neural n
usually can extract richer deep image features. ResNet-m
DenseNet-mask can achieve modest performance impro
of 4.4% and 6.3% accuracy respectively because the ma
mation of lesion annotation can help suppress excessiv
and task-unrelated features in the image background,
ing the ability to distinguish effective features from th
image. Although they can remove noise from the back
lacking the contrast feature between the lesion and the
surroundings still limits the performance. Compared
above methods, our method focuses on task-related regi
perceives healthy surroundings, extracting the contrast
between the lesion and the surroundings, which achie
most competitive performance.

5.3. Ablation Studies of MGCL

5.3.1. Ablation Studies on lesion segmentation task
Fig.5-7 demonstrates that our innovations bring sig

improvements to the lesion segmentation task, which
our MGCL more competitive. Specifically, the effec
of different grained versions in MGCL is demonstrated
Ml

p, and Ml
f . As shown in Fig.5-7, 0%, 50%, 80%, and
isual comparison also shows that MGCL is also
n locating boundaries of ischemic lesions.

training data are removed respectively on each dataset. It can
be seen that with the rapid reduction of the number of training
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0% 20% 50% 100%

ourse and Fine-grained Version

ourse-grained Version

andom

78.9

80.3

82.6

68.1

71.3

77.3

80.4

63.6

68.1

75.9

79.5

Comparison of Dice when the PWI training data is

gradually increasing

umber of PWI training data decreases, ablation studies of the
versions in our MGCL are conducted to show the performance
e lesion segmentation task.

ble 5: Ablation studies on TSS classification task.

ne Cls Head ACC SEN SPE AUROC

om Init)

MLP 0.742 0.806 0.667 0.745
Transformer 0.763 0.735 0.778 0.779

MRFF 0.803 0.743 0.871 0.831

trained)

MLP 0.761 0.743 0.781 0.763
Transformer 0.798 0.757 0.828 0.823

MRFF 0.844 0.824 0.867 0.861

formance of models with different modules starts
different degrees: the random initialized model

st, the model pre-trained by the coarse-grained CL
second, and the model pre-trained by the coarse

ned CL version is the slowest. Compared to the
tialized model, MGCL takes the weights pre-trained
-fined CL version to gain obvious dice improvement
on Ml

d, 11.7% on Ml
p, and 5.6% on Ml

f when the
aining data is reduced to 10%. It is worth noting
CL with only 10% training data can approach the
of the random initialized model with only 50%
on Ml

d and Ml
p. Therefore, the experiment results

our innovation including the coarse-grained and
ned CL versions of MGCL can both improve the
of the ischemic lesion segmentation task.

on Studies on TSS classification Task
monstrates our innovations display significant im-
for the TSS classification task. The backbone of
tion task (Fig.2) is reserved to investigate the in-
ch innovation (ie., coarse-grained CL version of

FF). First, the effect of the coarse-grained CL ver-
nstrated by comparison with the backbone with
alized weights. Second, in each backbone with
alization weights, well-known classifiers are com-

Table 6: Performance comparison with different MRI modal co
TSS classification task.

modals Classification

DWI FLAIR PWI ACC SEN SPE A

✓ 0.738 0.667 0.861
✓ 0.619 0.614 0.828

✓ 0.580 0.363 0.768
✓ ✓ 0.813 0.804 0.828
✓ ✓ 0.769 0.686 0.867
✓ ✓ ✓ 0.844 0.824 0.867

formance in all classifiers, which obtains 0.803 accu
sensitivity, 0.871 specificity, and 0.831 auroc. Compar
or Transformer(Vaswani et al., 2017), MRFF can o
and 4.0% accuracy improvement respectively in tw
backbones. Results indicate that MRFF explicitly com
represents the DWIF-LAIR and DWI-PWI mismatc
on the feature level, and fuses this information to extr
features finally, which can promote TSS classificat
mance. With the backbone pre-trained by the coarse-
version, MLP, Transformer(Vaswani et al., 2017), a
achieved 1.9%, 2.5%, and 4.1% accuracy improve
spectively. Results indicate that the coarse-grained
MGCL utilizes the learned global prior representation
the ischemic lesions while perceiving the healthy sur
extract task-related features, and finally contribute t
TSS classification.

5.4. Comparison with Different Modals Combinatio
Table 6 shows the TSS classification performanc

combined case of different MRI modals using our
method (single or multiple modal branches in Fig
investigates the contribution of different modals for T
cation. Classification performance is inefficient when
TSS using a single DWI, FLAIR, or PWI image.
certain performance improvement compared to a sin
when leveraging the combination of two modals. Thi
that the TSS classification performance can be impr
the model incorporates the latent knowledge of DW
or DWI-PWI mismatch patterns using the MRFF m
achieves the best performance when all modals are
This indicates that the model incorporates the diagno
edge of multiple mismatch patterns and fuses this kn
extracted deep features, which further facilitates TSS
tion performance.

5.5. Representation Analysis of Different Grained Ve
The learned prior representations from coarse-g

fine-grained CL versions of MGCL are visualized o
and Ml

f without using the annotation information to d
the discrimination ability for different lesion samples
level and patch level. Specifically, the proposed MGC
trained on Mu

d , Mu
p, and Mu

f . After passing random
data on Ml

d, Ml
p and Ml

f using the trained MGCL, the

onstrate the effect of MRFF. With the backbone of
itialized weights, our MRFF achieves the best per-

ferent level representations are obtained from the projection head
Hs(·) and Hp(·) respectively. Finally, the t-Distributed Stochastic
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(b) FLAIR (c) PWI

e global representations learned from the coarse-grained
(a), (b), (c) mean applying t-SNE for the DWI, FLAIR and
vely.

dding (t-SNE) method (Van der Maaten and Hin-
ployed to visualize the learned representations.
lobal Representation. Fig.8 visualizes learned
after applying t-SNE on slice-level for three

ta. In each column, the first cluster (from top
e slice-level representations generated by the
ized model, the second cluster is generated from
trained by the coarse-grained CL version. It
en that slice-level representations of different
lice with/without ischemic lesions) generated by
itialized model are mixed in the low latent space,
e representations from the coarse-grained CL

tered into two meaningful groups. In this cluster,
es in each group belong to the same categories.
e seen that the representations of the same class
closely (indicated by their coordinates) and the

hed apart in low latent space. This indicates that
ed CL version can facilitate the model to gain

iminative ability for lesions.
Local Representation. Fig.9 visualizes learned
after applying t-SNE on patch-level for three
.9 is consistent with the description structure of
-grained CL version can facilitate pushing the
rent categories (the patch with/without ischemic
ccording to the extracted semantic information,
belong to the same categories closer together to
lusters. This indicates that the fine-grained CL
litate the model to gain local perception ability
lation between the ischemic lesion region and
ions.
e learned global and local prior representations
ily achieving competitive segmentation and clas-
mance in limited annotation settings.

Ability Analysis of Task-Related Regions

that EigenCAM (Muhammad and Yeasin, 2020)

(a) DWI (b) FLAIR (c) PW

Fig. 9: Visualize the local representations learned from the fine-grain
of MGCL. (a), (b), (c) mean applying t-SNE for the DWI, FLAIR
patches respectively.

Table 7: Performance comparison (Dice) at different area-ratio thres
three datasets (Ml

d , Ml
p and Ml

f ) (Mean ± Standard Deviation).

t
Ml

d Ml
p Ml

f

10% data 50% data 10% data 50% data 10% data

0.05 0.717±0.039 0.766±0.032 0.759±0.034 0.804±0.027 0.425±0.088 0
0.1 0.729±0.036 0.775±0.033 0.753±0.035 0.803±0.025 0.431±0.084 0
0.2 0.713±0.044 0.759±0.037 0.738±0.033 0.793±0.029 0.422±0.069 0
0.3 0.692±0.042 0.751±0.040 0.721±0.037 0.780±0.030 0.411±0.071 0

in Fig. 10 (a), the lesion regions are delineated on three
MRI models by the red circle. For the observation s
perception maps are overlapped with the correspondin
slices. lk represents the perception map from the k-th lay
encoder. l−1 represents the perception map from the la
of the encoder. In Fig.10 (b), it can be seen that the ra
initialized model can not perceive the lesion regions. Co
to (b), the model trained by MGCL can efficiently loca
chemic lesions while perceiving the healthy surrounding
the increment of k (from (c) to (f) in Fig. 10), the percep
the ischemic lesions is gradually enhanced, which can g
accurate perception in the last layer of the encoder. Th
the model that transfers the global prior representation
cate ischemic lesions and perceive healthy surroundings,
the segmentation and classification tasks to efficiently fi
related regions, and extracting the task-related features
mitigates overfitting caused by the limited training data

5.7. Efficiency Analysis of Area-ratio Threshold

To investigate the efficiency of the area-ratio thresh
the lesion segmentation task, the performance at differen
olds is compared quantitatively on three datasets (Ml

d,
Ml

f ). As listed in Table 7, the lesion segmentation task a
optimal performance when threshold t is set to 0.1. W
threshold t is set larger, the performance starts to drop g
This fact is attributed to (1) These patches with relativ
lesions also start to be set to negative samples when t in
The caused label errors are detrimental to the local rep
generate the perception maps that analyze the
ifferent areas on three MRI modal. As described

tion learning in the fine-grained CL version. (2) The area ratio of
the lesion mask and patch is relatively small, and these patches
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(e) l -2 (MGCL)(d) ) l -3 (MGCL)(c) l -4 (MGCL) (f) l -1 (MGCL)(a) Input slice (b) l -1 (Random init)

DWI

FLAIR

PWI

Enhanc
percept
for the 
surroun

Enhan
ability 
ischem

ion ability analysis of task-related regions. lk represents the perception map from the k-th layer of the encoder. With the increment of
rceive the precise task-related regions including ischemic lesion region and healthy surroundings.

ain rich edge information. Therefore, when t be-
, these patches are considered as negative samples
learning efficiency for edge features may become
lly.

n and Conclusion

g the unknown TSS for unwitnessed AIS patients
odal MRI imaging is a challenging, but clini-

gful task for better stroke evaluation and treatment
ing. DWI-FLAIR mismatch model is now clini-
ended to classify TSS for guiding tPA thrombolysis.
mismatch model may not find all patients within
se of its simplicity (Odland et al., 2015). Due to

es of convolutional neural networks in feature ex-
ted deep learning-based methods were developed
e TSS classification performance. Limited by the
IS onset and medical conditions, it is difficult to
scale paired multi-modal MRI imaging sequences.
riven methods are easier to learn irrelevant fea-
SS classification because of the lack of sufficient
, which leads to poor generalization ability. We
t unpaired MRI data are available, but are less of-
d and underexplored. Thus, we proposed a novel
contrastive learning (MGCL) framework to fully

e-scale unpaired unlabeled data to incentivize ef-
tion of the limited paired data, which facilitates

nce improvement of the ischemic lesion segmenta-
classification tasks. Specifically, MGCL achieves
analysis via two cascade stages: Stage 1 encour-

dels to learn prior representations from massive
paired data based on two task-specific contrastive
ions: (a) The coarse-grained CL version encour-
els to learn global prior representations to enhance

deep features. (b) The fine-grained CL version enco
models to learn local prior representations to enhan
criminative ability for the ischemic lesion regions, w
supplement the lesion details. Finally, learned globa
prior representations are transferred reasonably into
multi-task framework, which comprehensively impro
formance of ischemic lesion segmentation and TSS cl
tasks. In this process, the proposed multi-modal reg
feature fusion (MRFF) module explicitly calculates
correlations among corresponding image regions of
multi-modal MRI sequences, which can explicitly in
clinical diagnostic knowledge including DWI-FLAIR
PWI mismatch patterns into TSS decision-making.
experiments on the large-scale multi-center MRI data
strate the superiority of the proposed MGCL. Our m
simultaneously segment ischemic lesions and class
an end-to-end multi-task way and outperforms the co
radiologist-derived DWI-FLAIR mismatch model.
it is very promising that it helps better stroke eval
treatment decision-making.

Recent works (Srinidhi et al., 2022; Gao et al., 2
tanya et al., 2019, 2021) provide evidence that integ
supervised and semi-supervised learning methods usu
boosts the potential of massive unlabeled data. Ther
to efficiently integrate these two learning paradigms w
one of our future work.

Declaration of Competing Interest

The authors declare that they have no known comp
cial interests or personal relationships that could hav
to influence the work reported in this paper.

Acknowledgments
ability for the ischemic lesions while perceiving
urroundings, which helps extract the task-related

This work was supported in part by the National Key
Project of Research and Development Plan under Grants



Journal Pre-proof

JiaRui Sun et al. /Medical Image Analysis (2024) 15

2022YFC24016
and in part by th
under Grant T2
search and Deve
under Grant BE

References

Araslanov, N., Rot
adapting semant
ence on Comput

Azizi, S., Mustafa
A., Karthikesali
supervised mode
the IEEE/CVF In

Bang, O. Y., S.J.L
predicts respons
90, 101926.

Benjamin, E.J., Mu
Carson, A.P., Ch
2019. Heart dis
american heart a

Burges, C.J., 1998.
Data mining and

Campbell, B.C., Ma
M., Levi, C.R.,
thrombolysis to
systematic revie
394, 139–147.

Chaitanya, K., Erdi
of global and lo
annotations. Adv
12558.

Chaitanya, K., Erd
loss with pseudo
segmentation. M

Chaitanya, K., Kara
E., 2019. Semi-s
Processing in M
Hong Kong, Chi

Chaitanya, K., Kara
Konukoglu, E.,
medical image s

Chen, C., Wang, Y.,
powered deep lea
ultrasound video

Chen, T., Kornblith
contrastive learn
machine learnin

Chen, X., He, K., 2
Proceedings of t
Recognition, pp

Davis, S.M., Donna
Barber, P.A., Bl
of alteplase beyo
evaluation trial (
Neurology 7, 29

Ebinger, M., Galin
J.B., 2010. Flui
from stroke onse

Emeriau, S., Serre,
2013. Can diffu
mismatch (posit
version recovery
44, 1647–1651.

Fedorov, A., Beich
Pujol, S., Bauer
slicer as an imag
Magnetic resona

Galinovic, I., Puig
S., Pedraza, S.,

ent of the
mismatch.

C., Meng,
for tissue
l contrast.

skaya, E.,
020. Boot-
Advances

Wang, Z.,
classifica-

back loop,
cations of

ntrast for
EEE/CVF
9738.
for image
vision and

.W., 2019.
time from

e learning
onference
, Springer.

Densely
onference

, Chen, Y.,
omatically

., Yin, X.,
machine

European

ion. arXiv

9. Elastix:
nsactions

sed visual
erence on

Yang, G.,
diagnosis

J.S., Kim,
ke within

ed feature
sis. IEEE

for dense
erence on

, J., 2021.
ctions on

Journal of

, Roworth,
computed

volutional
016 fourth

-invariant
Jo
ur

na
l P

re
-p

ro
of

00, 2022YFC2408500, and 2022YFE0116700,
e National Natural Science Foundation of China
225025 and 82202128, in part by the Key Re-
lopment Programs in Jiangsu Province of China
2021703 and BE2022768.

h, S., 2021. Self-supervised augmentation consistency for
ic segmentation, in: Proceedings of the IEEE/CVF Confer-
er Vision and Pattern Recognition, pp. 15384–15394.
, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., Loh,
ngam, A., Kornblith, S., Chen, T., et al., 2021. Big self-
ls advance medical image classification, in: Proceedings of
ternational Conference on Computer Vision, pp. 3478–3488.
.K.S.J.K.G.M.C.C.S.O.B...L.D.S., 2011. Collateral flow
e to endovascular therapy for acute ischemic stroke. Stroke

ntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W.,
amberlain, A.M., Chang, A.R., Cheng, S., Das, S.R., et al.,
ease and stroke statistics—2019 update: a report from the
ssociation. Circulation 139, e56–e528.
A tutorial on support vector machines for pattern recognition.
knowledge discovery 2, 121–167.
, H., Ringleb, P.A., Parsons, M.W., Churilov, L., Bendszus,
Hsu, C., Kleinig, T.J., Fatar, M., et al., 2019. Extending
4· 5–9 h and wake-up stroke using perfusion imaging: a

w and meta-analysis of individual patient data. The Lancet

l, E., Karani, N., Konukoglu, E., 2020. Contrastive learning
cal features for medical image segmentation with limited
ances in Neural Information Processing Systems 33, 12546–

il, E., Karani, N., Konukoglu, E., 2023. Local contrastive
-label based self-training for semi-supervised medical image
edical Image Analysis 87, 102792.

ni, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu,
upervised and task-driven data augmentation, in: Information
edical Imaging: 26th International Conference, IPMI 2019,
na, June 2–7, 2019, Proceedings 26, Springer. pp. 29–41.
ni, N., Baumgartner, C.F., Erdil, E., Becker, A., Donati, O.,
2021. Semi-supervised task-driven data augmentation for
egmentation. Medical Image Analysis 68, 101934.
Niu, J., Liu, X., Li, Q., Gong, X., 2021. Domain knowledge
rning for breast cancer diagnosis based on contrast-enhanced
s. IEEE Transactions on Medical Imaging 40, 2439–2451.

, S., Norouzi, M., Hinton, G., 2020. A simple framework for
ing of visual representations, in: International conference on
g, PMLR. pp. 1597–1607.
021. Exploring simple siamese representation learning, in:
he IEEE/CVF Conference on Computer Vision and Pattern
. 15750–15758.
n, G.A., Parsons, M.W., Levi, C., Butcher, K.S., Peeters, A.,
adin, C., De Silva, D.A., Byrnes, G., et al., 2008. Effects
nd 3 h after stroke in the echoplanar imaging thrombolytic
epithet): a placebo-controlled randomised trial. The Lancet
9–309.
ovic, I., Rozanski, M., Brunecker, P., Endres, M., Fiebach,
d-attenuated inversion recovery evolution within 12 hours
t: a reliable tissue clock? Stroke 41, 250–255.
I., Toubas, O., Pombourcq, F., Oppenheim, C., Pierot, L.,

sion-weighted imaging–fluid-attenuated inversion recovery
ive diffusion-weighted imaging/negative fluid-attenuated in-
) at 3 tesla identify patients with stroke at¡ 4.5 hours? Stroke

el, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C.,
, C., Jennings, D., Fennessy, F., Sonka, M., et al., 2012. 3d
e computing platform for the quantitative imaging network.
nce imaging 30, 1323–1341.

and region of interest–based inter-rater agreement in the assessm
diffusion-weighted imaging–fluid-attenuated inversion recovery
Stroke 45, 1170–1172.

Gao, Z., Jia, C., Li, Y., Zhang, X., Hong, B., Wu, J., Gong, T., Wang,
D., Zheng, Y., et al., 2022. Unsupervised representation learning
segmentation in histopathological images: From global to loca
IEEE Transactions on Medical Imaging 41, 3611–3623.
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   In general, our contributions include the following:  
 We propose a novel multi-grained contrastive learning (MGCL) framework based 






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on two cascade stages for the AIS analysis task.  

 We design two task-specific contrastive feature enhancement strategies, which help 

to enhance the global location ability for the ischemic lesions and the local 

perception ability for semantic relation respectively. 

 We develop a multi-modal region-related feature fusion module to adequately 

capture the feature relationship between multi-modal MRI images. 

 Extensive experiments also show the superiority of the proposed framework on a 

constructed large-scale multi-center multi-modal MRI dataset.  
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