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Abstract

Purpose: Frontotemporal lobe dementia (FTD) results from the degeneration of
the frontal and temporal lobes. It can manifest in several different ways, leading
to the definition of variants characterised by their distinctive symptomatologies.
As these variants are detected based on their symptoms, it can be unclear if they
represent different types of FTD or different symptomatological axes. The goal
of this paper is to investigate this question with a constrained cohort of FTD
patients in order to see if the heterogeneity within this cohort can be inferred
from medical images rather than symptom severity measurements.
Methods: An ensemble of convolutional neural networks (CNNs) are used to
classify diffusion tensor images collected from two databases consisting of 72
patients with behavioural variant FTD and 120 healthy controls. FTD biomarkers
were found using voxel-based analysis on the sensitivities of these CNNs. Sparse
principal components analysis (sPCA) is then applied on the sensitivities arising
from the patient cohort in order to identify the axes along which the patients
express these biomarkers. Finally, this is correlated with their symptom severity
measurements in order to interpret the clinical presentation of each axis.
Results: The CNNs result in sensitivities and specificities between 83% and 92%.
As expected, our analysis determines that all the robust biomarkers arise from
the frontal and temporal lobes. sPCA identified four axes in terms of biomarker
expression which are correlated with symptom severity measurements.
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Conclusion: Our analysis confirms that behavioural variant FTD is not a singu-
lar type or spectrum of FTD, but rather that it has multiple symptomatological
axes that relate to distinct regions of the frontal and temporal lobes. This analy-
sis suggests that medical images can be used to understand the heterogeneity of
FTD patients and the underlying anatomical changes that lead to their different
clinical presentations.

Keywords: Frontotemporal lobe dementia, convolutional neural networks, voxel-based
diktiometry, disease sub-typing

1 Introduction

Frontotemporal lobe dementia (FTD) is a collection of various neurodegenerative pat-
terns that entail the progressive degradation of both cognitive functions (such as
memory) and behavioural functioning due to the degradation of the frontal and tem-
poral lobes [1]. FTD is a leading form of dementia-like disorder along with Alzhiemer’s
disease, vascular dementia, and Lewy body dementia, all of which are growing in preva-
lence with an ageing population. FTD is very heterogeneous with clinical variants
including the behavioural variant (bvFTD), non-fluent variant primary progressive
aphasia, and semantic-variant primary progressive aphasia [1].

However, sub-typing of FTD to this degree requires the variant’s characteristic
symptoms be noticeable and measurable, making it difficult to discern prior to their
manifestation. Medical imaging, notably MRI, has been investigated as a potential
source for biomarkers that could precede FTD’s more overt symptoms and potential
aid in distinguishing between its various sub-types. In addition, the symptoms that
define these variants are not mutually exclusive and could lead to a patient being
diagnosed with a particular variant when they actually display multiple ones. This is
consistent with genetic evidence that shows a degree of overlap between variants [2].

Structural MRI has long been used to quantify cortical thinning as a marker of
cortical degeneration which is the most characteristic sign of FTD [3]. These methods
include those based on explicitly segmenting specific cortical regions in MRI [4] as
well as voxel-based morphometry [5]. DTI-based methods use features such as the
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD) and radial
diffusivity (RD) computed from tract-based spatial statistics in combination with
functional connectivity features obtained from fMRI data have been able to classify
Alzheimer’s disease from bvFTD [6]. A similar method using an elastic net regression
model attempted to distinguish presymptomatic FTD mutation carriers from controls
suggested that the FTD-related pathological processes start in the white matter [7].

Deep learning shows a large capacity to detect diseases based on medical images,
although research attention in dementia has been predominantly directed towards
Alzheimer’s disease [8]. These machine learning methods have been highly varied with
some using segmentation to measure particular features (such as ventricular volume) as
input to a neural network whereas others directly process the image as a whole without
pre-specified features [9]. Unlike the aforementioned methods, few machine learning
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tools permit explainable biomarkers that could help improve our understanding of
FTD and offer features for further investigation and potential FTD patient staging.
However, they frequently report accuracies, sensitivities, and specificities on the order
of 80% which is a much higher threshold than simple statistical significance used in
traditional neuroimage processing methods for the same classification problems [8].
This illustrates a fundamental gap between these two paradigms: the former may not
immediately provide the accuracy required to be individually diagnostic but add to
our understanding of FTD and the latter is the opposite.

Voxel-based diktiometry (VBD) is a recently-proposed method to bridge this divide
for neurological disorders [10, 11]. This approach combines convolutional neural net-
work (CNN) ensembles with voxel-based analysis of their sensitivity maps to detect
robust and repeatable features for a particular classification or regression task. The
sensitivity maps are calculated from the set of testing images used in repeated cross-
validation of the CNN architecture. This allows for a larger number of independent
CNNs to be trained. Voxel-based analysis (VBA) is then used to statistically isolate
patterns that robustly appear across patients and random network initialisations.

Unlike traditional VBA, these patterns do not necessarily reflect a local region,
but rather how it contributes to the understanding of the entire image used by the
CNN. Thus, these biomarkers highlight not only correlations between the underlying
variables at a specific region and the disorder of interest, but also those between
patterns connecting multiple regions. One example would be asymmetry biomarkers
which can be more indicative than unilateral ones [10]. These are fundamentally non-
local, involving multiple regions (i.e. the same anatomy but on different hemispheres)
unlike the local biomarkers found in traditional VBA. One limitation of this non-
locality is that it is not always clear if two regions of the brain identified through
VBD are related to a single complex biomarker or multiple simpler biomarkers which
is particularly when there is significant patient variability.

Contributions

This article applies VBD specifically to bvFTD. To overcome the aforementioned
limitation, the VBD results will be decomposed using sparse principal components
analysis (sPCA). This allows us to extract biomarkers which are expressed differently
in different patients and correlate with particular clinical scores. This framework is
not meant to be a diagnostic tool per se, but a knowledge discovery tool for more
targeted biomarkers sensitive to disease heterogeneity.

2 Materials and methods

2.1 Participants

We have used two datasets compiled from healthy individuals and FTD patients
diagnosed with bvFTD. A summary is given in Table 1.

The first includes 21 FTD patients diagnosed with bvFTD and 18 healthy
controls (HC) recruited for the ECOCAPTURE protocol ([12, 13], Clinicaltrials.
gov:NTC02496312, NCT03272230) at the ICM, Salpêtrière hospital Paris. Included
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patients must meet the following criterion: a) diagnosed with bvFTD according to
Rascovsky’s international criteria. The inclusion criteria should also meet b) no evi-
dence of any other cerebral pathology; c) a MMSE superior or equal than 10; d) aged
between 40 and 85; e) without evidence of any psychiatric condition and a MADRS
score inferior to 20; f) no evidence of excessive consumption of psychotropic drugs;
g) no major physical disability disrupting mobility; h) no heart pacemaker. The HC

Table 1: Participant demographic and clinical data comparing FTD patients and HC.

ECOCAPTURE FTD patients (n = 21) HC (n = 18) Statistics
Women (n = 7) (n = 10) χ2 = 0.26 p = 0.608
Age 65.12 (9.23) 62.61 (7.24) −0.897 p = 0.376 a

Anxiety and depression
HADS 13.48 (7.75) 5.44 (2.87) -3.719
MADRS 11.90 (5.96) 2.11 (2.40) -4.578

Apathy
DAS 31.57 (9.23) 19.78 (8.14) -4.198 p < 0.0002 a

SAS 16.19 (4.88) 5.78 (3.12) -7.780 p < 0.0001 a

Behavioural metrics
Compulsivity (n = 14) 9.07 (15.51) (n = 17) 0.24 (0.97) -3.409 p = 0.0007 b

Social disinhibition (n = 14) 8.64 (6.87) (n = 17) 3.47 (5.06) -2.521 p = 0.0117 b

Cognition
FAB 12.00 (3.48) 17.33 (0.84) 5.141 p < 0.0001 b

HAY B-A (n = 20) 96.48 (113.31) (n = 18) 36.97 (17.91) -2.317 p = 0.0312 c

HAY error score (n = 20) 19.10 (12.60) (n = 18) 3.11 (2.56) -4.648 p < 0.0001 b

MATTIS DRS 118.48 (9.60) 142.17 (1.29) 5.324 p < 0.0001 b

MMSE 23.71 (2.61) 29.39 (0.78) 5.127 p < 0.0001 b

Social and emotions
Mini-SEA faux pas (n = 18) 9.27 (3.69) (n = 18) 13.46 (1.10) 4.615 p < 0.0002 c

Mini-SEA recognition 9.18 (2.27) 12.95 (0.95) 6.936 p < 0.0001 c

FTLDNI FTD patients (n = 51) HC (n = 112) Statistics
Women (n = 16) (n = 65) χ2 = 8.93 p = 0.00281
Age 61.06 (6.61) 63.28 (7.81) 1.761 p = 0.080160 a

Cognition
CDR (n = 49) 1.21 (0.65) (n = 111) 0.01 (0.08) -9.995 p < 0.0001 b

MMSE (n = 47) 23.15 (4.80) (n = 106) 29.40 (0.08) 9.181 p < 0.0001 b

MOCA (n = 33) 16.85 (7.30) (n = 60) 27.92 (1.61) 7.227 p < 0.0001 b

Language
Calif. Verb. Learn. (n = 47) 19.02 (8.18) (n = 59) 30.07 (4.07) 6.903 p < 0.0001 b

Neuropsychiatric Invent.
Motor Disturbance (n = 32) 2.19 (0.59) n/a

n = count of available data when different than the total, mean (standard deviation), χ2 = chi-squared.
Abbreviations: DAS, Dimensional Apathy Scale; FAB, Frontal Assessment Battery; HADS, Hospital
Anxiety and Depression Scale; HAY, Hayling test; MADRS, Montgomery-Asberg Depression Rating
Scale; MATTIS, Mattis Dementia Rating Scale; Mini-SEA: minisocial & emotional assessment; MMSE,
Mini Mental State Examination; SAS, Starkstein Apathy Scale; CDR, Clinical Dementia Rating Scale;
MOCA, Montreal Cognitive Assessment - Total score with adjustment for education level; Calif. Verb.
Learn, California Verbal Learning Test - Total correctly recalled items over four learning trials.

a Student t-test
b Wilcoxon test
c Welch test
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group must meet criteria d) - h) for matching purposes. All participants underwent
the same cognitive, behavioural, and apathy tests. The MRI acquisition protocol used
a 3T Siemens MRI scanner 64-channel Tim system and included T1 MPRAGE scans
(TR = 2400 ms, TE = 2.17 ms, matrix = 320×320×256, slice thickness = 0.7 mm)
and single-shot spin-echo diffusion weighted images (DWI) with 60 directions, cover-
ing the whole head with a posterior-anterior phase acquisition (b0 = 0 s/mm2, b =
2000 s/mm2, TE = 75 ms, TR = 3500 ms, flip angle = 90 degrees, field of view =
208 mm2, voxel size = 1.76 × 1.76 × 1.76 mm3). All acquisitions were performed at
CENIR (Human MRI Neuroimaging core facility, Salpêtrière hospital, Paris, France)

The second dataset was collected at three different sites from the Fronto-Temporal
Lobar Degeneration Neuroimaging Initiative (FTLDNI) [14]. The dataset comprises
121 HC as well as patients with different FTD variants of which we use the 51 with
bvFTD. Recruited patients had neurological history and examination, collateral source
interview, and neuropsychological testing. The clinical measures mostly come from the
third version of the NIH National Alzheimer’s Coordinating Center’s (NACC) Uni-
form Data Set neuropsychological battery, which includes a module for assessment of
FTD [14]. Behaviour, comportment, personality, language aspects and Clinical Demen-
tia Rating Scale (CDR) scoring was used for staging [14]. We included all patients
diagnosed with bvFTD and HC. The inclusion criteria for both groups was to have
both T1 and DWI sequences. The MRI acquisitions for the selected individuals were
performed at the Neuroscience Imaging Center at the University of California, San
Francisco and at the Athinoula A. Martinos Center for Biomedical Imaging at Mas-
sachusetts General Hospital. The MRI acquisition protocol used a 3T Siemens MRI
scanner 12-channel Tim Trio system. T1 MPRAGE scans used TR = 2300 ms, TE =
2.9 ms, matrix = 240×256×160 and a slice thickness = 1 mm. DWI data was acquired
using a single-shot spin-echo sequence with 64 directions, covering the whole head
with a posterior-anterior phase acquisition (b0 = 0 s/mm2, b = 2000 s/mm2, TE =
86 ms, voxel size = 2.2 × 2.2 × 2.2 mm3). The TR was either 8200 or 6600 ms and
the flip angle was 90 or 180 degrees depending on the acquisition centre.

2.2 Population-wise registration

Standard preprocessing tools were used for noise removal and bias field correction on
the T1 images [15, 16] and for noise removal, ringing artifacts removal and bias field
correction on the DWI images [17]. Also for the DWI sequences, the Eddy currents and
subject motion artifacts were corrected using FSL [18]. We then calculated the DTI by
means of weighted least squares (WLS) fitting method included in SlicerDMRI [19].

Two co-registrations were calculated for each subject using the Advanced Neu-
roimaging Tools [20, 21] (ANTs). The first one, a rigid registration between the non
diffusion weighted image b0 and the T1 image and the second one a deformable reg-
istration between the T1 image and the MNI template [22]. This registration permits
the standardisation of the images before being provided to the CNNs and ensures all
sensitivity information is given in the common MNI co-ordinate space.
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Fig. 1: Convolutional neural network architecture.

2.3 CNN training and testing

We have trained a simple CNN architecture as shown in Figure 1 Given the small
amount of data, 4-fold cross-validation was used to estimate the CNN’s performance
and create the CNN ensemble. We trained each CNN for 120 epochs with a starting
learning rate (lr) of 2× 10−4 that gradually decreased 50% every 30 epochs to finally
end the training with a lr = 2.5× 10−5. We used Adam optimiser and a L2 regulari-
sation of 0.5 for the CNN optimisation and binary cross-entropy as the loss function.
Whether or not the networks contain information about the relevant classification
problem is determined via a χ2-test. Specifically, if the p-value is less than 5× 10−4,
then we considered the network to be valid for biomarker discovery.

2.4 Voxel-based analysis statistical tests and filtering

We calculated the sensitivity maps of the ensemble of CNNs relative to the mean diffu-
sivity (MD), anisotropy (A), fractional anisotropy (FA) and pseudo-planarity (PsPl).
Since all sensitivity maps were already registered in the MNI space, we directly per-
formed a two sample t-test where the first and second groups consisted of the DFT and
HC cohorts, respectively. Finally a significance threshold of p < 0.05 FWE was applied
to obtain the positive and negative correlated diktiometry maps within a minimum
cluster size of 256 voxels. Apart from the analysis through VBD we also performed a
VBA on the traditional diffusivity measures.

2.5 Sparse PCA

One of the limitations of VBD for disease classification is that it couples together
potentially multiple distinct biomarkers [10] which is of particular importance for
highly heterogeneous diseases such as FTD. In order to decompose the result into
potentially distinct, we decomposed the sensitivity maps using sparse principal com-
ponents analysis (sPCA) [23]. The aim of sPCA is to represent a set of features in a
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Table 2: Confusion matrix, sensitiv-
ity, specificity, and balanced accuracy
of the CNNs on the testing folds.

Ground truth
HC FTD

Prediction
HC 120 12

FTD 12 60
Sensitivity: 83.33 %
Specificity: 92.30 %

BACC: 87.8%
χ2-statistic: 113.76

p-value: < 1× 10−5

lower-dimensional space by computing its n principal components through a sparse
dictionary that penalises those with low variance. This decomposed the sensitivity map
into a series of maps that are not necessary orthogonal but express when signals in
these regions frequently co-occur as a group. These are often spatial clusters although
this is not guaranteed. We thus retain only spatial clusters with a minimum size of 256
mm3 across the sensitivities to remove these smaller, likely spurious results. We set the
parameter controlling the sparsity α equal to 0.8 and calculated n = 5 components.

sPCA was applied to the patient-specific sensitivity maps MD, A and PsPl specif-
ically on the FTD patients since FA depends on MD and A [10]. Linear regression
was used to see if the particular principal components related to particular symp-
tomatology measures which could facilitate their interpretation. It is notable that this
symptomatology information was not used for developing VBD biomarkers, only the
knowledge of whether or not the patient has bvFTD. Thus, any correlation with clinical
scores would show biomarkers for bvFTD that explain that particular symptom.

3 Results

3.1 Model Classification Accuracy

Table 2 shows the model performance, reaching a balanced accuracy of 87.8% which
is significantly better than chance (χ2 = 113.76, p < 10−5). Although the number of
datasets in this problem was relatively small, we were successful in achieving suffi-
cient accuracy not only for biomarker discovery, but potential diagnostic use having a
similarly low p-value as the diagnostic questionnaires in Table 1.

3.2 Voxel-Based Diktiometry Maps

Traditional VBA applied to the same diffusivity measures showed increased MD and
reduced FA symmetrically in the frontal lobes which is consistent with the white matter
degeneration in bvFTD [24, 25]. Interestingly, VBD analysis shows that the CNNs
developed for detecting bvFTD do not depend on these features but find others to be
more salient instead. As shown in Figure 2, VBD finds results largely localised to the
Sylvian fissure and frontal lobe, likely reflecting the residual or subvoxel morphological
changes in this region that are not fully corrected by deformable registration.
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(a) VBD - MD (b) Traditional - MD

(c) VBD - A (d) Traditional - A

Fig. 2: Voxel-based diktiometry sensitivity results and traditional voxel-based analysis
results using the combined dataset (in the first and second columns, respectively)
from z = −30 to z = +52 in MNI space for the mean diffusivity (MD, first row) and
anisotropy (A, second row).

8



Accepted manuscript

(a) VBD - FA (b) Traditional - FA

(c) VBD - PsPl (d) Traditional - PsPl

Fig. 3: Voxel-based diktiometry sensitivity results and traditional voxel-based analysis
results using the combined dataset (in the first and second columns, respectively) from
z = −30 to z = +52 in MNI space for the fractional anisotropy (FA, first row) pseudo-
planarity (PsPl, second row).
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For VBD, the highest significance results are largely constrained to MD in the
frontal lobe, temporal lobe, and Sylvian fissure. This is largely consistent with cortical
degeneration in these regions. In addition, there is some evidence that they also occur
in the parietal lobe as well but to a lesser degree, indicating some amount of wider-
spread cortical atrophy indicative of various dementia-like disorders [26].

3.3 Sparse principal components maps

sPCA decomposition (Figure 4) revealed four primary axes along which the CNN
sensitivities vary within the patient population . These clusters show how the VBD
maps can be interpreted as four different axes in terms of how the biomarkers
are expressed. Each component is accompanied by scatterplots showing significant
correlations (p < 0.05) with the clinical scores, summarised in Figure 5.

PC1

The signal for the first decoupled biomarker is concentrated on the mean-diffusivity
sensitivity in the frontal cortex proximal to the left Sylvian fissure in the superior tem-
poral gyrus which also was the highest signal location for the VBD maps as a whole.
It includes some isolated clusters in the prefrontal cortex as well, more specifically in
the medial superior frontal gyrus, middle cingulate and paracingulate gyri (MCG),
and middle frontal gyrus (MFG). Some other clusters were located on the amygdala
region on the right hemisphere, the pulvinar on left hemisphere and the hippocam-
pus on both hemispheres as well as on the precentral and postcentral gyri (PreCG
and PoCG), the precuneus, the superior parietal gyrus (SPG) and the supplementary
motor area (SMA). The expression of this particular biomarker was correlated with
overall dementia severity via MMSE, two measures of apathy in the ECOCAPTURE
dataset, and language in the FTLDNI. Thus, this biomarker appears to capture general
bvFTD severity.

PC2

The signal for the second decoupled biomarker is concentrated on the mean-diffusivity
and anisotropy sensitivities in the pre-frontal cortex, including the medial SFG, ante-
rior cingulate cortex pregenual (ACCpre), the SFG medial orbital and the inferior
frontal gyrus (IFG) triangular part. It is correlated with motor disturbance as well
as social disinhibition, both characteristic symptoms of bvFTD, and thus seems to
be sensitive to symptoms specifically involving the executive capacities of said region
both in terms of social and physical behaviour.

PC3

The third decoupled biomarker is in a similar location as PC1 in terms of being in
the frontal lobe proximal to the Sylvian fissure, but somewhat more lateral including
the IFG pars orbitals, IFG opercular and IFG triangular parts as well as scattered
clusters throughout the pre-frontal lobe, including the MFG, the SMA, the MCG,
the anterior cingulate and paracingulate gyri (ACG), PreCG and PoCG on the left

10
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Fig. 4: Visualization of the decoupled biomarkers in MNI space obtained by sPCA
on the sensitivity images relative to MD, A, and PsPl. Each column shows the loading
contribution to the diffusivity measure limited to clusters of 256 mm3. The fitting
lines correlating the residuals of the eigenvector and the clinical scores (p < 0.05) are
shown in the scatter plots.

 
 
 

 PC1 PC2 PC3 PC4 
ECOCAPTURE 

Apathy  
DAS (0.6415,	0.0017)	 	 	 	

SAS (0.4763,	0.029)	 	 	 	

Behavioural 
metrics 

Social 
disinhibition 	 (-0.6461,	0.0125)	 	 	

Social and 
Emotions 

miniSEA 
(recognition) 	 	 (-0.444,	0.0438)	 	

FTLDNI	
Cognitive MOCA (0.3683,	0.0349)	 	 	 	

Language California verbal 
learning (0.3424,	0.0198)	 	 	 (0.3329,	0.0238)	

Neuropsychiatric 
Inventory 

Motor 
Disturbance 	 (0.5027,	0.0039)	 (0.4119,	0.0213)	 	

FTLDNI + ECOCAPTURE	

Cognitive MMSE (0.3117,	0.0102)	 	 	 	

 
0.65 
 
 
 
 

 
 
 
0.0 
 
 
 
 
 
 
-0.65 

Fig. 5: Significant correlations (p < 0.05) between decoupled biomarkers and clinical
scores (r, p-value).
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hemisphere with some clusters occurring also around the thalamus, the amygdala and
parahippocampal gyrus (PHG). In terms of correlations, this biomarker was correlated
with motor disturbances but less strongly so than PC2. It was more strongly correlated
with emotion recognition which might be explained by its spatial proximity to PC1
which also has an affective component.

PC4

The final decoupled biomarker has three primary clusters: one in the third ventricle
and the other two in the frontal cortex proximal to the Sylvian fissure similar to PC3
but bilaterally. The clusters were located more specifically in regions of the IFG pars
orbitals and triangular parts in both hemispheres as well as in the SFG medial and
anterior cingulate cortex supracallosal, MCG, SMA and caudate nucleus. In combina-
tion with PC3, this indicates that there is some asymmetric changes in these regions
which is more extreme on the left side. The symmetric component of this change is
captured by PC4 and the residual left part is captured by PC3. The patient’s expres-
sion of the PC4 decoupled biomarker was weakly correlated with the patient’s score
on the verbal learning test, meaning that it might be specific to language.

4 Discussion and Limitations

Both VBA and VBD found a correlation between FTD and increased diffusivity
in the frontal and temporal lobes (Figure 2(a)), which is consistent with cortical
degeneration, confirming that the primary mechanism of FTD is visible in DTI.

The ability to decompose the VBD results into multiple distinct axis demonstrates
the heterogeneity of this cortical degeneration even within a patient cohort with the
same FTD subtype. This addresses a concern raised by [8] that many methods in the
literature are limited to the comparison between healthy controls and a particular
FTD variant which limits their clinical utility.

The correlation between sPCA results and clinical information suggest that even
within the behavioural variant of FTD, there still exists some heterogeneity. Certain
decoupled biomarkers were more heavily associated with the behavioural aspects of
the disorder (notably PC1) whereas others were more heavily related to the cognitive
and language aspects (notably PC4). This confirms that the variants are not strictly
delineated but co-exist and that multiple symptomatologically-similar neurological
disorders could be present in the datasets, such as corticobasal degeneration, noting
that our method did find significant sensitivities in the midbrain and that FTD is
often seen in patients who develop corticobasal degeneration [27].

Despite being composed of two separate databases, our dataset is also relatively
small compared to the extensive medical imaging databases seen for similar domains
such as Alzheimer’s disease. This limits network size and complexity to traditionally-
designed CNNs with fewer of weights and thus lower data requirements.

4.1 Future work

Interpretation is still an active area of research for machine-learning-based biomarker
discovery. Some of these interpretational difficulties have been addressed through
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sPCA decoupling the sensitivity maps in order to indicate when regions are or are
not a part of singular biomarker. However the issue of interpretation of each of these
decoupled biomarkers remains as one must still posit the underlying mechanism for the
sensitivities seen and why disparate regions may be correlated. Despite this, VBD com-
bined with sPCA still offers a powerful tool for hypothesis generation that would allow
for more targeted, specific investigations of particular biomarkers to be performed.

One immediate area of future work would be to extend the analysis to use a
larger ensemble of CNNs as well as extensive data augmentation for the classification
and sensitivity calculation tasks. Previous studies using VBD have shown that the
statistical smoothing resulting from larger ensembles tends to reduce noise [10, 11].

As suggested by our two aforementioned limitations, our most immediate future
work is to extend this analysis to a cohort of patients with multiple variants of FTD
in order to determine if specific imaging biomarkers can be extracted for each variant.
This may confirm that the variants do represent different anatomically separable axes
as was the case with the behavioural variant, which could be diagnostically useful for
detecting them prior to their characteristic symptom onset.

5 Conclusion

Frontotemporal lobe dementia (FTD) and specifically its behavioural variant, displays
very heterogeneous etiology with different patients experiencing different levels and
types of symptoms. The goal of this paper is to use machine learning to automatically
extract imaging biomarkers for behavioural variant FTD and to develop a frame-
work that can automatically partition these biomarkers into ones that reflect different
aspects of this disorder. In order to achieve this, an ensemble of convolution neural
networks are trained to classify DTI images between patients and healthy controls,
and voxel-based diktiometry is used to extract biomarkers for this task from these
networks. sPCA shows that there are at least six axes of heterogeneity in the patient
dataset visible in DTI. Four of these axes correlate with clinical symptoms indicates
that these distinct biomarkers reflect different symptomatological axes in bvFTD.
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Castro, V., Anblagan, D., Danso, S., Muñoz-Maniega, S., Job, D., Pernet, C., et
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