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—— Abstract

Real-time and energy-constrained systems heavily rely on estimates of the worst-case execution
time (WCET) and worst-case energy consumption (WCEC) of code snippets to ensure trustworthy
operation. Designing architecture-specific analytical models for time and energy is often challenging
and time-consuming. In situations where analytical models are unavailable or incomplete, machine
learning (ML) techniques emerge as a promising solution to build WCEC/WCET models. This
paper introduces WORTEX, a toolkit for WCEC/WCET estimation of basic blocks based on ML
techniques. To ensure the real-world applicability of its models, WORTEX extracts large datasets of
basic blocks from real programs and precisely measures their energy consumption/execution time
on the physical target platform. The dataset is used to train various WCEC/WCET models using
different ML techniques. Experimental results on simple and time-predictable hardware show that
even the most basic ML techniques provide accurate results, that never underestimate actual values.
We also discuss the use of explainability techniques to gain trustworthiness for the models.
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1 Introduction

Worst-case execution time (WCET) and worst-case energy consumption (WCEC) estimation
techniques play a crucial role in the validation of real-time systems. They provide upper
bounds of WCEC/WCET and allow to guarantee correct operation of real-time embedded
devices. Estimations of WCEC/WCET are particularly useful in battery-less devices, that
harvest energy from their environment, store it in a capacitor, and execute short bursts of
computation using the stored energy. For such devices, WCEC/WCET estimations can be
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used by static checkpointing strategies [6, 21, 31], that select checkpoint locations in the
code to ensure that there is enough energy to reach the next checkpoint.

The state-of-the-art methods for statically estimating the WCET/WCEC of a program
commonly use the Implicit Path Enumeration Technique (IPET) [18, 13]. IPET estimates
WCET/WCEC by finding the longest path in the program’s Control Flow Graph (CFG), using
Integer Linear Programming (ILP) to avoid enumerating all paths in the CFG. The IPET
approach requires time and energy consumption data for the basic blocks ! of the program,
which are usually derived from detailed architectural documentation of the processor. Such
information is not always available due to intellectual property restrictions. In cases where
they are accessible, it would require a detailed analysis of the documentation and extensive
validation of the obtained model, which is time-consuming. Moreover, the documentation
often does not include energy consumption information. As an alternative to an analytical
model, it is possible to directly measure the basic block time/energy consumption and
provide it as an input to IPET. However, the applicability of this technique is limited in
practice, because the measurement campaign has to ensure that every basic block is executed
sufficiently often to identify its WCET/WCEC. Moreover, this process needs to be performed
for every modification of the program.

To overcome these shortcomings, a new class of approaches has been introduced, that
leverages machine learning (ML) to estimate the WCEC/WCET of individual basic blocks.
These approaches involve training an ML model using a large dataset of representative and
varied basic blocks. The WCEC/WCET of individual basic blocks can then be used as inputs
to IPET to calculate WCET/WCEC at the program level.

Previous works in this area feature some limitations. Some use small datasets or operate
at the source code or intermediate code level [5, 11, 12, 30], which affects the model’s accuracy.
All previous ML models, including the most elaborated ones [3, 2] act as black boxes and
lack interpretability of the results. To address these challenges, we propose WORTEX, for
WORst-case execution Time and Energy consumption estimation using eXplainable machine
learning, a toolkit for WCEC/WCET estimation, that aims at overcoming the limitations of
existing techniques. WORTEX uses large and diverse datasets from AnghaBench [7] to train
the models. Furthermore, we leverage a local model-agnostic explainable artificial intelligence
technique [20] and discuss how such a technique can be used to understand the predictions,
find bias in the training dataset, and therefore gain confidence in the model.

As a case study, we selected the MSP430FR5969 low-energy processor [27], which is
extensively used in the battery-less community. To evaluate our solution, we conducted
experiments at both the basic block and program levels. To do so, WORTEX generated
models were integrated into the HEPTANE static WCET estimation tool [10].

Overall, our contributions are the following:

We propose WORTEX, a toolkit for WCEC/WCET estimation of basic blocks using ML
techniques. The simple ML models integrated in WORTEX (linear regression, gradient
boosting, multi-layer perceptron neural network) were selected because of their very fast
prediction, and good accuracy for the simple MSP430 platform. The loss function used
when training the models is tailored to the prediction of worst-case values.

We open-source a dataset of 30000 basic blocks for the training of ML models [22]. All of
them have been measured and have energy consumption and execution time information.

LA basic block is a CFG node, and is defined as a sequence of consecutive instructions with a single entry
point and no branching inside
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We discuss the use of the LIME explainable Al technique [23] to validate the ML models
and gain confidence in the trained models.

The remainder of the paper is organized as follows. Section 2 first compares WORTEX
with related works. Section 3 then gives an overview of WORTEX in an architecture-
independent way. The components of WORTEX that are specific to targeted architecture
(MSP430) are described in Section 4. Section 5, presents experimental results. Finally,
Section 6 discusses the use of explainable Al to validate the ML models. Section 7 concludes
and outlines future works.

2 Related work

This section reports previous research leveraging machine techniques for WCET and WCEC
estimation.

ML-based WCET estimation. Several methods to estimate the WCET using Machine
Learning (ML) have been proposed [5, 1, 16, 17, 5, 3, 11, 2]. The studies reported in
[5, 1, 11, 12] utilize worst-case event counts (number of multiplications, number of memory
accesses...) extracted from the intermediate representation of the code to train different ML
models, which are then used to calculate the WCET of a program in early development phases.
Similarly, Kumar’s research, described in [16, 17] estimate WCET by examining features
taken from the program’s source code. All these methods ignore important information
about how the generated code and hide the effects of compilation by operating at the source
code or intermediate code level, which might affect timing predictions. In contrast, the
research presented in [3, 2], like WORTEX, extract features from the binary code and use ML
techniques to predict the WCET of individual basic blocks. All the approaches cited above
treat the ML techniques as a black boxes. WORTEX add to them the use of explanations
[20] to gain more confidence in the predictions.

ML-based WCEC estimation. While numerous studies have explored the use of ML for
estimating average-case energy/power consumption (as reviewed in [8]), the application of ML
to estimate WCEC was only introduced in [12] and [30]. The work by Huybrechts et al. [12]
specifically focuses on intermediate code representation. In contrast, WORTEX enhances the
accuracy of estimation by operating on binary code. Moreover, Huybrechts et al. ML-based
WCEC estimation technique typically relies on a limited number of benchmarks for training,
whereas WORTEX leverages a large collection of basic blocks, ensuring a superior quality of
training. In the study [30], simulation (cycle accurate model) or FPGA synthesis (Register
Transfer Level RTL) is employed to capture the performance counters (such as cache misses
and branch predictor misses) and the corresponding energy consumption on their target. By
creating a dataset through this process, the authors employ linear regression as an energy
model that can forecast energy consumption when provided with performance counters for
code snippets. Contrary to this kind of approach, WORTEX does not need the RTL nor the
cycle-accurate model to create an energy model that makes it usable for any target.

3 Overview of WORTEX

WORTEX comprises three components, depicted Figure 1. The first component Basic Blocks
FExtraction is responsible for extracting a large and unique dataset of basic blocks from
different programs. The second component measures the energy consumption and execution
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Program Basic Blocks Energy/Time .
Database Extraction Measurement Model Training Ieleed

Figure 1 WORTEX’s prediction workflow

times of all basic blocks from this dataset. The third component Model Training trains an ML
model and deploys explainability [20] to understand the impact of each instruction on basic
block WCEC/WCET. The obtained ML model can predict the WCEC/WCET of previously
unseen basic blocks. Our tool offers flexibility in the choice of machine learning models,
that can be used in different tools with minimal integration efforts. We have integrated the
generated models into the HEPTANE static WCEC/WCET estimation tool [10]. This section
describes the different components of WORTEX.

3.1 Dataset generation

To accurately predict WCEC/WCET using ML techniques, it is crucial to train the model
with an appropriate dataset. This section outlines the requirements for generating such
a dataset. Their implementation for a specific architecture (MSP430FR5969, from Texas
Instruments) will be described in Section 4.2. The requirements that we consider important
for accurate training are the following:
RD1: representative and diverse dataset. This requirement aims at training the
ML models on a set of basic blocks that provide good coverage of the instruction set of
the target architecture but also of the code constructs of the programming language used.
This requirement is met in WORTEX by using the AnghaBench benchmark suite [7] to
train the models. AnghaBench contains 1 million compilable programs, mined from the
largest public C repositories on GitHub 2.
RD2: balanced dataset. Compilers tend to generate basic blocks (e.g. for function
entry, exit, array indexing) that are identical or almost identical to other basic blocks (e.g.
same instructions but different registers). Such duplicated basic blocks do not improve the
quality of training and should be removed from the dataset that is used during training.
RD3: ability to execute basic blocks in isolation. Basic blocks are executed in
isolation to measure their energy consumption and execution time. Executing basic
blocks out of their original context may lead to exceptions (e.g. divisions by zero, invalid
memory accesses). A pre-processing phase has to be applied to each basic block to ensure
that it executes without error. For example, the contents of the registers used for indirect
accesses to memory have to be controlled to avoid indirect memory accesses.

3.2 Energy and time measurement

WORTEX is designed to produce models for worst-case timing and energy consumption.
Hence, the measurement process must meet the following two requirements:
RM1: measurement in worst-case scenario: The execution context of basic blocks,
in particular in architectures with caches and pipelines, largely influences the execution
time and energy consumption of basic blocks. For instance, cache misses cause longer
execution times and higher energy consumption than cache hits. Enforcing RM1 highly
depends on the targeted architecture, it is addressed in Section 4.3.

2 AnghaBench dataset: https://github.com/brenocfg/AnghaBench
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RM2: precise measurements: The precision of measurements obviously has an
impact on the quality of the energy/timing estimations. Addressing RM2 is particularly
challenging because basic blocks usually comprise a small number of instructions, which
makes measurements tricky on individual basic blocks. This is detailed in Section 4.3, by
performing measurements on a series of basic blocks instead of individual basic blocks.

3.3 Model creation

Using the collected dataset, WORTEX includes three ML models capable of conservatively
estimating basic block’s WCEC/WCET:
Quantile Linear Regression (QLR) [15]. It is a statistical technique that shows

how the input variables (basic block) affect linearly the output variable (WCEC/WCET).

They offer a more detailed view compared to classic linear regression by looking at the full
range of possibilities for the dependent variable (WCEC/WCET), not just its average.
Gradient Boosting (GB) [26]. Gradient boosting constructs a model based on a set

of decision trees. In contrast to linear regression GB can capture non-linear relationships.

Multi-Layer Perceptron (MLP) [25]. An MLP is a type of artificial neural network
featuring layers of interconnected nodes or neurons. It is particularly skilled at modeling
intricate, non-linear relationships in the data.
Deploying the ML models is performed in two classical phases: the training phase and the
estimation phase.

Training. During the training phase, WORTEX trains ML models on a large dataset to derive
a WCET/WCEC model at the basic block granularity. Training is performed once for each
specific micro-architecture (in our use case, the MSP430FR5969). The algorithms learn from
features extracted from the basic blocks. Due to the simplicity of the targeted architecture,
WORTEX currently uses static features. The features are mainly the proportions of different
types of machine instructions across their various operand addressing modes divided by the
total number of instructions in the basic block, for example [29]. The algorithms analyze
features extracted from basic blocks, utilizing all MSP430 machine instructions across their
various operand addressing modes. By representing instruction types as proportions, the

timing/energy model created by WORTEX becomes independent of the basic block’s length.

To mitigate the risk of underestimation, we leverage a quantile loss function, that
penalizes overestimations and underestimations asymmetrically. The quantile loss evaluates
the disparity between predicted and actual quantiles and for a given quantile ¢ where
0 < g < 1 is defined as:

n

Lo(y,9) = > (g — Yy — 5 <0}) - (v — i)

i=1
where:
y; and g; are respectively the true value and the predicted for the i-th observation in the
dataset

1{y; — §; < 0} is an indicator function that equals 1 if the condition y; — §; < 0 is true
and 0 otherwise.

Prediction. WORTEX estimates the WCEC/WCET at the basic block level. To estimate
WCEC/WCET at the program level, the program is split into basic blocks, the features of
basic blocks are extracted and the ML model is then applied. The estimated energy/timing
can then be given as input to a static WCEC/WCET analysis tool.

XX:5
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4 Specifics of WORTEX on MSP430

This Section describes the components of WORTEX that are specific to the low-power
microcontroller MSP430FR5969.

4.1 The MSP430FR5969 microcontroller

The MSP430FR5969 is an energy-efficient and low-cost microcontroller based on a 16-bit
CPU, popular for applications powered by ambient energy. The micro-architecture of the
MSP430X CPU series is simple. The architecture has no data cache, no branch predictor,
and features a very simple pipeline with only 3 stages. The MSP430FR5969 features two
main memories: Volatile Memory (VM), more precisely 2KB of SRAM, and non-volatile
memory (NVM), more precisely 64kB of non-volatile ferromagnetic RAM (FRAM)|[28]. The
FRAM controller uses a small 2-way associative cache that has a 64-bit line size (4 16-bit
instructions) to store pre-fetched instructions. In our use case, the code is stored in NVM
and the VM contains the program data and stack.

4.2 Dataset generation

WORTEX first cross-compiles the numerous C sources from the AnghaBench benchmark
suite into assembly language. At this stage, the generated basic blocks do not yet meet
requirements RD2 and RD3 described in Section 3.1: many redundant basic blocks exist in
the data set (RD2), and some of them may cause errors when executed in isolation (RD3).
Regarding the elimination of redundant basic block (RD2), preliminary experiments on the
MSP430FR5969 have shown that the specific general-purpose register used in an instruction
has negligible impact on its WCEC/WCET. Therefore, basic blocks are pre-processed to
use a specific general-purpose register for all instructions. Duplicated basic blocks are then
removed from the dataset.
Further pre-processing is required to ensure that basic blocks can be executed in isolation
(requirement RD3) without addressing errors. This is achieved as follows:
For absolute addressing, each accessed symbol/address is replaced with a predetermined
location in NVM.
For indirect accesses, where the address to be accessed is stored in a register, we face an
additional challenge. In such cases, we need to have control over the value stored in the
register itself. To address this, we have selected one of the registers to be a controlled
base register used as a target for every indirect access. This register holds the address of a
chosen memory location in the VM. We further replace any written instruction targeting
this register with another one.
Simulation shipped with the MSP430 GNU Debugger (GDB) was used to check that no
run-time error occurs and that all memory accesses fall in the VM.

4.3 Energy and timing measurement

Measurement in worst-case scenario (RM1). Enforcing the worst-case execution scenario
on the MSP430FR5969 architecture is achieved through a control of its two main sources of
variability, its instruction cache and its pipeline.

The worst-case scenario regarding the instruction cache is enforced by controlling the
layout of basic blocks to maximize the number of cache misses. The end of the first instruction
of each basic block is aligned on a cache-line boundary, as depicted in Figure 2a. Fetching the
first instruction (line 9) will thus trigger a first cache miss. Then, the second instruction (line
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1 START_MEASURE

2 JMP .BB A

3 . balign 8

4 - Cache line frontier -------

5 NOP

6 NOP

! NOP Duplicate

8 .BB: n times

9 PUSHM .W #2, R10 CACHE MISS Host
10 - Cache line frontier ------- Computer
11 SUB.W #10, R10 CACHE MISS

12 MOV.WR4,6(R15) CACHEHIT

13 MOV.WR13,4(R15) CACHE HIT 1. Flash program

14 JMP .END CACHEHIT 5. Send results
15 ------- Cache line frontier -------

16 .END:

_ 2. Platform ready

17 END_MEASURE <
3. Start measure | Measurement

4. End measure _ Platform

(a) Ensuring the worst case scenario for the
MSP430FR5969 instruction cache and pipeline. (b) Basic block measurement process

Figure 2 Measuring a basic block energy consumption and execution time

10), belonging to another cache line, will also generate a cache miss, loading the subsequent
instructions.

Regarding pipeline effects, adding JMP (unconditional jump) and NOP instructions
before the basic block induces a pipeline flush (lines 5-7), as the NOP instruction, while
loaded in the pipeline, will not be executed.

Precision of measurements (RM2). To measure the energy consumption and execution
time of the MSP430FR5969, we need to be able to handle the scale difference between
the measurement tool and the basic block execution time. This is achieved by duplicating
the basic block multiple times while making sure to keep the worst-case memory layout
as explained previously. Furthermore, to synchronize the basic block execution with the
measurement platform, we add instructions to signal the start and the end of the execution of
the basic block using General-Purpose Input/Output ports (GPIOs), (START_MEASURE
and END__MEASURE on Figure 2a).

The measurement process involves three actors, as depicted in Figure 2b: the target
(MSP430 under analysis), a measurement platform, and the host computer. The host
computer initiates the process by flashing the instrumented code on the target (1). Once

flashed, the target actively waits for the measurement platform Platform Ready signal (2).
As it receives it, it sends back a signal Start Measure and starts executing the code (3).

As soon as the Start Measure signal is received, the measurement platform measures the
energy consumption of the target, until it receives the signal End Measure (4), marking the
end of basic block execution. The measurement platform then computes the basic block
execution time (defined by the time between Start Measure and End Measure). Finally, the
measurement platform sends the measurements to the computer (5), which, in turn, will
flash a new program to the target (1).

5 Experimental evaluation

Section 5.1 first describes the experimental setup used. Then WORTEX is evaluated
according to different metrics: quality of predictions at the BB level (Section 5.2) and quality
of predictions at the program level (Section 5.3)

XX:7
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5.1 Experimental setup

The target platform for our experiments is the MSP430FR5969 microcontroller. All code
is stored in NVM and the VM is used to store program data and stack. The basic blocks,
extracted from the AnghaBench benchmark suite [7] are compiled using the GCC MSP430
compiler version 9.3.1 with no optimization (-O0). Obtained basic blocks are pre-processed
and filtered as explained in Section 4. Basic blocks are duplicated 50 times. The measurement
platform, similar to the one used in [4], includes the following components:

A stable power supply (N6705A [14]) providing 3.3V to power the MSP430.

A shunt resistor with a resistance of 4.7€2 to measure the current consumed by the

MSP430. This resistor has been chosen to ensure a low voltage drop (around 4.7mV)

and is connected to an operational amplifier (INA214CIDCKR) to amplify the voltage

drop amplitude, allowing precise measurement. The amplified voltage is then measured

with an ADS8661 analog-to-digital converter.

A relay array to isolate the MSP430 from the computer when measuring energy. It

prevents any energy interference coming from the JTAG connection.

A bare metal Raspberry PI (RPI) 3B+ is used for synchronization with the MSP430, for

controlling the isolation of the MSP430, and for time/current consumption measurement.

Section 8.1 in the Appendix explains how we deduce the energy consumption from the
measured current.

For each (duplicated) basic block, we perform 100 measurements and retain the highest
value. Subsequently, we divide this value by the duplication factor to get the basic block
energy consumption and execution time. A dataset of 30000 unique basic blocks with their
energy consumption and execution time was used, where 80% of the basic blocks were used
for training and cross-validation and 20% were used for testing.

5.2 Analysis of WCET and WCEC predictions at BB level

Table 1 qualifies the results of the predictions at the BB level for the three models (QLR, GB,
and MLP), by employing quantile values of 0.99 and 0.999993. The quality of predictions is
evaluated using two metrics.
Mean Average Percentage Error (MAPE): MAPE = 1 5" | ‘AiA;iPi‘ x 100%, where A; is
the actual value, P; is the predicted value and n is the number of basic blocks. The lower
the MAPE, the more accurate the model, disregarding under/overapproximations.
Underestimations: percentage of basic blocks whose WCEC/WCET is underestimated:
Underestimation (%) = Nundgestimated 5 ()0

total

The results show that the MLP model outperforms QLR and GB in terms of accuracy,
with the lowest MAPE for both time and energy and both quantile values, except at WCEC
for 0.99999 quantile where the QLR and GB model are more accurate. As we shift from
quantile 0.99 to quantile 0.99999, accuracy degrades for all models, as shown by the increase
in the MAPE metric. However, this degradation comes with a sharp decrease in the ratio
of underestimations (no underestimation is actually observed), which is essential when
estimating WCEC/WCET. More complete results about the quality of predictions for the
different techniques are given in Section 8.2 in the appendix.

3 A quantile of 0.99 (resp. 0.99999) means that we aim at predictions that are larger or equal to the
actual WCEC/WCET in 99% (resp. 99.999%) of the cases.
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MAPE Underestimation (%)
Quantile 0.99 Quantile 0.99999 Quantile 0.99 Quantile 0.99999
WCET WCEC | WCET WCEC | WCET WCEC | WCET WCEC
QLR | 56.7% 58.0% | 101.3% 973 % | 069 % 0.52 % 0% 0%
GB 421 % 398 % 93.0% 97.3% | 0.56 % 0.65 % 0% 0 %
MLP | 82 % 16.2 % | 41.1% 99.1 % 0.65 % 1.07 % 0% 0 %

Table 1 Comparison of MAPE and Underestimation Percentages for WCET and WCEC Predic-
tions at Quantiles 0.99 and 0.99999 Across Models

Model

5.3 Analysis of WCET and WCEC predictions at program level

This experiment aims at evaluating the error made by WORTEX when it is used by the
Heptane static WCET analysis tool to estimate WCEC/WCET of entire programs, from
the Mélardalen benchmark suite [9]. In this experiment, the WCET/WCEC predicted by
WORTEX (for 0.99999 quantile) is fed to Heptane that uses the standard Implicit Path
Enumeration Technique (IPET, [18]). We selected a small subset of benchmarks for which
we can generate input data that systematically execute the longest execution path found by
Heptane, ensuring that the pessimism comes from WORTEX and not from Heptane.

Maximum QLR based GB based MLP based
Program observed estimations estimations estimations

Time | Energy | Time |Energy| Time |Energy| Time |Energy
bs 293 358 507 516 445 459 334 376
fibcall| 1035 1059| 1131 1132| 1181| 1214| 1197 1380
lednum| 919| 1019| 1506| 1516| 1372 1484| 1077| 1260
nsichneu |24 672| 2517936252 | 37256|33367| 35141| 27248 | 31967
mean [48.3% | 36.9%|37.6% | 32.0%|14.3% | 21.5%
min| 9.2%| 6.9%|14.1%| 14.6%| 10.4%| 5.0%

Table 2 Observed vs predicted execution time/energy consumption (time in ps, energy in nlJ).

Overestimation

Table 2 shows the maximum observed execution time and energy consumption for each
program (executed its worst-case input) and the prediction from the different ML techniques.
Regardless of the benchmarks studied, we can make several observations. First, thanks to the
loss used during the training phase, the prediction always overestimates the observed execution
time and energy consumption. Second, MLP-based techniques significantly outperform QLR
and GB. Third, the overestimation for the best-performing technique MLP is reasonable
(14% on average for time, 21% for energy).

5.4 Inference time

One of the interests of using ML techniques for WCEC/WCET estimation if that the
predictions are fast enough to be used in WCET/WCEC analysis tools. Table 3, reports the
average inference time of one basic block for each technique.

Regardless of the chosen technique, the inference time is within the micro-second range.
As anticipated, the QLR model, due to its simplicity, exhibits the shortest inference time,
surpassing the other techniques by approximately a factor of 20. In contrast, GB and MLP
show higher inference time but offer better precision.

XX:9
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Method QLR | GB MLP
Average time (ps) | 1.95 | 48.95 | 35.88
Table 3 Average inference time per basic block, on an Intel i7-11850H CPU

6 Discussion on explainable Al

Most ML techniques, while making accurate predictions, are black-box techniques, meaning
their users cannot easily understand why they make their decisions. Ezxplainability [20]
techniques help understand why a model makes certain predictions, by revealing the factors
that influence the estimations. Explainability helps detect misbehaviors of ML models, caused
for example by biased datasets or sub-optimal selection of features. Once the misbehaviors
are detected and corrected, confidence can be gained in the models.

Several techniques for explainability exist for black-box models. Among them, we focus
in this paper on LIME [23] (Local Interpretable Model-agnostic Explanations). LIME creates
interpretable models (e.g., linear regression) that approximate the predictions of the black-box
model around a specific data point of interest. It achieves this by generating a synthetic
dataset (i.e., neighborhood points) and training a simple, interpretable model on it (a linear
regression in our case). By analyzing the behavior of this new simple local model, we can
gain insights into the factors influencing the model’s decision at that particular data point.

(1) MLP (g=0.99999) trained on training dataset (2) MLP (q=0.99) trained on training dataset (3) MLP (g=0.99) trained on training and test dataset
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Figure 3 LIME Explanations for MLP on a BB under different training settings (quantile value,
training dataset)

Figure 3 illustrates the explainability of the MLP model generated by LIME for a single
BB sample. This MLP is trained under different configurations of quantile loss and dataset
compositions to investigate the model’s decisions. The figure is divided into three generated
LIME explanations, where the x-axis represents the direction of influence that each feature
has on the model’s prediction (which we retrieve from a linear regression local model):
positive values are associated with an increase in the predicted outcome, while negative
values suggest a decrease. The y-axis lists the non-null features of the BB: instructions (type
and addressing mode), with a percentage indicating their occurrence rate within the BB.

In Part (1) of Figure 3, the MLP is trained with a quantile loss of 0.99999. The results show
a significant negative influence of certain features like MOV.W_X(Rn) _Rn and MOV.W_Rn_X(Rn),
which is counter-intuitive considering the known indirect access mode instruction latencies
for the MSP430 [29]. This suggests that the extreme quantile value, aiming to capture the
worst-case predictions, may be skewing the model’s focus towards only the nb_inst (number
of instructions) feature to make a conservative prediction independently of the actually
executed instructions.

Part (2) of Figure 3 presents the LIME explanations when the MLP is trained with a
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quantile loss of 0.99. Here, the influence of features appears to align more closely with the
MSP430 instruction latencies [29], except for SUB.W_X(Rn) _Rn. Although it should have the
same influence factor as the MOV.W_X(Rn) _Rn instruction, it does not. Upon investigation,
we found that the subtraction instruction appears less frequently than the MOV instruction
within our training dataset.

Finally, to investigate whether the hypothesis that the rarity of the SUB.W_X(Rn)_Rn
instruction influenced the explanation, we explore in part (3) of Figure 3 LIME explanations
with post-augmentation of the training dataset (used in the previous two experiments) with
the test set, under the same quantile loss of 0.99. This data enrichment leads to a further
refined interpretation of feature influences, correcting earlier misalignments between LIME
explanation and the MSP430 documentation [29], for instance SUB.W_X(Rn) _Rn has now a
positive influence.

These findings highlight the importance of selecting an appropriate quantile loss value
ensuring the comprehensiveness and the empirical safety of the ML models. They also show
that X AT [20] techniques can help us diagnose our model and dataset.

7 Conclusion

This paper has introduced WORTEX, a toolkit for WCEC/WCET estimation of basic blocks
using ML techniques. WORTEX was shown to produce safe yet precise WCEC/WCET
estimates for low-power processors. As future work, we believe that integrating WORTEX
in a compiler toolchain would allow us to explore program optimizations with both time
and energy in mind would be interesting. In addition, further exploring other explainability
techniques like SHAP [19] or Anchors [24] will help the design of WCEC/WCET estimation
techniques on more complex machine learning techniques, for example, Transformers [2].
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8 Appendix

8.1 Computing the energy consumption from the current consumption

The energy consumption of a basic block is computed from voltage and current consumption
using equation 1.

E= /U X i(t)dt 1)

As we work with discrete samples, equation 1 becomes equation 2:

E =) Uxi(k) X tsampte = U X taampre x »_i(k) (2)
k=0 k=0

tsample defines the time needed to get a sample, is supposed to be the same for each
sample, and is computed as shown in Equation 3.

_ Tneasure
tsample - (3)
Nsample

8.2 Detailed results on BB prediction
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Figure 4 Predictions using QLR for quantile values of 0.99 (left) and 0.99999 (right)
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Figure 5 Predictions using GB for quantile values of 0.99 (left) and 0.99999 (right)
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Figure 6 Predictions using MLP for quantile values of 0.99 (left) and 0.99999 (right)
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