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Abstract. The theory of Signatures [1,7] is a fast growing field which
has demonstrated wide applicability to a large range of applications, from
finance to health monitoring[2,6,10]. Computing signatures often relies
on the assumptions that the signal under study is not corrupted by noise,
which is rarely the case in practice. In the present paper, we study the
influence of noise on the computation of signature via the theory of anti-
concentration. We then propose a median of means (MoM) approach to
the estimation problem and give a bound on the estimation error using
Rademacher complexity.

Keywords: Signature Theory · Median of Means · Anticoncentration.

1 Introduction: Using the signature of a function
dictionary to get the signature of a path

Signatures, a transform that applies to time dependent signals, have become a
tool of choice for the analysis of multidimensional dynamical phenomena which
are pervasive in many applications of machine learning. Computing Signatures
allows to extract meaningful features about the various time dependencies of the
components of the signal in a natural way, even when sampling may possibly be
irregular and at different time stamps for different components.

1.1 Goal of the paper

In practice, signals are often corrupted by additive observation noise, and we
can write

X = X∗ + ϵ. (1)

X is a discrete path, as observations occurs at a finite number of time {t1, .., tν},
but can be viewed as continuous by linearly interpolating between two observa-
tions.
In the present paper, we will assume for the sake of simplicity that ϵ is a Gaussian
white noise fonction.

The main problems studied in the present paper are:
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– estimating the Signature tensor of X∗

– recovering the original signal X∗ in an appropriate basis, based on the Sig-
nature tensor of a subsampled noisy version of X∗.

Under observation noise, the computed signature may not be an accurate
estimation of the signature of the true signal and one needs to resort to an
appropriate regularisation procedure in order to recover the seeked signature
tensor.

In the first part of this paper, we study anticoncentration of the components
of the noisy signature tensor, a result which raises the questions of how reliable
estimation problems for Signature-based machine learning can be. In the second
part, we show how to use a new technique from the field of Robust Statistics,
named Median of Means, in order to estimate a robust version of the signature
tensor.

2 Anti-concentration for the 3-signature coefficients

One standard approach to estimating S(3)(E[X]), i.e. the signature of the original
signal is to solve the following least-square regression problem:

min
A∈Rn×m

∥∥∥S(3)(X)− JC;A,A,AK
∥∥∥2
F
. (2)

Using that, after [4], for an orthogonal basis ψ,

ϵ = Eψ (3)

where E is a i.i.d. Gaussian matrix, and using the expansion

X∗ = E[X] = A∗ψ (4)

of X∗ in the basis ψ, we obtain

S(3)(X∗ + ϵ) = S(3)(A∗ψ + Eψ)

= S(3)((A∗ + E)ψ)

= JC;A∗ + E,A∗ + E,A∗ + EK.

For the sake of making the problem finite dimensional, we will further approxi-
mate S(3)(X∗ + ϵ) with S(3)(XTν

∗ + ϵTν).

2.1 Expanding the expression of the Signature tensors

To simplify, we will note

– JCKA+E = JC;A+ E,A+ E,A+ EK
– JCKA+E,α,β,γ = JC;A+ E,A+ E,A+ EKα,β,γ
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First, it is easy to see that

JCKA+E = JC;A,A,AK + JC;E,E,EK

+
2∑
i=0

(
JC;σi(A,A,E)K + JC;σi(A,E,E)K

) (5)

with σ = (1, 2, 3) ∈ S3. So each coefficients from JCKA+E takes the form of a
polynomial of coefficients eα,i with α ∈ J1;nK, i ∈ J1,mK.

We deduce from (??) and (5):

JCKA+E,α,β,γ = P1(E) + P2(E) + P3(E) +R = P (E) (6)

where:

• P1(E) =
m∑
i=1

m∑
j=1

m∑
k=1

cijkeα,ieβ,jeγ,k

• P2(E) =
m∑
i=1

m∑
j=1

m∑
k=1

cijk(aα,iaβ,jeγ,k + aα,ieβ,jaγ,k + eα,iaβ,jaγ,k)

• P3(E) =
m∑
i=1

m∑
j=1

m∑
k=1

cijk(aα,ieβ,jeγ,k + eα,ieβ,jaγ,k + eα,iaβ,jeγ,k)

• R =
m∑
i=1

m∑
j=1

m∑
k=1

cijkaα,iaβ,jaγ,k

2.2 Anti-concentration of coefficients

We use here Theorem 1.8 from [8] or Theorem 1.2 from [5] depending on multi-
linearity (or not) of P (i.e. depending on α ̸= β ̸= γ or not):

The case α ̸= β ̸= γ (P is multilinear): Theorem 1. There is an absolute
constant B such that the following holds. Let ξ1, . . . , ξn be independent (but not
necessarily iid) random variables. Let P be a polynomial of degree d with the
form

P (ξ1, . . . , ξn) =
∑

S⊂1,...,n,|S|≤d

aS
∏
i∈S

ξi

whose rank r ≥ 2. Assume that there are positive numbers p and ε such that for
each 1 ≤ i ≤ n, there is a number yi such that min {P (ξi ≤ yi) ,P (ξi > yi)} = p
and P (|ξi − yi| ≥ 1) ≥ ε. Assume furthermore that r̃ := (pε)dr ≥ 3. Then for
any interval I of length 1

P (P (ξ1, . . . , ξn) ∈ I) ≤ min

(
Bd4/3(log r̃)1/2

(r̃)1/(4d+1)
,
exp

(
Bd2

(
log log(r̃)2

)
√
r̃

)
(7)

The application here is simple. P is here a multilinear polynomial of degree
d = 3, and all eα,i are independants. The existence of p and ε such that, for all
eα,i (with (α, i) ∈ J1, nK × J1,mK) there exist yα,i verifying:

min {P(eα,i ≤ yα,i),P(eα,i ≥ yα,i)} = p (8)
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and
P(|eα,i − yα,i| ≥ 1) = ε (9)

depends on the eα,i distributions.
Finally, the rank r depends on the dictionary ψ: r = #{cijk, |cijk| > 1}. For
the last hypothesis (r̃ ≥ 3), we need r ≥ 3

(pε)3 . Under these assumptions on ψ

and a = {aα,i}, the equation (7) applies.

The two other cases: For the two other cases, as the polynomials are no more
multilinear, we need an anti-concentration inequality for multivariate polynomi-
als. With this in mind, we use Theorem 2. First, we need to define PSD anti-
concentration:

A distribution D has PSD anti-concentration if there exist C, c > 0 such that the
following holds. Let A be an n×n positive semi-definite matrix with Tr(A) = 1.
Then for any ε > 0,

Px∈Dn

[
xtAx ≤ ε

]
≤ C · εc.

We now fix a notation for sum and subtraction of independent variables for the
same distribution:
Define dD := D + . . . + D to be the distribution of the sum of d independent
elements sampled from D, and D −D to be the distribution of the difference of
two independent elements sampled from D.
And now the theorem:

Theorem 2. Let D be a distribution over R such that D − D has PSD anti-
concentration. Then there exist Cd, cd > 0 such that the following holds. Let
f(x) = f (x1, . . . , xn) be a degree d polynomial, normalized to have Var(dD)n [f ] =
1. Then for any t ∈ R and ε > 0,

Px∼(dD)n [|f(x)− t| ≤ ε] ≤ Cd · ε1/cd , (10)

where cd = O
(
d · 2O(d)

)
.

Under this assumption, which is clearly satisfied for i.i.d. Gaussian matrices, on

E = {eα,i, eβ,j , eγ,k, α, β, γ ∈ J1, nK, i, j, kJ1,mK}, (11)

we can apply (10).

3 Estimation of the signal decomposition using Median
of Means (MoM)

We now turn to the problem of estimating the Signature coefficients.
For this purpose, we will first consider the general problem of estimating the

expectation µP = P [X] of a distribution P from the observation of an i.i.d.
sample DN = (X1, . . . , XN ) of real valued random variables with common dis-
tribution P .

In this part, we will note ϵ for the noise of an observation (so X = X∗ + ϵ)
to avoid confusion with Rademacher variables.
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3.1 The MoM principle

Let K and b such that N = Kb and let B1, . . . , BK denote a partition of
{1, . . . , N} into subsets of cardinality b. For any k ∈ {1, . . . ,K}, let PBk

X =
b−1

∑
i∈Bk

Xi. The MOM estimators of µP are defined by

MOMK [X] ∈ median {PBk
X, k ∈ {1, . . . ,K}} .

Recall that the Rademacher complexity of a class F of functions f : X → R
is defined by

D(F) =

(
E

[
sup
f∈F

{
1√
N

N∑
i=1

ξif (Xi)

}])2

. (12)

where ξi, i = 1, . . . , N are independant ±1 Rademacher random variables.

Theorem 1. (Concentration for suprema of MOM processes). Let F denote a
separable set of functions f : X → R such that supf∈F σ

2(f) = σ2 < ∞, where
σ2(f) = Var(f(X)). Then, for any K ∈ {1, . . . , N/2},

P

(
sup
f∈F

|MOMK [f ]− Pf | ≥ 128

√
D(F)

N
∨ 4σ

√
2K

N

)
≤ e−K/32. (13)

3.2 Application to signal decomposition

Let X = X∗ + ϵ be a continuous noisy observation of X∗, i.e. corrupted by a
continuous noise ϵ on the interval [0, T ]. and CΨ be the third degree signature of
an orthogonal basis ψ on [0, T ]. We will assume that CΨ is computable without
subsampling; otherwise, we can approximate CΨ by subsampling the basis func-
tions in Ψ as well. Given an positive integer ν, and a random set of timestamps
Tν , our goal is to estimate the quantity

ETn,ϵ

[
∥S(3)(X∗

Tν
+ ϵTν )− JCψ;A,A,AK∥2F

]
(14)

In order to put the MoM principle to work, we need n samples of the variable

Y =
∥∥∥S(3)(X∗

Tν
+ ϵTν

)− JCψ;A,A,AK
∥∥∥2
F
. (15)

Let {T (1)
ν , T

(2)
ν , . . . , T

(N)
ν } be a set ofN sets of timestamps with same distribution

as Tν . For all i = 1, . . . , N , define

Y (i) =
∥∥∥S(3)(X∗

T
(i)
ν

+ ϵ
T

(i)
ν

)− JCψ;A,A,AK
∥∥∥2
F
. (16)
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Notice that the vectors ϵ(i), i = 1, . . . , N with

ϵ(i) =


ϵ
(i)

t
(i)
1

...

ϵ
(i)

t
(i)
ν

 (17)

are i.i.d. and therefore, the signals

X∗
T

(i)
ν

+ ϵ
T

(i)
ν
, (18)

i = 1, . . . , N are i.i.d. as well. Based on these assumptions, we can use the MoM
approach to estimate the expectation (15) Instead of estimating (15) using the
mean of Y (i), i = 1, . . . , N , we will turn to the Median of Means technique. Let
N = Kb, Writing PBk

Y = 1
b

∑
i∈Bk

Y (i):

MOM(Y ) = median {PBk
Y, k ∈ {1, . . . ,K}} (19)

= median

{
1

b

∑
i∈Bk

∥∥∥S(3)(X∗
T

(i)
ν

+ ϵ
T

(i)
ν

)− JCΨ ;A,A,AK
∥∥∥2
F
, k ∈ {1, . . . ,K}

}

In order to apply Theorem 1, we need to compute D(F), where

F =

{
(ϵ, T ) 7→ ∥S(3)(X∗

T + ϵ)∥2F − 2
〈
S(3)(X∗

T + ϵ), JCΨ ;A,A,AK
〉

+ ∥JCΨ ;A,A,AK∥2F

}
. (20)

Thus, we have

E

[
sup
f∈F

{
1√
N

N∑
i=1

ξif (Xi)

}]
≤ E

[
sup

A∈Rn×m,b∈Rn

{
1√
N

N∑
i=1

ξi

(
∥S(3)(b+ ϵ)∥2F

(21)

− 2
〈
S(3)(b+ ϵ), JCΨ ;A,A,AK

〉
+ ∥JCΨ ;A,A,AK∥2F

)}]
conditioning on ϵ gives

E

[
sup
f∈F

{
1√
N

N∑
i=1

ξif (Xi)

}]
≤ E

[
E

[
sup

A∈Rn×m,b∈Rn

{
1√
N

N∑
i=1

ξi

(
∥S(3)(b+ ϵ)∥2F

− 2
〈
S(3)(b+ ϵ), JCΨ ;A,A,AK

〉
+ ∥JCΨ ;A,A,AK∥2F

)}]
| ϵ

]
= E[Rϵ(F) | ϵ] (22)
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In (22), Rϵ(F) is the empirical Rademacher complexity. In order to bound
this quantity, it is important to note that (15) is the squared Frobenius norm of
a matrix where every coefficient is a degree 3 polynomial of ϵ. Hence, the final
quantity is a degree 6 polynomial in the variable ϵ. Rademacher complexity of
polynomials has been addressed in earlier sources such as, e.g. [9].

At this point, we are refering to [3] to “convert” a polynomial function to a
polynomial network and [11] for the Rademacher complexity.

Consider E = (ϵ1, . . . , ϵn) a set of n i.i.d. samples from the same distribution
as ϵ ∈ Rd. Let C denote the event

C = {∥ϵk∥∞ ≤ 1, k ∈ {1, . . . , n}} (23)

Then, it is proved in [11] that there exist two constants µ and λ such that

RE(F) ≤ 2µλ

√
12 log(d)

n
(24)

on C. It follows from (22) that

D(F) ≤ E [E[RE(F) | E ]]
≤ E [E[RE(F) | E ] | C]P(C) + E

[
E[RE(F) | E ] | C

]
P(C)

≤ 2µλ

√
12 log(d)

n
P(C) + c√

n
(25)

where we used that
√
nE
[
E[RE(F) | E ] | C

]
P(C) can be shown to be bounded

by a constant using a peeling argument. Combining (1), (25), we obtain the
following result

Theorem 2. Let Y be defined by (15), Y (I), i = 1, . . . , N be defined (16), and
the MoM estimator be defined by (19). Then, we have

P

 sup
Y ∈F

|MOMK [Y ]− PY | ≥ 128

√√√√2µλ
√

12 log(d)
n P(C) + c√

n

N
∨ 4σ

√
2K

N


≤ e−K/32. (26)

Complete proof details will be provided in an extended version of the paper.
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