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Detection of di↵erent possible responses of a time-dependent nonlinear
periodic chain with local and global potentials

A. Labetoullea, A. Ture Savadkoohia, E. Gourdona

aENTPE, École Centrale de Lyon, CNRS, LTDS, UMR5513, Vaulx-en-Velin Cedex, 69518, France

Abstract

A time-dependent periodic chain of coupled nonlinear oscillators including local and global potentials
is studied. The continuous form of system equations is projected on an arbitrary mode. Detection
of di↵erent dynamics are highlighted leading to clarification of equilibrium and singular points of the
reduced system. The analytical studies permit prediction/design of periodic and quasi-periodic regimes
of the system validated by results obtained through direction numerical integrations.

Keywords: Nonlinear periodic chain, time-dependent, fast/slow dynamics, strongly modulated
response

1. Introduction

Metamaterials are an assembly of mono- or multi-physics elements with architected arrangements
which present extraordinary responses against induced excitations [1–3]. At their early stages, they
were exploited in optics and electromagnetic fields [4, 5]. In the domain of mechanics, metamaterials
are developed managing interesting characteristics of behavior at atomic and macro scales. These
designed responses cover unusual mechanical properties in the macro scale such as zero or negative
Poisson’s ratio, density, mass and compressibility through the creation of bandgaps, where the sys-
tem stops to respond or responds in controlled manner against external excitation or waves, or even
to design localized energies and strains in materials [6–14]. One of special types of (meta) systems
presenting unusual responses are chain of coupled oscillators which could be used to generate/design
bandgaps [15–19], to localize energies or to exchange energies between modes [20–27]. Such designed
systems can be applied for vibration control or energy harvesting [28–32]. Chain of oscillators can
exploit di↵erent types of restoring forcing terms covering from cubic [33, 34] to Hertzian interactions
[35] providing spatially localized waves in the chain leading to solitary waves and traveling breathers
[36, 37]. Particles of a chain, in additions to global interactions with adjacent particles, can possess
local potential as well [38]. For analyzing coupled nonlinear systems, several methods exist, including
the harmonics balance method [19, 39, 40], averaging and multiple scale methods [41]. However, for
our study for detection of di↵erent dynamics of the system, fast and slow dynamics, we use the com-
plexification of Manevitch [42] accompanied by the multiple scale method [41]. These methods are
particularly useful for studying both transient and permanent regimes [43]. The potential applications
of this study are metamaterials in the mechanical or vibro-acoustic fields, for example by using non-
linear membranes[44].

In this work, we consider a periodic chain of oscillators possessing both local and global potentials.
The local restoring forcing term is linear while the global one presents time-dependent cubic nonlin-
earity. This nonlinearity is unusual and is one of the novelties of this article. The behavior of unit cell
of such chain has been already articulated by Labetoulle et al. [38]. The purpose of this article is to
study the behavior of the chain. For this purpose, a reduced model of the discrete chain is defined,
and analytical predictions of its behavior are developed based on parameters and external exication.
The goal is to verify that these predictions can be applied to the chain. To this end, the dynamic
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responses of the reduced system and of the chain are compared.. The organization of the paper is
as follows: the general methodology for detection of di↵erent system dynamics based on projected
continuous form of equations on an arbitrary mode is presented in Sect. 2. Then the developments are
narrowed to consideration of cubic nonlinear restoring forcing function for the system with constant
and time-dependent coe�cients in Sects. 3 and 4, respectively. Several numerical results are provided
in mentioned sections. Finally, the paper is concluded in Sect. 5.

2. General methodology

In this section, a system with general nonlinear sti↵ness will be presented and its di↵erent dynamics
will be detected using analytical tools.

2.1. Problem statement

Let us consider a chain of coupled oscillators depicted in Fig. 1. It comprises L masses Mj where
j = 1, 2, ..., L, equally spaced at the rest position with the distance �x. These masses are coupled
to each other by a linear sti↵ness and a damping denoted as k1 and c1, respectively. Each mass Mj

is locally and linearly coupled an oscillators comprising a mass mj , a pure odd nonlinear restoring
forcing function denoted as ⇤(v) and a linear damping c2. The displacements of masses Mj and mj

are denoted as uj and vj , respectively. Additionally, we assume that each mass Mj is subjected to
external excitation, characterized by Fj(t), and that mj

Mj
⌧ 1. For this study, we assume that Mj = M

uj�1

vj�1

Mj�1

mj�1

�
⇤(v)

c2

k1

c1
uj

vj

Mj

mj

�
⇤(v)

c2

k1

c1
uj+1

vj+1

Mj+1

mj+1

�
⇤(v)

c2

k1

c1

k1
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Fj�1 Fj Fj+1

�x �x

Figure 1: Diagram of the studied system: a chain of linearly coupled masses Mj which are locally and linearly coupled
to masses mj possessing a nonlinear restoring forcing function, where j = 1, 2, .., L. The Mj masses are equally spaced
(�x) at rest.

and mj = m for all j = 1, 2, ..., L. The governing equations of discrete system depicted in Fig. 1 are
given by:

8
>>><

>>>:

M
d
2
uj

dt2
+ k1(2uj � uj+1 � uj�1) + c1

✓
2
duj

dt
� duj+1

dt
� duj�1

dt

◆
+ �(uj � vj) = Fj sin(⌦t)

m
d
2
vj

dt2
+ ⇤(v) + c2

dvj

dt
+ �(vj � uj) = 0

(1)

We define X = (j� 1)�x = x�x the continuous spatial variable where x is the normalized continuous
spatial variable. Assuming that the number of cells L is very large (L � 1), we can approximate the
displacements uj(t) and vj(t) as u(x, t) and v(x, t), respectively, where x 2 [0, L � 1] and L becomes
the length of the continuous system. Let us express the variables u(x = j � 1, t) and v(x = j � 1, t) in
the form of Taylor series as described in [36]:

u(j±1,t) = u(j�1,t) ±
@u

@x
(j � 1, t) + ...+

(±1)n

n!

@
n
u

@xn
(j � 1, t) + ... (2)
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v(j±1,t) = v(j�1,t) ±
@v

@x
(j � 1, t) + ...+

(±1)n

n!

@
n
v

@xn
(j � 1, t) + ... (3)

Consequently, the system can be expressed in the continuous domain, so Eq. (1) can be written as:

8
>>><

>>>:

M
@
2
u(x, t)

@t2
� k1

@
2
u(x, t)

@x2
� c1

@

@t

✓
@
2
u(x, t)

@x2

◆
+ �(u(x, t)� v(x, t)) = F (x) sin(⌦t)

m
@
2
v(x, t)

@t2
+ ⇤(v(x, t)) + c2

@v(x, t)

@t
+ �(v(x, t)� u(x, t)) = 0

(4)

In the next subsection, modal characteristics of the obtained continuous system described in Eq. (4)
will be analyzed.

2.2. Determination of linear modes of the continuous system

To detect the modal characteristics of presented system in Fig. 1, we focus on the linear and
conservative elements of Eq. (4) which can be expressed as:

8
>>><

>>>:

M
@
2
u(x, t)

@t2
� k1

@
2
u(x, t)

@x2
+ �(u(x, t)� v(x, t)) = 0

m
@
2
v(x, t)

@t2
+ �(v(x, t)� u(x, t)) = 0

(5)

The spatio-temporal variables of Eq. (5) are separated as follows:

⇢
u(x, t) = A(x)ei!t

v(x, t) = D(x)ei!t (6)

where ! represents the angular frequency of the continuous system. After injecting Eq. (6) into Eq.
(5), we obtain:

8
><

>:

(�M!
2 + �)A(x)� k1

d
2
A(x)

dx2
� �D(x) = 0

(�m!
2 + �)D(x)� �A(x) = 0

(7)

Thus, we can write:

D(x) = �A(x) (8)

with

� =
�

�!2m+ �
(9)

The first equation of the Eq. (7) can be reorganized as:

d
2
A(x)

dx2
+

1

k1

✓
M!

2 � � +
�
2

�!2m+ �

◆

| {z }
µ2

A(x) = 0 (10)

Considering a periodic chain with the same displacement and rotation for the first and last cells as the
boundary conditions, the non-trivial solutions of Eq. (10) are:

Ak(x) = ↵ cos(µkx) (11)
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with

µk =
2k⇡

L
(12)

where k 2 N+ is the mode number. To determine ↵, we opt for the normalized form of Ak(x) leading

to, ↵ =
q

2
L . Then, the spatio-temporal system variables can be expressed as:

8
>>>><

>>>>:

u(x, t) =
X

k

Ak(x)gk(t)

v(x, t) =
X

k

�kAk(x)⌘k(t) =
X

k

Ak(x)hk(t)

(13)

where gk(t) and hk(t) represent the modal coordinates of the continuous system. To investigate
behaviors around a spacial mode, the continuous system will be arbitrarily projected on one of its
linear modes and further treatments will be carried out on it.

2.3. Projection of the continuous system on the kth mode

We aim to study the projected form of continuous system equations on its kth mode, i.e. Ak(x).
To this end, we apply the inner product between system equations and the function Ak(x). The inner
product on the vector space of general continuous functions f(s) and g(s) in the interval [a, b] is given
by:

hf(s) , g(s)i =
Z b

a
f(s)g(s) ds (14)

In applying Eq. (14), we assume that the response of the continuous system is dominated by the kth

mode and we ignore internal resonances and mode couplings of the system. Then, from Eq. (13) we
can write:

8
<

:

u(x, t) = Ak(x)gk(t)

v(x, t) = Ak(x)hk(t)
(15)

Then the projection of Eq. (4) on Ak(x) reads:

8
>>>><

>>>>:

M
d
2
gk(t)

dt2
+ k1µ

2
kgk(t) + c1µ

2
k
@gk(t)

dt
+ � (gk(t)� hk(t)) =

Z L

0
F (x) sin(⌦t)Ak(x)dx

m
d
2
hk(t)

dt2
+

Z L

0
⇤(v)Ak(x) dx+ c2

dhk(t)

dt
+ � (hk(t)� gk(t)) = 0

(16)

For the rest of this paper and for simplicity, the index k will be dropped from modal coordinates gk(t),
hk(t) and µk. The equations of the continuous system projected on the kth mode, as presented in
Eq. (16), are similar to a two degree-of-freedom (dof) system (see Fig. 2). This system consists of a
mass M with the modal displacement g(t) linearly coupled to a mass m with the modal coordinate
as h(t) with a nonlinear restoring forcing function [38]. In the following, this system is referred to as
the reduced system or continuous system in the modal domain. The objective is to identify the fast
and slow dynamics of this system in order to predict its behavior. For this purpose, the governing
equations are non-dimensionalized (a new time ⌧ is defined), then the complex variables of Manevitch
[42] are introduced and the Galerkin method is used to keep the first harmonic of the system.
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Figure 2: Schematic of the reduced system: a main mass M is linearly coupled to a mass m possessing nonlinear restoring
forcing function. The displacements of M and m are noted as g(⌧) and h(⌧), respectively.

2.4. Detection of di↵erent dynamics of the reduced system

2.4.1. Non-dimensionalization and complexification of the reduced system
We introduce a new time ⌧k = t!k, where !k is the angular frequency of the kth mode of the

continuous system. In the following the index of the non-dimensionalized time ⌧k is dropped for
simplicity. Thus, Eq. (16) is written as follows:

8
>>>><

>>>>:

d
2
g(⌧)

d⌧2
+

k1µ
2

M!2
g(⌧) + "

c1µ
2

!M

dg(⌧)

d⌧
+ "

�

M!2
(g(⌧)� h(⌧)) = sin(⌫⌧)

Z L

0

F (x)

!2M
Ak(x)dx

"
d
2
h(⌧)

d⌧2
+

1

!2M

Z L

0
⇤(v)Ak(x)dx+ "

c2

!M

dh(⌧)

d⌧
+ "

�

M!2
(h(⌧)� g(⌧)) = 0

(17)

with " = m
M ⌧ 1 and ⌫ = ⌦

! , where ! represents the mode of the continuous system that depends on

µ according to Eq. (10) (at the order 1, !2 = µ2k1

M ). The simplified form of Eq. (17) is given by:

8
>>>><

>>>>:

d
2
g(⌧)

d⌧2
+ g(⌧) + "µz1

dg(⌧)

d⌧
+ "

X0

µ2
(g(⌧)� h(⌧)) = " sin(⌫⌧)

Z L

0

F0(x)

↵µ2
Ak(x)dx

"
d
2
h(⌧)

d⌧2
+ "⇤1(v) + "

z2

µk

dh(⌧)

d⌧
+ "

X0

µ2
(h(⌧)� g(⌧)) = 0

(18)

with "z1 =
c1p
k1M

, "X0 =
�

k1
, "

F0(x)

↵
=

F (x)

k1
, "⇤1 =

1

µ2
kk1

Z L

0
⇤(v)Ak(x)dx, "z2 =

c2p
k1M

.

Assuming F (x) follows the linear mode of the continuous system with F (x) = F↵ cos(µx)), then we

can define: " sin(⌫⌧)

Z L

0

F0(x)

↵µ2
Ak(x)dx = "

F0

↵µ2
sin(⌫⌧). In order to detect di↵erent dynamics of the

systems, following the complex variables of Manevitch are introduced:

⇢
'1CMe

i⌫⌧ = ġ(⌧) + i⌫g(⌧)
'2CMe

i⌫⌧ = ḣ(⌧) + i⌫h(⌧)
(19)

with i
2 = �1. Then, a multiple scale method [41] is applied, where the time ⌧ is decomposed into fast

(⌧0 = ⌧) and slow time scales (⌧p = "
p
⌧ , p = 1, 2, ...). Consequently, we obtain:

d

d⌧
=

@

@⌧0
+ ..+ "

p @

@⌧p
(20)

Solutions can be expressed in the terms of Fourier series, and a Galerkin method is used to keep the first
harmonic of the system and truncate others [45, 46]. For an arbitrary function s('1CM ,'2CM ,'

⇤
1CM ,'

⇤
2CM ),

the expression corresponding to the first harmonic is denoted as S:

S('1CM ,'2CM ,'
⇤
1CM ,'

⇤
2CM ) =

⌫

2⇡

Z 2⇡
⌫

0
s('1CM ,'2CM ,'

⇤
1CM ,'

⇤
2CM )e�1i⌫⌧

d⌧ (21)
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Thus, Eq. (18) becomes:

8
>>>><

>>>>:

'̇1CM +
i⌫

2
'1CM +

1

2i⌫
'1CM + "

z1µ'1CM

2
+ "

X0

2i⌫µ2
('1CM � '2CM ) =

"

2i↵µ2

Z L

0
F0(x)Ak(x)dx

"

✓
'̇2CM +

i⌫

2
'2CM +

z2

2µ
'2CM +

X0

2i⌫µ2
('2CM � '1CM ) +G(v)

◆
= 0

(22)

with G(v) =
⌫

2⇡

Z 2⇡
⌫

0
⇤1(v)e

�i⌫⌧
d⌧ . We aim to clarify the system behaviors around the 1 : 1 resonance.

To achieve this, we set ⌫ = 1 + "�. If we consider F (x) = ↵ cos(µx), we obtain:

"

2i↵µ2

Z L

0
F0(x)Ak(x)dx =

"F0

2i↵µ2
(23)

In the following sections we will examine the equations of the reduced system at di↵erent orders of "
to detect di↵erent dynamics.

2.4.2. Fast dynamics
Let us consider "0 order of the Eq. (22):

8
><

>:

@'1CM

@⌧0
= 0

@'2CM

@⌧0
+ H ('1CM ,'2CM ) = 0

(24)

with,

H =

✓
i

2
+

z2

2µ
� iX0

2µ2

◆
'2CM +

iX0

2µ2
'1CM +G(v) (25)

At order "0,
@'1CM

@⌧0
= 0 is satisfied. Since ⌧0 ! +1, i.e. in an asymptotic state, we have

@'2CM

@⌧0
= 0,

leading to H ('1CM ,'2CM ) = 0, which is called the Slow Invariant Manifold (SIM) of the system. Let
us consider the complex variables of Manevitch (Eq. (19)) in the polar domain:

⇢
'1CM = N1CMe

i�1CM

'2CM = N2CMe
i�2CM

(26)

with NqCM 2 N+ and �qCM 2 R, q = 1, 2.

2.4.3. Slow dynamics
In this section, we aim to identify the characteristic points of the system, i.e. the equilibrium and

singular points. To this end, we will search for the "1 order of Eq. (22). The first equation of Eq. (22)
at the "

1 order is:

@'1CM

@⌧1
+

i�

2
'1CM +

i�

2
'1CM +

µz1

2
'1CM � iX0

2µ2
('1CM � '2CM ) +

iF0

2↵µ2
| {z }

E

= 0 (27)

The evolution of the SIM (see Eq. (25)) is studied at the slow time scale ⌧1, by denoting the complex
conjugate of variables by (.)⇤, we have in matrix form:
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2

664

@H

@'2CM

@H

@'⇤
2CM

@H
⇤

@'2CM

@H
⇤

@'⇤
2CM

3

775

| {z }
B

2

64

@'2CM

@⌧1
@'

⇤
2CM

@⌧1

3

75 = �

2

64

@H

@'1

@H

@'⇤
1

@H
⇤

@'1

@H
⇤

@'⇤
1

3

75

2

64

@'1CM

@⌧1
= �E

@'
⇤
1CM

@⌧1
= �E

⇤

3

75 (28)

Thus, equilibrium points can be defined as the points that satisfy the following conditions:
8
<

:

E ('1CM ,'2CM ,'
⇤
1CM ,'

⇤
2CM ) = 0

H ('1CM ,'2CM ,'
⇤
1CM ,'

⇤
2CM ) = 0

det (B) 6= 0
(29)

and the singular points are defined such as:
8
<

:

E ('1CM ,'2CM ,'
⇤
1CM ,'

⇤
2CM ) = 0

H ('1CM ,'2CM ,'
⇤
1CM ,'

⇤
2CM ) = 0

det (B) = 0
(30)

Here the equilibrium and singular points are defined. In the next subsection, some preliminary treat-
ments of the discrete form of the system equations are carried out. Then, the results obtained from
the reduced system are confronted with those of the discrete equations.

2.5. Discrete system

Let us non-dimensionalize the discrete equations of the chain (see Eq. (1)) by considering Fj =
↵F cos(µ(j � 1)), so we have:

8
>>>>><

>>>>>:

M
d
2
uj

dt2
+ k1(2uj � uj+1 � uj�1) + c1

✓
2
duj

dt
� duj+1

dt
� duj�1

dt

◆

+�(uj � vj) = ↵F cos(µ(j � 1)) sin(⌦t)

m
d
2
vj

dt2
+ ⇤(v) + c2

dvj

dt
+ �(vj � uj) = 0

(31)

After introducing the same time as for the reduced system: ⌧ = t!, considering !
2 =

k1µ
2

M
at the

order O(1), and introducing the parameters of Eq. (18), Eq. (31) becomes:

8
>>>>>>><

>>>>>>>:

d
2
uj

d⌧2
+

1

µ2
(2uj � uj+1 � uj�1) +

"z1

µ

✓
2
duj

d⌧
� duj+1

d⌧
� duj�1

d⌧

◆
+

"X0

µ2
(uj � vj) =

"F0

µ2
cos(µ(j � 1)) sin(⌫⌧)

"
d
2
vj

d⌧2
+

⇤(v)

k1µ
2
+

"z2

µ

dvj

d⌧
+

"X0

µ2
(vj � uj) = 0

(32)

Furthermore, we assume that the discrete system is under initial conditions that follow the kth

modal form of the chain (see Eq. (11) and 13) i.e.: uj(⌧ = 0) = ↵ cos(µk(j � 1))g(⌧ = 0), and
vj(⌧ = 0) = ↵ cos(µk(j � 1))h(⌧ = 0), where j = 1, 2, .., L, g(⌧ = 0) and h(⌧ = 0) are the initial modal
coordinates of the reduced system.
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2.6. Comparison of results obtained from discrete and reduced systems

Two methods are used to compare the behavior of the discrete and reduced systems. In the first
one, the numerical results obtained from the discrete form of equations are projected on the kth linear
mode of the continuous system defined in Eq. (11) Ak(x) = ↵ cos(µkx) where x is the position of the
cells and x = j � 1 with j = 1, ..., L. We set AkD as follows:

AkD =

0

BBBBBB@

↵ cos(µk ⇥ 0)
...

↵ cos(µk ⇥ (j � 1))
...

↵ cos(µk ⇥ (L� 1))

1

CCCCCCA
(33)

We also define U, U̇, V and V̇ as the displacement and velocity vectors of the masses Mj and mj ,
respectively:

U =

0

BBBBBB@

u1(⌧)
...

uj(⌧)
...

uL(⌧)

1

CCCCCCA
; U̇ =

0

BBBBBB@

u̇1(⌧)
...

u̇j(⌧)
...

u̇L(⌧)

1

CCCCCCA
;V =

0

BBBBBB@

v1(⌧)
...

vj(⌧)
...

vL(⌧)

1

CCCCCCA
; V̇ =

0

BBBBBB@

v̇1(⌧)
...

v̇j(⌧)
...

v̇L(⌧)

1

CCCCCCA
(34)

Moreover, we set gD(⌧), hD(⌧), ġD(⌧) and ḣD(⌧) as the modal displacements and velocities associated
with the masses M and m obtained from the discrete system, and they are defined as:

8
>><

>>:

gD(⌧) = AT
kDU(⌧)

hD(⌧) = AT
kDV(⌧)

ġD(⌧) = AT
kDU̇(⌧)

ḣD(⌧) = AT
kDV̇(⌧)

(35)

Thus, results of the system in the modal domain obtained from discrete system (discrete system in the
modal domain) and the reduced system can be compared. The second method consists of calculating
the response of the continuous domain from the response of the reduced system. In other words,
u(x, t), v(x, t) and their derivatives are calculated from g(t), h(t) and their derivatives using Eq. (15).
The numerical results obtained in the physical domain from the reduced system are then compared
with those of the discrete chain. Both methods are summarized in Fig. 3.

Let us introduce the complex variables of Manevitch for the di↵erent cases: the reduced system
denoted as 'qCM (see Eq. (19)), the continuous system in the physical domain as 'qCMPh, the discrete
system as 'qDPh and the discrete system in the modal domain as 'qDM , where q = 1, 2.

8
<

:

'1CMPhe
i⌫⌧ = u̇(x, ⌧) + i⌫u(x, ⌧) = Ak(x)ġ(⌧) + i⌫Ak(x)g(⌧) = Ak(x)'1CMe

i⌫⌧

'2CMPhe
i⌫⌧ = v̇(x, ⌧) + i⌫v(x, ⌧) = Ak(x)ḣ(⌧) + i⌫Ak(x)h(⌧) = Ak(x)'2CMe

i⌫⌧
(36)

⇢
'1DPh,je

i⌫⌧ = u̇j(⌧) + i⌫uj(⌧)
'2DPh,je

i⌫⌧ = v̇j(⌧) + i⌫vj(⌧)
(37)

⇢
'1DMe

i⌫⌧ = ġD(⌧) + i⌫gD(⌧)
'2DMe

i⌫⌧ = ḣD(⌧) + i⌫hD(⌧)
(38)

In the polar domain, for q = 1, 2:

'qCMPh = NqCMPhe
i�qCMPh (39)
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2L dof

2 dof

Discrete chain
continuous domain

Continuous system
(CMPh)

projection on a
linear mode of
continuous system

Discrete chain
(DPh)

Reduced system
(CM)

projection on a
linear mode of
continuous system

Discrete system
in modal domain

(DM)

u(x, ⌧) = A(x)g(⌧)
v(x, ⌧) = A(x)h(⌧)

gD(⌧) = AT
kDU

hD(⌧) = AT
kDV

Compare

Compare

Figure 3: Diagram summarizing the methodology used to compare results obtained from discrete and reduced systems.
Elements in red are the result of numerical integrations.

dof notation Nq �q

Continuous system, Modal (1) 2 g(t), h(⌧) NqCM �qCM

Continuous system, physical (2) 2L u(x, ⌧), v(x, ⌧) NqCMPh �qCMPh

Discrete system, Modal (3) 2 gD(t), hD(⌧) NqDM �qDM

Discrete chain, Physical (4) 2L uj(⌧), vj(⌧) NqDPh �qDPh

Table 1: Notation of the di↵erent chains. (1): modal domain obtained from continuous system (reduced system); (2):
physical domain obtained from the modal domain of continuous system; (3): modal domain obtained from the discrete
system; (4): physical domain from the discrete system (q = 1, 2).

'qDPh,j = NqDPh,je
i�qDPh,j (40)

'qDM = NqDMe
i�qDM (41)

For clarity, the di↵erent notations are summarized in Table 1.

In summary, in this section, a reduced system (2 dof) was defined from the discrete system (2L dof)
by writing the equations in the continuous domain and then by projecting them on an arbitrary linear
mode of the continuous system. Analytical studies were performed to predict the behavior of the
reduced system. Finally, two comparison methods were presented to verify that the reduced system is
representative of the discrete one.
In the following sections, the general methodology developed in Sect. 2 will be applied for a system
with a constant cubic sti↵ness (see Sect. 3) and then for a system with time-dependent cubic sti↵ness
(see Sect. 4).

3. Presentation of the system possessing a constant cubic nonlinear sti↵ness

In this section, we will consider the discrete and reduced systems with constant sti↵ness. The
methodology explained in Sect. 2 will be employed to study di↵erent dynamics of the reduced system.

3.1. General presentation

Let us assume that the nonlinear restoring forcing function ⇤(v) (see Fig. 1 and Eq. (1)) is cubic.

9



⇤(v) = k2v
3
j (t) (42)

where k2 is the sti↵ness of the nonlinear oscillators. In the continuous domain ⇤(v) reads:

⇤(v) = k2v
3(x, t) = k2Ak(x)

3
hk(t)

3 (43)

Considering the continuous system in the modal domain

Z L

0
⇤(v)Ak(x) dx as defined in Eq. (16) reads:

Z L

0
⇤(v)Ak(x) dx = k2h(t)

3

Z L

0
Ak(x)

3
Ak(x) dx =

3

2

k2h(t)3

L
(44)

The non-dimensionalized equations of the continuous system in the modal domain (Eq. (17)) becomes:

8
>>>><

>>>>:

d
2
g(⌧)

d⌧2
+ g(⌧) + "µz1

dg(⌧)

d⌧
+ "

X0

µ2
(g(⌧)� h(⌧)) = " sin(⌫⌧)

Z L

0

F0(x)

↵µ2
Ak(x)dx

"
d
2
h(⌧)

d⌧2
+ "

3

2L

P0

µ2
h(⌧)3 + "

z2

µ

dh(⌧)

d⌧
+ "

X0

µ2
(h(⌧)� g(⌧)) = 0

(45)

with "P0 =
k2

k1
. Then the complex variables of Manevitch are introduced. For better readability,

'qCM , NqCM are denoted as 'q and Nq, with q = 1, 2 for the analytical developments. After applying
the Galerkin technique, Eq. (22) becomes:

8
><

>:

'̇1 +
i⌫

2
+

1

2i⌫
'1 + "

z1µ'1

2
+ "

X0

2i⌫µ2
('1 � '2) =

"F0

2i↵µ2

"

✓
'̇2 +

i⌫

2
'2 �

9P0

16⌫3µ2L
i'2|'2|2 +

z2

2µ
'2 +

X0

2i⌫µ2
('2 � '1)

◆
= 0

(46)

In the next subsection, several system dynamics will be clarified as explained in Sect. 2.

3.2. Detection of di↵erent dynamics of reduced system

3.2.1. Fast dynamics
To detect the fast dynamics of the reduced system, Eq. (46) is considered at the order "0. Then,

@'1

@⌧0
= 0 is verified and we seek an asymptotic state, i.e. ⌧0 ! 1 so

@'2

@⌧0
= 0. Thus, as defined in Eq.

(24), we look for H ('1,'2) = 0 with:

H =
'2

2

✓
i+

z2

µ
� i

X0

µ2
� 9iP0

8Lµ2
|'2|2

◆
+

iX0'1

2µ2
(47)

The equation of the SIM of the reduced system, with the polar variables 'q = Nqe
i�q (q = 1, 2), is in

the real domain:

N1 =
N2

X0

s

(z2µ)2 +

✓
µ2 �X0 �

9P0

8L
N2

2

◆2

(48)

Now, we would like to determine the stability limits of the SIM. To do this, '2 and '
⇤
2 are linearly

perturbed:

⇢
'2 ! '2 +�'2, |�'2| ⌧ |'2|
'
⇤
2 ! '

⇤
2 +�'

⇤
2, |�'

⇤
2| ⌧ |'⇤

2|
(49)

where (·)⇤ stands for complex conjugate of the complex variable. After substituting Eq. (49) into the
second equation of Eq. (46) at the order "0 (and also into its complex conjugate), the following system
is obtained:
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@�'2

@⌧0
@�'⇤

2
@⌧0

!
=

1

2

0

B@
�i

⇣
1� X0

µ2 � 9
4N

2
2

⌘
� z2

µ

9

8Lµ2
iP0'

2
2

� 9

8Lµ2
iP0'

2⇤
2 i

✓
1� X0

µ2
� 9

4
N

2
2

◆
� z2

µ

1

CA

| {z }
M

✓
�'2

�'
⇤
2

◆
(50)

To study the stability of the SIM, the eigenvalues of the matrix M, denoted as �M are evaluated. To
find the unstable zone of the SIM, we search for the characteristic equation of the matrix M, which is
expressed as follows:

�
2
M � ↵M�M + �M = 0 (51)

By noting �M,1 and �M,2 as the solutions of Eq. (51), we have �M,1 + �M,2 = ↵M = �z2

µ
and

�M,1�M,2 = �M. The system is unstable if the real parts of �M,1 and �M,2 are positive, i.e. �M � 0.
Thus, the equation �M = 0 corresponds to the stability boundary of the SIM, defined as:

243

64

P
2
0

L2
N

4
2 � 9

2
(µ2 �X0)

P0

L
N

2
2 + (µ2 �X0)

2 + (z2µ)
2 = 0 (52)

Figure 4 shows an example of the SIM for provided parameters from Table 2 for the first mode of the
chain, while Figs. 5a and 5b depict the SIM for the third and tenth modes with the unstable zone in
green. For simplicity, NqCM is denoted as Nq on these figures.

Parameter Value
µz1 0.1
z2

µ2
0.1

X0

µ2
0.5

k0

Lµ2
0.1

Table 2: Parameters of the system.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4: The SIM of the 1st mode of the continuous system for provided given from Table 2: stable and unstable zones
of the SIM are depicted in black and green, respectively. The boundaries of stability are represented by white dots.

It is observed that as the mode number increases, the local minimum of the SIM becomes very close
to the horizontal axis. This is in agreement with previously developed works [38, 47]: as the mode
number increases, i.e. when µ increases, the equivalent damping of the non-dimensionalized equation,

i.e.
z2

µ
becomes smaller. When µ ! 1, it becomes zero, and the SIM touches the horizontal axis.
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Figure 5: The SIM of the a) 3rd, b) 10th modes of the continuous system for given parameters from Table 2: stable and
unstable zones of the SIM are depicted in black and green, respectively. The boundaries of stability are represented by
white dots.

3.2.2. Slow dynamics
The reduced system is studied at the order "

1 to determine the equilibrium and singular points.
As explained in Sect. 2.4.3, the equilibrium points are defined for E = 0 (see Eq. (29)) with:

E =


i

✓
�

✓
1 +

P0

Lµ2

◆
� X0

µ2

◆
+ µz1

�
'1 + i

F0

↵µ2
+ i

X0

µ2
'2 (53)

So the equation of the equilibrium points is:

acX
3 + bcX

2 + ccX + dc = 0 (54)

with X = N
2
2 , where the coe�cients of Eq. (54) are defined in Appendix A. Figures 6 and 7 represent

the equilibrium points of the reduce system for the first and the second mode of the continuous system

in modal domain, respectively, with a external excitation as
F0

↵µ2
= 1.1 and for the parameters from

Table 2. The equilibrium points located in the unstable zone of the SIM are represented in green. We
can see that for the continuous system in the modal domain projected on the first mode, there are
two branches: a main branch (i) and an isola (ii). Moreover, we can see that some equilibrium points
are located in the unstable zone of the SIM of the first mode, while for the second mode (see Fig. 7)
there is only one branch and the equilibrium points are all situated on the stable zone of the SIM. For
numerical results we will focus on the first mode because it presents more interesting behavior.

Equation 54 provides equilibrium points of the reduced system enabling the prediction of the
behavior of the system. We aim to compare the reduced system with the discrete one. To achieve this,
the equilibrium points are plotted in the physical domain using Eq. (36). They depend on �, N1CMPh

and N2CMPh (see Fig. 8). For simplicity, NqCM and NqCMPh are denoted Nq (q = 1, 2) on the figure
axis.

According to Eq. (30) the singular points of the system are defined for det(B) = 0. From Eqs. (28)
and (47), the matrix B is defined as [38]:

B =

2

4
z2
µ + i

⇣
1� X0

µ2 � 9P0
4Lµ2N

2
2

⌘
�i

9P0
8Lµ2'

2
2

i
9P0
8Lµ2'

2⇤
2

z2
µ � i

⇣
1� X0

µ2 � 9P0
4Lµ2N

2
2

⌘

3

5 (55)

So, the equation of the singular points (det(B) = 0) reads:

243

64L2µ4
P

2
0N

4
2 � 9

2
(1� X0

µ2
)
P0

Lµ2
N

2
2 +

z
2
2

µ2
+ (1� X0

µ2
)2 = 0 (56)
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(a) (b)

(c) (d)

Figure 6: Equilibrium points for the first mode of the reduced system under external excitation as
F0

↵µ2
= 1.1 a) Three-

dimensioned view (�, N2CM , N1CM ); b) Two-dimensioned view (�, N2CM ); c) Two dimensioned view (�, N1CM ); d)
Two-dimensioned view (N2CM , N1CM ). Parameters of the system are reported in Table 2. Equilibrium points situated
in unstable zone of the SIM are illustrated by green color.

Figure 7: Equilibrium points for the second mode of the reduced system under external excitation as
F0

↵µ2
= 1.1.

Parameters of the system are reported in Table 2.
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(a) (b)

(c) (d)

Figure 8: Equilibrium points in physical coordinates corresponding to cells 51 and 60 of the discrete chain (x =

j � 1 where j stands for the cell number) under external excitation as
F0

↵µ2
= 1.1 a) Three-dimensional view

(�, N2CMPh, N1CMPh); b) Two-dimensional view (�, N2CMPh); c) Two-dimensional view (�, N1CMPh); d) Two-
dimensional view (N2CMPh, N1CMPh). Parameters of the system are reported in Table 2. Equilibrium points situated
in unstable zone of the SIM are illustrated by green color.
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We can find solutions of this equation which correspond to amplitudes of singular points. It is observed
that Eq. (56) is identical to the equation that defines the boundaries of the unstable zone (see Eq.
(52)). Consequently, it is observe that the singular points are located on the boundaries of the unstable
zone. Thus, the equilibrium points in the unstable region of the SIM are unstable and correspond to
a specific dynamical regime in a forced case. Indeed, the system is in a quasi-periodic regime; it does
not converge to an equilibrium point but instead presents repeated bifurcations between the stable
branches of the SIM.
In summary, through the analytical developments of this section, predictions have been made for the
fast and slow dynamics of the continuous system in the modal domain: the SIM and its unstable zone
for the fast dynamics, and the equilibrium and singular points for the slow dynamics.
In the next subsection, preliminary treatments are performed on the discrete chain to compare the
obtained results with those of the reduced system from continuous equations in the modal domain.

3.3. Non-dimensionalized form of discrete equation of the chain

Since we consider the nonlinear restoring forcing function ⇤(v) = k2v
3
j (t), the non-dimensionalized

equations of the discrete chain (see Eq. (32)) become:

8
>>>>>>><

>>>>>>>:

d
2
uj

d⌧2
+

1

µ2
(2uj � uj+1 � uj�1) +

"z1

µ

✓
2
duj

d⌧
� duj+1

d⌧
� duj�1

d⌧

◆
+

"X0

µ2
(uj � vj) =

"F0

µ2
cos(µ(j � 1)) sin(⌫⌧)

"
d
2
vj

d⌧2
+

"P0

µ2
v
3
j +

"z2

µ

dvj

d⌧
+

"X0

µ2
(vj � uj) = 0

(57)

In the next section, we will numerically integrate the governing equations of the continuous system in
the modal coordinates and those of the discrete system to validate these predictions.

3.4. Numerical results

Parameter Value
µz1 0.1
z2

µ2
0.1

X0

µ2
0.5

k0

Lµ2
0.1

" 0.01
L 100

Table 3: Parameters of the reduced system with a constant nonlinearity.

To validate the analytical predictions, numerical integrations (NI) are performed on Eq. (45)
(reduced system) and Eq. (57) (discrete chain) with the Runge-Kutta method. As a representative
example, we consider an excitation with a frequency around the first mode of the system. Four cases
are considered. The first one corresponds to a free system with the parameters from Table 3 setting
the external force F0 = 0. The other three cases correspond to forced system with the parameters from

Table 3 and
F0

↵µ2
= 1.1 for di↵erent values of �. The second case considers � = 0.5. For this value, a

single equilibrium point is located in the unstable zone of the SIM. The third and fourth cases consider
� = �0.55. For � = �0.55, the reduced system has several possible equilibrium points, as shown in
Fig. 6. Specifically, two of them are on the branch (ii), i.e. the isola, and one of them is on the main
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Figure 9: NI of Eq. (45) in light blue (reduced system) and Eq. (57) in dark blue (discrete chain in modal domain),
SIM of the reduced system (in black), its unstable zone (in green), the boundaries of the unstable zone (white dots) and
the ICs (pink dot) for parameters from Table 3, F0 = 0, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (2, 2.5, 0, 0).

branch (i). Two NI with di↵erent initial conditions (ICs) are performed to reach the isola and the
main branch. The ICs of the discrete chain are set as uj(⌧ = 0) = ↵ cos(µ ⇥ (j � 1))g(⌧ = 0) and
vj(⌧ = 0) = ↵ cos(µ⇥ (j� 1))h(⌧ = 0) where g(⌧ = 0) and h(⌧ = 0) are the ICs of the reduced system
and j = 1, ...L. Furthermore, to present the results in the physical domain, obtained from the discrete
chain and the reduced system, the focus will be on only two cells: the 51st and the 60th cells. This
choice is made because these two cells are located at antinode levels and exhibit large displacements
compared to cells at node levels, where di↵erent regimes may be more di�cult to observe. Further
details on this choice are discussed in Sect. 3.4.2. On the axis of the figures, NqCM , NqCMPh, NqDM

and NqDPh are denoted as Nq (q = 1, 2).

3.4.1. Case I: free system
First, we consider a free system, i.e. F0 = 0 and the following ICs (g(⌧ = 0), h(⌧ = 0), ġ(⌧ =

0), ḣ(⌧ = 0)) = (2, 2.5, 0, 0). Figure 9 illustrates the NI of Eq. (45) in light blue (representing the
reduced system) and that of Eq. (57) in dark blue (representing the discrete system in the modal
domain). The ICs are represented by a pink dot, the SIM is represented by a dark line, the unstable
zone of the SIM is represented by a green line and the boundaries of the unstable zone/singular points
are marked by white dots. Figures 10a, 10b illustrate the time responses NqDM and NqCM as functions
of ⌧ , respectively. The time responses of cells 51 and 60 for NqCMPh and NqDPh are presented in Figs.
11a and 11b (q = 1, 2).

0 500 1000 1500 2000

0.5

1

1.5

2

(a)

0 500 1000 1500 2000

1

2

3

4

(b)

Figure 10: a) N1DM and N1CM as functions of ⌧ ; b) N2DM and N2CM as functions of ⌧ (dark blue and light blue,
respectively); for parameters from Table 3, F0 = 0, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (2, 2.5, 0, 0).

Figure 9 shows that the NI of the reduced system (depicted in light blue) follows the upper stable
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Figure 11: a) N1DPh and N1CMPh as functions of ⌧ ; b) N2DPh and N2CMPh as functions of ⌧ of cells 51 and 60 (dark
red, dark green, orange and light green, respectively); for parameters from Table 3, F0 = 0, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ =
0), ḣ(⌧ = 0)) = (2, 2.5, 0, 0). For the continuous system x = j � 1 where j stands for the cell number.

branch on the SIM until the unstable zone. Then, it jumps to the other stable branch of the SIM and
finally, the system converges to zero as excepted. The NI of the discrete system in the modal domain
(presented in dark blue) presents the same behavior as the reduced system, although the jump is less
precise. This discrepancy may result from di↵erent factors such as keeping only the first harmonic in
the analytical developments, approximating the overall behavior of the chain by a single mode and
neglecting internal resonances and the e↵ect of the " parameter. This shift is also present in the time
responses in Figs. 10 and 11. The N1 responses of the di↵erent systems are very close. However,
for N2 we can observe that the jump does not occur exactly at the same time for the 2 dof systems
and the cell 51 does not reach the same amplitude for the continuous system in the physical domain
and discrete chain. In summary, despite the approximation of the response of the overall chain by
considering only one of its modes, the analytical developments based on this assumption are in good
qualitative agreement with those obtained by projecting of the chain on only one of its modes.

3.4.2. Forced system
In order to have a better understanding of the attraction of the system to di↵erent possible regimes,

basins of attractions are plotted for the first cell of the discrete chain (see Figs. 12a and 12b) and

for the reduced system (see Figs. 12c and 12d) using the parameters from Table 3 and
F0

↵µ2
= 1.1.

These plots are accompanied by the equilibrium points (violet line) and the unstable zone of the SIM
(green line) (see Fig. 6). We can point out that the basin of attraction is the same for the cell 51
and for the cell 1, given that the chain is periodic and follows the first mode, with a force of the form
Fj = ↵F cos(µ(j � 1)). The coordinates of the points on the basins of attractions correspond to ICs
of the NI and the color represents the attracted regime of the system. In this case, we can discern the
behavior of the system based on the ICs and the excitation frequency (⌫ = 1 + �"). For the reduced
system, we have (see Eq. (19)):

⇢
N1CM (⌧ = 0) = |ġ(⌧ = 0) + i⌫g(⌧ = 0)|
N2CM (⌧ = 0) = |ḣ(⌧ = 0) + i⌫h(⌧ = 0)| (58)

Since we consider ġ(⌧ = 0) = 0 and ḣ(⌧ = 0) = 0, we can express:

⇢
N1CM (⌧ = 0) = |g(⌧ = 0)|
N2CM (⌧ = 0) = |h(⌧ = 0)| (59)

For the discrete chain, we have (see Eq. (38)):

⇢
N1DM,j(⌧ = 0) = |u̇j(⌧ = 0) + i⌫uj(⌧ = 0)|
N2DM,j(⌧ = 0) = |v̇j(⌧ = 0) + i⌫vj(⌧ = 0)| (60)
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So,

⇢
N1DM,j(⌧ = 0) = |u̇j(⌧ = 0)| = ↵ cos(µ⇥ (j � 1))g(⌧ = 0)
N2DM,j(⌧ = 0) = |v̇j(⌧ = 0)| = ↵ cos(µ⇥ (j � 1))h(⌧ = 0)

(61)

The axis N1 and N2 correspond to the ICs g(⌧ = 0) and h(⌧ = 0). In Fig. 12, the red, light blue
and dark blue dots correspond to a system that reaches a quasi-periodic regime, the isolated or the
main branch of the frequency responses (see Fig. 6) (periodic regimes), respectively. For both systems,
a similar organization is observed, which is clearer for N1(⌧ = 0) and � than for N2(⌧ = 0) and �.
For � > 0.1, both systems are in the quasi-periodic regime, as predicted by the unstable zone of the
SIM. As shown in [47], the existence of singularities can lead the system to exhibit a quasi-periodic
response. Moreover, if the system has only one equilibrium point located in the unstable zone of the
SIM, then the system will present quasi-periodic regime [48]. For the first cell of the discrete chain
for � 2 [�0.4; 0.1], N1(⌧ = 0) 2 [0; 8] and N2(⌧ = 0) 2 [0; 5], it is noticeable that the cell is on the
isola regardless of the IC. For the reduced system, a similar behavior is observed for � 2 [�0.3; 0.1].
For smaller values of �, several groups (isola or main branch) are observed which depend more on
N1(⌧ = 0), i.e. g(⌧ = 0), and � than on N2(⌧ = 0),i.e. h(⌧ = 0), (see Figs. 12c and 12a). In
summary, the behavior depends more on N1(⌧ = 0) and � than on N2(⌧ = 0). It is important to note
that for the discrete chain, only the first cell (and so the 51st cell) is considered, which may not be
fully representative of the general behavior of the entire chain. In the rest of this subsection, some

(a) (b)

(c) (d)

Figure 12: Basins of attractions a) N1DPh,1 as a function of �; b) N2DPh,1 as a function of �; c) N1CM as a function
of �; d) N2CM as a function of �.

results will be presented for the forced systems with
F0

↵µ2
= 1.1 but with di↵erent values of detuning

parameters, �, and IC.

Case II: � = 0.5,
F0

↵µ2
= 1.1, (g(⌧ = 0), h(⌧ = 0)) = (0, 0)
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In this part, forced systems are examined and the analytical developments are compared with the
numerical results for the parameters from Table 3, with � = 0.5 and the ICs given by (g(⌧ = 0), h(⌧ =
0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0). Figure 13 illustrates the SIM of the first mode of the reduced
system (represented by the black line) accompanied by the numerical results of the reduced system
(light blue line) and the discrete chain in the modal domain (dark blue line). The time responses of
NqCM and NqDM are presented in Fig. 14 and those of NqDPh and NqCMPh (for cells 51 and 60)
are presented in Fig. 15. To provide a clearer understanding of the behavior of the systems, three-
dimensional views of the time responses of NqDPh,j(⌧) and NqCMPh(x, ⌧) as functions of mass number
(j) and space (x) are depicted in Fig. 16 (q = 1, 2).
In Fig. 13, the response of the reduced system obtained from NI exhibits repeated bifurcations between
stable branches of the SIM. This corresponds to the predictions shown in Fig. 6: the only equilibrium
point for this value of � is located in the unstable zone of the SIM. The NI of the discrete system
in the modal basis presents the same behavior but with less precision, especially for N2. Indeed, all
predictions based on the reduced form of the continuous system show an averaged behavior of the
entire chain around one of its modes, while results obtained from the direct NI of the overall chain
cover whole system behavior. In Fig. 16, we observe that the discrete and continuous systems in the
physical domain follow the form of the absolute value of the first linear mode of the continuous system,
i.e. ↵ cos(µx). Thus some cells are situated near nodes (cells 26 and 76), which do not move much,
while others are near an antinode (cells 1 and 51) which have large displacements. For this reason, cell
51 and cell 60 are chosen to study of the discrete chain. Cell 60 is slightly o↵set from the antinode but
remains close. If we compare Figs. 16a, 16b and 16c, we can see that N1CMPh, N2CMPh and N1DPh

closely follow the shape of the mode while for N2DPh in Fig. 16d the response deviates somewhat from
the linear mode.

Figure 13: NI of Eq. (45) in light blue (reduced system) and Eq. (57) in dark blue (discrete chain in modal domain), SIM
of the reduced system (in black), its unstable zone (in green), the boundaries of the unstable zone (white dots) and the

ICs (pink dot) for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

To better understand the quasi-periodic behavior, the Poincaré map [49] is plotted for the 2 dof
systems (the reduced system and the discrete system in the modal domain). For a system in quasi-
periodic, the Poincaré map corresponds to a closed loop, while for a system in a periodic regime, it
ideally corresponds to a point. The discrete and continuous systems in the modal domain are plotted
in Figs. 17a and 17b (ġD(⌧) as a function of gD(⌧), ġ(⌧) as a function of g(⌧), ḣD(⌧) as a function
of hD(⌧) and ḣ(⌧) as a function of h(⌧), respectively). The Poincaré maps of the 2L dof systems are
not plotted to avoid overloading the paper; indeed Figs. 14 and 15 already highlight the di↵erences
between the systems. It is noteworthy that the global geometry of Poincaré maps looks like a closed
loop which corresponds well to a quasi-periodic regime.
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Figure 14: a) N1DM and N1CM as functions of ⌧ ; b) N2DM and N2CM as functions of ⌧ (dark blue and light blue,

respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 15: a) N1DPh and N1CMPh as functions of ⌧ ; b) N2DPh and N2CMPh as functions of ⌧ of cells 51 and

60 (dark red, dark green, orange and light green, respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5,

(g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0). For the continuous system x = j � 1 where j stands for the cell
number.
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(a) (b)

(c) (d)

Figure 16: Three-dimensional view of a) N1CMPh(x, ⌧); b) N2CMPh(x, ⌧); c) N1DPh,j(⌧); d) N2DPh,j(⌧); for parame-

ters from Table 3,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 17: Poincaré maps a) ġD(⌧) as a function of gD(⌧) and ġ(⌧) as a function of g(⌧), b) ḣD(⌧) as a function

of hD(⌧) ḣ(⌧) as a function of h(⌧) (dark blue and light blue); for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5,

(g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

To observe the e↵ects of di↵erent harmonics on the system responses, we filter the results obtained
from the direct NI keeping only the first and the third harmonics for the reduced and discrete systems
in the modal domain. Figures 18 and 19 summarize results for NqDM and NqCM (q = 1, 2), for the
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filtered first and third harmonics, respectively. For N1, the first harmonic provides a good representa-
tion of the overall response while the third harmonic has an almost negligible e↵ect on overall response
(see Fig. 18b). On the contrary, for N2, the first harmonic corresponds to the average amplitude and
the third harmonic has a more significant e↵ect on values of N2 compared to the first harmonic (see
Fig. 19b), it takes into account the oscillations. This can explain the di↵erence between the N2 values
obtained directly from the reduced form of continuous system and those obtained from the discrete
chain as depicted in Fig. 13. In fact, for detecting the SIM, only the first harmonics of the system are
kept, see Eq. (22), while filtering the data shows that the third harmonic of the N2 plays an important
role in the system responses. However, the analytical developments based on keeping only the first
harmonic are able to qualitatively predict system responses during extreme nonlinear interactions in
the system.
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Figure 18: Filtering around the first harmonic and the response with all the harmonics a) N1DM and N1CM as functions
of ⌧ ; b) N2DM and N2CM as functions of ⌧ of the discrete chain in the modal domain (black dotted line, dark blue line,

gray dotted line and light blue line, respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ =

0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 19: Filtering around the first harmonic and the response with all the harmonics a) N1DM and N1CM as functions
of ⌧ ; b) N2DM and N2CM as functions of ⌧ (black dotted line, dark blue line, gray dotted line and light blue line,

respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

Case III: � = �0.55,
F0

↵µ2
= 1.1, (g(⌧ = 0), h(⌧ = 0)) = (0, 0)

For the third case, we consider the parameters from Table 3, with � = �0.55 and the following
ICs (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0). According to Fig. 6, for � = �0.55,
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there are three possible equilibrium points situated on the main branch and also on the isola. The
basin of attractions (see Fig. 12) shows that for mentioned IC, both discrete and reduced systems
should be attracted by the main branch. Figure 20 illustrates the SIM of the first mode of the reduced
system accompanied by numerical results of the continuous (light blue line) and discrete (dark blue
line) systems in the modal domain. The time responses of NqCM and NqDM of cells 51 and 60 are
presented in Fig. 21, NqDPh and NqCMPh are illustrated in Fig. 22 (q = 1, 2). Figures 23a and 23b
show NqCMPh as a function of x and ⌧ and Figs. 23c and 23d represent NqDPh as a function of j and
⌧ (q = 1, 2).

Figure 20: NI of Eq. (45) in light blue (reduced system) and Eq. (57) in dark blue (discrete chain in modal domain), SIM
of the reduced system (in black), its unstable zone (in green), the boundaries of the unstable zone (white dots) and the

ICs (pink dot) for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 21: a) N1DM and N1CM as functions of ⌧ ; b) N2DM and N2CM as functions of ⌧ (dark blue and light blue,

respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

In Fig. 20, we observe that both systems follow the SIM and reach an equilibrium point on the lower
branch. Futhermore, Figs. 21 and 22 show that the response of both systems are very similar and
that the reduced system accurately describes the behavior of the discrete one. The responses of all
cells in the discrete chain are almost identical to those of the reduced form of the continuous system
(see Fig. 23). Unlike case II, where there are some di↵erences between di↵erent values of N2 (from
di↵erent systems), here the attracted equilibrium point is on the lower branch of the SIM (see Fig.
21). Therefore, the nonlinearity of the system is less activated compared to the case II, leading to
weaker e↵ects of higher harmonics and internal resonances. All this contributes to good predictions of
the system behavior after projection on a single mode. Thus, the analytical predictions are validated
as the reduced system and the discrete system in the modal domain converge to N1CM = 0.52 and
N2CM = 0.54 as predicted in Fig. 6.
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Figure 22: a) N1DPh and N1CMPh as functions of ⌧ ; b) N2DPh and N2CMPh as functions of ⌧ of cells 51 and 60

(dark red, dark green, orange and light green, respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55,

(g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 23: Three-dimensional view of a) N1CMPh(x, ⌧); b) N2CMPh(x, ⌧); c) N1DPh,j(⌧); d) N2DPh,j(⌧); for param-

eters from Table 3,
F0

↵µ2
= 1.1, � = �0.55, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0). For the continuous

system x = j � 1 where j stands for the cell number.
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Case IV: � = �0.55,
F0

↵µ2
= 1.1, (u1(⌧ = 0), u2(⌧ = 0)) = (3.3, 0)

Let us consider the parameters from Table 3 with � = �0.55 and the following ICs (g(⌧ = 0), h(⌧ =
0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (3.3, 0, 0, 0). Figure 24 represents the SIM of the first mode of the reduced
system with numerical results of the continuous and discrete systems in the modal domain. Figure 25
corresponds to the time histories of NqCM and NqDM and Fig. 26 represents NqCMPh and NqDPh of
cells 51 and 60 (q = 1, 2). The ICs are higher than for case III. The systems converge to an equilibrium
point on the isola corresponding to a high energy level of the main system (see Figs. 25 and 26). N1CM

and N1DM (see Fig. 25a) as well as N2CM and N2DM (see Fig. 25b) are close but do not converge to
exactly the same points. Indeed for the discrete chain, the cells close to a node, do not have enough
energy the reach the isola, creating a shift compared to the reduced system. We can also notice that
for the discrete chain, N2DPh of cells 51 and 60 have almost the same amplitude in stationary regime
(after ⌧ = 500) (see Fig. 26b).

Figure 24: NI of Eq. (45) in light blue (reduced system) and Eq. (57) in dark blue (discrete chain in modal domain), SIM
of the reduced system (in black), its unstable zone (in green), the boundaries of the unstable zone (white dots) and the ICs

(pink dot) for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (3.3, 0, 0, 0).
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Figure 25: a) N1DM and N1CM as functions of ⌧ ; b) N2DM and N2CM as functions of ⌧ (dark blue and light blue,

respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (3.3, 0, 0, 0).

3.5. Conclusion

The reduced and discrete systems were considered for a constant sti↵ness and a cubic restoring
force. An analytical study of the reduced system, including the detection of its fast and slow dynamics,
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Figure 26: a) N1DPh and N1CMPh as functions of ⌧ ; b) N2DPh and N2CMPh as functions of ⌧ of cells 51 and 60

(dark red, dark green, orange and light green, respectively); for parameters from Table 3,
F0

↵µ2
= 1.1, � = �0.55,

(g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (3.3, 0, 0, 0). For the continuous system x = j � 1 where j stands for the cell
number.

has led to the definition of the SIM, equilibrium and singular points. Numerical integrations of both
systems for di↵erent cases on the one hand validate the analytical predictions and on the other hand
show that the reduced system globally predicts the response of the discrete chain, although there are
some discrepancies between the responses of selected cells.

4. Presentation of the system possessing a variable cubic nonlinear sti↵ness

In this section, a time-dependent nonlinearity will be considered. The method described in Sect. 2
will be used to study the di↵erent dynamics of the reduced system.

4.1. General presentation of the system

Let us assume that the nonlinear restoring forcing function ⇤(v) (see Eq. (1)) is cubic and time-
dependent. It is defined as follows:

⇤(v) = k2(t)v
3
j (t) (62)

In the continuous domain ⇤(v) is given by:

⇤(v) = k2(t)v
3 = k2(t)Ak(x)

3
hk(t)

3 (63)

The non-dimensionalized equations of the continuous system in the modal domain (see Eq. (18)) reads:
8
>>>><

>>>>:

d
2
g

d⌧2
+ g(⌧) + "z1µ

dg

d⌧
+

"X0

µ2
(g(⌧)� h(⌧)) =
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sin(⌫⌧)
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d
2
h
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+
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2Lµ2
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d⌧
� "X0

µ2
(g(⌧)� h(⌧)) = 0

(64)

with "P0(⌧) =
k2(⌧)
k1

. We assume that P0(⌧) is
2⇡
⌫ periodic around a constant value K0 and that it can

be developed in terms of Fourier series, as follows:

P0(⌧) =
n=+1X

n=�1
Kne

in⌫⌧ (65)
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For the analytical development 'qCM , NqCM and �qCM will be denoted as 'q, Nq and �q (q = 1, 2).
After introducing the complex variables of Manevitch [42] the Galerkin technique is applied, Eq. (22)
reads:

8
>>><

>>>:

'̇1 +
i

2
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1

2
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(66)

with

G('2,'
⇤
2) =
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2 K4

⇤
(67)

As explained in Sect. 2.4, in the next subsection, di↵erent dynamics of the reduced system will be
detected leading to the determination of characteristic points of the reduced system.

4.2. Detection of di↵erent dynamics of reduced system

4.2.1. Fast dynamics
For this subsection, Eq. (66) is considered at the "0 order. As in Sect 3.2.1, we seek H ('1,'2) = 0

with

H =
1

2
i'2 +

z2

2µ
'2 �

iX0

2µ2
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8
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3
2K�2 � 3K0|'2|2'2 + 3K2|'2|2'⇤

2 � '
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2 K4

⇤
(68)

So, considering K0 2 R, Kj = kjR + ikjI , j = {2, 4} and K�j = K
⇤
j , the equation of the SIM in real

domain (see Eq. (26)) reads:

N1 =
N2µ

2

X0

p
A2 +B2 (69)

�1 = �2 + arctan

✓
B

A

◆
(70)

where A(N2, �2) and B(N2, �2) are defined in Appendix B. Thus, the SIM of the reduced system
depends on the phase �2 in addition to N1 and N2. To determine the boundaries of the unstable zones
of the SIM, we are interested in the second equation of Eq. (66) which is written:
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After considering the complex conjugate of Eq. (71), and introducing a perturbation on '2 ('2 !
'2 +�'2) and its complex conjugate '

⇤
2 ('⇤

2 ! '
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2 +�'
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2), we obtain:
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where Mv is detailed in Appendix C. Using the method described in Sect. 3.2.1 the boundaries of
the unstable zone of the SIM correspond to:

avN
4
2 + bvN

2
2 + cv = 0 (73)

with av, bv and cv defined in Appendix D.
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4.2.2. Slow dynamics
In this subsection, we will consider Eq. (66) at the "

1 order. The equilibrium points correspond to
E = 0, from Eq. (27), we seek:

i
F0

↵µ2
+

✓
i

✓
2� � X0

µ2

◆
+ µz1

◆
'1 + i

X0

µ2
'2 = 0 (74)

After substituting the equation of the SIM (see Eq. (??)) into Eq. (74) to eliminate the '1 terms, we
obtain:

p10N
10
2 + p8N

8
2 + p7N

7
2 + p6N

6
2 + p5N

5
2 + p4N

4
2 + p3N

3
2 + p2N

2
2 + p0 = 0 (75)

with pj , j = 0, ...10 defined in Appendix E. The sets of (�2 2 R, N2 2 R+ and � 2 R) verifying Eq.
(75) correspond to the equilibrium points of the system. The geometric position of singular points
corresponds to the values of N2 that satisfy det(B) = 0 (see Eq. (30)). Let us assume X = N

2
2 and

after some mathematical developments, (see Appendix E in [38]), we obtain:

det(B) = asvX
2 + bsvX + csv (76)

where asv, bsv and csv are defined in Appendix F. Equation 76 is identical to the equation defining the
boundaries of the unstable zone of the SIM (see Eq. (73)). Figure 27 illustrates various perspectives

of the equilibrium points of the system, considering the parameters from Table 4 and
F0

↵µ2
= 1.1. In

the figure, NqCM is denoted as Nq (q = 1, 2). We can notice that there are two branches as for the
constant case.

Parameter Value
µz1 0.1
z2

µ2
0.1

X0

µ2
0.5

K0

Lµ2
0.1

K2r

Lµ2
0.009

K2i

Lµ2
0.009

k4r 0
k4i 0
" 0.01
L 100

Table 4: Parameters of the reduced system with a variable nonlinearity

4.3. Non-dimensionalized form of discrete equation of the chain
The non-dimensionalized equations of the discrete chain (see Eq. (32)) considering ⇤(v) = k2(t)v3j (t)

are as follows:
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(77)
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Figure 27: Equilibrium points of the reduced system with a time-dependent nonlinearity under external excitation
F0

↵µ2
= 1.1, a) Three dimensional view (�, N2, N1); b) Two dimensional view (�, N2); c) Two dimensional view (�, N1);

d) Two dimensional view (N2, N1); e) Three dimensional view (�2, N2, N1), for parameters from Table 4. Equilibrium
points situated in the unstable zone of the SIM are in green.
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with "z1 =
c1p
k1M

; "X0 =
�

k1
; "P0(⌧) =

k2(t)
k1

; "z2 =
c2p
k1M

.

In the next subsection, we will numerically integrate the equations of the reduced system (see Eq.
(64)) and the discrete system (see Eq. (77)) using the Runge-Kutta method. The obtained results will
then be compared.

4.4. Numerical results

4.4.1. Basins of attractions
As for the constant sti↵ness case, we analyze the basins of attraction for the first cell (also corre-

sponding to the basins of attractions of cell 51st) of the discrete and continuous systems in the modal
domain, as depicted in Fig. 28. Figures 28a and 28b present di↵erent perspectives of the basin of
attractions for the first cell (and also for cell 51) of the discrete chain (Nq(⌧ = 0) as a function of � for
q = 1 and q = 2, respectively). Similarly Figs. 28c and 28d correspond to di↵erent views of the basin
of attractions of the reduced system (Nq(⌧ = 0) as a function of � for q = 1 and q = 2, respectively).
As for the constant case (see Sect. 3.4.2) N1(⌧ = 0) and N2(⌧ = 0) correspond to g(⌧ = 0) and
h(⌧ = 0), respectively. Red dots on the plots indicate a quasi-periodic regime, while light and dark
blue dots represent periodic states (isola and main branch, respectively). The purple line represents
the equilibrium points of the reduced system and the green line represents for the unstable zone of the
SIM. As observed in the constant case, the behavior of the systems depends more on N1(⌧ = 0) than
on N2(⌧ = 0), i.e. the behavior depends more on the initial displacement of the main mass than that
of the mass with the nonlinearity. Here �2(⌧ = 0) is not considered as a parameter for the basin of
attractions because its depends on h(⌧ = 0) and ḣ(⌧ = 0), which are already considered by N2(⌧ = 0).
For the first cell (and also for the 51st cell) of the discrete chain, the quasi-periodic regime appears for
� > �0.28 which is not precise compared to the unstable zone of the SIM starting at � = 0.13. However
for the reduced system, the quasi-periodic regime agrees better with the predictions. In contrast to
systems with constant nonlinearity, there is no specific zone of � where the systems reach the isola for
very low IC. For � around �0.6 and N1 2 [6; 8] as well as � 2 [�0.6;�0.1] and above the equilibrium
points, two zones are identified where both systems are on the isola (see Figs. 28a and 28c). For the
discrete chain, however, there is another zone where the first cell is on the isola: for � 2 [�0.65; 0.3]
and N1 2 [0; 4] (see Fig. 28a). It is important to note that only the basin of attractions of the first cell
of the discrete chain is plotted, which does not fully represent the behavior of the entire chain. For
some parameters, only the first cell or those in close to it may be on the isola while most cells remain
on the main branch.

4.4.2. An example for the forced system
In this section, we focus on a representative example, specifically a forced case where the equilib-

rium points are positioned in the unstable zone with � = 0.5 and
F0

↵µ2
= 1.1. The parameters for

this example are given in Table 4. Figures 29a and 29b depict a three-dimensional view of systems
amplitudes (N1 as a function of N2 and �2) and a two-dimensional view (N1 as a function of N2),
respectively. The results obtained from the reduced system are in light blue while those of the discrete
system in the modal domain are in dark blue. The red curve corresponds to the SIM, the green lines
represent the boundaries of its unstable zone and the pink dot denoted the IC. Figure 30 illustrates
the time responses of NqCM (⌧), NqDM (⌧) and �qDM (⌧). Finally, Figs. 31 and 32 represent the re-
sponses of cells 51 and 60 of NqDPh(⌧), �2DPh(⌧) and NqCMPh(⌧), �2CMPh(⌧) for x = 50 and x = 59
(q = 1, 2), respectively. These figures demonstrate that both systems are in quasi-periodic regimes.
As for the constant case, the amplitude and the frequency of the system during repeated bifurcations
are di↵erent, but the reduced system verifies the predictions of the analytical study (see Fig. 29).
The Poincaré maps of both discrete (dark blue lines) and continuous (light blue lines) systems in the
modal domain are plotted in Fig. 33. The form of the closed loop maps indicates that the di↵erent
systems exhibit quasi-periodic behaviors.
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(a) (b)

(c) (d)

Figure 28: Basins of attractions a) N1DPh,1 as a function of �; b) N2DPh,1 as a function of �; c) N1CM as a function
of �; d) N2CM as a function of �.

(a) (b)

Figure 29: NI of Eq. (64) in light blue (reduced system) and Eq. (77) in dark blue (discrete system in modal domain),
SIM of the reduced system (in black), its unstable zone (in green), the boundaries of the unstable zone (white dots) and

the ICs (pink dot) for parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 30: a) N1DM and N1CM as functions of ⌧ ; b) N2DM and N2CM as functions of ⌧ ; c) �2DM and �2CM as functions

of ⌧ (dark blue and light blue, respectively); for parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ =

0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 31: a) N1DPh as a function of ⌧ ; b) N2DPh as a function of ⌧ of cells 51 and 60 (dark red and dark green); for

parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 32: a) N1CMPh as a function of ⌧ ; b) N2CMPh as a function of ⌧ of for x = 50 and x = 59 (orange and light

green); for parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).
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Figure 33: Poincaré maps a) ġ(⌧) as a function of g(⌧) and ġD(⌧) as a function of gD(⌧); b) ḣ(⌧) as a function of

h(⌧) ḣD(⌧) as a function of hD(⌧) (dark blue and light blue); for parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5,

(g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

Then, the filtering of the first harmonic of the responses shown in Fig. 30 is presented in Fig. 34.
Similar to the previous case, for N1 only the first mode is activated and for N2 the first and the third
harmonics are activated. The filtering process helps to clarify the cause of the di↵erences between
results, since all the analytical developments are based on keeping only the first harmonics. However,
the analytical developments are in good qualitative agreement with the numerical results and correctly
predict di↵erent regimes of the system.

5. Conclusion

The purpose of this paper was to study the behavior of a periodic chain of coupled oscillators with
a time-dependent cubic restoring forcing function, which has not been well studied. The goal was
to verify that the analytical predictions of the reduced system can be used to predict the behavior
of the discrete chain. This reduced system is defined from the continuous equations of the chain
projected on an arbitrary mode by neglecting the internal resonances. Although this method captures
the main dynamics, this approximation leads to lower accuracy and di↵erences in response amplitude.
Analytical predictions are made using the multiple scale method and complex variables of Manevitch.
Di↵erent dynamics of the system are detected leading to the clarification of several possible regimes,
i.e. periodic and non-periodic. Two cases are considered, the first with constant nonlinearity and the
second with time-varying nonlinearity. The analytical predictions are in good qualitative agreement
with results obtained from direct numerical integrations of the chain and the reduced system, although
slight discrepancies between predicted and numerically obtained amplitudes are observed in some cases.

Nevertheless, the predicted regimes (periodic or non-periodic) from analytical developments agree
well with those observed in the chain. The results of this study provide tools for the development
of new types of time-dependent (meta-) materials for vibro-acoustic control. One perspective of this
work is the consideration of internal resonances of the chain [34, 50] and also the programming/or
fabrication of time-dependent nonlinearities for an experimental study [51]. Moreover, in the current
study, we have assumed that the oscillators are perfectly identical and we do not include uncertainties
in the design [19, 52]. To take into account of the uncertainties required for experimental studies, a
stochastic optimization procedure should be performed. This study is also a perspective of the current
work.
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Figure 34: Filtering around the first harmonic and the response with all the harmonics a) N1DM and N1CM as functions
of ⌧ ; b) N2DM and N2CM as functions of ⌧ (black dotted line, dark blue line, gray dotted line and light blue line,

respectively); for parameters from Table 4,
F0

↵µ2
= 1.1, � = 0.5, (g(⌧ = 0), h(⌧ = 0), ġ(⌧ = 0), ḣ(⌧ = 0)) = (0, 0, 0, 0).

35



Acknowledgements

The authors would like to thank the following organizations for supporting this research: (i) The
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Appendix A. Parameter of the equation of the equilibrium point for constant cubic
nonlinearity
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Appendix B. Details of the SIM for a time-varying nonlinearity
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Appendix C. Parameters of Mv for a time-varying nonlinearity
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Appendix D. Parameters of the equation of the unstable zone of the SIM for a time-
varying nonlinearity
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Appendix E. Parameters of the equation of equilibrium points for a time-varying non-
linearity
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Appendix F. Parameters of the equations of the singular points for a time-varying non-
linearity)
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