
HAL Id: hal-04646322
https://hal.science/hal-04646322v1

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing Architecture Model for Embedded Systems
Anomaly Detection

Peter Heller, Jürgen Mottok

To cite this version:
Peter Heller, Jürgen Mottok. Timing Architecture Model for Embedded Systems Anomaly Detection.
12th European Congress Embedded Real Time Systems - ERTS 2024, Jun 2024, Toulouse, France.
�hal-04646322�

https://hal.science/hal-04646322v1
https://hal.archives-ouvertes.fr


Timing Architecture Model for Embedded Systems
Anomaly Detection

Peter Heller and Jürgen Mottok
Laboratory for Safe and Secure Systems (LaS³)

Technical University of Applied Sciences Regensburg
93053 Regensburg, Germany

{peter2.heller, juergen.mottok}@oth-regensburg.de

Abstract—By using execution timing behaviour to discover
anomalies, embedded systems can be monitored at various
architectural layers. Different methods for deducing sane system
execution behaviour based on available event or timing data
are proposed in the current literature about security-related
anomaly detection of embedded systems. With our work, we
evaluate several strategies and discuss problems with acces-
sible metrics and architectural components used for feature
development. An embedded system’s architecture layers serve
as the basis for a common classification scheme that makes
it possible to combine timing- and event-based metrics into
a single timing architecture layer model. Then, using metrics
and architecture components, our suggested model is applied to
several anomaly detection techniques and utilized to compare
existing methods. Our mapping leads us to the conclusion that
most detection models are restricted to single system layers (i. e.,
communication or application code) and use a small number
of accessible architecture levels. Our existing model allows us
to combine various time and event metrics, but we also want
to develop new features for embedded anomaly detection that
can be used across all system layers (code, scheduling and
communication).

Keywords—anomaly detection, time series data, embedded sys-
tems software, architecture layer model

I. INTRODUCTION

Due to ongoing regulatory developments, preventive mea-
sures against malware will be an integral part of the product
lifecycle within the European Union in the foreseeable future.
With the two directives 2023/1230 [1] and NIS 2 [2] issued
by the European Parliament, manufacturers and suppliers
will be obliged to implement appropriate security measures
for their products. One objective of these regulations is to
counteract tampering and to prevent or at least mitigate
malicious intrusion of safety-relevant control systems. Real-
time capable systems exhibit measurable side effects on the
remaining system when subjected to changes regarding tasks
or other critical code sections (see [3]). Analysing execution
timing offers a way to implement anomaly detection by
evaluating changes to known system behaviour based on a
selection of indicators at different architecture levels, and thus
to identify suspicious activity.

Available research on anomaly detection provides us with
various approaches for detecting changes in system be-
haviour. The problem with current solutions, however, is
that it is difficult to compare the different methods with
one another. Some approaches use event-based metrics from
the operating system or a communication stack, while other
models use timing measurements at the instruction level to
detect deviations from the specified behaviour. Because no
common model exists to date, one objective of this paper is
to derive a suitable classification to map available metrics
from the literature into a single scheme. Scheduling theory

for embedded real-time systems uses models and architec-
ture frameworks to characterize the execution behaviour. By
combining an architectural model and suitable notations for
different workloads from scheduling theory, we introduce a
model that can combine time- and event-based metrics from
different architecture levels in a common representation. We
want to use this representation to merge existing features
for anomaly detection in a hybrid approach that leverages
data based on a collection of metrics captured from different
architecture levels.

In summary, the focus of this work is to address the
following research question:
Q1. Can available timing and event metrics for embedded

systems anomaly detection be mapped into a common
classification scheme based on their system architecture?

The following Section II starts with a general introduction
of the literature on embedded systems anomaly detection
with security related context, where we focus on RTOS based
systems. We discuss the general problem of using time-series
data and give a brief overview of the current state of the art.
Section III then presents the timing architecture layer model
for developing a hybrid approach on multiple architecture
levels, and categorizes existing literature from Section II
based on the aforementioned model. The final Section IV
briefly summarizes the key findings and the next steps in our
research process.

II. RELATED WORK: ANOMALY DETECTION USING
SYSTEM TIMING AND EVENT METRICS

The current literature on embedded systems presents a chal-
lenge due to the variety of methods employed, architectural
levels involved, and underlying metrics applied in anomaly
detection for time-series data. To improve our understanding,
we want to focus on two important aspects based on anomaly
detection literature: The applied metrics (runtime-data and
events) and architectural components of currently available
approaches for embedded systems. First, how available met-
rics are used and what type of data those metrics are based
on. Secondly, which layers of the system architecture were
used and provided to be useful for the development of
new anomaly detection features. To narrow the available
literature on anomaly detection using time-series data, two
selection requirements were used: (i) The Data source for
anomaly detection is based on embedded system traces. (ii)
Selected publications should have a security context. Context
in this regard implies that the objective for anomaly detection
is security-relevant for the system, or that the verification
process of the created anomaly detection mechanism is
targeting tampering of the target system. The purpose of this



selection is to ensure that the range of relevant metrics for
the subsequent comparison have common ground.

In general, the available literature can be split into two
different categories based on the applied metrics: event-based
and time-based approaches. Events are observable changes
in system state and are generated during system execution.
The goal of recording events is to determine if a sequence
of events, the frequency of events or temporal dependencies
show measurable deviations from normal behavior. Depend-
ing on the architectural origin of an event (i. e application-
or instruction-level), it can be observed either from software
or hardware. Events can be described as a tuple of system
defined values (see [4]) denoted as e = ⟨v1, v2..vx⟩ holding
event-specific information, which in turn is highly dependent
upon where the specific event is generated (network-stack,
scheduler, application code, instruction-level). Optionally, a
timestamp can be incorporated to denote chronological de-
pendencies between single events for time-based approaches.
In this case, the timing information needs to be obtained and
processed either on the target system or measured by using
an external time base. Depending on system complexity and
hardware architecture, we can observe and record different
event streams at varying levels of granularity regarding
overhead and intrusiveness. Therefore, we can not always
observe a single event, but a subset of available data.

Embedded real-time systems implement deterministic
scheduling models to design and verify their intended func-
tionality, and thus exhibit recurrent behaviour and distinct
execution patterns. Three identified approaches [4]–[6] use
Inter Arrival Curves (IACs) or modified modelling techniques
with similar properties to infer system state based on a
selection of events. IACs characterize the activation pattern
of individual event streams, by limiting upper and lower
bounds of event occurrences for a given time window. A
combination of different activation functions based on arrival
curves allows modelling the dynamic behaviour of different
event-based systems. Ezeme et al. [5] and Torres [6] have
shown how recurrent timing and pattern detection can be
implemented for (online) system monitoring utilizing the
aforementioned event-based metrics. Salem et al. [4] use a
different approach by aggregating multiple event streams into
sequence-based arrival curves (IACs) which are then used to
derive suitable features for anomaly detection. Hoffmann et
al. [7] utilize a similar approach with multiple event streams,
but on a different architecture level. Their work focuses
on performance metrics that are captured at CPU execution
level using system performance counters. Lu and Lysecky
[3] implement different models (range-based, distance-based
and SVMs) utilizing only timing parameters at the lowest
architectural levels to detect changes in software behaviour
when subjected to different types of malware. In this case,
the hardware trace port is used to extract core registers and
measure timing with an external time base. By exposing
several signals from the hardware trace port, cache, and
pipeline effects can be observed and fed into the detection
algorithm. With their hardware-based approach, they can
measure execution time down to the instruction level and
capture specific timing parameters they are interested in.

Given our available literature, we can apply a preliminary
classification of the individual parameters. First, high-level
software events, which can be captured from the operating
system, a scheduler, or the communication stack of a target.

Due to the nature of these events, the streams, and traces con-
tain a high level of noise from other event sources. Second,
low-level events, which are based on performance counters or
hardware peripherals and allow detection of anomalies based
on core execution behaviour at the deeper system levels.
Third, execution time, which can be determined at different
architecture levels and with different methods, but usually
requires measurement. All of those metrics use different data
types and originate from different system architecture levels.
What is interesting to us is a) the variety of available metrics
and b) the limited use of the available system architecture
components, which we want to address in the following
Section III. For this purpose, we want to introduce our
timing architecture model to map parameters and architecture
components into a common classification scheme. We want
to apply our model to develop new features for anomaly
detection, allowing us to extend detection models to all
available system architecture layers. To the best of our
knowledge, there is no known study or paper that maps
available time- or event-based metrics into a common model
or scheme targeting embedded systems at the time of writing.

III. MAPPING TIME AND EVENT METRICS BASED ON
ARCHITECTURE LEVELS

System architecture layers can be used as a descriptive tool to
decompose and analyse metrics within a given system, which
is why we choose this approach as a tool to compare available
literature. We are interested in understanding how different
methodologies for embedded devices use the existing system
architecture to implement effective anomaly detection with
event streams and time series data. For this purpose, we
based our model on an existing layering model for timing
analysis of embedded real-time systems [8] and extended
their work by applying a workload-based decomposition from
the automotive domain [9]. This extension of the model
allows us to further differentiate existing approaches below
the application level, so we can map available anomaly
detection methods based on architecture and metric usage.

Based on our preliminary evaluation of available literature,
we found that event-based metrics are used more frequently
instead of runtime measurements. Therefore, we need to
consider both timing and event-based metrics during our
mapping procedure. For this purpose, our current model
provides two degrees of abstraction, called layers and levels,
to represent architecture and timing/event properties we are
interested in. The available model provides three high-level
architecture layers: a Communication Layer, a Scheduling
Layer and an Application Code Layer to represent the generic
structure of an embedded system. Layers are used to represent
specific key timing properties of an embedded system, such
as Core Execution Time (CET), Response Time (RT), and
Round Trip Time (RTT). Levels are used to assign a source
of events or timing parameters to a system component.
They allow further differentiation of where different timing
parameters, events, and other interesting metrics originate and
where their area of effect is located inside the architecture.
For a single layer, subcomponent timing is used to calculate
each key parameter based on the assigned levels. For further
reference, Table I shows an overview of all nine architecture
levels, abstraction layers and descriptions for relevant timing
and event metrics as well as the key parameter for each Layer.



TABLE I
SYSTEM ARCHITECTURE LAYER MODEL FOR DECOMPOSING TIMING AND EVENT METRICS BASED ON ARCHITECTURE ORIGIN

Name Level Layer Key
Parameter Description

Instruction 1

Code CET

Smallest measurable quantity for tracing (single instruction, pipeline events, caching, fetch)
Basic Block 2 Continuous sequence of code with a single entry and exit point (branch — jump)
(Sub) Function 3 Decomposed task job sequences (notification, locks, signals, resource access)
Top-Level Function 4 Runnables and task-jobs, workload management (job start, job stop, job dispatch)
Task, ISR 5 Task start/stop, task preemption, application specific ISR, background task jobs
CPU-Core 6 Scheduler RT Singlecore scheduling effects: synchronization, spinlocks, memory-management, scheduling ISRs
Processor 7 Multicore scheduling effects: synchronization, spinlocks, memory-management, scheduling ISRs
ECU 8 Comm. RTT Interprocessor level: bus interfaces between system internal devices (SPI, I2C . . . )
Network 9 External level: Networked Signals/Events, Network-Latency, Roundtrip Time

A. Timing Architecture Layer Model

While the original layering model for timing analysis does
not provide a formal notation, other works [9], [10] can
be used to enhance the mapping of available events and
timing parameters to the architecture layers. For our use
case, we remove the lowest available level (OP-Code/Micro-
instruction, L0) from the original model [8], since single
machine instructions are the smallest measurable quantity we
can effectively capture and process using available tracing
methods.

Considering the existing model, the key parameter to
the code layer is the Core Execution Time (CET) of the
associated task(s) or application. The CET reflects the actual
time a specific task, a function, or a sequence of instructions
executes without overhead through preemption or scheduling.
Any timing parameters and associated events necessary to
compute the raw execution time of application code are
accounted for within the first five layers of the architecture
model. For this purpose, we introduce a workload-based
decomposition that can be employed to partition application
code of an embedded system into three different levels of
granularity. Levels 3 to 5 can be illustrated as a set of tasks
implementing an event queue executing requested workloads,
as shown in Figure 1. Depending on the event queue, the
active application task handles specific system events, that
are scheduled to execute certain processing workloads (jobs).
At each event execution cycle, queue entries are released and
used to schedule a number of jobs for the active task. Events
and timing parameters related to level 5 of our architectural
model are captured in the scheduler and task loop of the
active task. This level is used to observe timing and behaviour
at task level granularity, i. e. when a single task is sched-
uled or pre-empted. Overhead through execution time for
maintenance, monitoring and tracing functions, application
specific ISRs and background jobs executing in the idle
task are included at this level. Similarly, events (i. e. logs or
syscalls) generated through monitoring, profiling and tracing
are associated to this level. Level 4 consists of timing and
events generated through executing scheduled workloads for
a single task. This level is used to trace how workloads
consisting of a single task job or a continuous sequence of
individual jobs behave.

Different authors define a job or a runnable as a collection
of code that performs higher level functionality (see [9], [10]
and [11]). Since runnables or task jobs implement higher-
order functions, we needed another level of abstraction to
break down application code below this level. This would
allow us to characterize functions, events, and portions of
code needed to perform complex operations. For this reason,

Fig. 1. Overview of a generic embedded application with architecture and
event/timing components: scheduling and active task correspond to level 5,
task jobs to level 4 and decomposed sections are assigned to level 3.

we introduce the definition of a task job section, which can
be understood as a section of code that contains a sequence of
instructions defined with an execution time model and signal
vectors (ϕI , ϕO, ϕR , ϕS), per definition of [9]. For our use
case, we want to extend this definition to be applied at the
granularity of single jobs instead of the entire task, hence the
naming task job section. Signals are input or output events
for any given task, including the executing task, which are
used to control or synchronize subsections of jobs and other
runnables (tasks). Signals can generally be distinguished into
two different categories: signals required for computation
and signals required for synchronization. First, the input
and output signal vectors (ϕI , ϕO) are computational signals
because they provide the data being used and transformed
during processing within a single task job activation. These
signals define the interface of a given task job section, since
they enforce the required input and output parameters needed
for a specific section of code. The second category can be
described as event signals, which are denoted as requested
signals (ϕR) and supported signals (ϕS). Requested signals
(ϕR) are required input signal vectors, that are consumed
at the start of each section. This type of signal is used to
provide events (i. e. notifications or data from other tasks)
to a sequence of code and can be used for synchronization
purposes. Supported signals (ϕS) are consumable events or
notifications generated by the executed section of code, which
are required by other tasks or subsequent task activations.

Timing based on task job sections at the granularity of
available signals makes up level 3 of our architecture model.



This level allows analysing execution runtime by tracing sin-
gle signals passed between tasks and the scheduler/operating
system, as well as timing based on the execution model of
each task job section. Generally, these signals are used to
exchange data between tasks or for resource management
implemented by the scheduler.

The second level (2) is used to assign metrics that can
be captured at basic block granularity. In this case, any
sequence of code between branch/jump instructions can be
instrumented or measured. On the first level (1), the timing or
activation of a single instruction is the primary feature. This
type of measurement allows for single cycle granularity when
capturing available metrics, either by runtime measurement
of a single instruction or by observing instructions through
a trace-port as an event stream. Since our mapping needs to
cover timing, event and counter-based metrics, that can be
observed through specialised hardware, we need to include
caches, retired instructions, memory access and pipeline
effects at this level.

The key parameter, within the scheduling layer, is the
Response Time (RT) for the scheduled task set. This layer
introduces execution time and latency from the scheduler,
to account for timing variations outside of application code.
Level 6 represents timing and events that are present at single-
core task scheduling level. This level is used to capture timing
effects introduced by scheduling and resource management
handled centrally throughout the system. Runtime caused
by locking mechanisms, timing overhead introduced by the
scheduler, or scheduling ISR are accounted to this level. Level
7 extends the definitions of level 6 to multicore scheduling
and overhead that is introduced by sharing cores, resources,
and workloads. The distinction between the two levels is used
to separate the impact caused by multicore processors, instead
of mixing metrics together.

The final communication layer is used to introduce timing
and events related to external communication and focuses
on the Round Trip Times (RTT) for available interfaces.
For illustrative purposes, we further differentiate between
interprocessor (level 8) and external communication (level
9). At the interprocessor level, system-bus timing and packet
handling events within system boundaries are handled. The
external level handles events and signals leaving the system
boundaries, e. g. network connections to other systems.

B. Application of the Timing Architecture Model

We introduced our timing architecture layer model to map
available metrics provided by related work. Our goal was
to create a common representation to compare several em-
bedded anomaly detection techniques, based on metrics and
architectural components. We saw that two publications [3],
[7] implement detection models utilizing timing and events
at levels 1 to 3. In addition to the lower level timing
aspects, timing variation and events due to cache and pipeline
behaviour are also considered in both approaches. All other
works [4]–[6] are focused on high-level metrics (5,8,9) and
implement their approaches without any additional input
from the underlying architectural layers. Table II shows a
quick outline of the different parameters used by current
approaches, as well as our applied mapping.
From the existing publications, we can infer that commu-
nication and code layer parameters are being preferred as
a source for different anomaly detection methods. Specific

TABLE II
APPLIED SYSTEM ARCHITECTURE LAYER MODEL

Source Used Parameter Architecture
Level

Architecture
Layer

[3] Execution Time, Cache 1,2,3 Code
[5] Inter Arrival Curves 5,8,9 Code, Comm.
[4] Inter Arrival Curves 5,8,9 Code, Comm.
[6] Inter Arrival Curves 5,8,9 Code, Comm.
[7] Slack, Interrupts and

Event-Counters
1 Code

timing parameters from timing theory (CET, RT) are found
in two of the available publications as part of input vectors
for heuristic models or machine learning-based detectors.
Event-based systems tend to use the sequence information
of observed event streams at the code and communication
layers to infer the state of the underlying system. Based on
the architectural model, we can determine that the scheduling
layer is not actively used in any available publication. While
tasks are monitored, instrumented and traced at the code
level, resource management, workload sharing and locking
features are underutilized. For communication-based systems,
the application should require heavy use of resource manage-
ment and locking features, making them good candidates as
features for anomaly detection in this context.

IV. CONCLUSION AND OUTLOOK

Our goal was to evaluate how anomaly detection for em-
bedded systems is performed and what architecture compo-
nents are used to implement novel detection algorithms. We
introduced a timing architecture layer model for mapping
publicly accessible timing and event metrics based on ar-
chitecture components into a common classification scheme.
The proposed model was introduced as a comparison tool,
since current research uses various metrics and architecture
layers to implement anomaly detection methods. We applied
our model to the available anomaly detection literature, which
was selected based on embedded security context, and show
how different timing and event related metrics are utilised.
We found that there is an under-utilization of parameters
present in the scheduling layer of our architecture model.
We also believe that a more in-depth comparison of time and
event metrics could be a valuable contribution.

Our work targets embedded devices with strict timing
requirements, like soft and hard real-time embedded systems
or RTOS based systems. Since their system operation has
specific requirements on execution timing and response, even
slight changes can have measurable impact on the timing
characteristics. For our future work, we want to evaluate
whether anomaly detection on all available system layers
(code, scheduler, and communication) is a feasible approach
based on data available from embedded systems or whether
single level approaches are sufficient. In terms of application
within the security domain, another area of interest is remote
attestation protocols. For our future work, we would like
to determine, if time-based anomaly detection could be ex-
tended to all available system layers for attestation protocols.
With our current work, we want to evaluate novel features,
so we can determine which architecture component provides
the best use for effective anomaly detection and parameter
selection.
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