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ABSTRACT Graphs are powerful means for representing structured data. Graph comparison is consequently
an important tool for decision support and several techniques have therefore been proposed for comparing
two graphs, including Substructure-based techniques, Matrix-based techniques, Graph Kernels and Graph
Neural Networks. In addition to their individual limitations, all these existing techniques do not allow the
explicit specification of criteria on which the comparison should rely and which intrinsically determine the
result of the comparison. The current paper attempts to attenuate the drawbacks of the existing techniques for
graph comparison by proposing a flexible technique based on hiddenMarkov models (HMMs) that offers the
possibility to explicitly precise a finite set of properties that must be considered during the comparison. The
proposed approach transforms each graph into a set of Markov chains that is later used for initializing, then
for training several HMMs. An interpretable descriptor vector associated with each graph is then extracted
from the HMMs. The comparison between two graphs is finally performed through the comparison of their
corresponding descriptor vectors by using any existing vector distance. Classification experiments conducted
on six graph datasets including two real-world datasets demonstrated that, when the suitable set of properties
is selected, the proposed approach outperforms existing techniques with accuracy gains reaching+54.38%.

INDEX TERMS Graph, graph comparison, graph modeling, hidden Markov models.

I. INTRODUCTION
Graphs are powerful means for representing structured data
in complex systems because they represent both, entities
(vertices) and relationships between these entities (edges).
Consequently, the amount of data naturally modeled as
graphs has significantly increased since many years. Graph
data have therefore become ubiquitous in several application
domains including (but not limited to) biology, chemistry
and social networks [1]. A more detailed list of application
domains where graph-structured data are used is available
in [2].1 Protein-protein interaction networks, metabolic
networks, regulatory networks and phylogenetic networks
are examples of graph-structured data that can be found in
biology. In chemistry, molecular compounds are generally
modeled as graphs where vertices are atoms and edges
are chemical bonds. A social network is a graph where

The associate editor coordinating the review of this manuscript and
approving it for publication was Khursheed Aurangzeb.

1See Table 3 of [2].

individuals are represented as vertices, while the interactions
(friendship, collaboration, etc.) between them are represented
as edges. The use of graphs can be extended to data that do
not inherently have an underlying graph structure. This is the
case for sequential data as text that can be mapped to graph
structures [3].

Graph-structured data can be manipulated by different
operations including graph comparison, which is an impor-
tant tool for decision support while being crucial for popular
machine learning tasks like classification or clustering. Given
a dataset composed of many classes, each class containing
several graphs, classification refers to the process of assigning
a class label to a graph based on its properties [4]. Clustering
rather consists in organizing all the graphs of a set of graphs
into separated clusters (groups) with the most similarity in
the same cluster and the most dissimilarity between different
clusters [5]. Graph comparison is also essential for the
analysis of graph-based systems where each graph represents
the state of the system at specific point in time or space.
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Indeed, the analysis of the dynamics of such systems depends
on how much the analytical tool is capable to reflect the
similarities between the states (graphs) [6].2

Several techniques have yet been proposed for comparing
two graphs. These techniques can be organized into four main
categories: substructure-based techniques (SSBTs) [7], [8],
[9], [10], [11], [12], [13], matrix-based techniques (MBTs)
[6], graph kernels (GKs) [1], [14] and graph neural networks
(GNNs) [2], [15], [16]. SSBTs rely on element-to-element
comparisons between two graphs, the elements being the
graph substructures (vertices, edges, subgraphs, etc) of the
two graphs. But they are limited by their high computational
complexity. MBTs are adapted for the study of network
dynamics and exclusively compare the graphs through the
manipulation of their associated matrices (adjacency matrix,
Laplacian, etc.). As a consequence, they can only compare
two aligned graphs, these are two graphs defined on the
same set of vertex identifiers [6].3 This problem is solved by
GKs which measure the similarity between pair of graphs,
irrespective of their number of vertices. Roughly speaking,
GKs embed the graphs into vector spaces by using a determin-
istic mapping function before performing the comparison.
Therefore, GKs can capture as much as possible the semantic
inherent in the graphs, while remaining computationally
efficient. The major limitation of GKs is that each kernel only
prioritizes a predefined and limited set of graphs properties.
GNNs represent a more efficient alternative than GKs for
graph comparison [16].4 They also embed the graphs into
vector spaces by using a mapping function, but for GNNs,
the mapping function is iteratively learnable directly from
the graph structure. GNNs can be further empowered by the
integration of deep models. Therefore, they can compare any
two graphs, irrespective of their properties. Unfortunately,
GNNs suffer form the following drawbacks inherited from
deep models listed in [17]5: they require lots of computing
resources, the components of their generated feature vectors
are less interpretable/explainable and the hyper-parameters of
the deep models are difficult to adjust.

Moreover, all the aforementioned existing techniques do
not allow the explicit specification of user-defined criteria
on which the comparison should be performed. However,
comparison is fundamentally a flexible operation because the
result d(x, x) of the comparison between two items x and
x according to a metric d is not unique, but rather depends
on the set P of comparison criteria. For example, consider
the two balls x and x respectively depicted in Figures 1a
and 1b. When P = {shape, brand}, the comparison result is
d(x, x) = ’similar’ because they are both spheres designed
by the ’Nike’ brand. But the opposite result d(x, x) =
’different’ is obtained for these same balls when P =

{volume, texture, color, usage} because x is smaller than x

2See the Abstract of [6].
3See Section 1.2 of [6].
4See the last paragraph of Section II-A of [16].
5See Section II-B of [17].

FIGURE 1. Two balls compared according to different criteria.

and, x is a smooth blue ball used for playing football, while x
is a rough brown ball with bumps used for playing basketball.
Although these two comparison results are different, they
both remain fully consistent according to their respective sets
of comparison criteria. Hence, the comparison between two
graphs can also rely on user-defined criteria verified by their
vertex/edge characteristics. As an example, one may want to
compare two molecules according to the parity of the number
of chemical bonds attached to each atom, that may have a
particular importance in a specific experimental context.

This paper attempts to attenuate the limitations of the exist-
ing techniques for graph comparison by proposing a flexible
technique that also embeds the graphs into vector spaces
using a learnablemapping function like GNNs, but that unlike
existing techniques, additionally offers the possibility to
explicitly precise a user-defined set P of properties that must
be considered during the comparison. More formally, given
a graph x and a user-defined finite set P = {p1, . . . , pm} of
properties, a hiddenMarkovmodel (HMM) λi(x) is initialized
then trained for capturing the adherence of the vertices/edges
of x to the property pi∈P with (1≤i≤m). Thereafter, meta-
data derived from λi(x) are saved as the components of a
feature vector µi(x). When this process is applied for all
the m properties in P, the set {µ1(x), . . . , µm(x)} is obtained
and subsequently used for deriving a unique feature vector
µP(x) associated with x according to the properties in P.
The distance/similarity between two graphs x and x is finally
computed by comparing their respective feature vectors
µP(x) and µP(x) using any existing distance/similarity
between vectors. The performances of the proposed approach
have been evaluated through classification experiments on
six graph datasets including two real-world datasets from
the TUDataset repository [18],6 which is a collection of
benchmark datasets for learning with graphs.

As it will be further discussed in Section V-D, the main
contributions of the current paper are:

1) It performs graph comparison according to a finite
user-defined set of properties usingHMMs.No existing
technique offers this flexibility.

2) The training time of these HMMs is reasonable and
their parameters can be easily modified.

3) It associates an interpretable descriptor vector with
each graph.

6https://chrsmrrs.github.io/datasets/docs/datasets/
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TABLE 1. Main parameters used in the paper.

4) It handles all kinds of graphs (small, large, dense, etc.)
because it considers the local environment of each
vertex, as well as the global structure of the graph.

The rest of this paper is organized as follows: the state
of the art is presented in Section II, followed by a synthetic
description of HMM in Section III. The proposed approach
is described in Section IV, while experimental results are
presented in Section V. The last section is devoted to the
conclusion.

II. LITERATURE REVIEW ON GRAPH COMPARISON
A. PRELIMINARIES
We present in this section basic concepts and algorithms that
will be used throughout the paper. More detailed overviews
on graph theory can be found in [19] and [20] and popular
platforms that provide codes for graph computing are listed
in [2].7 We start by defining a graph and some essential
graph concepts. The most used graph representations are
then presented, and the section ends with the description
of the algorithm dedicated to the traversal of a graph
that has been selected in this paper. Table 1 summarizes
the main parameters used throughout the paper with their
corresponding descriptions.

1) DEFINITIONS
A graph x is a pair (V ,E) where V is a finite set of objects
called vertices (or nodes) and the size of x is its number |V |
of vertices. E⊆V×V is a set of edges, which are connections
between vertices. More formally, E is a set of pairs (u, v) such
that there exists in graph x a connection between the vertices u
and v. When the pairs in E are ordered (i.e, (u, v) ̸= (v, u)), x
is called a directed graph, otherwise x is an undirected graph.
If the pair (u, v)∈E , then v is adjacent to u. The degree of a
vertex u in graph x noted deg(u) is the number of vertices

7See Table B.6 of Appendix B in [2].

adjacent to it, more formally deg(u) = |{v∈V |(u, v)∈E}|.
A graph x̃ = (Ṽ , Ẽ) is a subgraph of a graph x = (V ,E)
if V ⊆ Ṽ and E ⊆ Ẽ . If x̃ is a subgraph of x, then x is a
supergraph of x̃.
A labeled graph is a graph x endowed with a function l :

V∪E →
∑

that assigns labels to the vertices and edges of
x from a discrete set

∑
of labels. A graph with labels on its

vertices is a vertex-labeled graph, and a graph with labels on
its edges is an edge-labeled graph. A graph that is neither
vertex-labeled, nor edge-labeled is an unlabeled graph.
An attributed graph is a graph x endowed with a function

f : V∪E → Rb that assigns b-dimensional real vectors
to the vertices and edges of x. A graph with attributes
on its vertices is a vertex-attributed graph, and a graph
with attributes on its edges is an edge-attributed graph.
A graph that is neither vertex-attributed, nor edge-attributed
is an unattributed graph. It is important to remark that
labeled graphs are a special case of attributed graphs because
their discrete labels can be mapped to one-hot vector
representations.

Two unlabeled graphs x = (V ,E) and x = (V ,E) are
isomorphic, denoted by (x ≃ x), if there exists a bijection
h : V → V such that (u, v)∈E if and only if (h(u), h(v))∈E
for all u, v in V . For the case of labeled graphs, isomorphism
holds only if the bijection maps only vertices and edges with
the same label. The Weisfeiler-Lehman graph isomorphism
test [21] proposed in 1968 is an effective and computationally
efficient test known to distinguish a broad class of graphs
based on graph isomorphism.

A path in a graph x is a sequence of edges that connects
a sequence of vertices. If x is a directed graph, the edges in
the path must all be directed in the same direction. A cycle
in a graph is a path such that the first vertex of the path
corresponds to the last vertex. A graph containing at least
one cycle is a cyclic graph, otherwise the graph is an acyclic
graph. A connected graph is a graph where there exists a
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FIGURE 2. Representations of the same graph.

path from any vertex to any other, otherwise the graph is a
disconnected graph. A tree is a connected acyclic graph.

2) GRAPH REPRESENTATIONS
There are several ways for representing graphs among which
we can list the three following graph representations:

1) The schematic representation (i.e: a figure describing
the graph). In this representation, vertices are repre-
sented with circles, each circle carrying characteristics
(identifier, label, attributes) related to the vertex it
describes. In this paper, vertex identifiers are red and
in bold. For vertex-labeled graphs, the vertex identifiers
are placed as subscripts of the vertex labels. Edges are
represented with lines for undirected graphs and with
arrows for directed graphs. Each line/arrow carrying
the characteristics (label, attributes) related to the edge
it describes.

2) The adjacency list. It represents a graph x as an array
of size |V | such that the element at index u is a list
containing the deg(u) vertices that are adjacent to u in
x.

3) The adjacency matrix. It represents a graph x as a
|V |×|V | symmetric matrix A such that given two
vertices ui and uj, the coefficient Aij = 1 if (ui, uj)∈E ,
otherwise Aij = 0.

As an example, the adjacency list presented in Figure 2a
and the adjacency matrix presented in Figure 2b both
correspond to the undirected, unattributed and vertex-labeled
graph depicted in Figure 2c where the set of vertex labels
is

∑
= {a, b, c}. Vertex identifiers are bold and red in

Figures 2b and 2c.

3) TRAVERSAL OF A GRAPH
To traverse a graph x means to visit all the vertices of x
in some systematic order. Among the existing algorithms
dedicated to the traversal of a graph, we will only focus

on the Depth-First Search (DFS) algorithm8 in this paper
motivated by the simplicity of its implementation. DFS is
a recursive algorithm that traverses x starting from each
vertex u∈V . While traversing x starting from a vertex u,
DFS manages an ordered list Lu of vertices which is empty
at the beginning of the algorithm and must contain all the
visited vertices of x at the end. DFS also manages another
ordered list L̃u of edges which is empty at the beginning of
the algorithm and must contain all the edges of x that have
been visited at the end. Several versions of DFS have yet been
implemented, but they all rely on the principle presented in
Algorithm 1, that calls Algorithm 2. In these two algorithms,
the variable depth refers to the number of edges in the actual
path followed by DFS from the starting vertex to the currently
visited vertex. ThePreUse function refers to any user-defined
task that must be executed before the exploration of the next
vertex/edge by DFS. Similarly, the PostUse function refers
to any user-defined task that must be executed just after the
exploration of the currently visited vertex/edge by DFS. For
each of these two functions, if no specific task needs to be
executed, the function can be ignored.

Algorithm 1 starts by browsing the vertices of the graph
and for each vertex u∈V (line 1), it initializes the lists Lu and
L̃u to the empty set (lines 2-3), meanwhile the variable depth
is initialized to zero (line 4). The next step consists in calling
Algorithm 2 for performing the traversal of the graph starting
from u (line 6), this traversal is preceded (line 5) and followed
(line 7) by user-defined actions performed for using u and the
current value of depth. The algorithm finally returns all the
resulting lists gathered into the sets Lx and L̃x (lines 9-11).

In Algorithm 2, the input vertex u is first inserted at the end
of the ordered list L (line 1). The vertices that are adjacent to u
are then collected into the set Z (line 2) and browsed (line 3).
The currently visited edge is subsequently inserted at the end
of the ordered list L̃ (line 7), before to recursively process
the currently visited vertex (line 9). This recursive vertex
processing is preceded (line 8) and followed (line 10) by
user-defined actions performed for using the currently visited
vertex/edge and the current value of depth. The variable
depth is regularly updated before (line 5) and after (line 11)
each recursive call. The algorithm returns the updated lists
(line 14).

In a typical implementation, there is no precision related
to the order in which vertices are browsed in these two
algorithms (line 1 of Algorithm 1 and line 3 of Algorithm 2).
For convenience, we assume in this paper that these two
algorithms browse the vertices in increasing order of the
vertex identifiers.

B. SUBSTRUCTURE-BASED TECHNIQUES
Many techniques have yet been developed to compare
graphs through the comparison of their substructures (i.e:
vertices, edges, subgraphs, etc). In 1970, Corneil and
Gotlieb [7] first proposed to compare undirected graphs using

8https://jeffe.cs.illinois.edu/teaching/algorithms/book/06-dfs.pdf
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Algorithm 1 DFS
Input: x = (V ,E)
Outputs: Lx , L̃x

1: for each (u∈V ) do
2: Lu← ∅
3: L̃u← ∅
4: depth← 0
5: PreUse(depth, u)
6: DFSrec(x,Lu, L̃u, u, depth)
7: PostUse(depth, u)
8: end for
9: Lx ← {Lu | u∈V }
10: L̃x ← {L̃u | u∈V }
11: return Lx , L̃x

Algorithm 2 DFSrec

Inputs: x = (V ,E),L, L̃, u∈V , depth
Outputs: L, L̃

1: Insert(u,L)
2: Z ← {v∈V |(u, v)∈E}
3: for each (v∈Z ) do
4: if (v /∈ L) then
5: depth← depth+ 1
6: e← (u, v)
7: Insert(e, L̃)
8: PreUse(depth, v, e)
9: DFSrec(x,L, L̃, v, depth)
10: PostUse(depth, v, e)
11: depth← depth− 1
12: end if
13: end for
14: return L, L̃

a non-deterministic algorithm based on graph isomorphism,
that induces vertex-to-vertex comparisons.

Many authors later proposed techniques to compare
attributed graphs. It is the case of Sanfeliu and Fu [8] in
1983 for pattern recognition and Eshera and Fu [9] in 1984 for
image analysis. They both compared attributed graphs by
counting the number of edges present in one graph and not
in the other.

In 1998, Bunke and Shearer [10] proposed a technique
based on the maximal common subgraph, followed in
2001 by Fernández and Valiente [11] who performed graph
comparison by combining the maximum common subgraph
and the minimum common supergraph. But, their approaches
failed to keep the global graph structure.

In 2003, Champin and Solnon [12] used generic functions
to determine the best mapping between the vertices of
directed vertex-labeled graphs. One year later 2004, Blondel
et al. [13] proposed to compare directed unlabeled and
unweighted graphs by measuring the similarity between their
vertices for web searching purposes.

C. MATRIX-BASED TECHNIQUES
ExistingMBTs between aligned graphs are organized in three
main categories: structural distances, spectral distances and
mesoscale distances.

The structural distances [6] capture local changes around
each vertex in the graph structure. These distances are
consequently suitable for comparing graph data where local
changes can seriously impact the comparison result. This is
for example the case of molecules where little changes in
the molecule bonds can induce radically different properties
(toxicity, solubility, etc.).

At the other extreme, spectral distances [22], [23], [24]
rather capture global changes in the overall graph structure.
These distances are therefore adapted for graph data where
the comparison result can be fundamentally impacted by the
global organization of the vertices in the graph and by their
interactions. Such distances are for example better suited for
comparing two brain networks where the global changes in
the connectivity are important.
Mesoscale distances [6], [25] compare graphs at an

intermediate scale by combining the advantages of both, the
structural and the spectral distances. Such distances thus
attempt to capture local changes around each vertex in the
graph structure, while also considering the global changes in
the overall graph structure.

1) STRUCTURAL DISTANCES
Given two graphs x and x, the two most used structural
graph distances are the Hamming distance dH (x, x)9 and
the Jaccard distance dJ (x, x).10 The Hamming distance is
a special instance of the well-known graph Edit distance,
which evaluates the number of edges deletions and insertions
required for transforming one graph into another. This
distance is suitable for characterizing the evolution of a given
system through the time, but it fails at comparing graph
dynamics in the presence of different degree densities due to
its dependency to the graph sparsity [6].11 A solution to this
limitation is offered by the Jaccard distance, which includes
in its normalization, the average sparsity of the two graphs.

2) SPECTRAL DISTANCES
The ℓp distance d

f
Lp(x, x)

12 between x and x is defined as
the ℓp distance between functions of their eigenspectra,13 for
any almost everywhere differentiable user-defined function
f . One can also evaluate the number of spanning trees
that are destroyed or created by the transformation of
one graph to another by computing their spanning tree
dissimilarity dST (x, x).14 In identical conditions, Ipsen and
Mikhailov introduced in 2002 the Ipsen–Mikhailov distance

9See Equation 2.1 of [6].
10See Equation 2.2 of [6]
11See Section II-A of [6]
12See Equation 3.1 of [6].
13https://www.math.purdue.edu/liu1957/MA262_files/eigen.pdf
14See Equation 3.2 of [6].
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FIGURE 3. Graph comparison using MBTs.

dIM (x, x)15 that compares two graphs according to their
spectral densities. In 2016, Gu et al. [24] rather proposed
to consider the continuous ℓ1 distance dG(x, x) between
kernelized versions of the eigenvalue distributions using a
Gaussian kernel.

3) MESOSCALE DISTANCES
In 2015, Jurman et al. [25] decided to combine the
Ipsen–Mikhailov distance and the normalized Hamming
distance by proposing the Hamming–Ipsen–Mikhailov dis-
tance dHIM (x, x).16 Other mesoscale distances including the
connectivity-based distance and the Heat spectral wavelets
distance are also analyzed in [6].17 Figure 3 depicts an
overview of all the distances between two graphs usingMBTs
reviewed in this paper.

D. GRAPH KERNELS
1) DEFINITION OF GRAPH KERNELS
A Hilbert space is a vector space equipped with an inner
product ⊕, which allows distances as well as angles to be
measured, and orthogonality to be defined. As an example,
for m≥1, the set Rm is a Hilbert space where ⊕ is the scalar
product of Rm.

Given a non-empty set G of graphs, a function K :

G×G → R is a graph kernel if there is a Hilbert space H
and a mapping function φ : G→ H that associates a feature
vector with each graph such that Equation 1 is verified.

K (x, x) = φ(x)⊕φ(x) (1)

A graph kernel K is explicit if it explicitly characterizes
the representations of the feature vectors φ(x) and φ(x)
associated with the two graphs. Otherwise, K is implicit
and produces directly the final result K (x, x), the exact
representations of the feature vectors being hidden.

2) COMPARISON USING GRAPH KERNELS
A graph kernel K is a positive semi-definite function (i.e:
K (x, x) ≥ 0 for all x∈G) that can be directly used as

15See Equation 3.5 of [6].
16See Section 3.3.3 of [6].
17See Section IV of [6].

a similarity measure between two graphs [1].18 But in
mathematics, distance measures (metrics) are preferable to
similarity measures because the triangular inequality is not
verified for similarity measures [26].19

When a kernelK is implicit, it is possible to compare a pair
(x, x)∈G×G of graphs using the kernel metric [14]20 derived
from K defined in Equation 2.

dKI (x, x) = ||φ(x)− φ(x)||

=

√
K (x, x)+ K (x, x)− 2K (x, x)

(2)

When K is explicit, the graph comparison can further be
performed through the comparison of the feature vectors
associated with the two graphs using any valid vector distance
dH in the Hilbert spaceH as described in Equation 3. In this
same context, the feature vectors generated by the mapping
function φ can also serve as input data in a context of graph
classification or graph clustering. Figure 4 summarizes the
different measures for graph comparison using graph kernels
reviewed in this paper.

dKE (x, x) = dH(φ(x), φ(x)) (3)

3) MAJOR GRAPH KERNELS
Graph kernels have been widely used for comparing graphs
since many decades and recent surveys related to graph
kernels are proposed in [14] and [1]. It is not reasonable
to realize an exhaustive review of the main existing graph
kernels in the current paper for space constraints. A detailed
chronological list of the major graph kernels proposed for
classification purposes between years 1973 and 2019 is
available in [14].21 Additionally, [1] contains detailed
computation schemes of several graph kernels (alongside
with their time complexities), including: vertex histogram,
edge histogram, random walk, cyclic pattern, shortest
path, Graphlet, Weisfeiler-Lehman subtree, neighborhood

18See Section III-B of [1].
19See Definitions 1 et 2 of [26].
20See Equations 10 and 11 of [14].
21See Figure 2 of [14].
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FIGURE 4. Graph comparison using GKs.

hash, SVM-ϑ , pyramid match, Weisfeiler-Lehman optimal
assignment, subgraphmatching,GraphHopper, propagation,
etc.

4) PARADIGMS OF GRAPH KERNELS
A graph kernel that is capable of distinguishing between all
non-isomorphic graphs in the feature space is a complete
graph kernel. This completeness exclusively occurs when
the corresponding mapping function φ is injective. But in
2003, Gärtner [27] demonstrated that computing a complete
graph kernel is at least as hard as deciding whether two
graphs are isomorphic and in 2005, Johnson demonstrated
that there is no known polynomial-time algorithm for
testing graph isomorphism [28]. Graph kernels are therefore
designed according to one of the three following paradigms:
assignment, intersection or R-convolution. Given two graphs
x and x:

1) Assignment graph kernels decompose x and x into
substructures (i.e: vertices), then compute a matching
between the substructures of x and those of x such
that the overall similarity of the two graphs is
maximized [1].22

2) Intersection graph kernels decompose x and x into
diverse types of patterns (i.e: cyclic patterns or tree
patterns) then count the number of common patterns
of type that occur in the two graphs [1] 22.

3) R-convolution graph kernels decompose x and x into
substructures (i.e: vertices or subgraphs), then evaluate
a kernel between each pair (u, u) of such structures with
u∈x and u∈x [14].23

5) TAXONOMY OF GRAPH KERNELS
Existing graphs kernels can be organized into different
categories depending on several criteria. Indeed, they can be
divided into groups according to:

1) Their ability to handle unlabeled, vertex-labeled or
vertex-attributed graphs.

2) The fact that they are explicit or implicit.

22See Section 4.8 of [1].
23See Definition 1 of [14].

3) The design paradigm that they follow (assignment,
intersection or R-convolution).

The taxonomy depicted in the Figure 3 of [1] emerges
from the combination of all these criteria. This figure reveals
that most of the existing graph kernels handle vertex-labeled
graphs and are R-convolution graph kernels.

6) CHOOSING THE GOOD GRAPH KERNEL
The choice to prioritize or not a given graph kernel for a
specific task is actually conditioned by the four following
properties [14]:
1) The importance and nature of vertex attributes.
2) The size and density of graphs.
3) The importance of global graph structure.
4) The number of graphs in the dataset (for classification).
The Figure 10 of [14] presents guidelines for prioritizing

graph kernels based on the four abovementionned properties.
An important limitation of graph kernel arising from that
figure is the fact that each graph kernel only prioritizes a
predefined and limited set of graph properties. For instance,
the vertex histogram kernel is adapted for comparing large
graphs, but is not suitable when the graphs have continuous
vertex attributes. On the contrary, the subgraph matching
kernel is suitable for comparing graphs having continuous
vertex attributes, but is not adapted for comparing large
graphs. More generally, none of the graph kernels found in
that Figure is adapted for comparing large graphs that have
continuous vertex attributes.

E. GRAPH NEURAL NETWORKS
1) DEFINITION OF GNN
Assume that each vertex u of a graph is initially characterized
by one multidimensional feature vector u⃗ whose components
can for example include: its attributes, its degree, its label,
etc. Given a graph x∈G, a GNN can be viewed as a mapping
function θ : G → Rm that uses the structure of x as
network support for deriving its associated descriptor vector
θ (x) through an iterative learning process of its vertex feature
vectors [15].24 Hence, unlike a graph kernel whose mapping

24See Section II of [15].
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function φ results from a direct computation based on the
graph substructures or on the graph patterns, the mapping
function θ of a GNN is learnable.
Given a vertex u∈V , a GNN iteratively updates the

components of its feature vector by first aggregating the
feature vectors of its immediate neighboring vertices, then by
combining the collected feature vectors with its actual feature
vector. Proceeding this way, the GNN roughly simulates
the functioning of a neural network composed of K layers
such that at each iteration k , the structure of the graph x is
considered as the k-th layer of the GNN, with k = 1, . . . ,K
[2].25

2) DESIGN OF A SIMPLE GNN
Let u(k) be the feature vector characterizing the vertex u
after k iterations of the learning process and let N (u) =
{v∈V | (u, v)∈E} represents the set containing the immediate
neighboring vertices of u. In these conditions, Equation 4
enables to update the components of u(k) with k = 1, . . . ,K.

u(k) = combine
(
u(k−1), a(k)

)
where

a(k) = aggregate({v(k−1) | v∈N (u)}) and
u(0) = u⃗, ∀u∈V

(4)

The descriptor vector θ (x) associated with x is obtained
from the K-th layer through the aggregation of the feature
vectors characterizing all the vertices of x as shown in
Equation 5 where readout is the function performing the
final aggregation. In these conditions, Figure 5 describes
the computation scheme of θ (x) for a graph x where V =
{u1, . . . , um}.

θ (x) = readout
(
{u(K)

| u∈V }
)

(5)

Several existing implementations of simple GNNs archi-
tectures proposed in 2017 [29], [30] and 2018 [31], [32], [33]
rely on Equations 4 and 5.

3) DESIGN OF A POWERFUL GNN
It is possible to empower the overall learning efficiency of
a simple GNN by inserting an additional user-selected deep
model [34] inside each layer just after the graph structure.
This leads to a pipeline embedding a dual learning process:
the first being supported by the structure of the graph and
the second by the structure of the deep model. One can
decide to insert a unique deep model inside all the K
layers, or to rather insert different deep models inside each
layer [16].26 According to this principle and in the conditions
of Section II-E2, the components of the feature vector u(k)

are now updated by Equation 6 with k = 1, . . . ,K. In that
equation, ψ (k) refers to the specific deep model inserted
inside the k-th layer and that takes as input the vector resulting

25See Figure 2 of [2].
26See Figure 3 of [16].

from the learning process supported by the graph structure.
u(k) = ψ (k)(c(k)) where

c(k) = combine
(
u(k−1), a(k)

)
and

a(k) = aggregate({v(k−1) | v∈N (u)}) and
u(0) = u⃗, ∀u∈V

(6)

Unlike a simple GNN where the mapping function only
aggregates the feature vectors obtained from the K-th layer,
an empowered GNN has a mapping function that rather
concatenates all the information aggregated across all the
layers as shown in Equation 7. In these conditions, Figure 6
describes the computation scheme of θ(x) for a graph x where
V = {u1, . . . , um}.

θ (x) = concat︸ ︷︷ ︸
k=0,...,K

(
readout

(
{u(k) | u∈V }

))
(7)

Depending on the nature of deep models integrated into
a powerful GNN, the following categories of GNNs have
yet been proposed [16]27: Recurrent graph neural networks
(RecGNNs), Convolutional Graph Neural Networks (Con-
vGNNs), Graph Autoencoders (GAEs) and Spatial-temporal
Graph Neural Networks (STGNNs). Technical details related
to each of these categories are available in [16]28 and many
large lists of relevant existing architectures based on these
categories are available in that same work, alongside with
their corresponding time complexities [16].29 Open source
implementations of these deep models are listed in [2].30

A simple example of such a powerful GNN that uses
multilayer perceptrons (MLP) as deep models is offered by
graph isomorphic networks (GIN)-ϵ whose general principle
is described in Equation 8. In that equation, ϵ(k) can be either
be learnable, or a fixed user-defined scalar [15], [16].31

θ (x) = concat︸ ︷︷ ︸
k=0,...,K

(∑
u∈V

u(k)
)
where

u(k) = MLP(k)(c(k)) and
c(k) = (1+ ϵ(k)).u(k−1) + a(k) and

a(k) =
∑

v∈N (u)
v(k−1) and

u(0) = u⃗, ∀u∈V

(8)

4) COMPARISON USING GNNS
Given a GNN θ , the comparison between two graphs x and
x is realized through the comparison of the feature vectors
associated with the two graphs using any valid vector distance
dR32 (i.e: Euclidean distance, Manhattan distance, etc.) as
described in Equation 9. Figure 7 summarizes this process.

dθ (x, x) = dR(θ (x), θ(x)) (9)

27See Figure 2 and Section III-A of [16].
28See Sections IV to VII of [16].
29See Tables 2 to 5 of [16].
30See Table B.7 of Appendix B in [2].
31See Equation 4.1 of [15] or Equation 23 of [16].
32See Equation 1 of [35].
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FIGURE 5. Computation of θ(x) for a graph x in a simple GNN.

FIGURE 6. Computation of θ(x) for a graph x in a powerful GNN.

5) GNNS VS GKS
As it was the case for graph kernels, the feature vectors
generated by θ can serve as inputs for graph classification or
graph clustering. But, unlike graph kernels which prioritize
predefined and limited sets of graph properties, GNNs can
compare any two graphs, irrespective of their properties.
Indeed:

1) The multidimensional feature vector u⃗ can embed
various types of information related to each vertex u

(i.e: attributes, degree, label, etc). GNNs can conse-
quently handle labeled and attributed graphs (having
continuous attributes).

2) The graph structure is used as network support, GNNs
can therefore handle large graphs as well as dense
graphs.

3) The functions combine and aggregate capture local
changes around each vertex, while the function read-
out captures global changes across the graph. GNNs
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FIGURE 7. Graph comparison using GNNs.

are thus suitable for comparing graphs where the global
changes are important, as well as graphs where local
changes are important.

Unfortunately, GNNs suffer form the following general
drawbacks:

1) They require lots of computing resources due to the
integration of K deep models in the architecture that
along the way, induce a high additional time cost
required for the deep learning processes.

2) The components of the final feature vector θ(x) of
a graph x are less interpretable and less explainable.
Indeed, the explainability and interpretability of the
results of deep models remain open scientific problems
recently surveyed by Samek et al. in 2021 [36] and by
Saleem et al. in 2022 [37].

3) The hyper-parameters of the deep models are difficult
to adjust.

Table 2 summarizes the main information related to the
existing techniques for graph comparison reviewed in this
paper.

F. PROBLEM STATEMENT
Existing SSBTs for graph comparison [7], [8], [9], [10], [11],
[12], [13] induce a high computation time. This limitation
is attenuated by MBTs [6], which compare the graphs
through operations performed on their matrices (adjacency,
Laplacian), but they only enable the comparison of aligned
graphs. GKs [1], [14] enable to overcome this drawback by
embedding the graphs into vector spaces using a deterministic
mapping function, but they only prioritize a predefined
and limited set of graph properties. A good alternative
for avoiding this limitation is offered by GNNs [2], [15],
[16], which evaluate the mapping function through a deep
learning process. Nevertheless, using GNNs requires lots of
computing resources and the hyper-parameters of the user-
selected deep models are difficult to adjust. Furthermore,
the resulting final feature vectors associated with the
input graphs are less interpretable/explainable. Beside this,
existing techniques do not allow the explicit specification
of user-defined properties on which the comparison should
be performed. This analysis leads to the following research

problem: How to perform efficient graph comparison, based
on an explicitly specified user-defined set of criteria?

This paper attempts to overcome these limitations by
proposing a customizable technique based on HMMs for
comparing two graphs according to a user-defined set P
of properties. HMMs are preferred here because they are
suitable for learning sequential data and a vertex u can be
viewed as the sequential list Lu of visited vertices produced by
DFS during the traversal of the subgraph G(u) materializing
a specific neighborhood of u. The fact that a HMM can be
trained for learning multiple sequences offers the possibility
of associating a unique HMMwith a graph x. This model will
learn the sequences derived from the |V | subgraphsG(u), with
u∈V .

III. PRESENTATION OF HMMS
A. DEFINITION OF A HMM
A HMM λ = (A,B, π) is fully characterized by [38]33:

1) Its number N of states, the set of states being S =
{s1, . . . , sN }. The state of the model at time t is
generally noted qt∈S.

2) Its number M of symbols, the set of symbols being
ϑ = {z1, . . . , zM }. The symbol observed at time t is
generally noted ot∈ϑ .

3) Its state transition probability matrix A verifying
A[si, sj] = Prob(qt+1 = sj|qt = si) with 1≤i, j≤N .

4) Its symbols observation probability matrix B verifying
B[si, zk ] = Prob(zk at time t|qt = si) with 1≤i≤N and
1≤k≤M .

5) Its initial state probability vector π verifying π [si] =
Prob(q1 = si) with 1≤i≤N .

B. GENERATION OF SEQUENCE
AHMM λ = (A,B, π) can be used for generating a sequence
O = o1. . .oT composed of T symbols observed following the
sequence of states q = q1. . .qT as described in the Markov
chain (MC) shown in Figure 8.

In order to obtain this MC, the following algorithm is
executed:

1) Select the initial state sj according to π and set t = 0.
2) Set t = t + 1 and change the current state to qt = sj

33See Section II-B of [38].
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TABLE 2. Main existing techniques for comparing two graphs.

FIGURE 8. HMM used as sequence generator.

3) Select the symbol ot∈ϑ to be observed at state qt
according to B.

4) If (t < T ) go to step 5, else terminate.
5) Select the state transition to be realized from the current

state qt to another state sj∈S according to A, then go to
step 2.

C. MANIPULATION OF A HMM
Consider a sequence of symbols O = o1. . .oT and a HMM
λ = (A,B, π). The probability Prob(O|λ) to observe O
given λ is efficiently calculated by the Forward-Backward
algorithm [38]34 that runs in O(T .N 2). Given a sequence of
symbols O = o1. . .oT , it is possible to iteratively re-estimate
the parameters of a HMM λ = (A,B, π) in order to maximize
the value of Prob(O|λ), where λ = (A,B, π ) is the re-
estimated model. The Baum-Welch algorithm [38]35 is used
for this purpose. This algorithm runs in O(γ.T .N 2) where γ
is the user-defined maximum number of iterations.

The Baum-Welch algorithm can also be used to train
a HMM for learning multiple sequences.36 In this case,
the algorithm maximizes the value of Prob(O|λ) =∑K

k=1 Prob(O
(k)
|λ) where O = {O(1), . . . ,O(K )

} is a set of
K sequences and O(k)

= o(k)1 . . .o
(k)
Tk is the k th sequence of

O. The time cost of the Baum-Welch algorithm for multiple
sequences is approximated by O

(
γ.(

∑K
k=1 Tk ).N

2
)

34See Section III-A of [38].
35See Section III-C of [38].
36See Section V-B of [38].

D. STATIONARY DISTRIBUTION
A vector ϕ = (ϕ[s1], . . . , ϕ[sN ]) is a stationary distribution
of a HMM λ = (A,B, π) if [39]37:

1) ∀j, ϕ[sj] ≥ 0 and
∑

jϕ[sj] = 1
2) ϕ = ϕ.A⇔

(
ϕ[sj] =

∑
iϕ[si]×A[si, sj],∀j

)
ϕ[sj] estimates the overall proportion of time spent by λ in

state sj after a sufficiently long time. ϕ can be extracted from
any line of the matrix Ar = A×A×. . .×A (r times) when
r→+∞. The computation of ϕ requiresO(r .N 3) arithmetic
operations.

IV. THE PROPOSED APPROACH
A. MAIN IDEA
Consider a graph x and a user-defined property p which is
a function either applicable to any vertex or to any edge of
x. Our intuition is that x can be accurately characterized by
capturing the adherence of the neighborhood of each vertex
u∈V to the property p. To achieve this goal, for every vertex
u∈V and given a user-defined constant β, we first define G(u)
as the subgraph of x explored by DFS during the traversal of
x starting from u and such that the value of the variable depth
is always less or equal to β.

Algorithm 3 DFS_new
Inputs: x = (V ,E), u∈V , β, p
Output: Lu, L̃u

1: Lu← ∅
2: L̃u← ∅
3: depth← 0
4: observe_vertex(depth, p(u))
5: DFSrec_new(x,Lu, L̃u, u, β, depth, p)
6: return Lu, L̃u

Algorithm 3 (which calls Algorithm 4) is a modified
version of DFS executed on the graph x starting from u, but
that limits the traversal to the subgraph G(u). In this modified

37See Definition 9.1 of [39].
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Algorithm 4 DFSrec_new

Inputs: x = (V ,E),L, L̃, u∈V , β, depth, p
Output: L, L̃

1: Insert(u,L)
2: Z ← {v∈V |(u, v)∈E}
3: for each (v∈Z ) do
4: if (v /∈ L) then
5: depth← depth+ 1
6: if (depth ≤ β) then
7: e← (u, v)
8: Insert(e, L̃)
9: observe_vertex(depth, p(v))

10: observe_edge(depth, p(e))
11: DFSrec_new(x,L, L̃, v, β, depth, p)
12: end if
13: depth← depth− 1
14: end if
15: end for
16: return L, L̃

version, the function PreUse is replaced by the functions
observe_vertex and observe_edge that observe the value of
the property p at the current depth, respectively for currently
visited vertex and the currently visited edge. The function
PostUse is removed in these algorithms. In practice, if p is
designed for vertices, then the line 10 of Algorithm 4 must
be ignored. But if p is on the contrary designed for edges, the
line 4 of Algorithm 3 and the line 9 of Algorithm 4 must be
ignored in this case.

The main idea of this work arises from the following
observation we made about the traversal of G(u) using
Algorithm 3. When DFS traverses G(u) starting from u, the
algorithm sequentially transits from one visited vertex located
at a specific depth, to another visited vertex located at another
depth, while observing the current value of property p at
each step, until the last vertex is visited. In other words,
DFS sequentially transits from one depth to the other and at
each step, the algorithm observes the value of the property
for the currently visited vertex/edge. This analysis enables us
to transform G(u) into a generated MC resulting from the
traversal of G(u) using the modified DFS starting from u.
In this transformation, the hidden states are the depths that
belong to {0, 1, . . . , β} and the observed symbols are the
values of the property p.
For any vertex u, assume that depth(u) refers to the value

of the variable depth taken with u as input parameters of
Algorithm 4. In these conditions, if Lu = [u1, u2, . . ., uk ]
and L̃u = [e1, e2, . . ., ek−1] are respectively the ordered lists
of visited vertices and visited edges returned by Algorithm 4
(i.e: u1 = u and depth(u1) = 0), then Figures 9a and 9b show
the resulting MCs δ(u) and δ̃(u) associated with the subgraph
G(u). Depending on the target (vertex or edge) of the property
p, only one of these two MCs is obtained after the traversal
of G(u).

FIGURE 9. MCs derived from the traversal of G(u).

For each vertex u of the graph x, the traversal of the
neighborhood G(u) of u can be performed for deriving one
MC associated with u as described in Figures 9a and 9b.
All the resulting distinct MCs can later serve as inputs for
initializing and then for training a unique HMM associated
with the graph x using theBaum-Welch algorithm formultiple
sequences. This model will learn the adherence of the graph
x to the property p through the overall analysis of the
subgraphs G(u), for every vertex u of x. The authors of [40]38
proceeded analogically to transform a tree into a MC given
a user-defined property with the final goal of comparing two
finite tree sets using HMMs.

This modeling principle can be applied using not only
one single property p, but a finite set P = {p1, . . . , pm}
of user-defined properties. In these conditions, one HMM
λi(x) is associated with the graph x, for each property pi∈P,
with (1≤i≤m). As it was already explained in [35]39where
the authors compared finite sets of vectors using HMMs,
it is not systematically necessary to determine the most
relevant and informative content of P since the result of
the comparison always remains consistent according to P,
whatever it contains. Indeed, it is only the final goal of the
comparison that indicates the necessity of determining the
best content of P. For pure decision support as comparing two
graphs in order to select the graph that matches the best with
specific user-defined preferences, the content of P is fully
determined by the user preferences. But, the discovery of
the best content of P can become necessary and challenging
for classification purposes if the final goal is to obtain
the best classification performances. However, it is also
possible to conduct classification experiments with the aim of
evaluating to what extent the properties in P are suitable for
distinguishing the classes found in the experimental dataset.

Each property in P can target the graph structure, the
vertex/edge labels or the vertex/edge attributes. In order to
show the flexibility of the proposed approach regarding the
choice of the properties in P, consider a graph x and a vertex
u∈V , both taken as input by Algorithm 4. If v is the currently
visited vertex in Algorithm 4, then the arbitrary properties
p1 to p12 listed in Table 3 can for example belong to P.

38See Section IV-A of [40].
39See Section V-B of [35].
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TABLE 3. Examples of arbitrary properties that can belong to P when u is the input vertex of Algorithm 4 and v is the currently visited vertex of this same
algorithm.

The variables W1 to W7 used in that table are defined in
Equation 10.

W1 = {w | (u,w)∈E and deg(w) ≤ deg(u)}

W2 = {w | (u,w)∈E and (deg(w)%2) = (deg(u)%2)}

W3 = {w | (u,w)∈E and (deg(w)%10) ≤ (deg(u)%10)}

W4 = {w | (u,w)∈E and l(w) = l(u)}

W5 = {w | (u,w)∈E and l(u,w) = l(u, v)}

W6 = {w | (v,w)∈E and l(v,w) = l(u, v)}

W7 = {w | (u,w)∈E and f (w) ≤ f (u)} (10)

B. METHODOLOGY
Figure 10 depicts the methodology proposed in the current
work for comparing two graphs x and x according to the set
P = {p1, . . . , pm} of properties.

Given a user-defined positive integer β, this methodology
is composed of the three following main steps:

1) Graph learning: For each property pi∈P with
(1≤i≤m), a HMM λi(x) (resp. λi(x)) is initialized and
trained for learning the adherence of the graph x (resp.
x) to the property pi, through the overall analysis of the
neighborhoods of its vertices.

2) Vector computation: Meta-data extracted from the
resulting HMMs are used for generating one feature
vector µi(x) associated with the graph x according
to the property pi. These meta-data are related to
the overall time spent by the model observing each
symbol after a sufficiently long time, irrespective of
the state from which this observation is realized. The
m resulting vectors are later concatenated for deriving
a unique feature vectorµP(x) associated with the graph
x according to P. The same process is executed for
generating a unique feature vector µP(x) associated
with the graph x according to P.

3) Vector comparison: The comparison between the
graphs x and x is finally performed through the
comparison of their respective feature vectors µP(x)
and µP(x) using any existing vector distance d .

C. GRAPH LEARNING
Consider a graph x, a positive integer β and a set P =
{p1, . . . , pm} of properties. For each property pi∈P with
(1≤i≤m), the model λi(x) associated with x according
to the property pi is derived following the methodology
depicted in Figure 11 when V = {u1, . . . , uk} such that
(k = |V |). This figure is composed of the following three
main steps: Neighborhood exploration, Transformation into
Markov chain and HMM initialization and training.

1) NEIGHBORHOOD EXPLORATION
Given a user-defined integer β and for each vertex uj of
the graph x with (1≤j≤k), Algorithm 3 is executed here to
traverse the subgraph G(uj). This algorithm will thus explore
a specific neighborhood of the vertex uj whose depth is
proportional to the value of β. When (β = 0), the algorithm
only explores uj. When (β = 1), uj and its the immediate
neighbors are explored. Now when (β = β0) such that
(β0≥2), the algorithm explores all the vertices that must be
explored when (β = β0 − 1) and their immediate neighbors
that have not yet been explored.

2) TRANSFORMATION INTO MARKOV CHAIN
For each vertex uj of the graph x with (1≤j≤k), the subgraph
G(uj) is transformed here into the MC δi(uj) as described in
Figure 9a (If pi is designed for edges, δ̃i(uj) of Figure 9b
is rather used). The resulting MCs are gathered into the set
1i = {δi(u1), . . . , δi(uk )}. Thereafter, duplicates are removed
from 1i.
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FIGURE 10. Methodology proposed for comparing two graphs x and x according to the set P = {p1, . . . , pm} of properties.

FIGURE 11. Methodology proposed for deriving the model λi (x) associated with the graph x according to the
property pi .

TABLE 4. Example of sampling of the values of an integer i∈N.

Consider for example the vertex-labeled graph x depicted
in Figure 2c. When Algorithm 3 is executed with β = 1 and
β = 2 on the graph x, starting from the vertex u whose
identifier is 4, the MCs shown in Figures 12a to 12h are
derived for the properties p1, p3, p7 and p8 described in
Table 3.

The main issue arising from the MCs presented in
Figures 9a and 9b is that the symbols are the values of
the property p, that can belong to any set I (finite or not)
depending on the user preferences. This is a problem because
in a HMM, the symbols must always belong to a finite set.
But, as it can be observed in Table 3:
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FIGURE 12. MCs associated with the vertex 4 of the graph x of Figure 2c
for p1, p3, p7 and p8 when β = 1 and β = 2.

• Only p3, p5, p7 and p9 return values that belong to finite
sets.

• p1 returns a positive integer.
• p11 returns a real number.
• p2, p4, p6, p8, p10 and p12 return percentages that belong
to continuous interval [0, 100].

An obvious solution to this problem consists in sampling
the set I into a finite number of samples and to consider each
sample as a symbol. For properties like p1 that return elements
of N, one can for example consider the sampling described
in Table 4, which matches any integer i∈N with the sample
η(i)∈{0, 1, . . . , 70}. This sampling can of course be modified
by the user, but in its actual state, it can accurately capture the
exact value of the degree of a vertex, except for graphs where
vertices have huge degrees. A suitable symmetry with respect
to zero can be applied on Table 4 formatching any integer i∈Z
with the sample η(i)∈{−70, . . . ,−1, 0, 1, . . . , 70}. The MCs
related to p1 shown in Figures 12a and 12b remain unchanged
after the application of this sampling.

For the case of properties that return percentages belonging
to the continuous interval I = [0, 100], one can adopt
the sampling proposed in Equation 11 which matches any
real number i∈[0, 100] with the sample η(i)∈{0, 1, . . . ,M}
following [35],40 where M is a user-defined integer. When
this sampling is applied with M = 10 to the MCs related to
p8 initially presented in Figures 12g and 12h, the modified
MCs shown in Figures 13a and 13b are obtained. (i = 0)⇒ (η(i) = 0)

i∈
]
100
M
×(k − 1),

100
M
×k

]
, (1≤k≤M )⇒ (η(i) = k)

(11)

Given any vertex/edge j of a graph x, when the property
p returns a real number that can be positive or negative,

40See Equation 3 of [35].

FIGURE 13. MCs associated with the vertex 4 of the graph x of Figure 2c
for p8 when Equation 11 is used with M = 10.

one can initially normalize this returned value according to
the maximum value maxi of p observed in the graph x as
described in Equation 12 where k is any vertex/edge of x.
This normalization will replace the original returned value
p(j) by the new value i that belongs to the continuous interval
[−100, 100]. Equation 13 can then be used for matching
any i∈[−100, 100] with the sample η(i)∈{0, 1, . . . , 2M}
following [35],41 whereM is a user-defined integer. i = 100×

p(j)
maxi

where

maxi = max{p(k) | k in x}
(12)


i∈

[
−100×

k
M
,−100×

(k − 1)
M

[
, (1≤k≤M )⇒ (η

(i) = k +M )(i = 0)⇒ (η(i) = 0)

i∈
]
100×

(k − 1)
M

, 100×
k
M

]
, (1≤k≤M )⇒ (η(i) = k)

(13)

3) HMM INITIALIZATION AND TRAINING
Consider a graph x where V = {u1, . . . , uk} and a
property pi∈P that returns values belonging to a set I , with
(1≤i≤m). Given two positive user-defined constants β and
M we propose to parameter the initial HMM λ̂i(x) =
(Âi(x), B̂i(x), π̂i(x)) associated with x according to pi as
described below for statistically capturing the state transitions
and the symbol probability distributions from the content of
the set of MCs 1i = {δi(u1), . . . , δi(uk )}:

1) The set of states is S = {0, . . . , β}.
2) The content of the set ϑ of symbols depends on the

nature of the set I . If I is finite, then (ϑ = I ).
When I = N, the sampling proposed in Table 4
can be used such that we have ϑ = {0, 1, . . . , 70}.
One can perform a suitable symmetry with respect
to zero of this same table in order to obtain ϑ =
{−70, . . . ,−1, 0, 1, . . . , 70} when I = Z. For the
case where I is the continuous interval [0, 100],
Equation 11 enables to sample this interval such that
we obtain ϑ = {0, 1, . . . ,M}. Finally, when I = R,
Equation 13 enables to obtainϑ = {0, 1, . . . , 2M} after
normalizing the values of pi using Equation 12.

3) The probability of transiting from state sj to state sl is
calculated in Equation 14where transit(sj, sl,1i) is the
number of transitions from state sj to state sl in 1i and
transit(sj,−,1i) is the number of transitions from state

41See Equations 4 and 5 of [35].
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sj to any destination in 1i.

Âi(x)[sj, sl] =
transit(sj, sl,1i)

transit(sj,−,1i)+ 1
(14)

4) The probability to observe symbol zl at state sj is
calculated in Equation 15 where observe(zl, sj,1i)
is the number of times symbol zl is observed from
state sj in 1i, and observe(−, sj,1i) is the number of
occurrences of state sj in 1i.

B̂i(x)[sj, zl] =
observe(zl, sj,1i)

observe(−, sj,1i)+ 1
(15)

5) The probability of starting with state sj is calculated in
Equation 16, where start(sj,1i) is the number of MCs
in 1i starting with state sj.

π̂i(x)[sj] =
start(sj,1i)
|1i| + 1

(16)

The parameters of λ̂i(x) are not probability distributions
due to the digit ’1’ intentionally added to the denominators
of its various components for avoiding eventual divisions
by zero or zero-probabilities in the initial model. In order
to solve this problem, an equitable redistribution of the
missing quantity is applied to each element of each line
in λ̂i(x) to derive the readjusted initial HMM λ̃i(x) =
(Ãi(x), B̃i(x), π̃i(x)) whose parameters are calculated in
Equation 17.

Ãi(x)[sj, sl] = Âi(x)[sj, sl]+
1

β + 1

1−
β∑
h=0

Âi(x)[sj, sh]


B̃i(x)[sj, zl] = B̂i(x)[sj, zl]+

1
|ϑ |

1−
|ϑ |−1∑
h=0

B̂i(x)[sj, zh]


π̃i(x)[sj] = π̂i(x)[sj]+

1
β + 1

1−
β∑
h=0

π̂i(x)[sh]


(17)

Finally, the readjusted initial HMM λ̃i(x) is trained using
the Baum-Welch algorithm for multiple sequences. This
enables to derive the final HMM λi(x) associated with the
graph x according to the property pi. The training sequences
taken as inputs by the Baum-Welch algorithm are the
sequences of symbols appearing in 1i. When this principle
is executed for each property in P, the set {λ1(x), . . . , λm(x)}
of HMMs is obtained.

D. VECTOR COMPUTATION
In this section, meta-data are extracted from the HMM λi(x)
in order to generate one feature vector µi(x) associated
with the graph x according to the property pi∈P. The l th

component µli(x) of this vector is considered here as the
overall proportion of time spent by λi(x) observing the
symbol zl after a sufficiently long time, irrespective of the
state from which this observation is realized. In order to

compute the value of µli(x), one must first use the following
principle for evaluating the overall proportion of time spent
by λi(x) observing the symbol zl from state sj after a
sufficiently long time:

1) The overall proportion of time spent by λi(x) in state
sj after a sufficiently long time is first evaluated. This
proportion is given by the jth component ϕi(x)[sj] of the
stationary distribution of λi(x).

2) The result obtained at step 1 is then multiplied by the
probability of observing the symbol zl from state sj
which is given by Bi(x)[sj, zl].

The value of µli(x) is finally obtained by repeating this
process for every state sj and by summing the resulting pro-
portions. Equation 18 summarizes the computation scheme
of µi(x).µi(x) = [µ1

i (x), µ
2
i (x), . . . , µ

|ϑ |
i (x)] where

µli(x) =
∑β

j=0

(
ϕi(x)[sj]×Bi(x)[sj, zl]

)
with (1≤l≤|ϑ |)

(18)

If pi returns a real number, the value maxi used in
Equation 12 for normalizing the values of pi is inserted as
the last additional component of µi(x) to take into account
the effects of this normalization as shown in Equation 19.µi(x) = [µ1

i (x), µ
2
i (x), . . . , µ

|ϑ |
i (x),maxi] where

µli(x) =
∑β

j=0

(
ϕi(x)[sj]×Bi(x)[sj, zl]

)
with (1≤l≤|ϑ |)

(19)

The final feature vector µP(x) associated with the graph x
according to the set P = {p1, . . . , pm} is obtained by concate-
nating the components of the feature vectors generated for the
m properties in P as described in Equation 20.

µP(x) = concat︸ ︷︷ ︸
i=1,...,m

(µi(x)) (20)

E. VECTOR COMPARISON
Consider two graphs x and x that can be labeled or attributed.
Given a user-defined set P = {p1, . . . , pm} of properties,
the distance/similarity dP(x, x) between x and x is evaluated
by comparing their respective associated final feature vectors
using any valid distance/similarity dR between vectors inR32

(Euclidean,Manhattan, etc.) as shown in Equation 21.

dP(x, x) = dR(µP(x), µP(x)) (21)

F. TIME COST OF THE PROPOSED APPROACH
According to the methodology shown in Figure 10, the
theoretical time cost of the proposed approach is dominated
by the time required for all graph learning steps, augmented
by the time required for computing the final feature vectors.

Consider a graph x and a set P = {p1, . . . , pm} of
properties. If ε and pmax respectively designate the maximum
vertex degree in x (i.e: ε = max{deg(u) | u∈V }) and the
maximum time required for computing the value of any
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property in P, then the time cost of the graph learning for
each property pi can be approximated as follows according
to the main steps described in Figure 11:

1) Neighborhood exploration: For each vertex u∈V , the
traversal of G(u) visits ε0 = 1 vertex at the depth 0
(this vertex is u), and at most ε1 vertices at the depth 1
(these are the immediate neighbors of u), and at most
ε2 vertices at the depth 2 (these are the immediate
neighbors of the immediate neighbors of u), and so
on until the depth β where εβ vertices are visited at
most. Finally,

(∑β

i=0 ε
i
)
=

(
1−ε(β+1)

1−ε

)
vertices are at

most visited during the traversal of G(u). Given that β
is generally a small number, in addition with the fact
that the effective degrees of the various vertices in the
graph are most often lower than ε, the effective number
of visited vertices is in practice very low compared to
|V |. Nevertheless, the number of visited vertices can
sometimes be equal to |V | for small graphs or for high
values of β. For this reason, we assume here that in
the worst case, |V | vertices are visited during the the
traversal of G(u) for each vertex u.

2) Transformation into MC: Given that the property pi is
evaluated each time a new vertex is visited during the
traversal of G(u) for each vertex u∈V , the time cost
required for transforming all the vertices of x into MCs
is

(
pmax .|V |2

)
.

3) HMM initialization and training: The time required for
initializing a HMM was experimentally very low. This
step is consequently dominated by the model training
phase, which according to Section III-C, runs in around
γ.(

∑|V |
k=1 |V |).(β + 1)2 = γ.|V |2.(β + 1)2

When this reasoning is applied for all the m properties in
P, Equation 22 computes the time cost of the graph learning
steps.

Time1 = m.|V |2.
(
pmax + γ.(β + 1)2

)
(22)

The most time consuming operation realized during the
vector computation step is the computation of the stationary
distribution, which runs in around r .(β + 1)3 for the model
associated with each property as stated in Section III-D.
When all the m properties in P are considered, Equation 23
gives the time cost of the vector computation.

Time2 = m.r .(β + 1)3 (23)

In the worst case, the overall theoretical time cost required
by the proposed approach for deriving the final feature
vector µP(x) associated with a graph x according to a set P
containing m properties is finally obtained in Equation 24
by summing the values computed in Equation 22 and in
Equation 23.

Time = Time1 + Time2

= m.|V |2.
(
pmax + γ.(β + 1)2

)
+ m.r .(β + 1)3

(24)

FIGURE 14. The graphs x and x compared in Table 6.

V. EXPERIMENTAL RESULTS
This section aims on the one hand at experimentally
demonstrating the flexibility and the interpretability of the
proposed approach compared to existing techniques, through
a practical example of comparison of two graphs according
to several sets of properties. On the other hand, the current
section also aims at demonstrating that the proposed approach
can exhibit better classification performances than existing
techniques when the suitable set of properties is selected. All
our source codes were written in C language and are available
online42 alongside with the corresponding experimental data.
Undirected graphs are used in this section, but the proposed
approach is also applicable to directed graphs.

A. EXPERIMENTAL SETTINGS
All the experiments performed in the current work were
realized on a personal computer having 16 GB of main
memory and the following processor: Intel(R) Core(TM) i7-
8665U CPU @ 1.90 GHz 2.11 GHz. The constant (r = 100)
was selected for computing the stationary distributions of
eachHMMand themaximumnumber of iterations (γ = 100)
was selected during the HMMs training following [35].43

B. PRACTICAL EXAMPLE
Consider the vertex-labeled graphs x of Figure 14a (initially
shown in Figure 2c) and x depicted in Figure 14b, such that
the set of vertex labels is

∑
= {a, b, c}. These two graphs

have been chosen because they are small and simple, they
thus enable an easy-to-understand explanation the proposed
approach. However, the proposed approach also handles
large and more complex graphs as it is demonstrated in
Section V-C where large graph databases are experimented.
When the proposed technique is applied on these two graphs
considering the sets {p3}, {p7}, {p8} of properties described
in Table 3 and using Equation 11 with the value (M = 5),
the vectors contained in Table 5 are obtained for (1≤β≤3).
The process of computation of each vector appearing in
that table required in practice less than 10 milliseconds on
the experimental computer. A simple vector concatenation
enables to derive the vector corresponding to any mixture of
these sets as described in Equation 20.

42https://webperso.etis-lab.fr/sylvain.iloga/index.html and https://github.
com/MhdMrd/Flexible-graph-comparison-using-HMMs

43See Section V-B of [35].
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TABLE 5. Feature vectors associated with the graphs x and x respectively shown in Figures 14a and 14b.

TABLE 6. Euclidean (d̃ ) and Manhattan (d̂ ) distances between the graphs x and x respectively shown in Figures 14a and 14b.

When the Euclidean and theManhattan distances are used
for comparing these two graphs according to the all the
possible mixtures of the aforementioned sets of properties,
the results contained in Table 6 are obtained. The content
of Table 6 is the experimental proof of a fundamental
observation made at the Introduction of the current paper
which stated that: ’the result d(x, x) of the comparison
between two items x and x according to a metric d is
not unique, but rather depends on the set P of comparison
criteria’.

Table 5 reveals that the proposed approach updates the
feature vectors when β changes. This demonstrates that
the information embedded in the actual neighborhood G(u)
of each vertex u is accurately captured according to the
variations of β. One can for example observe the gradual
readjustment of the vectors µP(x) and µP(x) for P = {p3}
when β changes, which materializes the fact that the parity
of the degree of each vertex found in the actual neighborhood
is accurately captured.

Table 5 also illustrates the capability of the proposed
approach to effectively capture the overall adherence of each
graph to the properties in P. One can for example observe that
for P = {p8}, the vector µP(x) = [1, 0, 0, 0, 0, 0] is always
obtained, irrespective of the value of β. This means that
after a sufficiently long time, the model λ8(x) always spends
100% of its time observing the percentage 0%, irrespective
of the depth of the vertex from which this observation is
realized. This interpretation is accurate because in the graph
x, no vertex shares the same label with any of its immediate
neighbors.

Another important information revealed by Table 5 is
related to the fact that the proposed approach cannot be
reduced to a simple statistical counting of the various values
of each property appearing in the graph. It is effectively the
behavior of the underlying HMM after a sufficiently long

TABLE 7. Statistics related to the original datasets IMDB-BINARY and
IMDB-MULTI from the TUDataset repository.

time that is considered. As an example, the vector µP(x) =
[0, 1, 0] is generated for P = {p7}, when β = 2. This results
means that after a sufficiently long time when β = 2, the
model λ7(x) always spends 100% of its time observing the
label b. In other words, given that the label b ’regularly’
appears in x, the model λ7(x) decides to exclusively focus on
this symbol after a sufficiently long time, and consequently
stops observing the symbols a and c that ’rarely’ appear
in x. However, the underlying HMM ignores only a when
β = 1 and only c when β = 3.

C. CLASSIFICATION EXPERIMENTS
All the classification experiments were realized with the
software WEKA [41] (version 3.9) through a 10 fold cross-
validation. Support Vector Machines with polynomial kernel
(called SMO in WEKA) were used as classifier with their
default parameters. The HMMswere generated for (1≤β≤5).
and feature vectors generated during each experiment were
saved into online available ’.arff’ files42 taken as inputs by
WEKA. Equation 11 is used with the value (M = 10) during
these classification experiments.

1) EXPERIMENTAL DATABASES AND SELECTED PROPERTIES
Classification experiments were initially conducted on the
two following real-world datasets from the TUDataset
repository6: IMDB-BINARY and IMDB-MULTI. These two
datasets were created from the online database IMDb44

44www.imdb.com
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TABLE 8. Properties verified by each vertex u of each graph x in the four modified datasets such that l (u) and f (u) are respectively the label and attribute
of u. The value C(x)∈{0, 1, 2} is the class identifier of x in the dataset.

TABLE 9. Experimental sets of properties selected for the four modified
datasets. The values l (u) and f (u) are respectively the label and attribute
of each vertex u of a graph x .

TABLE 10. Classification results for the original datasets when
P = {p1, . . . , p6}. Accuracies are in (%). The best accuracies are in bold.

of information related to movies and television programs.
They both contain unlabeled and unattributed graphs cor-
responding to movie collaborations and organized into
classes. In these graphs, vertices represent actors/actresses
and there is an edge between two vertices if the corresponding
actors/actresses appear in the same movie. Statistics related
to these two datasets are available in Table 7. The set P =
{p1, . . . , p6} composed of 6 arbitrary properties described
in Table 3 is selected for this first experiment, this induces
feature vectors having 117 components considering the
experimental settings.

Other classification experiments were subsequently con-
ducted on four additional datasets derived from IMDB-
BINARY and IMDB-MULTI by randomly adding either one
attribute or one label to each vertex of the original dataset.
In these modified datasets, each label belongs to the finite set∑
= {1, 2, . . . , 10} and each attribute is an integer belonging

to the finite set {−100, . . . , 0, . . . , 100}. The properties
verified by label l(u) or the attribute f (u) of each vertex u of
each graph x in these four additional datasets are described
in Table 8. Consequently, the sets {p̃1}, {p̃2}, {p̃3} and {p̃4}
containing properties described in Table 9 are selected for this
second experiment.

2) CLASSIFICATION RESULTS
Classification results for the two original datasets when P =
{p1, . . . , p6} are presented in Table 10. According to this
table, although only arbitrary properties have been selected,

TABLE 11. Time cost of the classification experiments for each original
dataset. Durations are in seconds.

the feature vectors generated by the proposed approach
enable to derive best classification accuracies of 74.0%
for IMDB-BINARY and of 51.13% for IMDB-MULTI, both
obtained with β = 1. However, the proposed approach
always exhibited a perfect classification accuracy of 100%
for each modified dataset according to its corresponding
set of property, irrespective of the value of β. This perfect
performance is due to the use of the most relevant and
informative sets of properties during these experiments.

3) EXPERIMENTAL TIME COST
The experimental time cost required for deriving the feature
vectors of each original dataset are available in Table 11. Less
than 8 seconds were required for deriving the feature vectors
of each modified dataset. These experimental time costs
confirm that in practice, the proposed approach is seriously
less time consuming than the existing GKs/GNNs, which
generally required several minutes and sometimes required
many hours for the same purpose.45

4) COMPARISON TO EXISTING TECHNIQUES
In this section, the performances of the proposed approach are
only compared to those exhibited by GKs and GNNs, which
are themost popular and themost efficient among the existing
techniques. To achieve this goal, we first collected the best
existing performances of GKs [1]46 and GNNs [15]47 for the
two original datasets respectively exhibited by variants of the
Weisfeiler-Lehman kernel and by the (GIN)-ϵ. Comparisons
for the four modified datasets required new experiments
involving GKs and GNNs. Therefore, we downloaded open
access Python codes that implement classification using
various GKs48 and using the (GIN)-ϵ.49 These Python
codes were used without significant modifications except

45See columns 2 and 3 of the Table 8 in [1].
46See Table 7 of [1].
47See Table 1 of [15].
48https://ysig.github.io/GraKeL/0.1a8/auto_examples/
49https://github.com/chrsmrrs/tudataset/blob/master/tud_benchmark/
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TABLE 12. Comparison results. Accuracies are in (%). The following acronyms are used for GKs: WL-PM = ’Weisfeiler-Lehman Pyramid Match’, WL-VH =
’Weisfeiler-Lehman Vertex Histogram’, NH = ’Neighborhood Hash’ and ML = ’Multiscale Laplacian’. The best accuracies are in bold.

the number of epochs of the (GIN)-ϵ that was reduced to
10 epochs due to its huge time cost for each modified dataset.
Indeed, the experiments using the (GIN)-ϵ with 20 epochs
were interrupted after more than one day of execution time
without results.

Table 12 contains the best classification performances
obtained after performing a 10-fold cross-validation using the
(GIN)-ϵ and using various applicable GKs. It is important to
mention that several hours were required for each of these
classification experiments using some GKs and using the
(GIN)-ϵ, despite of its small number of epochs. Table 12
reveals that the proposed approach is slightly beaten by the
existing techniques for the two original datasets. This does
not means that the proposed approach cannot outperform
these existing techniques for these datasets. It rather means
that the arbitrary properties used during these experiments
are not enough suitable for distinguishing the classes found
in these datasets. Table 12 also reveals that the proposed
approach seriously outperforms GKs and GNNs for all the
modified datasets with accuracy gains reaching+54.38% for
the dataset IMDB-MULTI-va.

D. MAIN ASSETS OF THE PROPOSED APPROACH
The technique proposed in the current paper:

1) Requires the explicit specification of a finite set P
of properties according to which the comparison is
performed. No existing technique offers this flexibility.
As a consequence, it can compare unlabeled and
unattributed graphs, as well as labeled and attributed
graphs depending on the nature of the properties in P.

2) Considers both, the local environment of each vertex,
as well as the global structure of the graph. Indeed, for
each property pi∈P, the adherence of the vertices/edges
found in the local neighborhood G(u) of each vertex
u to the property pi is first captured into a MC.
The resulting MCs constructed for all the vertices
of the graph are then learned by the Baum-Welch
algorithm. As a consequence, unlike GKs that prioritize
a predefined and limited set of graph properties, the
proposed approach is suitable for comparing all kinds
of graphs (small, large, dense, etc.).

3) Only requires a reasonable time cost (few minutes)
during each experiment realized in the current paper,
unlike GNNs and some GKs that require a huge time
cost (several hours) for the same purpose. The proposed

approach can also be easily implemented in parallel
according to its methodology shown in Figure 10 in
order to further reduce its time cost.

4) Unlike GNNs, it derives a HMM λi(x) associated with a
graph x (for each property pi∈P) whose parameters can
be easilymodified and the resulting feature vectorµi(x)
is interpretable as it was demonstrated in Section V-B.
Indeed, the l th component µli(x) of µi(x) is the overall
proportion of time spent by the model λi(x) observing
the l th symbol after a sufficiently long time, irrespective
of the state from which this observation is realized.

5) Seriously outperforms existing techniques for the flat
classification of the modified experimental datasets
with accuracy gains reaching +54.38% when the
suitable sets of properties are selected.

VI. CONCLUSION AND PERSPECTIVES
The current paper tackles the problem of graph comparison
which is an important tool for decision support, while being
crucial for classification and clustering. Existing techniques
used for this purpose (SSBTs, MBTs, GKs and GNNs) are
limited by several factors stated in Section II-F and do not
allow the explicit specification of user-defined properties on
which the comparison should rely.

This paper attempts to attenuate the drawbacks of the
existing techniques for graph comparison by proposing a
flexible HMM-based technique that associates one feature
vector with each graph while offering the explicit possibility
to precise a finite user-defined set of properties that must
be considered during the comparison. The comparison
between two graphs is performed through the comparison
of their associated feature vectors using any valid vector
distance/similarity. Classification experiments conducted on
two publicly available real-world graph datasets and on
four synthetic datasets (derived from the two original real-
world datasets) demonstrated that, when the suitable sets of
properties are selected, the proposed approach outperforms
existing techniques with accuracy gains reaching +54.38%.

The following perspectives can be considered in future
work:

1) The proposed approach is highly customizable accord-
ing to many parameters: β, γ, r,M , . . . Future work
can analyze the impact of the gradual modification of
these parameters on the performances of the proposed
approach.
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2) When it is required by the final goal of the comparison,
future work can also focus on the automatic discovery
of the most relevant and informative content of the set
P of properties using for example machine learning or
data mining techniques.

3) Future work can compare two finite graph sets by
combining the proposed approach and the technique
proposed in [35] for comparing two finite sets of
vectors using HMMs. Indeed, given a finite set G
of graphs, the proposed approach can be first used
for generating one feature vector associated with
each graph in G. The resulting set of vectors can
then be associated with one unique feature vector
using the technique proposed in [35]. Finally, the
comparison between two graph sets is realized through
the comparison of their associated feature vectors using
any valid vector metric.

4) Another alternative for comparing two graph sets
that are densely populated in future work consists in
combining the proposed approach and the technique
proposed in [42] for comparing two finite metric spaces
using HMMs. Indeed, given a set P of properties, when
a finite graph set G is attached to the distance dP
between two graphs proposed in the current paper,
the resulting pair (G, dP) is a finite metric space.
Therefore, the technique proposed in [42] can be used
for comparing two graph sets G1 and G2 through the
comparison of the two finite metric spaces (G1, dP) and
(G2, dP).

5) Future work may also analyze the possibility of
designing a more robust version of the proposed
approach that will first use different values of β for the
same property, the resulting feature vectors will later be
merged according to various principles into one unique
vector.

6) The time cost of the proposed approach can be
reduced in future work if the graph learning steps
appearing in Figure 10 are performed in parallel
for each graph. More precisely, if the set of prop-
erties is P = {p1, . . . , pm}, then m processors
{proc1, proc2, . . . , procm} can be used for this purpose
for each graph, each processor prock (1≤k≤m) being
responsible of the graph learning associated with pk .
The time cost can be further reduced if a parallel
version of the Baum-Welch algorithm is executed. This
can be implemented using Message Passing Interface
(MPI) following [43] or using a Field-Programmable
Gate Array (FPGA) chip following [44].
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