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Example of an industrial problem: optimization of a wind-farm
layout

A set of points model
• Each point (vector) represents the

positions of a turbine.
• The set of points corresponds to the

positions of all the turbines.
• Find an optimal layout of turbines

minimizing the wake effects.
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Context and problem formulation

Optimization of functions defined over clouds (sets) of points
• Dealing with functions assumed to be black-box
• We consider functions having inputs in the form of bags of vectors (or point clouds).
• These types of functions are encountered in many domains, such as: image processing,

design of experiments optimization, . . .

Variable of interest
• X : space of all sets of n unordered points {x1, . . . , xn} where xi ∈ Rd , i = 1, . . . , n and
nmin ≤ n ≤ nmax.
• X ∈ X is a set of points and will be referred to as a cloud of points.

Two alternative approaches
• Computationally cheap case: evolutionary algorithm
• Computationally intensive case: active learning 4 / 26



Mixed aspect: no order and varying size

Comparing two clouds of points with different sizes
The functions of interest are permutation-invariant with respect to their inputs.
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Figure: Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for
the red one.
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Evolutionary algorithm over clouds of points
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Optimization with Evolutionary Algorithm

Difficulties
• F is a black-box function, no information about its smoothness, a fortiori its convexity.
• All these aspects combined make it difficult to define gradients.

Related works for windfarm design
• We can find in Bilbao and Alba [2], Pillai et al. [6], and Pillai et al. [5] algorithms,

optimizing positions, based respectively on simulated annealing, genetic algorithm and
particle swarm optimization.
• Authors suppose predefined positions and use binary encoding. Our work differs by letting

points vary continuously.

Evolutionary algorithms
• We adopt an evolutionary algorithm that evolves an initial population, creates new ones by

crossover and mutation and stops after a fixed number of iterations.
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How to define crossover and mutation over clouds of points ?

With the discrete uniform measures modeling

• For two cloud of points X (j) = {x(j)1 , ..., x(j)n }, j = 1, 2 we associate PX (j) = 1
n

∑n
i=1 δx(j)i

• We can compute a new cloud of points by finding an intermediary uniform measure.

Wasserstein distance
• For two measures µ and ν defined over Rd , the Wasserstein distance of order p is defined

as follows : W p
p (µ, ν) = infπ∈Π(µ,ν)

∫
Rd×Rd ρ(x , x

′)pdπ(x , x ′)
• ρ(x , x ′) corresponds to the Euclidean distance between x and x ′

• Π(µ, ν) is the set of all probability measures defined over Rd × Rd with marginals µ and ν.

Wasserstein barycenter
• A barycenter (ν∗) of N measures ν1, ..., νN is defined as to minimize
f (ν) =

∑N
i=1 ϵiW

p
p (ν, νi ), with ϵi ≥ 0,

∑N
i=1 ϵi = 1 see Agueh and Carlier [1].
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Wasserstein distance to define barycenter

Wasserstein barycenter: illustration
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Figure: Two initial clouds at left and right, and their Wasserstein barycenter in the middle
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Contracting effect

Theorem
Consider P ′ to be the set of discrete measures over Rd with finite support and ϵ ∈ [0, 1]. Let
PX1 , PX2 and PX∗ be defined respectively as
• PX1 =

∑n
i=1 αiδx1

i
,
∑n

i=1 αi = 1, αi > 0,

• PX2 =
∑m

j=1 βjδx2
j
,
∑m

j=1 βj = 1, βj > 0 ,

• PX∗ =
∑k

l=1 λlδx∗l ,
∑k

l=1 λl = 1, λl > 0 ,

with PX∗ the unique minimizer of arg
PX∈P ′

min ϵW 2
2 (PX ,PX1) + (1− ϵ)W 2

2 (PX ,PX2).

If the above is verified, we have:

∀l ∈ {1, ..., k}, x∗l ∈ Conv(x1
1, ..., x1

n, x2
1, ..., x2

m)

where Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) is the closed convex hull of the set {x1
1, ..., x

1
n, x

2
1, ..., x

2
m}
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Evolutionary operators
• Escape from contraction: To define operators taking into account the contracting

property, we introduce the following operators over clouds of points, given ϵ ∼ U [0, 1]:
• Random weights crossover: For two measures (PX1 and PX2), Xc defined as

PXc = argmin
PX

ϵW 2
2 (PX ,PX1) + (1− ϵ)W 2

2 (PX ,PX2)

• Full Domain mutation: given Xc and Xrand a cloud of points randomly sampled in the
domain, Xm defined as

PXm = argmin
PX

ϵW 2
2 (PX ,PXc ) + (1− ϵ)W 2

2 (PX ,PXrand
)

.
• Boundary mutation: given Xc and Xbound a cloud of points randomly sampled at the

domain boundary, Xm defined as

PXm = argmin
PX

ϵW 2
2 (PX ,PXc ) + (1− ϵ)W 2

2 (PX ,PXc∪Xbound
)

. 11 / 26



Alternating Mutation
A first type of mutation based on Wasserstein operators alternates, with a random weight,
between the Boundary and the Full Domain mutations. It is detailed in Algorithm 1.

Algorithm 1 Alternating Wasserstein Mutation
Input: X cloud to mutate, prob the probability to perform a Boundary Mutation
Output: The mutated cloud(s)

1: Draw ϵ and r uniformly in [0, 1]
2: if r ≥ prob then
3: Do Full Domain Mutation with weight ϵ
4: else
5: Do Boundary Mutation with weight ϵ
6: end if

The absence of crossover improves the results. Numerical tests suggest a mutation
independence principle: for composite mutations made of different types of perturbations, like
the boundary and the full domain mutations, the perturbations should be applied independently.12 / 26



Default crossovers and mutations: comparison algorithm
denoted Gauss

Crossing by random choice of points among parents
• Let X 1 = {x1

1, ...x
1
n1
, ∅n1+1, ..., ∅nmax} and X 2 = {x2

1, ...x
2
n2
, ∅n2+1, ..., ∅nmax}

• X c = {x1, ...xn, ∅n+1, ..., ∅nmax} is their crossover if ∀i ∈ {1, ..., nmax}, xi is randomly
sampled in {x1

i , x
2
i} with a Bernoulli law (1/2). Rearrange to have full points on left.

Gaussian Mutation
• Let X c = {x1, ...xn, ∅n+1, ..., ∅nmax}
• Sample m randomly in {n − 1, n, n + 1}
• Add or remove point according to m
• Perturb each point with a truncated Gaussian with a diagonal covariance matrix where the

variance is given by the following :
• σ2 = 0.01 ∗ E [∥X − X ′∥2].
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Test functions

Inspired from wind-farms

• We consider the following family of test functions mimicking wind-farms productions:

• Fθ({x1, ..., xn}) =
∑n

i=1

(∏
j ,j ̸=i fxj ,θ(xi)

)
f0(xi)

• Fθ_pen({x1, ..., xn}) = Fθ({x1, ..., xn})− n
√
n + 1.5n

Mindist and Inertia
• FminDist({x1, ..., xn}) = mini ̸=j ||xi − xj ||, Finert({x1, ..., xn}) =

∑n
i=1 ||xi − X̄ ||2 with

X̄ = 1
n

∑n
i=1 xi

The input of the functions
• Number of points vary between 10 and 20, in a fixed rectangular domain. Number of

iterations and populations sizes are respectively 500 and 300. We maximize the functions.
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WBGEA vs Gauss
The results indicate that the algorithm based on Wasserstein operators denoted as WBGEA
yields better results except on FminDist .
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Figure: Average over 20 (+/- std. deviation) of the evolutions of the maximum of the functions in each
population over the evolutionary algorithms iterations. 15 / 26



Best designs
It can be seen that the designs are consistent with the simulated physical phenomena.
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Figure: Best observed designs corresponding, respectively, to the test cases F0, F0_pen, Finert and FminDist (left to
right, top to bottom). 16 / 26



Gaussian processes and active learning over
clouds of points
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Bayesian Approach

A Gaussian process prior
• Gaussian processes are defined by a mean function m and a covariance kernel k over the

input spaces X ; it can be used as a prior law to approximate a costly function F ∈ F .
• Observing D = {(X1, y1)...(XN , yN)} where Xi ∈ X and y ∈ R as training data with
yi = f (Xi ), the predictive mean m and variance Σ at a new point X are given by:

µ(X ;D) = m(X ) + K (X,X )TK (X,X)−1(y −m(X))

Σ(X ,X ;D) = K (X ,X )− K (X,X )TK (X,X)−1K (X,X )

with X = [X1, ...,XN ] and y = [y1, ..., yN ], K is a matrix.

Necessary Conditions on k
• k must be symmetric and positive definite, i.e, for any M distinct clouds of points, for any

vector c ∈ RM , the following inequality must hold:
∑M

i=1
∑M

j=1 cicjk(Xi ,Xj) ≥ 0
18 / 26



Kernel between clouds of points

Kernel through measures and features
• In Sow et al. [7], we discussed kernels based on features, sliced-Wasserstein distance and

embedding models for regression problems.

Embedding models
• We assume that there exists a Reproducing Kernel Hilbert Space, H, with a characteristic

kernel kH over the space of the vectors x
• The characteristic nature guarantees the injectivity of the embedding map (Muandet et al.

[4]): PX 7−→ µX (.) =
∫
PX (x)kH(x, .)dx.

• MMD2(PX ,PX ′) = ||µX − µ′
X ||2H

• With kernel kH, for and any uniform discrete laws: MMD2(PX ,PX ′) =
1
n2

∑n
i=1

∑n
j=1 kH(xi , xj) +

1
m2

∑m
i=1

∑m
j=1 kH(x

′
i , x

′
j)− 2 1

nm

∑n
i=1

∑m
j=1 kH(xi , x

′
j)
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MMD kernel

• The following kernel over clouds of points is symmetric and semi-definite positive (see
Muandet et al. [4]):

k(X ,X ′) = σ2exp

(
−
||µX − µX ′ ||2H

2θ2

)
• The associated Gaussian process is used in Sow et al. [7] to approximate the previously

presented test functions.
• The hyper-parameters (σ2, θ) and those of kH( Matérn 5/2 for the remainder) are found

by fitting the model to the observed data through a maximization of the likelihood.
• We get the best results with MMD on a large family of test functions (see Sow et al. [7])
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Active learning for Bayesian optimization (BO)

Gaussian process and acquisition function
• Y ∼ N (µ(X ,D),Σ(X ,X ,D))

• Expected improvement (EI): EI (X ) = EY∼N (µ(X ,D),Σ(X ,X ,D))[max(ymin − Y , 0)]

• EI (X ) =
(
ymin − µ(X ,Dt)

)
Φ
( (ymin−µ(X ,Dt)√

Σ(X ,X ,Dt)

)
+
√
Σ(X ,X ,Dt)ϕ

( (ymin−µ(X ,Dt)√
Σ(X ,X ,Dt)

)
, Jones,

Schonlau, and Welch [3] with Φ and ϕ representing respectively the cumulative
distribution and density function of the normal law.

BO
• Choose kernel k, computational budget T , and initial design D0 = {(X1, y1)...(XN , yN)}

at t = 0
• For t = 1, . . . ,T :

• Build Gaussian process with kernel k and Dt

• Find Xnew , the maximum of the acquisition criterion EI with WBGEA
• Set Dt+1 ←−Dt

⋃
(Xnew , ynew ), ymin ←−min(ymin, ynew )
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Results
We fix the budget to T = 100. A random initial set of 50 clouds is chosen. The
hyper-parameters of the kernel are updated every 5 iterations by maximization of the likelihood.

0 10 20 30 40 50
Iterations

74

76

78

80

82

84

86

88

Ma
xim

um
 of

 F 0

0 10 20 30 40 50
Iterations

30.0

30.5

31.0

31.5

32.0

32.5

Ma
xim

um
 of

 F 0
_p

en

0 10 20 30 40 50
Iterations

35000

40000

45000

50000

55000

60000

65000

Ma
xim

um
 of

 F i
ne

rt 

0 10 20 30 40 50
Iterations

12

14

16

18

20

22

24

Ma
xim

um
 of

 F m
in

Di
st

 
Figure: Average over 20 (+/- std. deviation) of the evolutions of the maximum of the functions over the BO
iterations. 22 / 26



Conclusions

Bayesian optimization results
• The combination of MMD kernels and WBGEA yield good results for approximation and

optimization on wind-farms functions, a bit less on other functions (Finert and FminDist).
• We present below the percentage of the maximum value attained by Bayesian optimization

(BO) with respect to that attained by WBGEA (denoted by Percentage_BO_WBGEA):
Functions F0 F0_pen Finert FminDist

Percentage_BO_WBGEA 95.95% 90.07% 71.81% 65.28%

Perspectives
• Apply to real-life industrial test cases
• Define criteria of design of experiments over clouds of points.
• Constraint points to non convex domains.
• Improve the choice of kernel and acquisition criterion.
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Thanks For Your Attention !
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