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Abstract—Experimental and theoretical evidences suggest that
invariance constraints can improve the performance and gener-
alization capabilities of a classification model. While invariance-
based regularization has become part of the standard tool-belt
of machine learning practitioners, this regularization is usually
applied near the decision layers or at the end of the feature
extracting layers of a deep classification network. However,
the optimal placement of invariance constraints inside a deep
classifier is yet an open question. In particular, it would be
beneficial to link it to the structural properties of the network (e.g.
its architecture), or its dynamical properties (e.g. the effectively
used volume of its latent spaces). The purpose of this article
is to initiate an investigation on these aspects. We use the
experimental framework of the DCASE 2023 Task 4A challenge,
which considers the training of a sound event classifier in a
semi-supervised manner. We show that the optimal placement of
invariance constraints improves the performance of the standard
baseline for this task.

Index Terms—DCASE task 4, invariance-based learning, semi-
supervised learning.

I. INTRODUCTION

Deep learning has proven to be effective for a wide array
of tasks. However, it usually relies on the availability of large
amounts of data, especially annotated data [1]. For supervised
tasks, such as audio classification, collecting annotations at
scale is costly and time consuming. To mitigate this difficulty,
an extensive research effort has been devoted to algorithms
that use less direct supervision or leverage unlabeled data [2].

In this context, invariance-based learning is a particularly
interesting technique, because of its experimental efficiency
[3], its theoretical properties [4] as well as its links with
perception [5]. In its simplest version, this technique uses two
data augmentation pipelines τ and τ ′ to artificially generate
two views of an input data point x, and constrains the model
outputs f(τ(x)) and f(τ ′(x)) to be similar.

Building on this framework, many systems have been pro-
posed to enforce the output’s invariance [6], several strategies
have been devised to sample the input points or the data
augmentation pipeline [7], and different extraction points have
been used when f is a deep neural classifier [8]. These variants
have been studied through the lens of various criteria such
as information bottleneck [9], latent space geometry [10], or
confirmation bias [11]. However, the optimal placement of this
regularization inside a deep neural network remains an open
question.

In this article, we propose to study these aspects. We
experimentally find the optimal extraction layer for invariance-
based regularization, i.e. the network layer to which invariance
regularisation should be applied, and show that it depends non
trivially on the data augmentation and the target evaluation
metric. We then correlate this extraction layer with statistical
properties of the network, such as the distribution of class
information and encoding complexity through its layers. For
this study, we use the experimental framework proposed by the
Task 4A of the DCASE 2023 challenge,1 which involves train-
ing a sound event classifier using a combination of strongly
labeled, weakly labeled and unlabeled data. We experimentally
show that optimal regularization leads to a model that clearly
outperforms the baseline system proposed for this task.

This article is organized as follows. In section II, we review
related work. Section III provides a formal description of our
training framework. Section IV describes the experimental
setup used in this study. Finally, in Section V, we present
our results and analyses.

II. RELATED WORK

There is a large literature on invariant representation learn-
ing using data augmentation [12]. The ladder network [8] is an
early contribution on invariance-based semi-supervised learn-
ing, that trains a neural network to be invariant to small pertur-
bations of its input and internal representations. Mean Teacher
(MT) [13] builds upon this idea, and introduces exponential
moving averaging techniques in order to mitigate the random
aspects of training, such as mini-batch and data augmenta-
tion sampling. These techniques are key to ensure network
convergence and generalization performances in this training
setting. Data augmentation policies usually introduce many
hyperparameters, and consequently require a time-consuming
tuning phase. This observation has initiated work on the
automatic search of augmentation strategies (AutoAugment
[7]), or the gradual introduction of data augmentations during
training (CREST [14]). In the opposite direction, the authors
of RandAugment [15] have proposed a simplified sampling
strategy, in order to reduce the hyperparameter search space:
they apply one augmentation at a time, and factorize the
distortion magnitude of all augmentations into a single scale.

1https://dcase.community/challenge2023/task-sound-event-detection-with-
weak-labels-and-synthetic-soundscapes



Fig. 1. Training framework.

This strategy has been applied successfully on DCASE 2021
Task 4 dataset [16]. We build upon this method, denoted
Random Consistency Training (RCT) in the following.

Several tools have been developed to analyze how deep
neural networks encode information through their inner layers.
Classical methods include statistics on the neural activations,
saliency maps and clustering. Neural based approaches include
Deconvnet [17] and Guided Back-Propagation [18], which
estimates the parts of the input that are the most discrimi-
native for a given neuron, Class Activation Map [19], which
estimates the neurons that are most discriminative for a given
class, or Mutual Information Neural Estimation [20], which
estimates mutual information between two random variables
(e.g., between a latent representation of the network and the
target annotation). However, these methods should be used
with caution, as they can introduce artifacts and bias the
analysis [21].

III. METHOD

A. Proposed training framework

The regularisation method that we study is depicted Fig. 1.
We consider a dataset of annotated audio recordings (x, y). We
use two random data augmentations τ, τ ′ ∼ T drawn from a
common distribution, in order to generate two different views
xτ and xτ ′ of the audio input x.

We then process these two views using a deep neural
classifier f , which is made of L layers. We denote by e(l)

the first l layers of the classifier and by c(l) its last L − l
layers, using the convention c(L) = Id. Consequently, we
have f = c(l) ◦ e(l) for each l ∈ J1, LK. Note that e(l) can
be seen as a feature extractor, and c(l) as a classification head.
With this view in mind, we will regularize e(l) so that it
becomes invariant to the data augmentation τ . We denote by
z
(l)
τ = e(l)(xτ ) and z

(l)
τ ′ = e(l)(xτ ′) the latent representations

at layer l. Finally, we denote by ŷ = f(xτ ) = z
(L)
τ the output

of the classifier.
The data augmentation τ used by RCT [16] consists of low-

level audio related augmentations. Consequently, the encoder
e(l), which we train to be invariant to τ , discards acoustic
variability that is irrelevant to the classification task. This
invariance property reduces the dependency of the classifier
f to this acoustic variability, thus reducing its error risk and
improving its generalization capabilities.

B. Training objectives

In order to optimize the classifier f , we set an extraction
layer l, and we use the combination of a classification objective
Lc and an invariance objective L(l)

i :

Lc = Lc[ŷ, y], (1)

L(l)
i = L(l)

i [z(l)τ , z
(l)
τ ′ ]. (2)

We also apply MT regularization [13] to the classifier f .
More specifically, we denote by f ema the exponential moving
average of this network, which is updated during training
after each gradient descent step. Let ŷmt = f ema(xτ ) denote
its output. We then optimize the following regularization
objective:

Lmt = Lmt[ŷ, ŷmt]. (3)

If we denote by wi, wc and wmt the respective loss weights,
the complete training objective can be written:

Ltotal = wi · Li + wc · Lc + wmt · Lmt. (4)

The terms wc and wmt are defined as in the baseline system
[22]. The term wi is taken using a grid search around the value
proposed by the RCT method. Their exact values can be found
in the code repository provided for reproducibility.2

IV. EXPERIMENTAL SETUP

A. Data

We use for our experiments the framework of DCASE Task
4, which introduces the DESED dataset [22]. The training
dataset D is composed of three subsets: a strongly labeled
dataset Ds of synthetic sounds, a weakly labeled dataset Dw of
real recordings, and an unlabeled dataset Du of real recordings.
Each sample x ∈ D is a 10-s audio recording made in a
domestic context. These samples are annotated using a set of
10 classes (e.g., speech, cat, blender, water...). The annotation
y is either a strong annotation ys or a weak annotation yw. A
strong annotation is a list of triplets indicating the time onsets
and offsets along the classes of the sound events in presence.
A weak annotation consists of a list of classes, and does not
provide any temporal information about the sound events. In
addition to these training datasets, DESED also provides a test
dataset Dtest of strongly annotated synthetic recordings.

B. Augmentation pipeline

We apply to each sample x a data augmentation τ in
the audio domain. Following RCT, we first draw an audio
augmentation, then a distortion magnitude, and we apply their
combination to the sample x. We apply modified versions of
Mixup [23] and Time Shift. Our modifications ensure that the
mixed audio is close to the original audio (mixing parameter
α close to 1 in the case of Mixup), so that the invariance
objective be relevant. In order to evaluate the impact of the
augmentation diversity on the optimal extraction layer, we
cluster the augmentations into three increasing sets : τ0 is used

2https://github.com/daperera/irct



by the baseline system while τ1 and τ2 have been proposed
by RCT. More specifically, τ0 corresponds to Mixup [23] ; τ1
additionally includes Time Masking, Time Shifting and Pitch
Shifting ; τ2 includes Frequency masking and FilterAugment
[24]. The exact parameter ranges can be found in our code
repository.

C. Model

We based our experiments on the baseline of the DCASE
Task 4 challenge, which is an important reference largely
adopted in the DCASE community.3 This system won the
challenge in 2017 and has been further improved in the
subsequent years to match the SOTA. Therefore, we believe
that results on this baseline are significant, and can be used to
improve other SOTA models.

The architecture of the baseline model is a 7-layer Convolu-
tional Neural Network (CNN) using 2d-convolution, followed
by a 2-layer bidirectional Gated Recurrent Unit (GRU) and
a Multi Layer Perceptron (MLP) classification head with
Attention Pooling [25]. The classification head outputs two
predictions for each audio sample x: a weak prediction ŷw
and a strong prediction ŷs. This model is trained using a
classification loss Lc, a MT regularisation loss Lmt, and
the Mixup data augmentation. It uses log Mel-spectrogram
representation and min-max scaling in order to pre-process the
audio input x. It uses median filtering in order to post-process
the predictions ŷ.

We use the same pre/post-processing steps and the same
architecture for the classifier f as this baseline system. In
particular, the DCASE 2023 Task 4A baseline model can be
obtained from our framework by using the augmentation set
τ0 and discarding the training objective Li. We use this re-
implementation as a baseline for this study.

D. Training losses

Our approach follows the same choice of metrics as the
baseline. We use binary cross-entropy as a classification metric
Lc = LBCE for both strong annotations ys and weak anno-
tations yw. We use the Euclidean distance for the MT and
invariance objectives: Lmt = Li = L2.

E. Evaluation metrics

We use three different metrics to compare the models. In
order to evaluate the weak predictions ŷw, we use F1 macro
scores. In order to evaluate the strong predictions ŷs, we use
a collar-based score [26], which we denote by event, and the
Polyphonic Sound Detection Score (PSDS) [27], which we
denote by intersection. We additionally report the scenario 1
and 2 PSDS scores (denoted psds1 and psds2), as well as their
threshold invariant versions (denoted by ti-psds1 and ti-psds2)
[28]. These metrics are standard in the sound event detection
community, and we use the same parameter values for theses
metrics as in the evaluation of the DCASE 2023 Task 4A. In
order to simplify visualizations, we will focus on the ti-psds2

3https://dcase.community/challenge2023/task-sound-event-detection-with-
weak-labels-and-synthetic-soundscapes#baseline-system

score when plotting Figures. The other scores present similar
behaviors, and support similar conclusions.

Following the recommended protocol for the DCASE 2023
Task 4A challenge, we trained 3 versions of each presented
variant, and we report the mean score and standard deviation
in Table 1 and Figure 2.

V. RESULTS

A. Impact of augmentation diversity and regularization

The impact of augmentation diversity and regularization’s
position on the test score is presented in Table I. First,
we can see that invariance-based regularization improves for
most metrics the performance of the baseline (first line of
Table I). Moreover, using a wider augmentation set τ2 gives
better results in most configurations. However, we notice that
regularizing the output of the network is never optimal (lines
corresponding to layer 9 in Table I), even though this strategy
is commonly used in invariance-based learning. In fact, we find
that the optimal extraction layer l is non trivially dependent
on the audio augmentation set and the target metric.

Fig. 2 shows that the profile of the regularization impact
on performance along the network layers has a characteristic
double-peak shape for both augmentation sets τ1 and τ2. This
shape, which favours either early or late regularization, is the
same for all metrics. It is exacerbated by using the larger
augmentation set τ2. In the following, we relate this behavior
with the statistical properties of the network.

B. Latent space geometry

Fig. 3 provides insights about the distribution of latent
vectors in each layer. We use two statistical properties of the
unconstrained network, that we compute on the test set Dtest.
First, we use the maximum absolute activation of a layer l,
defined as maxx∈Dtest

∥z(l)∥∞. Note that it is independent
from the dimension of the latent space. Second, we use
the average distance to the centroid of a layer l, defined
as z

(l)
centroid =

∑
x∈Dtest

e(l)(x). These quantities achieve a
maximum around the center of the network, suggesting that
the network expands the volume taken by its internal repre-
sentations. Their evolution through the network seems to be
complementary to the regularization efficiency profile shown
in Fig. 2. In the following, we investigate how this additional
volume is used by the network to encode relevant information.

Fig. 2. Impact of layer regularization on the ti-psds2 score, for augmentation
sets τ1 and τ2.



TABLE I
COMPARISON OF MODEL PERFORMANCE, DEPENDING ON THE DIVERSITY OF THE AUGMENTATION τ AND THE REGULARIZATION LAYER.

Model Scores∗

τ Layer weak event intersection psds1 ti-psds1 psds2 ti-psds2

τ0 none 0.762 ± 0.009 0.645 ± 0.006 0.415 ± 0.005 0.350 ± 0.008 0.535 ± 0.011 0.360 ± 0.008 0.553 ± 0.011

τ1 1 0.757 ± 0.005 0.638 ± 0.008 0.400 ± 0.009 0.336 ± 0.005 0.525 ± 0.005 0.349 ± 0.002 0.549 ± 0.004
2 0.763 ± 0.008 0.643 ± 0.006 0.395 ± 0.004 0.339 ± 0.004 0.537 ± 0.006 0.355 ± 0.004 0.568 ± 0.006
3 0.764 ± 0.002 0.638 ± 0.003 0.407 ± 0.008 0.336 ± 0.007 0.532 ± 0.015 0.352 ± 0.002 0.564 ± 0.008
4 0.758 ± 0.005 0.636 ± 0.013 0.403 ± 0.005 0.343 ± 0.002 0.538 ± 0.008 0.356 ± 0.003 0.564 ± 0.006
5 0.763 ± 0.007 0.637 ± 0.007 0.408 ± 0.010 0.329 ± 0.006 0.529 ± 0.003 0.344 ± 0.007 0.563 ± 0.002
6 0.759 ± 0.008 0.644 ± 0.004 0.392 ± 0.007 0.339 ± 0.004 0.540 ± 0.023 0.353 ± 0.002 0.567 ± 0.019
7 0.759 ± 0.014 0.640 ± 0.010 0.406 ± 0.006 0.341 ± 0.006 0.547 ± 0.018 0.353 ± 0.005 0.571 ± 0.014
8 0.769 ± 0.008 0.655 ± 0.009 0.397 ± 0.014 0.337 ± 0.008 0.552 ± 0.016 0.346 ± 0.010 0.574 ± 0.016
9 0.754 ± 0.010 0.624 ± 0.015 0.394 ± 0.013 0.326 ± 0.008 0.519 ± 0.016 0.333 ± 0.007 0.533 ± 0.015

τ2 2 0.776 ± 0.006 0.651 ± 0.004 0.409 ± 0.006 0.356 ± 0.004 0.560 ± 0.008 0.366 ± 0.003 0.577 ± 0.007
2 0.762 ± 0.007 0.633 ± 0.018 0.399 ± 0.019 0.334 ± 0.016 0.531 ± 0.014 0.347 ± 0.014 0.556 ± 0.015
3 0.765 ± 0.009 0.646 ± 0.018 0.399 ± 0.014 0.334 ± 0.007 0.530 ± 0.018 0.347 ± 0.006 0.555 ± 0.017
4 0.765 ± 0.005 0.637 ± 0.006 0.394 ± 0.014 0.331 ± 0.009 0.518 ± 0.019 0.347 ± 0.006 0.548 ± 0.011
5 0.753 ± 0.006 0.616 ± 0.008 0.378 ± 0.016 0.335 ± 0.007 0.519 ± 0.002 0.351 ± 0.007 0.551 ± 0.001
6 0.770 ± 0.011 0.634 ± 0.006 0.388 ± 0.009 0.335 ± 0.001 0.533 ± 0.018 0.349 ± 0.002 0.556 ± 0.020
7 0.772 ± 0.016 0.656 ± 0.024 0.422 ± 0.018 0.347 ± 0.009 0.551 ± 0.014 0.358 ± 0.010 0.575 ± 0.016
8 0.777 ± 0.003 0.655 ± 0.004 0.414 ± 0.007 0.336 ± 0.012 0.570 ± 0.003 0.345 ± 0.012 0.590 ± 0.005
9 0.757 ± 0.012 0.624 ± 0.019 0.390 ± 0.011 0.331 ± 0.012 0.520 ± 0.015 0.339 ± 0.012 0.535 ± 0.015

∗ For each evaluation metric and augmentation set, the best scores are indicated in bold. The first line corresponds to the baseline, which does not
apply invariance-based regularization.

C. Implicit pretext tasks

The authors of [29] argue that a deep classifier solves
implicit pretext tasks, such as context prediction or noise clas-
sification, when it is trained on large realistic datasets. Indeed,
they show experimentally that its latent representations are
highly informative about these pretext tasks, and hypothesize
that the network uses this additional information to perform
conditional classification. Likewise, we suggest that the deep
classifier f uses the observed additional volume in its central
layers in order to encode acoustic, semantic and contextual
information, that it then uses to solve its target task.

The augmentations τ1 and τ2 have been carefully selected
for the target classification task, via grid search. However, it is
not obvious that these augmentations are still aligned with the
network’s implicit pretext tasks. Consequently, it is critical to
constrain the network f as loosely as possible on its central
layers (low data augmentation diversity, high latent space
dimension), so that the regularization objective does not com-
pete with the implicit pretext tasks. This observation explains
the lateralization of the regularization efficiency profile (Fig.

Fig. 3. Average distance to the centroid (on the left), and maximum absolute
activation value (on the right), computed for each layer of the network. We
compare statistics computed for a trained and a randomly initialized network,
in order to prevent architecture bias in the analysis.

Fig. 4. Comparison of the performance of several probes, depending on the
layer they are applied to (grouped by color), and their complexity. Performance
is measured using ti-psds2 score. Note that we did not connect probes to the
outputs of the network (layer 9).

2) when we increase the diversity of the data augmentation
set from τ1 to τ2. On the contrary, when the latent space
distribution is concentrated in a small volume, it is useful to
help the network to make the best use of available space using
regularization. In order to confirm these hypotheses, we need
to take a closer look on how class information is distributed
across the network.

D. Class information and encoding complexity

The usual clustering and linear correlation algorithms that
we tested could not extract class information from the latent
representations z(l) of the network. This motivated the study
of non-linear probes, which have higher expressivity.

We proceed as follows. We connect a deep probe p(l) to an
arbitrary layer l of the frozen network f , and train it using the
Task 4A framework. In order to study the complexity of class
information encoding at each layer, we gradually increase the
complexity of the probe p(l). The probe is a MLP followed
by a GRU and a classification head with Attention Pooling. In
order to adjust the probe’s complexity, we modify the latent



dimension of its classification head from 8 to 32. The result
of this experiment is shown Fig. 4.

We observe that the score of the probe increases when
it is attached to later layers. This shows that class informa-
tion increases throughout the network. We also observe that
increasing the probe complexity improves its score, for all
considered layers. Moreover, as we increase the complexity
of the probe, the considered metric quickly reaches a plateau,
due to over-parametrization. This suggests that the network
simplifies the encoding of class information on its last layers.
Consequently, it is safe to regularize the network at these
points, as is experimentally verified in Section V-A.

VI. CONCLUSION

In this paper, we have studied the impact of the audio
augmentation-based regularization of the internal layers of a
sound event deep classifier, using the framework of DCASE
2023 Task 4A. We have shown experimentally that output
regularization is not optimal in this setting, and that proper
internal regularization improves the baseline system for this
task. Moreover, our results suggest that the optimal placement
of this regularization is non trivially related to the diversity
of the set of audio augmentations and to the target evaluation
metric. Finally we have studied this behavior through the lens
of the classifier’s implicit pretext tasks, and its latent represen-
tation encoding complexity. We believe that the study of these
two properties can lead to insight on how a deep classifier
solves its target task, how to select the best augmentation
strategies, and how to best regularize it.
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