

Radiative transfer: molecular physics Benjamin Godard

▶ To cite this version:

Benjamin Godard. Radiative transfer: molecular physics. Doctoral. France. 2023. hal-04645959

HAL Id: hal-04645959 https://hal.science/hal-04645959v1

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

(diatomic) Molecular physics

International Research Track

2023

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

- 1. Introduction
- 2. Energy structure
 - Born-Oppenheimer
 - Vibration / rotation
 - Additional couplings

- 3. Molecular lines
 - **Dipole transitions**
 - Quadrupole transitions
- 4. Photo-processes
- 5. Conclusions

Molecules are ubiquitous in astrophysics

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

In summary, in 2018

- → 204 individual molecular species
- comprised of 16 different elements
- → composed of 2 to 70 atoms
- detected from tens-cm wavelength to ultraviolet

Molecules are ubiquitous in astrophysics

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses

• conclusion

2 Atoms		3 Atoms		4 Atoms	5 Atoms	6 Atoms	7 Atoms
СН	СР	H ₂ O	N ₂ O	NH ₃	HC ₃ N	CH ₃ OH	CH ₃ CHO
CN	NH	HCO^+	MgCN	H ₂ CO	HCOOH	CH ₃ CN	CH ₃ CCH
CH^+	SiN	HCN	H3 ⁺	HNCO	CH ₂ NH	NH ₂ CHO	CH ₃ NH ₂
OH	SO^+	OCS	SiCN	H_2CS	NH ₂ CN	CH ₃ SH	CH ₂ CHCN
СО	CO^+	HNC	AINC	C_2H_2	H ₂ CCO	C_2H_4	HC ₅ N
H_2	HF	H ₂ S	SiNC	C ₃ N	C ₄ H	C ₅ H	C ₆ H
SiO	N_2	N_2H^+	HCP	HNCS	SiH ₄	CH ₃ NC	c-C ₂ H ₄ O
CS	\mathbf{CF}^+	C_2H	CCP	$HOCO^+$	$c-C_3H_2$	HC ₂ CHO	CH ₂ CHOH
SO	PO	SO_2	AlOH	C ₃ O	CH ₂ CN	H_2C_6	C_6H^-
SiS	O_2	HCO	H_2O^+	l-C ₃ H	C ₅	C ₅ S	CH ₃ NCO
NS	AlO	HNO	H_2Cl^+	HCNH ⁺	SiC ₄	HC ₃ NH ⁺	HC ₅ O
C_2	CN^{-}	HCS^+	KCN	H_3O^+	H ₂ CCC	C ₅ N	
NO	OH^+	HOC^+	FeCN	C ₃ S	CH_4	HC ₄ H	
HCl	SH^+	SiC ₂	HO ₂	c-C ₃ H	HCCNC	HC ₄ N	
NaCl	HCl^+	C ₂ S	TiO ₂	HC ₂ N	HNCCC	c-H ₂ C ₃ O	
AlCl	SH	C ₃	CCN	H_2CN	H_2COH^+	CH ₂ CNH	
KCl	TiO	CO ₂	SiCSi	SiC ₃	C_4H^-	$C_5 N^-$	
AlF	ArH^+	CH_2	S ₂ H	CH ₃	CNCHO	HNCHCN	
PN	NS^+	C_2O	HCS	C_3N^-	HNCNH	SiH ₃ CN	
SiC		MgNC	HSC	PH ₃	CH ₃ O		
		NH ₂	NCO	HCNO	NH_3D^+		
		NaCN		HOCN	H_2NCO^+		
				HSCN	$NCCNH^+$		
				HOOH	CH ₃ Cl		
				$1-C_3H^+$			
				HMgNC			
				HCCO			
				CNCN			

Table 2

Table 3

List of Detected Interstellar Molecules with Eight or More Atoms, Categorized by Number of Atoms, and Vertically Ordered by Detection Year

8 Atoms	9 Atoms	10 Atoms	11 Atoms	12 Atoms	13 Atoms	Fullerenes
HCOOCH ₃	CH ₃ OCH ₃	(CH ₃) ₂ CO	HC ₉ N	C ₆ H ₆	c-C ₆ H ₅ CN	C ₆₀
CH ₃ C ₃ N	CH ₃ CH ₂ OH	HO(CH ₂) ₂ OH	CH ₃ C ₆ H	n-C ₃ H ₇ CN		C_{60}^{+}
C ₇ H	CH ₃ CH ₂ CN	CH ₂ CH ₂ CHO	CH ₃ CH ₂ OCHO	i-C ₃ H ₇ CN		C ₇₀
CH ₃ COOH	HC ₇ N	CH ₃ C ₅ N	CH ₃ COOCH ₃			
H_2C_6	CH ₃ C ₄ H	CH ₃ CHCH ₂ O				
CH ₂ OHCHO	C ₈ H	CH ₃ OCH ₂ OH				
HC ₆ H	CH ₃ CONH ₂					
CH ₂ CHCHO	C_8H^-					
CH ₂ CCHCN	CH ₂ CHCH ₃					
NH ₂ CH ₂ CN	CH ₃ CH ₂ SH					
CH ₃ CHNH	HC ₇ O					
CH ₃ SiH ₃						

_

Molecules are ubiquitous in astrophysics

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

HIFI Spectrum of Water and Organics in the Orion Nebula

© ESA, HEXOS and the HIFI consortium E. Bergin

Radiative transfer equation

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

- absorption coefficient
- diffusion coefficient
- emissivity
- opacity
- source function $S_{
 u}$ erg s⁻¹ cm⁻² Hz⁻¹ sr⁻¹

jν

 $\alpha_{\nu} = \sum n_a s_{\nu,a}$

 $\sigma_{\nu} = \sum_{i}^{a} n_d s_{\nu,d}$

 $d\tau_{\nu} = \left[\alpha_{\nu} + \sigma_{\nu}\right] dl$

cm⁻¹

cm-1

erg s⁻¹ cm⁻³ Hz⁻¹ sr⁻¹

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

through which processes do molecules interact with light?

- → absorption / emission
- → polarization
- dissociation / ionization / fluorescence

what are the properties of the microphysical processes ?

- transitions (energy structure / selection rules)
- → interaction cross sections
- products of ionization and dissociation

how to implement these processes in radiative transfer codes ?

- → what data are required ?
- → couplings expected ?
- analytical considerations & numerical methods

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Energy structure of molecules

Complexity of the task

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Complexity of the task

<u>Outline</u>

- introduction
- energy structure
- molecular
 lines
- photoprocesses
- conclusion

complexity

symmetry

Compared to atomic energy structure

- → less symmetry, complicated electronic wavefunctions
- nuclei move, additional freedom, rotational and vibrational motions

Focus on diatomic (homonuclear or heteronuclear)

gives a strong foothold to understand molecular spectra

Stationary states and usual hypothesis

Stationary Schrödinger equation for diatomic molecules

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

$$\left(-\frac{\hbar^2}{2M_A}\nabla_A^2 - \frac{\hbar^2}{2M_B}\nabla_B^2 - \frac{\hbar^2}{2m_e}\sum_{i=1}^N \nabla_i^2 + V_e - E\right)\psi(\mathbf{R}_A, \mathbf{R}_B, \mathbf{r}_i) = 0$$

$$V_e = \frac{e^2}{4\pi\epsilon_0}\left(-\sum_{i=1}^N \frac{Z_A}{r_{Ai}} - \sum_{i=1}^N \frac{Z_B}{r_{Bi}} + \sum_{i=2}^N \sum_{j=1}^{i-1} \frac{1}{r_{ij}} + \frac{Z_A Z_B}{R}\right)$$

- Usual simplifications & hypothesis
 - → Born-Oppenheimer
 - → center of mass frame

$$\psi(\mathbf{R}_A, \mathbf{R}_B, \mathbf{r}_i) = \psi_e(\mathbf{r}_i)\psi_n(\mathbf{R}_A, \mathbf{R}_B)$$

 $\psi_n(\mathbf{R}_A, \mathbf{R}_B) o \psi_n(\mathbf{R})$

e₂

 r_{B2}

r₁₂

R

A

 r_{A2}

B

→ separation vibration - rotation $\psi_n(\mathbf{R}) = \psi_v(R)\psi_r(\theta,\phi)$

Electronic structure

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Stationary Schrödinger equation for electronic wavefunction

$$\left(-\frac{\hbar^2}{2m_e}\sum_{i=1}^N \nabla_i^2 + V_e - E_e\right)\psi_e(\boldsymbol{r}_i) = 0$$

- solve at each internuclear separation R
- → gives eigenvalue $E_e(R)$
- → gives Ψ_e & quantum numbers
 without couplings
 S, Λ, g/u, +/-
- gives potential V(R) seen by nuclei
- gives equilibrium radius & dissociation energy

Electronic structure

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Labelling of electronic states

 $\longrightarrow S = \sum_{i} s_{i}$ $\longrightarrow \Lambda = \left(L = \sum_{i} l_{i} \right)_{|z|}$

→ g/u (gerade/ungerade)

+/-(parity)

 \rightarrow letter

letter^(2S+1)
$$\Lambda_{g/u}^{+/-}$$

total electronic spin (careful with paired e- in closed shells)

total angular momentum projected on z

Λ	0	1	2	3	4	•••
states	\sum	Π	Δ	Φ	Γ	•••

parity upon nuclei swap (for homonuclear only)

parity upon reflexion through nuclei plane (for Σ states only)

label states of same quantum numbers

X = ground electronic state (GES)

A, B, ... = same spin multiplicity as GES

a,b, ... = diff spin multiplicity than GES

Vibrational structure

Outline

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Stationary Schrödinger equation for nuclei vibration

$$-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + V(R) - E_v \bigg) \psi_v(R) = 0$$

for V(R) approx by a parabolic potential $V_{\rm HO}(R) = V_0 + \frac{1}{2}k(R - R_{\rm eq})^2$ quantum harmonic oscillator

wavefunction derived from

Hermite polynomials

zero point energy $zpe = \frac{1}{2}\hbar\left(\frac{k}{u}\right)^{\frac{1}{2}}$

 $E_v = V_0 + \hbar \left(\frac{k}{\mu}\right)^{\frac{1}{2}} \left(v + \frac{1}{2}\right)$

Rotational structure

<u>Outline</u>

- introduction
- energy structure
- molecular lines

• photoprocesses

conclusion

Stationary Schrödinger equation for nuclei rotation

$$-\frac{\hbar^2}{2\mu R^2} \left[\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta \frac{d}{d\theta}) + \frac{1}{\sin^2\theta} \frac{d}{d\phi} \right] - E_r \right) \psi_r(\theta, \phi) = 0$$

- spherical harmonics solution $\psi_r(\theta, \phi) = Y_{J,M_J}(\theta, \phi)$
 - $Y_{J,M_J} \longrightarrow$ already seen for H atom
 - Jrotational angular momentum \rightarrow
 - projection of J onto molecular axis M_J
 - reduced mass μ
- rotational eigenvalues

$$E_r = \frac{\hbar^2}{2\mu R^2} J(J+1)$$

if rotation as rigid body

$$E_r = B_0 J (J+1)$$

- degeneracy of rotational levels $g_r = 2J + 1$
 - IRT radiative transfer

Couplings between angular momenta

---- electron angular momentum and spin, nuclei rotational motion and spin

- coupling schemes known as Hund's cases (a) and (b) most common
- \rightarrow R = rotational angular momentum

Hund's case (a)	Hund's case (b)
1 - $\Lambda = L_{ z}, \ \Sigma = S_{ z}$	1 - $\Lambda = L_{ z }$
$2 - \Lambda + \Sigma \to \Omega$	$2 - \Lambda + R \rightarrow N$
$3 - \Omega + R \rightarrow J$	$3 - N + S \rightarrow J$

→ hyperfine coupling

coupling with nuclear spin I

 $J+I\to F$

<u>Outline</u>

- introduction
- energy structure

 molecular lines

 photoprocesses

conclusion

Detailed electronic / vibrational / rotational structure

In reality, anharmonic & non rigid rotation with rot / vib couplings

- corrections terms (used in a polynomial expansion)
- derived from spectroscopic measurements of molecular lines
 - anharmonic correction, centrifugal distorsion, correction of rot constant

(1)

example for CH+

 $E(\Lambda, v, J) =$ $T_{\rm e}(\Lambda) + \omega_{\rm e}(\Lambda)\left(\nu + \frac{1}{2}\right) - \omega_{\rm e}x_{\rm e}(\Lambda)\left(\nu + \frac{1}{2}\right)^2 + \omega_{\rm e}y_{\rm e}(\Lambda)\left(\nu + \frac{1}{2}\right)^3$ $+\left[B_{\rm e}(\Lambda)-\alpha_{\rm e}(\Lambda)\left(\upsilon+\frac{1}{2}\right)+\gamma_{\rm e}(\Lambda)\left(\upsilon+\frac{1}{2}\right)^{2}+\varepsilon_{\rm e}(\Lambda)\left(\upsilon+\frac{1}{2}\right)^{3}\right]$ $\times \left(J(J+1) - \Lambda^2 \right) - \left[D_{\rm e}(\Lambda) + \beta_{\rm e}(\Lambda) \left(\upsilon + \frac{1}{2} \right) + \delta_{\rm e}(\Lambda) \left(\upsilon + \frac{1}{2} \right)^2 \right]$ $\times \left(J(J+1) - \Lambda^2\right)^2 + \left[H_{\rm e}(\Lambda) - \alpha_{\rm H_e}(\Lambda)\left(\upsilon + \frac{1}{2}\right)\right] \left(J(J+1) - \Lambda^2\right)^3$ $\pm \frac{1}{2} \left| q_{\rm e}(\Lambda) + \alpha_{q_{\rm e}}(\Lambda) \left(\upsilon + \frac{1}{2} \right) \right| \left(J(J+1) \right)$ $\pm \frac{1}{2}q_{D_{\rm e}}(\Lambda) \left(J(J+1)\right)^2,$

constant	$X^1\Sigma^+$		$A^{1}\Pi$	
T _e			2.41187262	(+4)
$\omega_{ m e}$	2.8575609	(+3)	1.864402	(+3)
$\omega_{\rm e} x_{\rm e}$	5.93179	(+1)	1.158317	(+2)
$\omega_{\rm e} y_{\rm e}$	2.2534	(-1)	2.6301	
$B_{\rm e}$	1.41774612	(+1)	1.1886774	(+1)
$\alpha_{\rm e}$	4.94739	(-1)	9.1629	(-1)
$\gamma_{ m e}$	2.4904	(-3)	-2.292	(-2)
\mathcal{E}_{e}			4.952	(-3)
$D_{\rm e}$	1.38914	(-3)	1.929606	(-3)
$\beta_{\rm e}$	-2.66	(-5)	1.07331	(-4)
$\delta_{ m e}$			-1.3123	(-5)
$H_{\rm e}$	1.2036	(-7)		
$lpha_{ m H_e}$	2.079	(-8)		
$q_{\rm e}$			4.1018	(-2)
$\alpha_{q_{\mathrm{e}}}$			-3.135	(-3)
q_{D_e}			-2.2	(-5)

Hakalla et al. (2006)

Outline

- introduction
- energy structure
- molecular lines

 photoprocesses

conclusion

Detailed electronic / vibrational / rotational structure

Hierarchical energy structure

<u>Outline</u>

introduction

- \rightarrow rule of thumb $E_e > E_v > E_r$
 - ladders are not separated but superimposed

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Molecular spectra

IRT - radiative transfer

Electric dipole transitions

Interaction of a molecule with EM field

- → electric dipole, magnetic dipole, electric quadrupole, ...
 - electric dipole terms $\sim 10^5 10^6$ times larger than the others

$$P\propto |oldsymbol{M}|^2$$
 with $oldsymbol{M}=\int\psi^{\prime*}oldsymbol{\mu}\psi^{\prime\prime}doldsymbol{r}$

- *M* electric dipole moment integral
- μ dipole moment operator
- symmetry properties of $\Psi_{,} \Psi_{,}$ and μ give the selection rules $\Delta S, \Delta \Lambda, \Delta v, \Delta J, ...$

IRT - radiative transfer

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Selection rules on electronic quantum numbers

for allowed electric dipole transitions

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses

conclusion

 $\Delta S = 0$ spin conserving selection rule

 $\bullet \quad \Delta \Lambda = 0, \pm 1$ projection of orbital momentum

 $\longrightarrow \Sigma^+ \leftrightarrow \Sigma^+$ for Σ states only

 $\Sigma^- \leftrightarrow \Sigma^-$

 $g \leftrightarrow u$ for homonuclear diatomic molecules

 \Rightarrow no *dipole allowed* vibration-rotation transition

within an electronic state for homonuclear species

IRT - radiative transfer

Selection rules on vibrational quantum number

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

transitions from two different electronic states

Franck-Condon principle nuclei static during elec transition transition probability proportional to wavefunctions overlap

$$\left|\int \psi_v'(v')^*\psi_v''(v'')d\boldsymbol{r}\right|^2$$

•
$$\Delta v = any$$
 no selection rule

transition within the same electronic state

 $\rightarrow \Delta v = any$ for anharmonic oscillators stronger transitions for $\Delta v = \pm 1$ (HO)

Selection rules on rotational quantum number

for allowed electric dipole transitions

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

- $\Delta J = \pm 1 for \Lambda = 0 0 transitions$
 - $\Delta J = 0, \pm 1 \ (0 \nleftrightarrow 0)$ for other $\Delta \Lambda$
- → labelling: J'(J'') associated with the upper (lower) energy level $\frac{\text{name}}{\Delta J = J' - J''} \begin{vmatrix} R(J'') & Q(J'') & P(J'') \\ -1 & 0 & -1 \end{vmatrix}$
- \rightarrow for transition within the same electronic state \rightarrow regular structure

Oscillator strength and Einstein coefficients

for allowed electric dipole transitions

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses

conclusion

•

→ the Einstein coefficient

$$A_{\Lambda'\upsilon'J'\Lambda''\upsilon''J''} = \frac{8\pi^2\nu^2e^2}{m_ec^3}\frac{2J''+1}{2J'+1}f_{\Lambda'\upsilon'J'\Lambda''\upsilon''J''}$$

→ with the oscillator strength

$$f_{\Lambda'\upsilon'J'\Lambda''\upsilon''J''} = \frac{8\pi^2 m_e\nu}{3he^2} M_{\Lambda'\upsilon'\Lambda''\upsilon''}^2 \frac{S_{\Lambda''J''}^{\Lambda'J'}}{2J''+1}$$

 $S^{\Lambda'J'}_{\Lambda''J''}$ Hönl-London factor, dependence on nuclear angular momentum

under the Born-Oppenheimer and the r-centroid approximations

Pure vibration-rotation of homonuclear diatomic molecules

<u>Outline</u>

- introduction
- energy structure
- molecular lines

 photoprocesses

conclusion

electric dipole transitions forbidden within an electronic state of homonuclear diatomic molecules (e.g. H₂, C₂, N₂, ...)

- dipole magnetic and quadrupole electric transitions
- example : H₂ quadrupole electric transitions

selection rule for pure vibration-rotation $\Delta J = 0, \pm 2 \ (0 \nleftrightarrow 0)$

labelling: J'(J') associated with the upper (lower) energy level

IRT - radiative transfer

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Ionization / dissociation / fluorescence

Principles of photo-processes

photoionization and photodissociation processes are fundamental

- to compute radiative transfer in molecular environments
- to compute chemical composition of diffuse & dense ISM, PDRs, protoplanetary disks, cometary & exoplanetary atmosphere, ...

microphysical process

1 - excitation of any (bound or not) electronic state

 $AB + photon \rightarrow AB^*$

 $k = \int_{\lambda} \sigma(\lambda) N_{\lambda} d\lambda$

- → 2 relaxation towards a lower state branching ratios $AB^* \to AB^+ + e^- \longrightarrow \eta^i(\lambda)$ $AB^* \to A + B \longrightarrow \eta^d(\lambda)$
 - $AB^* \to AB + \text{photon} \longrightarrow \eta^e(\lambda)$

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Continuous or discret absorption

Several pathways to photodissociation

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

- \rightarrow photodissociation may be a line or a continuum mechanism
- cross sections must account for all possible process
- → line processes favor self-shielding

Threshold and cross sections

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

examples of cross sections

IRT - radiative transfer

Threshold and cross sections

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

examples of cross sections

IRT - radiative transfer

Self-shielding process

Consider a cloud illuminated by energetic photons

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

the abundance of X at any point depends on photo-processes

- intensity of the radiation field at specific wavelength
- → absorption processes from the border of the cloud
 - by dust grains - - -

- → dust shielding
- by atoms and molecules $\langle X - \rangle$ cross shielding $X - \rangle$ self-shielding

Self-shielding process

Consider a cloud illuminated by energetic photons

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

IRT - radiative transfer

Self-shielding process

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

<u>Outline</u>

- introduction
- energy structure
- molecular lines
- photoprocesses
- conclusion

Molecular structure and spectroscopy

- simplifications gives strong insight on molecular structure
 Born-Oppenheimer → elec orbitals & quantum numbers
 separation vibration / rotation → vib oscillator & rotational orbitals
 additional couplings → fine & hyperfine structure
- electric dipole transitions obey to stringent transition rules molecular spectra highly structured (band, branches, fine / hyperfine)
 homonuclear diatomic molecules radiate through quadrupole transitions
 - ionization / dissociation / fluorescence originate from mol transitions
 - non linear coupling between transfer and composition (e.g. self-shielding)