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Abstract: The present paper focuses on the development of a numerical CFD methodology for 

the simulation of the flight dynamics of the flexible aircraft, in open loop and in closed loop as 

well. To do so, a modular environment is developed to couple the ONERA CFD solver elsA with 

Python modules implementing several simulation capabilities: prescribed complex trajectory, 6 

DoFs flight dynamics, structural linear dynamics, control surfaces actuations, control laws. The 

basic assumptions and numerical features of the developed environment are presented along with 

a reminder of the unsteady deformable capabilities of the elsA code, and several applications 

performed in the frame of the French DGAC funded MAJESTIC project on the HAR XRF1 

configurations are shown. In particular the topic of the simulation of active Gust Load 

Alleviation is examined. Perspectives are given on the future extension of the approach to the 

accounting for non-linear structural behaviour, and the possible use of other CFD solver such as 

CODA or the ONERA next generation solver SoNICS. 

Nomenclature: 

XG: coordinates of the center of gravity in inertial frame 

ωb: rotation rate in body axes, (𝑝, 𝑞, 𝑟): components of the rotation rate vector 

(𝐹𝑥, 𝐹𝑦, 𝐹𝑧): components of the external forces, 𝑚: mass 

(𝑀𝑥, 𝑀𝑦, 𝑀𝑧): components of the moments of external forces, 𝐽: inertia matrix 

𝐾:stiffness matrix, 𝑀: mass matrix, ω: pulsation, 𝑓: frequency, 𝜙: modal basis 

𝑞: generalized coordinates, 𝛾: generalized stiffness, 𝜇: generalized mass 

𝛼: angle of attack, 𝛿: HTP deflection angle 

1 INTRODUCTION 

The next generation of civil aircraft will have to be technically performing and ecologically 

friendly. One main issue is the reduction of the environmental footprint of aviation, through CO2 

emission and fuel consumption reduction. To do so, several levers may be operated. The mains 

are the improvement in engine efficiency, green fuel, mass optimization using innovative 

materials, and also aircraft shape optimization. 

Considering shape optimization, the main option is an increase of the wing span, in order to 

reduce the lift induced drag. This long term trend of aspect ratio increase is presented on Figure 1 

which compares the lift over drag ratio (L/D) to the wing aspect ratio (AR). An increase in aspect 

ratio is clearly related to drag gains. 
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Figure 1 Civil aircraft wing aspect ratio evolution 

However, increasing the wing aspect ratio leads to structural design and aeroelastic issues. 

Indeed, a larger wing span induces higher loads (bending moments) at wing root, which have to 

be sustained by a structural reinforcement leading to an increase in mass. In turn, this mass 

penalty is likely to induce drag penalty. Therefore, increasing the wing flexibility becomes 

mandatory, in order to reduce mass, while sustaining the higher loads. 

But the implementation of a highly flexible wing needs to carefully analyse the aeroelastic 

behaviour of the aircraft. In static, high levels of vertical deflection and twist may be reached, 

which must be considered in the design, for the whole flight envelope. In dynamic, increased 

flexibility may be responsible for flutter issues, high levels of dynamic response to manoeuvre or 

gust, which must be carefully cleared. Moreover, increased flexibility leads to lower structural 

modes frequencies, which may induce coupling with flight dynamics and control laws 

frequencies. Eventually, the wing structure may be flexible enough to require a non-linear 

formulation to properly model large displacements. 

The topic of the flight dynamics of the flexible aircraft has been studied by a number of authors. 

Among them, C. Cesnik from University of Michigan has been working for years on the topic. 

Collaboration with R. Palacios from Imperial College London recently lead to the publication of 

a handbook on the topic (Palacios [1]). In this book, the fundamentals of flight dynamics and 

structural dynamics are exposed, as well as the various assumption levels for the coupling of 

both disciplines. However, the topic of the coupling of CFD in the time domain is not covered in 

this book, where only low fidelity aerodynamics is considered (DLM, VLM, UVLM).  

In Nguyen [2], the authors develop the formulation for a flexible aircraft, considering a beam 

model of the wing coupled with rigid-body motions of the aircraft. Aeroelastic effect are taken 

into account using Theodorsen unsteady airfoil theory.  

Murua [3] investigate the gust response in open-loop and closed loop of an unmanned flexible 

aircraft. The equations are firstly derived in the case of large displacements using a non-linear 

beam model and the linearized for stability analysis. The aerodynamic modelling is base on a 

vortex-lattice model solved in the time domain. Linear controllers are included in the loop, in 

order to evaluate GLA capabilities on the HALE configuration. 

V. Portapas from Cranfield University presents in [4] an overview of the capabilities of the 

CA2LM framework. In this work aerodynamic forces are computed using steady and unsteady 
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strip theory approaches. More recently in its PhD thesis Pau-Castells examines in transonic the 

use of CFD-LFD (Linearized Frequency Domain) for the generation of an RFA (Rational 

Function Approximation) reduced model of the generalized unsteady aerodynamic forces in the 

case of the gust response of a civil aircraft.  

Considering CFD approaches, they have been implemented for gust response simulations by 

Heinrich in [5] at DLR. The same team (Ritter [6]) has more recently applied CFD to flight 

dynamics maneuvers using TAU code in a Virtual Flight Test numerical environment. 

In transonic, and for complex aircraft structures, the use of more sophisticated aerodynamic 

models has indeed to be considered for analysing the flight dynamics of flexible aircrafts. In this 

paper, we evaluate the use of CFD in the transonic regime for the resolution of the flexible 

aircraft flight dynamics, including gust response, in the case of a realistic long-range civil aircraft 

model. 

2 NUMERICAL METHODOLOGY 

A large number of numerical features are necessary to address flexible flight dynamics 

simulations using CFD in time domain. First of all, a CFD solver capable of unsteady flexible 

simulation is to be implemented. In this work, the elsA ONERA solver has been used. The main 

characteristics of the solver are detailed below, especially those which are mandatory for the 

targeted simulations. Besides the solver, a modular framework has been developed in order to 

couple the different features involved in these simulations: 

• Rigid aircraft flight dynamics module; 

• Structural dynamics solver; 

• Control surfaces actuation capability; 

• Mesh deformation; 

• Trim capabilities; 

• Gust modelling; 

• Control laws. 

These different components are described in the following sections. A specific point is devoted 

to the description of the assumptions leading to the decoupling of flight dynamics and structural 

dynamics equations. 

2.1 elsA solver features 

elsA is the ONERA software for complex external and internal flow simulations and for multi-

disciplinary applications involving aerodynamics (Cambier [7,8]). This covers the following 

disciplines and topics: 

• Aerodynamics, aeroelasticity, aerothermics coupling, aeroacoustics coupling; 

• Aircrafts, helicopters, turbomachinery, missiles, launchers, air intakes, nozzles, 

propulsive jets; 

• Research and industrial applications; 

• Euler, RANS, URANS, DES, LES simulations; 

• Calculation of sensitivities for optimum design. 
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2.1.1 Moving/Flexible grid capabilities of the elsA solver 

Motions and deformations of bodies may be taken into account in elsA for steady/unsteady 

applications (Dugeai [9]). Mesh deformation is allowed in dynamic using an ALE formulation of 

flow equations. Flow equations may either be described in a moving frame (implementing 

entrainment velocities) or in the fixed frame, where motion or deformation may be implemented 

by the prescription of grid velocities and the update of grid coordinates. In this case, which is the 

one adopted here for the presented simulations, boundary conditions must be adapted to cope 

with the local motion.  

Recently, the aeroelastic features of the solver have been extended by the capability of 

externalizing the mesh deformation step. In this approach, for unsteady moving/deformable 

simulations, the CFD grid (and the grid velocity as well) is prescribed to the CFD solver at each 

physical time step by an external Python module. This feature allows a much more user-friendly 

framework for the potential extension to a large range of unsteady flexible simulations. Indeed, 

in the case of aeroelastic coupling, aerodynamic loads are extracted at each time step and may be 

provided to a flight dynamics solver and in the flexible case, to a structural dynamics solver. In 

the rigid case, this feature has been used for the purpose of generating a ROM of the 

aerodynamic coefficients of a generic UCAV configuration, using CFD simulations of complex 

unsteady prescribed motions of the model (Isnard [10], Figure 2 ). In the present work, we 

extend this feature to the resolution of the flight dynamics of flexible models. 

 

Figure 2 : Constant pitch rotation rate CFD simulations of a Naca airfoil 

2.2 Flight dynamics model 

Flight dynamics equations describe the motion of the center of mass and of the evolution of the 

attitude of the aircraft (currently given by Euler angles) in the inertial ground frame of reference. 

Newton laws are applied for translation and rotation components. Translation equations are 

generally written in the inertial frame, whereas rotation equations are usually written in the body 

axes, and implement the rotation rates components (𝑝, 𝑞, 𝑟) and inertia matrices given in the 

body frame. 

The center of mass motion equations are written in the inertial frame as: 

𝑚𝑋�̈� = 𝐹𝑎
𝑖 + 𝐹𝑝

𝑖 + 𝐹𝑔
𝑖          (2.2. 1) 
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where the forces acting on the system may include aerodynamic, propulsion and gravity forces, 

expressed in the inertial frame. 

Rotation motion equations may be written (Caughey [11]), considering the body frame to be the 

inertia principal axes frame: 

{

𝑀𝑥
𝑏 = 𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟

𝑀𝑦
𝑏 = 𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝

𝑀𝑧
𝑏 = 𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞

          (2.2. 2) 

with 

𝐷 = (

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

)           𝐽 = (

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

)       𝜔𝑏 = (
𝑝
𝑞
𝑟
)        �⃗⃗� 𝑏 = (

Mx
b

My
b

Mz
b

) 

The rotation rate evolution equation comes: 

�̇�𝑏 = 𝐽−1(�⃗⃗� 𝑏 − 𝐷. 𝐽. 𝜔𝑏)          (2.2. 3) 

This equation may be written in an elegant way using the quaternion 𝑄 = (𝑒0, 𝑒1, 𝑒2, 𝑒3) 
(Murman [12]) describing the attitude of the aircraft by: 

�̇� =
1

2
 𝐿𝑇  𝜔𝑏              𝐿𝑇 (𝑄) = (

−𝑒1 −𝑒2 −𝑒3
𝑒0 −𝑒3 𝑒2
𝑒3 𝑒0 −𝑒1
−𝑒2 𝑒1 𝑒0

)         (2.2. 4) 

Note that using quaternions in the flight dynamics equations has a triple advantage: 

• it relieves the singularity of Euler angles at pitch angle 90°; 

• it allows a more robust numerical resolution with respect to the matrix formulation; 

• it allows a more compact (4 terms) description of the orientation of the aircraft axes wrt 

matrices (9 terms). 

Introducing the flight dynamics state variable 𝑊 = (𝑋�̇� , 𝑋𝐺 , 𝜔
𝑏 , 𝑄)

𝑇
 the problem may be 

formulated using a first order in time ODE: 

𝑑𝑊

𝑑𝑡
= 𝐹(𝑊)         (2.2. 5) 

Where flux 𝐹 is given by: 

𝐹(𝑊) =

(

 
 

1

𝑚
𝐹𝑖⃗⃗  ⃗

0

𝐽−1�⃗⃗� 𝑏

0 )

 
 
+

(

 
 

𝑂3 𝑂3 𝑂3
𝐼3 𝑂3 𝑂3
𝑂3 𝑂3 −𝐽−1𝐷. 𝐽

    

𝑂3,4
𝑂3,4
𝑂3,4

𝑂4,3 𝑂4,3     
1

2
 𝐿𝑇 𝑂4 )

 
 
𝑊          (2.2. 6) 

This equation may be solved using a numerical integration scheme where mechanical terms are 

implicited.  
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During the time domain flight dynamics simulation, the aerodynamic forces and moments 𝐹𝑖⃗⃗  ⃗ and 

�⃗⃗� 𝑏 depends on the flight dynamics state 𝑊 resulting in a coupling between flight dynamics 

equations and aerodynamics. Therefore, in order to solve the flight dynamics/aerodynamics 

coupling, a fixed-point loop is to be implemented to ensure the unsteady equilibrium. 

2.3 Flight dynamics of the flexible model 

In this paper, the structural model is considered to stay linear. Therefore, a projection of the 

mechanical equations on the free-free modes of the structure is performed.  

The free-free modal basis is obtained solving the classical eigen value problem 

(𝐾 − 𝜔2𝑀)𝑋 = 0          (2.3. 1) 

where 𝐾 is the unconstrained stiffness matrix of the structure, 𝑀 the mass matrix, and 𝑋 the 

physical displacement vector of the structure. Due to the lack of constraints, the stiffness matrix 

is singular and the system exhibits in general 6 rigid modes with zero eigen value (internal 

mechanisms may introduce additional rigid modes, but this case will not be considered here). 

Hence, the free-free modal basis 𝜙 may be written 𝜙 = (𝜙𝑅 , 𝜙𝑆) where 𝜙𝑅 stands for the 6 rigid 

modes which happens to be combinations of the 3 free translations and the 3 free rotations of the 

model, and 𝜙𝑆 a certain number 𝑁𝑆 of flexible modes. As explained, the rigid modes are 

associated to a zero eigen value, which corresponds to a null frequency. The 𝐾 is therefore 

singular of dimension 𝑁𝑆 + 6 and of rank 𝑁𝑆, and we have 𝐾𝜙𝑅 = 0. 

Considering the classical structural dynamics equations in the body frame we have: 

𝑀�̈� + 𝐾𝑋 = 𝐹𝑡𝑜𝑡          (2.3. 2) 

Note that 𝐹𝑡𝑜𝑡 may include additional terms due to rotation (centrifugal, Coriolis), if the body 

frame is accelerated wrt the Galilean reference frame.  

If we project the structural dynamics equations on the free-free modal basis, introducing the 

physical displacement decomposition on modal basis 𝜙 as follows 

𝑋 = 𝜙𝑞 = (𝜙𝑅 , 𝜙𝑆) (
𝑞𝑅
𝑞𝑆
)          (2.3. 3) 

we obtain: 

(
𝜙𝑅
𝑡

𝜙𝑆
𝑡 )𝑀(𝜙𝑅 , 𝜙𝑆) (

𝑞𝑅
𝑞𝑆
)
̈
+ (

𝜙𝑅
𝑡

𝜙𝑆
𝑡 )𝐾(𝜙𝑅 , 𝜙𝑆) (

𝑞𝑅
𝑞𝑆
) = (

𝜙𝑅
𝑡

𝜙𝑆
𝑡 )𝐹𝑡𝑜𝑡          (2.3. 4) 

and due to the properties of orthogonality of 𝑀 and 𝐾 with respect to the modal basis, and that of 

zero stifness of the rigid modes we have: 

(
𝜙𝑅
𝑡 𝑀𝜙𝑅 0

0 𝜙𝑆
𝑡 𝑀𝜙𝑆

) (
𝑞𝑅
𝑞𝑆
)
̈
+ (
0 0
0 𝜙𝑆

𝑡 𝐾𝜙𝑆
) (
𝑞𝑅
𝑞𝑆
) = (

𝜙𝑅
𝑡

𝜙𝑆
𝑡 )𝐹𝑡𝑜𝑡           (2.3. 5) 

Introducing the generalized mass and stiffness matrices 𝜇 and 𝛾, the system may be written: 

{
𝜇𝑅𝑞�̈� − 𝜙𝑅

𝑡 𝐹𝑡𝑜𝑡 = 0

𝜇𝑆𝑞�̈� + 𝛾𝑆𝑞𝑆 − 𝜙𝑆
𝑡 𝐹𝑡𝑜𝑡 = 0

          (2.3. 6) 

At this point several points must be made: 
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• The upper part of above equation corresponds to the linearization of flight dynamics 

equations described in §2.2. 𝜇𝑅 corresponds to the projection of the mass and inertia 

matrices on the 𝜙𝑅 base, which is a combination of pure translation/rotation modes. 

• If the mechanical properties (stiffness and mass matrices and modes) are supposed to be 

constant, the coupling between flight dynamics (upper equation) and structural dynamics 

(lower equation) only occurs through the external forces 𝐹𝑡𝑜𝑡 
• External forces 𝐹𝑡𝑜𝑡, depends on the state of the flexible system, which includes 𝑞𝑅 , 𝑞�̇� 

(linerization of the flight dynamics state variables 𝑊 of §2.2) and 𝑞𝑠, 𝑞�̇�, generalized 

coordinates of the projected structural dynamics system. 

2.4 Structural dynamics equations in the moving body frame 

The structural dynamics equations projection on the flexible free-free modes is now written: 

𝜇𝑆𝑞�̈� + 𝛾𝑆𝑞𝑆 = 𝜙𝑆
𝑡 𝐹𝑡𝑜𝑡          (2.4. 1) 

This equation is written in the moving body frame. Doing so, it’s mandatory to consider 

additional force terms due to acceleration of the body frame with respect to the Galilean 

reference frame: Coriolis acceleration, and entrainment acceleration. Therefore, right hand side 

forces exhibit the following components: aerodynamics, gravity, propulsion, Coriolis and 

entrainment forces: 

𝐹𝑡𝑜𝑡 = 𝐹𝑎 + 𝐹𝑔 + 𝐹𝑝 + 𝐹𝐶𝑜𝑟 + 𝐹𝑒𝑛𝑡𝑟          (2.4. 2) 

Let’s first show that gravity forces and uniform (not depending on spatial location) acceleration 

forces do not act on free-free flexible modes: 

𝜙𝑆
𝑡 𝐹𝑔 = ∫ 𝑔 . �⃗� 𝑆 𝜌(𝑀) 𝑑𝛺

𝛺

= 𝑔 . ∫  �⃗� 𝑆 𝜌(𝑀) 𝑑𝛺

𝛺

= 0          (2.4. 3) 

due to the fact that flexible modes are orthogonal wrt to mass to rigid modes, which includes 

translation constant shapes (∫  �⃗� 𝑆 𝜌(𝑀) 𝑑ΩΩ
= 0) 

In this paper we will neglect the effect of Coriolis acceleration (𝐹𝐶𝑜𝑟 = 0). Considering the 

entrainment acceleration, it is made of three terms, the first one being due to the acceleration of 

the origin B of the body frame. This term is uniform and its projection on flexible free-free 

modes vanishes just like uniform gravity forces. The second one is due the rotation acceleration 
𝑑�⃗⃗⃗� 

𝑑𝑡
 and will be neglected. The third term is the centrifugal term �⃗⃗� × (�⃗⃗� × B𝑀⃗⃗⃗⃗ ⃗⃗ ). In this paper we 

will only consider uniform acceleration maneuver (which means large radius of curvature of the 

trajectory compared to the aircraft dimensions), which excludes large rotation rates motions). 

These maneuvers are then considered as generating additional loads factor (2.5g for example). In 

this case, the projection of the centrifugal force field on flexible free-free modes also vanishes 

just as shown above. 

Eventually, the projection of the total forces acting on the aircraft in the body frame reduces to 

that of aerodynamics and propulsion forces: 

𝜙𝑆
𝑡 𝐹𝑡𝑜𝑡 = 𝜙𝑆

𝑡 𝐹𝑎 + 𝜙𝑆
𝑡 𝐹𝑝 
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Considering zero axial acceleration of the aircraft, propulsion forces are balanced by the axial 

drag aerodynamic force. 

2.5 Summary of the assumptions made 

Assumptions which will hold for the current paper simulations presented below are now 

summarized: 

• The dynamic deflections of the structure are limited enough to consider a constant inertia 

matrix. 

• Flight dynamics equations are solved keeping the non-linear §2.2 equations, instead of 

the linearized version obtained by modal projection §2.3 

• Modal equations of eq. 2.3.6, lower are solved for structural dynamics 

• Coriolis acceleration may be neglected in the solving of structural dynamics equations 

• Rotation acceleration entrainment forces may be neglected 

• Centrifugal forces are only due to uniform acceleration maneuver 

• Propulsion forces are balancing drag axial forces (no axial acceleration) 

• Due to the previous 4 points, only lateral and vertical aerodynamic forces are to be 

considered in the right-hand side of free-free modal structural dynamics equations (2.4.1) 

3 TRIM SIMULATION 

In order to perform aircraft flight dynamics simulations for maneuver or gust response, it’s first 

necessary to obtain the static equilibrium of the aircraft. Therefore, considering symmetry of the 

aircraft, a longitudinal trim simulation is performed in order to balance weight vs lift and get 

zero pitching aerodynamic moment. This goal is reached by tuning simultaneously the angle of 

attack of the aircraft and the deflection angle of the horizontal tail plane. This section presents 

the numerical methodology developed for CFD trimmed simulations.  

3.1 Residual formulation 

The static equilibrium is written as  

{
𝐹𝑧 = 𝐹𝑧_𝑡𝑔𝑡
𝑀𝑦 = 0

          (3.1. 1) 

With 𝛼 being the angle of attack and 𝛿 the HTP deflection angle, we define the trim variable  

𝑇 = (
𝛼
𝛿
) 

The trim problem may be written in residual form: 

𝑅(𝑇) = 0         𝑅(𝑇) = (
𝐹𝑧(𝑇) − 𝐹𝑧_𝑡𝑔𝑡

𝑀𝑦(𝑇)
) 

This non-linear problem could be solved using a Newton-like method, which needs the 

aerodynamic jacobian matrix 
𝜕𝑅

𝜕𝑇
. In this paper, the resolution of the trim problem is performed 

using a structural dynamics system-like dynamic problem: 

𝜇�̈� + 𝛽�̇� = 𝑅(𝑇)         (3.1. 2) 
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which reduces to 𝑅(𝑇) = 0 at static convergence. Let 𝑇𝑠 be the solution of the trim problem 

(𝑅(𝑇𝑠) = 0) and 𝜏 = 𝑇 − 𝑇𝑠 the offset to 𝑇𝑠 variable, we may split residual 𝑅(𝑇) in highlighting 

its linear and non-linear (𝑅𝑁𝐿(𝜏) with 𝑅𝑁𝐿(0) = 0) contributions: 

𝑅(𝑇) = 𝑅(𝑇𝑠) +
𝜕𝑅

𝜕𝑇
𝜏 + 𝑅𝑁𝐿(𝜏) =

𝜕𝑅

𝜕𝑇
𝜏 + 𝑅𝑁𝐿(𝜏) 

The dynamic equations for the offset 𝜏 is written: 

𝜇�̈� + 𝛽�̇� −
𝜕𝑅

𝜕𝑇
𝜏 = 𝑅𝑁𝐿(𝜏)         (3.1. 3) 

where 
𝜕𝑅

𝜕𝑇
 may be seen as an aerodynamic stiffness matrix given by: 

𝜕𝑅

𝜕𝑇
= (

𝜕𝐹𝑧
𝜕𝛼

𝜕𝐹𝑧
𝜕𝛿

𝜕𝑀𝑦

𝜕𝛼

𝜕𝑀𝑦

𝜕𝛿

)          (3.1. 4) 

These terms correspond to the dimensioned forces classically obtained via the flight dynamics 

aerodynamic coefficients (𝐶𝑧𝛼, 𝐶𝑧𝛿, 𝐶𝑚𝛼, 𝐶𝑚𝛿). 

3.2 Resolution of the trim equation 

The aim of the dynamic approach proposed in the previous section for the resolution of trim 

equations is to get a solution quickly converging to the static equilibrium without altering the 

aerodynamic stiffness of the system. Therefore, mass 𝜇 and damping 𝛽 in eq. (3.1.1) must be 

properly tuned to get: 

• high characteristic frequency 𝑓𝑡𝑔𝑡 of the system wrt to simulation duration 𝑇, i.e. 𝑓𝑡𝑔𝑡 ≪
1

𝑇
 

• high damping value leading to an aperiodic behavior of the dynamic system, 

in order to obtain a reduction of the desired number of orders of magnitude of the residual 𝑅(𝑇) 
during the time domain simulation.  

 

Figure 3 : Example of dynamic resolution of a simplified test model trim problem 

Hence, masses and damping values are selected as follows, considering for simplification only 

diagonal terms of the jacobian matrix 
𝜕𝑅

𝜕𝑇
: 

𝜇𝛼 = −
𝜕𝐹𝑧
𝜕𝛼
/(2𝜋 𝑓𝑡𝑔𝑡)

2
          𝜇𝛿 = −

𝜕𝑀𝑦

𝜕𝛿
/(2𝜋 𝑓𝑡𝑔𝑡)

2
         (3.2. 1) 
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𝛽𝛼 = 𝑐𝑜𝑒𝑓 ∗  2√−
𝜕𝐹𝑧
𝜕𝛼
𝜇𝛼           𝛽𝛿 = 𝑐𝑜𝑒𝑓 ∗  2√−

𝜕𝑀𝑦

𝜕𝛿
𝜇𝛿           (3.2. 2) 

Simple assumptions on 𝐶𝑧𝛼 and 𝐶𝑚𝛿 provides approximate values for aerodynamic sensitivities  
𝜕𝐹𝑧

𝜕𝛼
 and 

𝜕𝑀𝑦

𝜕𝛿
 able to drive the scheme to the trim solution (example shown on Figure 3).  

4 MESH DEFORMATION 

The simulation of flight dynamics problems in the case of a flexible model needs to face two 

different problems of model deformation: 

• Mesh deformation due to flexibility 

• Geometry modification due to the actuation of control surfaces 

In this paper, both are addressed using mesh deformation techniques. 

4.1 Control surface actuation 

The exact accounting for control surface actuation in the CFD grid is a complex problem, which 

may be addressed using several techniques: 

• Mesh deformation 

• Sliding meshes along the fuselage or in a fluid gap; 

• Overset grid techniques, 

• Immersed boundaries (IBM). 

The simplest method which does not imply mesh connectivity modification is the mesh 

deformation technique. Indeed, it faces several drawbacks: 1) fluid gap flow not represented, 2) 

deformation smoothing mandatory, 3) amplitude of deflections limited. However, due to its 

simplicity, this method will be used in this paper (the approach could be improved in future 

works). 

As explained above, the smoothing of the control surface deflection has to be performed. To do 

so, a convolution of the exact surface motion (rotation about the hinge) with a RBF Gaussian 

kernel function 𝐺𝜌 of tunable characteristic radius 𝜌 is performed (Figure 4). This allows the 

smoothing of the deflection function over a distance fitting the control surface dimension.  

 

Figure 4 : Smoothing by convolution with a Gaussian kernel 



IFASD-2024-110 

 11 

A cartesian surface working grid (𝑥𝑗
(1)

) is built where the theoretical motion 𝑢(𝑥𝑗
(1)
) is computed 

and the smoothing over the surface aerodynamic grid (𝑥𝑖
(2)

) is computed by the following 

convolution formula: 

𝑢(𝑥𝑖
(2)
) =

∑  𝑢(𝑥𝑗
(1))𝑗 𝐺𝜌(|𝑥𝑖

(2)
− 𝑥𝑗

(1)|)

∑  𝐺𝜌(|𝑥𝑖
(2)
− 𝑥𝑗

(1)|)𝑗

          (4.1. 1) 

where the Gaussian kernel is written: 

𝐺𝜌(𝑟) = 𝑒
−(
𝑟
𝜌
)
2

 

4.2 3D CFD mesh deformation 

Several mesh deformation techniques may be applied: 

• Elastic analogy (spring technique or continuous medium); 

• Transfinite interpolation (for structured grids); 

• Inverse Distance Weighting; 

• Quaternion propagations; 

• Radial Basis Functions based techniques (RBF). 

In this paper, the solver Quantum, which uses a quaternion-based propagation technique via 

Inverse Distance Weighting has been implemented for control surfaces deflected deformed mesh 

generation, due to its robustness. This code is parallelized, and optimized using FMM (Fast 

Multipole Method). For the smoother deformation corresponding to structural modal 

deformation, a classical RBF technique (available in scipy) is used. 

All the 3D mesh deformations are computed in a pre-processing step, and stored in the CGNS 

compliant CFD data base. Assuming linearity of the mesh deformation, they are linearly 

recombined on the fly during the time domain CFD simulations, from the values of the angular 

deflections of control surfaces and that of the generalized modal coordinates. 

5 MODULAR IMPLEMENTATION 

An overview of the modular framework implemented for elsA in the case of the close loop gust 

response is shown on Figure 5. An application in the case of the XRF1 model of the project 

MAJESTIC will be presented in the applicative section of this paper. The elsA solver is used as 

CFD solver, in externalized mode, which means that mesh and grid velocity updates may be 

provided at each time step from external modules. Figure 5 depicts the modular environment 

implemented in the case of the gust response of the flexible aircraft in closed loop, used for the 

Gust Load Alleviation (GLA) simulation presented in section 6. 
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Figure 5 : Modular coupling scheme for gust response in closed loop 

A gust perturbation model is available in elsA. Additional wind perturbations due to academic 

gust are implemented using additional grid velocities (Dequand [13]). In this paper, the (1-cos) 

certification gust model is used in the application section.  

The gust encounter induces a perturbation from the static trim equilibrium of the flexible aircraft. 

Aerodynamics loads are modified and generates a variation in global forces and moments and 

generalized forces. These loads are delivered to the modal structural dynamics and 6DoFs flight 

dynamics Python modules in charge of computing the new state of the aircraft, including 

generalized coordinates. These data are processed by a control law module able to define the 

control surface command. The state of the aircraft defines the rigid motion of the grid in the 

inertial frame, and mesh deformation is applied to take into account modal deformations and 

control surface actuation. The new mesh is then returned back to the elsA solver, for the next 

step of the coupled simulation. In this paper, a short time step has been implemented for the 

simulations, allowing for a single loop iteration of the coupling process (as already stated in §2.2 

a controlled convergence of the coupled process should implement a fixed-loop at this stage, but 

during the MAJESTIC project, the needed features were not yet available) 

6 APPLICATION TO THE XRF1 MODEL OF PROJECT MAJESTIC 

6.1 Presentation of the model 

The XRF1 model provided by Airbus in the frame of MAJESTIC is a research model of a two-

engine long range aircraft of 70 m span. Its aspect ratio is about 12. A finite-element mesh has 

been provided and CAD data allowed generating a suitable multiblock structured grid for elsA.  
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Figure 6 :MAJESTIC XRF1 AR12 Model. FE mesh (left), Aerodynamic surface grid (right) 

The finite element model implements fuselage, wing, empennage including HTP and VTP and 

engine pods (Figure 6, left). Control surfaces at wing leading edge are modeled, as well as those 

of the empennage. The wing box is modelled using shell elements for spars, ribs and skins, using 

anisotropic MAT2 material properties. Mass properties are defined using CONM2 concentrated 

mass elements. The original CFD grid used for aerodynamic performance analyses is a 

multiblock structured one, of about 40 million cells for the half configuration. For the present 

flexible flight dynamics simulations, a coarser mesh has been derived and symmetrized to get a 

full (right+left) mesh of 12 million cells (Figure 6, right). Engines are not represented in the 

aerodynamic model (which could indeed introduce here a mis-estimation of trim conditions). 

6.2 elsA solver aerodynamic numerics 

The unsteady CFD simulations are run using the elsA solver in URANS formulation, using the 

Spalart-Allmaras turbulence model. The Jameson centered spatial scheme is implemented, with 

numerical dissipation parameters 𝜒2=0.5 and 𝜒4=0.016. The dual time stepping scheme is used 

for the dynamic resolution of the fluid equations, along with the backward Euler scheme for the 

pseudo-time loop interation at CFL 25. The physical time step is 1/500. s. 2500 iterations are 

computed, corresponding to a physical duration of the simulation of 5s. 

The simulations are run in parallel over 48 processors. The typical duration of the unsteady flight 

dynamics simulations is roughly 40000 s (~11 h wall clock) 

6.3 Structural model basis 

As discussed previously, the structural behavior of the model is assumed to stay linear. 

Therefore, deformations are projected on the free-free modal basis. For the simulations presented 

in the paper, we focus on the so-called F1GT mass configuration of the XRF1 model, which 

corresponds to a cruise case configuration. The normal mode analysis is performed using MSC 

NASTRAN as structural solver. 

 

Figure 7 : Free-free flexible modes #7, #8, #12, #19 of the F1GT mass configuration 
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The frequency of the first flexible mode (#7) is at about 1 Hz, whereas 11 flexible modes (up to 

#17) have a modal frequency under 3 Hz (Figure 7). In the following simulations, the free-free 

modal basis has been truncated to mode #19, implementing 13 flexible modes. 

6.4 Control surfaces deformation modes 

Mesh deformation modes are generated on the XRF1 configurations for a set of control surfaces: 

stabilizer, horizontal tail plane, rudder, and internal and external ailerons (Figure 8). 

 

Figure 8 : Control surfaces actuation deformation modes : stabilizer (left), rudder (center) ailerons (right)  

6.5 Static Trim 

The dynamic system procedure described in §3 for static trim resolution is applied in the case of 

the XRF1 model, for F1GT mass configuration at M=0.85. The physical time duration of the 

simulation is 2 seconds, whereas masses and damping values are tuned to get a characteristic 

frequency 𝑓𝑡𝑔𝑡=2 Hz and an aperiodic behavior of the dynamic system. Figure 9 presents an 

overview of the evolution of the body axes, aerodynamic field and structural deflection during 

the convergence of the trim simulation towards steady state. The simulation is restarted from a 

static simulation at jig shape (left image) and converges to the trimmed static equilibrium 

illustrated by the final deformation and pressure field of right image. 

 

Figure 9 : XRF1 Model F1GT trim at M=0.85: initial, intermediate, final states 

Aircraft angle of attack and stabilizer deflection angle in degree are displayed in Figure 10, left 

and global force and moment at center of gravity in the inertial axes in Figure 10, right. The 

flexible behavior is depicted in Figure 11. The left image presents the generalized coordinates 

history and the right image, the generalized forces. The time histories of all variables exhibit a 

good convergence towards steady state. A deflection of about 5° nose-down of the stabilizer is 

necessary to get a 2.2° angle of attack at trimmed conditions. Due to the symmetrical loads 

generated by the trim simulations for a (quasi-)symmetrical configuration, only symmetrical 

modes are triggered.  
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Figure 10 : XRF1 Model F1GT trim at M=0.85: trim variables and load offsets history 

      

Figure 11 : XRF1 Model F1GT trim at M=0.85: Generalized coordinates and forces (Note that force/moment 

labels have been removed for confidentiality reasons) 

  

Figure 12 : XRF1 Model F1GT trim at M=0.85: Location of structural grid nodes sensors (left) Vertical 
displacement convergence of right wing structural grid nodes, reduced by max wing tip LE displacement, 

wing tip LE in black (right) 
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The main contribution to wing deflection is associated with mode #7, corresponding to first 

symmetrical bending mode, the second one corresponds to mode#12 (second symmetrical 

bending mode). The computed overall vertical displacement at wing tip leading edge is about 4.5 

m in this case (Figure 12, right). 

6.6 Maneuver: prescribed rudder actuation 

A number of unsteady flexible flight dynamics simulations have been performed in the F1GT 

mass case at M=0.85 in open loop. Actuations of control surfaces have been simulated, coupled 

with the resolution of the flexible flight dynamics equations. The effect of the deflection of 

rudder, HTP control surface, and internal and external ailerons in symmetrical or single-side 

actuation has been computed, in order to generate an aerodynamic model of the flexible aircraft. 

We present here the case of the actuation of the rudder during 2 s, following a S-shaped function 

in time, with an amplitude of 7°. 

 

 

Figure 13 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: pressure field and motion of 
the aircraft during maneuver (0.5 s between two views) 

The simulation duration is 5 seconds of 

physical time. In Figure 13, we show an 

rear view of the effect of the actuation of 

the rudder on the trajectory of the aircraft 

and on the pressure load at 6 instants of the 

simulation. The S-shaped actuation function 

used is shown in Figure 14, left. 
 

Figure 14 : S-shaped and step actuation functions 

As expected, the actuation of the rudder to the right generates first the occurrence of a positive 

yaw moment 𝑀𝑧 during one second (Figure 16, right), which induces a yaw motion to the right 

(Figure 15, left). Then, the roll moment 𝑀𝑥 comes back to a positive value, inducing a roll 

motion of the aircraft (up to 5°, Figure 15, center), while the yaw moment becomes negative, 

getting the aircraft to come back by the end of the simulation to near zero roll and yaw angles.  
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Figure 15 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: Flight dynamics data during 
maneuver: CG acceleration in inertial axes (left), Euler angles (center), rotation rates (right). 

However, the simulation duration is not sufficient to reach the steady state after maneuver, as 

shown by the final evolution of Euler angles and rotation rate in Figure 15. The lateral 

acceleration of the center of gravity is first negative and then reaches a positive value of 0.8 m/s2 

after 1.5 s. A maximum vertical acceleration of 0.4 m/s2 is obtained after 3s (Figure 15, left). The 

contribution of flexibility to vertical acceleration is clearly visible in this figure, leading to a 

certain waviness of the curve, related to modal frequencies. 

      

Figure 16 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: Aerodynamic loads in body 

axes: Transverse forces (left), moments wrt to CG (right). (Note that force/moment labels have been removed 

for confidentiality reasons) 

 

Figure 17 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: modal coordinates histories 
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Figure 17 depicts the evolution of modal coordinates during the simulation. Contrary to the 

symmetrical trim case (Figure 11), the whole modal basis is activated, due to the non 

symmetrical loads generated by the maneuver. The most solicited modes are anti-symmetric 

(mode#8 and mode #9), but mode#7 (symmetrical first bending) is also triggered at low 

frequency. As indicated before, all the modes embedded in the simulation basis have a low 

frequency under 3 Hz, which leads to the unsteady wavy response of the structure. 

6.7 Gust response: open loop and closed loop. GLA 

The aim of this section is to show the ability of CFD to simulate gust load alleviation using 

specifically designed control laws.  

6.7.1 Aeroelastic model identification 

The first step for the design of the control law is to generate an aerodynamic model of the 

flexible aircraft. This has been done in the case of the F1GT mass configuration of the XRF1 

model at M=0.85. Several flexible flight dynamics simulations have been run in open loop: 

• AILINR : Response to a 7° amplitude deflection step (Figure 14, right) of internal right 

aileron, 

• AILOUTR : Response to a 7° amplitude deflection step of external right aileron, 

• AILOUTRL : Response to a 7° amplitude deflection step of both external aileron 

• HTP : Response to a 5° amplitude deflection step of the HTP control surface 

• VTP : Response to a 7° amplitude deflection step of the rudder 

• GUST: Response to (1-cos) certification gust, of wavelength 100m, vertical gust speed 5 

m/s. 

A complete set of numerical data is extracted from each simulation, including: 

• position, velocity and acceleration of the center of gravity (CG); 

• body axes (Euler angles) and rotation rates; 

• angle of attack and side slip; 

• global aerodynamic force and moment wrt to CG in body and inertial axes; 

• right wing only aerodynamic force and moment wrt to CG in body axes; 

• physical displacement in body axes of selected structural nodes (Figure 12, left); 

• generalized modal forces and coordinates. 

 

This data set is used to generate a reduced-order model of the aircraft to feed the control 

synthesis problem for gust load alleviation which is described in the next section. 

From a control perspective, the gust load alleviation problem is a disturbance rejection problem 

aimed at decreasing the maximum bending moment when subject to some disturbance gust using 

some sensors and actuators. Indeed, reducing the bending moment is a key player for reducing 

the wing box mass.  

Following the notations of the standard control form (Zhou [14]), the bending moment is called a 

performance output, denoted 𝑧, and the gust is called an exogeneous input, denoted 𝑤. Control 

input and measurement output are denoted 𝑢 and 𝑦, respectively. Choice of actuators and sensors 

is crucial in control, yet this is a task which is complex to perform in a systematic way and it is 

therefore often done manually based on physical considerations. Here, the whole set of data 

presented above has not yet been fully exploited and sensors/actuators have been arbitrarily 
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chosen as follows: 𝑦 gathers the pitch rate and vertical acceleration at CG while 𝑢 is a symmetric 

command of the external ailerons. 

With these notations, the identification step is aimed at finding a linear model under the form: 

{

�̇� = 𝐴𝑥 + 𝐵𝑤𝑤 +  𝐵𝑢𝑢
𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑤𝑤 +  𝐷𝑧𝑢𝑢
= 𝐶𝑦𝑥 + 𝐷𝑦𝑤 𝑤 + 𝐷𝑦𝑢𝑢

          (6.7. 1) 

where 𝑥 is the internal state of the model (which does not necessarily have an explicit physical 

interpretation). 

The identification process is in three steps here: first, an initial large model is obtained directly 

from the time-domain data with a black-box method called matrix pencil method (Yingbo [15]). 

This initial model can be unstable and this issue is alleviated by projection onto a stable Hoo 

subspace (see Glover [16]). The resulting large stable model is finally reduced using the 

Loewner frequency-domain interpolation approach (Mayo [17]). The resulting model is denoted 

𝐻𝑟 and its response (plotted in red) is compared to the initial time-domain data in Figure 18. 

Note the mismatch in the first (sizing) peak of the wing root bending moment. This could 

certainly be reduced further and may lead to better control performances. 

 

Figure 18 : Open loop identification: gust response (left), response to aileron step deflection (right) – Input 

signal (1st row), Bending moment (2nd row, moment labels removed for confidentiality reasons), pitch rate (3rd row), 
CG vertical acceleration (4th row) 

6.7.2 Law control design 

Based on the reduced model 𝐻𝑟 of the flexible aircraft, a linear control law described by its state-

space formulation: 

{
𝑥�̇� = 𝐴𝑐𝑥𝑐 + 𝐵𝑐𝑦

𝑢 = 𝐶𝑐𝑥𝑐
          (6.7. 2) 
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is synthesized following the process detailed in (dos Reis [18]). 

In addition to its performance objective to decrease the wing root bending moment, the control 

law must also comply with a set of constraints that would be found on a real aircraft. In 

particular, the law must stabilize the closed-loop, be stable, be structured (i.e. of low dimension 

𝐷𝑐=0 here) and leave untouched low frequencies (to preserve handling qualities) and high 

frequencies (for robustness). These constraints are important to consider in order to avoid 

exhibiting unrealistic performance. In practice, the problem is solved using the structured Hoo 

synthesis framework (Apkarian [19]) available in MATLAB with routines hinfstruct or systune. 

The state-space matrices 𝐴𝑐, 𝐵𝑐, 𝐶𝑐 are then extracted and integrated in a Python module 

dedicated to the resolution of the dynamic system 6.7.2. 

6.7.3 GLA 

In this section, 3 simulations are compared in order to analyze the impact of flexibility during 

gust and to validate the Gust Load Alleviation (GLA) induced by the designed control law: 

• Open-loop gust response of the rigid aircraft 

• Open-loop gust response of the flexible aircraft 

• Closed-loop gust response of the flexible aircraft with controlled ailerons (Figure 23). 

The closed-loop simulation environment is the one plotted in Figure 5. Figure 19 presents a 

comparison of the 3 simulations in terms of pitch rate, vertical CG acceleration and right wing 

bending moment. The first indication is that flexibility reduces peaks values for all three 

variables. In particular, a 20% reduction is observed on the bending moment (Figure 19, right 

plot, Figure 21). Moreover, the control induces a reduction of 10% of the bending moment offset 

to steady trimmed values, compared to open-loop flexible results.  

  

Figure 19 : Comparison of gust response: pitch rate (left), vertical CG acceleration (center), right wing 
bending moment reduced by static trim value (right). Rigid case in black, open-loop flexible in blue, 

closed-loop flexible in red 

 

Figure 20 : GLA figures for CG vertical acceleration 
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Figure 21 : GLA figures for right wing bending moment 

In terms of vertical CG acceleration alleviation, a minor 4% reduction is obtained in the flexible 

case with control in the first negative peak, but 30% reduction at positive second peak after 1.5 s 

(Figure 19, center, Figure 20). 

  

Figure 22 : Reduced vertical displacement of right wing structural grid nodes, without control (left), with 
control (right), wing tip LE in black 

Figure 22 shows a comparison of the vertical deformation of the wing leading edge at 4 stations 

in span, in the flexible open-loop and closed-loop cases. The black curves correspond to the wing 

tip leading edge node (9700026). The values are reduced by the static trim vertical displacement 

at this node. The peak-to-peak deflection is clearly reduced in the controlled case, but the 

maximum deflection of the wing doesn’t seem to be reduced. However, further oscillations seem 

to be damped more rapidly. 

 

 

Figure 23 : XRF1 controlled gust response : oveview of wing deformation and aileron deflection during 
gust encounter (0.5 s between two views) 
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7 CONCLUSIONS 

Due to environmental constraints, next generation long range aircrafts are bound to have larger 

aspect ratio wings, a more flexible structure and they will face more complex aeroelastic issues. 

In this paper we have presented a methodology to solve flight dynamics problems of flexible 

aircraft using CFD. This methodology is based on the use of a modular framework implementing 

the elsA CFD solver in externalized mode, coupled with external Python modules in charge of 

solving the flight dynamics behavior of the aircraft along with the structural dynamics equations. 

Mesh deformations tools are implemented to take into account modal deformation of the 

structure and control surfaces actuation. Selected open loop applications have been shown in the 

case of the Airbus XRF1 model implemented in the French DGAC funded project MAJESTIC. 

Trim simulations of the flexible aircraft have been presented in static, and an example of 

maneuver due to rudder actuation has been detailed. A full CFD flight dynamics data base has 

been collected to analyze the response to the actuation of the aircraft control surfaces. The 

capability of this methodology to address closed-loop problems in implementing control laws has 

been shown and applied to the case of the application to Gust Load Alleviation CFD simulations.  

However, some assumptions used in this paper should have to be released in future works. In 

particular, non-linear large displacements have to be modelled, which could require either the 

coupling with a non-linear structural solver at least in static, or the generation and use of reduced 

order models of the non-linear structure. In this case, the assumption of constant inertia matrix 

should also have to be reconsidered. A proper validation of these methods is planned in the next 

future in the frame of the DGAC funded ALFA project, by the exploitation of flight tests of the 

XWing Airbus demonstrator. Another topic of interest will be the integration of a flutter control 

law, and the related closed loop simulations using CFD. Eventually, the robustness of the 

approach will be increased by the integration of the developed Python tools in the MIMAS 

aeroelastic toolbox currently developed at ONERA. This will pave the way for a larger use of the 

methodology by enabling the capability of coupling it with the next generation CFD solvers 

CODA and Sonics. 
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