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Context and problem
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• A cloud of points, denoted by X, is a set of
n unordered points: X = {x1, ...,xn} with
xi ∈ Rd (d = 2 for the rest). The points
of the clouds belong to a convex polygon.

• First aim: Use evolutionary algorithms
with operators-based on the Wasserstein
barycenter when functions evaluations are
cheap.

• Second aim: Perform Bayesian Optimiza-
tion in case of expensive functions evalua-
tions.

An evolutionary algorithm

Clouds can be viewed as measures through the
bijective mapping: X = {x1, ...,xn} 7−→ PX =
1
n

∑n
i=1 δxi .

Given two clouds of points X1 and X2, we de-
note W 2

2 (PX1
, PX2

) the 2-Wasserstein distance
between PX1

and PX2
(see [2] for details).

The evolutionary optimizer over clouds of points
is based on a mutation alternating between the
following two operators (randomly chosen with
a Bernoulli law of parameter 0.5):

• Full domain mutation: Xm =
W-barycenter(X1, Xr, ϵ) where PXm

is the discrete measure minimizing(
ϵW 2

2 (PX , PX1) + (1− ϵ)W 2
2 (PX , PXr )

)
.

Xr contains points randomly sampled in
the convex domain and ϵ is uniformly
chosen in [0, 1]. If Xr and X1 have the
same sizes then Xm has the same one.
Otherwise, the mutation produces two
clouds with the different two sizes.

• Boundary Mutation: Xb =
W-barycenter (X1, (X1 ∪Bound), ϵ).
Bound contains points randomly sampled
in the domain boundary. The size of Xb

is chosen to be equal to the one of X1.

The first one has a contracting property while
the second increases systematically the spread
of clouds.

Test functions over clouds of points

F0 is an analytical function mimicking the power
production of wind-farms in a 0◦-directed wind
zone. F0_pen is its variant, penalized by the
size of the input. Additional test functions
are: Finert({x1, ...,xn}) =

∑n
i=1 ||xi − X̄||2 and

FminDist({x1, ...,xn}) = mini ̸=j ||xi − xj ||.
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Evolutionary algorithm: Wasserstein barycenter vs Gaussian distribution

• The evolutionary algorithm is solely based on mutation because the presence of crossover tends
to worsen the results. The size of the population is denoted by λ, and at each iteration 2λ
clouds of points are generated. The algorithm selects the best λ clouds for the next generation.

• We compare the Wasserstein Barycenter Generator based Evolutionary Algorithm denoted by
WBGEA with an algorithm having the same structure but based on a Gaussian mutation
(denoted by Gauss). For the latter, each point xi is disturbed with N (xi, σ

2) with σ2 equal to
(0.01) E∥X −X ′∥2, where X and X ′ are points sampled uniformly in the domain.

• We fix λ to 300. The sizes of the clouds vary between 10 and 20. The results indicate that the
algorithm based on Wasserstein operators yield better results except on FminDist.
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Figure 1: Average over 10 (+/- std. deviation) of the evolutions of the maximum of the functions in each
population over the evolutionary algorithms iterations.

Bayesian optimization: MMD as kernel and WBGEA for the optimization of the EI

• Let H be a Reproducing Kernel Hilbert Space with a characteristic kernel kH such as Matérn
5/2. The characteristic nature guarantees the injectivity of the embedding map [1]: PX 7−→
µX =

∫
PX(x)kH(x, .)dx. θ1 and θ2 are 2 hyper-parameters scaling the dimensions between

two points x and x′ through |x1 − x′
1|/θ1 and |x2 − x′

2|/θ2.

• The correlation kernel K(X,X ′) = σ exp(− ||µX−µX′ ||2H
2θ2 ) is symmetric and semi-definite posi-

tive. We denote this kernel by MMD for Maximum Mean Discrepancy and use it it to define
a Gaussian process over clouds of points.

• The acquisition function is the expected improvement (EI) with the following formula:
EI(X) =

(
ymin − µ(X)

)
Φ
( (ymin−µ(X)√

Σ(X,X)

)
+

√
Σ(X,X)ϕ

( (ymin−µ(X)√
Σ(X,X)

)
where µ(X) and Σ(X,X)

denote respectively the mean and the variance of the prediction. Φ and ϕ are respectively the
cumulative distribution and density function of the standard normal law. The EI is defined
over the same search space as the functions to optimize. It is optimized with WBGEA.

• We fix the budget of evaluations to 100. A random initial set of 50 clouds is chosen. The hyper-
parameters of the kernel are updated every 5 iterations by maximization of the likelihood. The
acquisition criterion is optimized at each iteration. We present below the percentage of the
maximum value attained by Bayesian optimization (BO) with respect to that attained by
WBGEA (denoted by Percentage_BO_WBGEA):

Functions F0 F0_pen Finert FminDist

Percentage_BO_WBGEA 96.05% 90.12% 69.35% 65.80%
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Figure 2: Average over 10 (+/- std. deviation) of the evolutions of the maximum of the functions over the
BO iterations.


