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Abstract
The AIDA randomized clinical trial found no significant difference in clinical fail-
ure or survival between colistin monotherapy and colistin–meropenem combina-
tion therapy in carbapenem- resistant Gram- negative infections. The aim of this 
reverse translational study was to integrate all individual preclinical and clinical 
pharmacokinetic–pharmacodynamic (PKPD) data from the AIDA trial in a phar-
macometric framework to explore whether individualized predictions of bacterial 
burden were associated with the trial outcomes. The compiled dataset included 
for each of the 207 patients was (i) information on the infecting Acinetobacter 
baumannii isolate (minimum inhibitory concentration, checkerboard assay data, 
and fitness in a murine model), (ii) colistin plasma concentrations and colistin 
and meropenem dosing history, and (iii) disease scores and demographics. The 
individual information was integrated into PKPD models, and the predicted 
change in bacterial count at 24 h for each patient, as well as patient characteris-
tics, was correlated with clinical outcomes using logistic regression. The in vivo 
fitness was the most important factor for change in bacterial count. A model- 
predicted growth at 24 h of ≥2- log10 (164/207) correlated positively with clinical 
failure (adjusted odds ratio, aOR = 2.01). The aOR for one unit increase of other 
significant predictors were 1.24 for SOFA score, 1.19 for Charlson comorbidity 
index, and 1.01 for age. This study exemplifies how preclinical and clinical anti- 
infective PKPD data can be integrated through pharmacodynamic modeling and 
identify patient-  and pathogen- specific factors related to clinical outcomes – an 
approach that may improve understanding of study outcomes.
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INTRODUCTION

A randomized clinical trial (the AIDA trial) including 
406 patients with severe carbapenem- resistant Gram- 
negative infections found no significant differences be-
tween colistin monotherapy and colistin–meropenem 
combination therapy in the primary outcome (clinical 
failure at 14 days after randomization) or in the sec-
ondary outcomes, including survival, microbiological 
cure, and emergence of colistin resistance.1 The clinical 
implications of these results are that colistin–merope-
nem combination therapy should be avoided as it may 
add to toxicity and the spread of carbapenem resist-
ance without clinical benefit.1 In a subsequent popula-
tion pharmacokinetic (PK) study, the predicted average 
steady- state concentration of colistin- to- minimum in-
hibitory concentration (MIC) ratio was positively corre-
lated with hazard of death.2 This finding illustrates that 
establishing exposure–response relationships is difficult 
when patient status and drug exposures are correlated 

(e.g., through kidney function), unless patients are ran-
domized to different dose groups. The unexpected direc-
tion of the relationship between colistin exposure and 
patient outcomes motivated us to further elucidate how 
PK and pharmacokinetics–pharmacodynamics (PKPD) 
are related to clinical outcomes following colistin treat-
ment. Additional experiments and analyses have been 
performed with the strains isolated in the AIDA trial. 
One study evaluated pharmacodynamic drug interac-
tions between meropenem and colistin using check-
erboard assays and found that in  vitro synergism did 
not correlate with clinical outcomes.3 Another study 
with the carbapenem- resistant Acinetobacter bauman-
nii isolates found that high bacterial fitness in a mouse 
thigh infection model was associated with worse clinical 
outcomes.4

PKPD models based on preclinical time- kill data 
have previously been linked to population PK models 
to compare antibiotic dosing strategies.5 However, pre-
dictions by such PKPD models have not been correlated 
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Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The AIDA trial found no significant differences in outcomes between colistin 
monotherapy and colistin–meropenem combination therapy for carbapenem- 
resistant Gram- negative infections. Subsequent analyses indicated that increas-
ing colistin exposures relative to the infecting pathogens' susceptibility to colistin 
was associated with increased hazard of death; in vitro meropenem–colistin syn-
ergy was not related to clinical outcomes; and high in vivo fitness was associated 
with clinical failure.
WHAT QUESTION DID THIS STUDY ADDRESS?
We developed a PKPD modeling framework that simultaneously considered indi-
vidual drug exposures and strain- specific data on antibiotic susceptibility, mero-
penem–colistin interactions, and in vivo fitness. We aimed to explore whether 
obtained individualized predictions of bacterial response, together with patient 
characteristics, were related to the outcomes of the AIDA trial.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
PKPD models developed on preclinical data have been used to optimize antibi-
otic dosing strategies, but bacterial response predictions have not been linked 
to clinical outcomes. In this study, model- predicted bacterial growth exceeding 
2- log10, together with SOFA score, Charlson comorbidity index, and age, was 
positively associated with clinical failure in the AIDA trial. More generally, we 
demonstrated how various types of patient- level preclinical and clinical PK and 
PD data can be integrated to potentially gain insight into the effects of patient-  
and pathogen- specific factors on clinical outcomes.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Application of the integrative (reverse) translational approach presented in this 
study could offer insights into trial outcomes and advance our understanding of 
translational antibiotic PKPD.
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to clinical outcomes. In this study, we integrated the 
unique combination of clinical and preclinical data 
available from patients who participated in the AIDA 
trial in a PKPD model to obtain individual predictions 
of bacterial response, based on drug exposures and in-
fecting strain- specific data on fitness, antibiotic suscep-
tibility, and colistin–meropenem interaction. In doing 
so, we aimed to explore whether predictions based on 
all these data simultaneously were related to outcomes 
in the AIDA trial.

METHODS

Patient data and trial information

This PKPD analysis was performed with data from the 
AIDA randomized controlled trial. The AIDA study was 
conducted according to the principles expressed in the 
Declaration of Helsinki, and all participating hospitals 
obtained ethics approval from their respective ethics 
committees. Informed consent was obtained from each 
eligible patient or the patient's representative. Details on 
inclusion and exclusion criteria, patient and infection 
characteristics, and outcome measures have been 
published previously.1,6 Briefly, patients with hospital- 
acquired pneumonia, ventilator- associated pneumonia, 
bloodstream infections, or urosepsis, caused by Gram- 
negative bacteria non- susceptible to carbapenems (MIC 
>2 mg/L) and susceptible to colistin (MIC ≤2 mg/L 
for Acinetobacter spp. and Enterobacteriaceae and 
MIC ≤4 mg/L for Pseudomonas spp.),7 were randomly 
assigned to either colistin monotherapy or colistin–
meropenem combination treatment. Patients in both 
treatment arms received 9 million units (MU) loading 
dose of colistimethate sodium (CMS), followed by 4.5 MU 
maintenance doses q12h, administered as intravenous 
infusions over 30 min. Maintenance doses were reduced 
in patients with creatinine clearance (CrCl) <50 mL/min 
according to a previously proposed formula.8 CMS dosing 
before randomization was allowed, but no loading dose 
was administered to patients treated with colistin for 
>48 h before randomization. Patients in the combination 
treatment arm additionally received 2 g meropenem q8h 
as intravenous infusions over 3 h, with dose reductions for 
patients with renal impairment. The primary outcome, 
clinical failure on day 14, was defined as a failure to meet a 
composite of success criteria: patient alive, hemodynamic 
stability, and improved or stable Sequential Organ Failure 
Assessment (SOFA) score. In addition, patients with 
pneumonia should have had stable or improved ratio of 
partial pressure of arterial oxygen to fraction of expired 
oxygen, and patients with bacteremia should have had no 

microbiological failure on day 14 or later. Microbiological 
failure, a secondary outcome, was defined as repeat 
isolation on or after day 7 of bacteria phenotypically 
identical to the index isolate.

Blood samples were drawn for bioanalysis of CMS and 
colistin concentrations to allow for the development of 
a population PK model.2 Isolates were sent to a central 
laboratory, where the infecting species identification was 
confirmed and the MIC was measured using broth micro-
dilution. In addition, antibiotic interaction studies were 
performed using checkerboard assays.3

This PKPD analysis considered the data from patients 
who were included in the dataset for development of the 
colistin population PK model2 and whose infecting patho-
gen was an A. baumannii strain for which checkerboard 
assay data were available.3 A total of 207 patients met 
these criteria, of which 115 (55.6%) had been assigned to 
the colistin monotherapy arm and 92 (44.4%) to the com-
bination treatment arm. Clinical failure and death at day 
14 had been observed for 78.7% and 21.3% of the included 
patients, respectively. Detailed characteristics of patients 
and isolates included in this analysis are presented in 
Table 1.

Software

Data processing and visualization were performed with 
R (v.3.5.2).9 NONMEM (v7.4.4)10 was used for modeling, 
and NONMEM output was processed using the Xpose4 
package (v4.7.0)11,12 in R. All scripts used to perform 
the analyses in this study are available in Data S1 to this 
article. Files containing representative mock data are also 
provided; the original data are not freely shareable.

Modeling

PKPD modeling was divided into four parts (Figure  1), 
outlined in more detail below. Using population PK mod-
els,2,13 individual PK profiles were predicted for colistin 
and meropenem (i). An in vitro PKPD model describing 
the bacterial killing and interaction between meropenem 
and colistin against A. baumannii14 was used to estimate 
isolate- specific drug interaction for patients who had re-
ceived the combination (ii). The same model was sub-
sequently used to predict individual bacterial response 
over time, where drug potency parameters were scaled by 
MICs, and maximum growth was based on in vivo bacte-
rial fitness data (iii). Finally, predicted bacterial densities 
were linked, together with selected patient characteristics, 
to trial outcomes using a multivariable logistic regression 
model (iv).
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PK predictions

Predictions of CMS and colistin PK were performed 
using the population PK model that had been developed 
using concentration measurements in the AIDA trial.2 
Individual PK profiles were predicted using patient- 
level data on CrCl (the only covariate included in the 
model), dosing records, and observed CMS and colistin 
concentrations (i.e., using empirical Bayes estimates to 
obtain individual PK parameters). For most of the patients, 
CrCl was determined on multiple occasions during the 
trial. Between such occasions, CrCl values were imputed 
with the next observation carried backward method. For 
timepoints succeeding the last CrCl determination, the 
last observation carried forward method was used.

Meropenem PK was predicted using a previously pub-
lished population PK model.13 Patient- level information 
on covariates (age, weight, CrCl) and the dosing records 
from the AIDA trial were used to predict individual con-
centration–time profiles. Meropenem dosing records in-
cluded information on the start and end dates of dosing 
regimens but lacked exact dosing times. The following as-
sumptions were made: (i) if CMS and meropenem dosing 
started on the same day, they were assumed to be dosed at 

the same time; (ii) if meropenem dosing started after CMS 
dosing, the start time was assumed to be midnight; (iii) if 
two meropenem dosing regimens were recorded for the 
same day (e.g., both 500 mg q8h and 1 g q8h), they were as-
sumed to be switched at noon; and (iv) meropenem dosing 
records prior to CMS dosing were ignored as meropenem 
was assumed to be inefficient alone (meropenem MIC 
>2 mg/L was an inclusion criterion in the AIDA trial) and 
has a short half- life. CrCl was imputed as described for the 
colistin PK predictions.

Drug interaction model

A previously published PKPD model by Bian et al.14 was 
used to estimate an isolate- specific colistin–meropenem 
interaction parameter. The model describes the effect of 
colistin and meropenem alone and in combination based 
on data from in  vitro time- kill experiments with three 
A. baumannii strains, two of which were meropenem- 
resistant and thus selected for the present study (clinical 
isolates AB1845 and AB2092).14 The bacterial model 
consists of a single bacterial population growing according 
to a saturable exponential model (Equation 1):

Median [Standard deviation] Min–Max

Patient characteristics

SOFA score 6 [2.95] 0–16

Charlson comorbidity index 2 [2.26] 0–12

Age (years) 0.69 [17.5] 17–94

Hemodialysisa No = 168 (81.2%)

Yes = 39 (18.8%)

Consciousnessa Normal = 67 (32.4%)

New confusion = 50 (24.2%)

Stupor/Coma = 82 (39.6%)

Background dementia = 8 (3.8%)

Site of infectiona Bloodstream infection = 71 (34.3%)

(Probable) ventilator- associated/hospital- 
acquired pneumonia = 127 (61.4%)

Urinary tract infection = 9 (4.3%)

Recent surgerya No = 142 (68.6%)

Yes = 65 (31.4%)

Isolate characteristics

Colistin MIC (mg/L) 0.75 [5.77] 0.5–16

Meropenem MIC (mg/L) 80 [28.9] 1–128

In vivo fitness at 24 h (log10CFU/mL) 8.76 [0.616] 5.23–10.1

FICI values 0.531 [0.202] 0.187–1.01

Abbreviations: FICI, fractional inhibitory concentration index; MIC, minimum inhibitory concentration.
aFor categorical covariates, number of subjects and % of the patients in each category are reported.

T A B L E  1  Patient and isolate 
characteristics.
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F I G U R E  1  Illustration of the inputs and workflow of the analysis. Blue rectangles denote published data used as input for models. 
Blue diamonds denote published models. Orange ovals denote predicted data from developed models. The orange diamond represents the 
developed multivariable logistic regression model. Superscripts refer to the source from which data or models were extracted and match the 
reference number in the bibliography.

Colistin PK model2

Patient-level
predicted colistin
concentrations

Figure 2A

Patient colistin
concentrations1

Meropenem PK
model13

Patient-level
predicted meropenem

concentrations
Figure 2B

Patient dosing history,
and characteristics1

Colistin+
Meropenem PKPD

model14

Patient-level drug
interaction parameter

Figure 3

Checkerboard data3

Colistin+
Meropenem PKPD

model14

Patient-level change
in bacterial density

Figure 4

Multivariate logistic
regression model

Clinical outcome
predictors 

Figures 5 and 6

Patient clinical
outcome data1

Patient clinical score
and characteristics1

z Published data

Published model

New predicted data

New model
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2 Kristoffersson et al.
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3 Nutman et al.
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13 Li et al.
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14 Bian et al.

Antimcrob Agents Chemother 2019

Mouse bacterial
growth data4

Patient-level MIC
values1
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where B represents the bacterial density, kg represents the 
growth rate constant, and Bmax represents the maximal 
bacterial density. The concentration–effect relationships 
of meropenem and colistin follow a sigmoidal Emax model 
(Equations 2 and 3):

where k represents the killing rate of meropenem (MER) or 
colistin (CST), Emax the maximal effect rate constant, EC50 
the drug concentration at which the effect is 50% of Emax, 
γ a sigmoidicity factor, and α an adaptation factor to colis-
tin. The adaptive resistance to colistin follows a function de-
scribing a concentration- dependent increase in colistin EC50 
over time (Equation 4):

where f is the maximal adaptation factor and k is the rate 
constant of adaptation. The model includes a strain- specific 
drug interaction parameter in the combination drug effect 
function (Equation 5):

where k represents the killing rate of meropenem 
(MER), colistin (CST), and the two drugs combined 
(COMB), and INT is the drug interaction parameter de-
scribing drug synergism (INT >0), antagonism (INT < 0) 
or additivity (INT = 0). The resulting differential equa-
tion for B Equation (6) is

The checkerboard assay data were used to estimate 
individual values for INT for each isolate. Detailed mi-
crobiological procedures for the checkerboard assays 
have previously been described.3 To be able to use the 
binary data (visible growth/no visible growth) obtained 
from checkerboard experiments in the model fitting, 
we first set the starting inoculum in each well at 5 × 105 

colony- forming units (CFU)/mL. Also, we assumed that 
the limit for visible growth in the wells was 1 × 107 CFU/
mL.15 For each observation (one observation = one well 
of one plate), the NONMEM likelihood function was im-
pacted as follows:

• When an observation was below the limit (i.e., no 
visible growth), the likelihood function was set to 
the probability of being below the limit, similar to 
the M3 method by Beal for data below the limit of 
quantification.16

• When an observation was above the limit (i.e., visible 
growth), the likelihood function was set to one minus 
the probability of being below the limit.

Individual INT values were estimated using a popula-
tion estimate �INT with an additive variability term (i.e., 
variability between strains) �INT (Equation 7):

All other PKPD model parameters were fixed to the es-
timates reported by Bian et al.14 Estimation of INTi was 
performed using the parameters from both meropenem- 
resistant strains, resulting in two INTi estimates per pa-
tient isolate. Monte Carlo importance sampling was used 
as estimation method in NONMEM.

PD predictions

The in vitro PKPD model14 from which INTi were esti-
mated was also used to predict individual bacterial re-
sponse. The PK part of the model was replaced by the 
individual colistin and meropenem concentrations over 
time as predicted by the population PK models, multi-
plied by the unbound drug fraction (0.3417 and 0.9818 
for colistin and meropenem, respectively) to account for 
plasma protein binding. For patients in the combination 
treatment arm, INTi values were incorporated into the 
combination drug effect function (Equation 5).

The predictions of bacterial response were further indi-
vidualized by scaling the colistin and meropenem EC50 val-
ues by their respective MIC for each isolate (Equation 8):

EC50i represents the drug concentration at which 50% of 
the maximum killing rate constant Emax is achieved for 
isolate i. MICisolate is the MIC of the patient isolate in ques-
tion, and MICmod is the MIC of either of the two strains 
the model had been built on (colistin MIC of 0.5 mg/L 

(1)dB

dt
= kg ×

(

1 −
B

Bmax

)

× B

(2)kMER =
Emax,MER × C

γMER
MER

EC
γMER
50,MER

+ C
γMER
MER

(3)kCST =
Emax,CST × C

γCST
CST

(

� × EC
�CST
50,CST

)

+ C
γCST
CST

(4)� = 1 + f ×
(

1 − e(−CCST×k×t)
)

(5)
kCOMB=kMER×

(

1+
kCST

kCST+kMER

)INT

+kCST×

(

1+
kMER

kMER+kCST

)INT

(6)dB

dt
=

(

kg ×

(

1 −
B

Bmax

)

− kCOMB

)

× B

(7)INTi = �INT + �INT with �INT → N
(

0,�2
)

(8)EC50i = EC50 ×
MICmod
MICisolate
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and 1 mg/L, meropenem MICs of 32 mg/L and 128 mg/L, 
for strains AB1845 and AB2092, respectively14).

Lastly, predictions were also individualized based on 
the in  vivo fitness of the isolates by fixing the maximal 
bacterial density (Bmax) for each isolate to the bacterial 
burden at 24 h in the untreated neutropenic mouse thigh 
infection model, as measured by Nutman et al.4

For each patient, bacterial response was predicted 
over a 24 h period starting from the first CMS dose. The 
starting inoculum was set to 1 × 106 CFU/mL in all pa-
tients, as used in the time- kill experiments by Bian et al.14 
Predictions of bacterial count were performed using the 
models for both strains, which were subsequently aver-
aged (weighted) using the Akaike Information Criterion 
(AIC) value obtained for each model in the previous 
step.19

Logistic regression model

Predictive models of two trial outcomes (clinical failure and 
death, both on day 14 after randomization) were developed 
using multivariable stepwise logistic regression. Potential 
explanatory variables were added to the prediction model 
one at a time, and the AIC was computed. Variables 
were added until no significant improvement in AIC was 
observed. Then, variables were removed one at a time 
until a worsening of AIC was observed. The smallest (least 
number of explanatory variables) model with the best AIC 
was considered final. Adjusted odds ratios (aOR) were 
computed.

Several parameterizations of predicted CFU/mL at 
24 h after the first CMS dose were evaluated as predic-
tor: predicted ΔCFU/mL (i.e., the difference in CFU/mL 
between 0 and 24 h), the area under the bacterial (kill) 
curve over the 0–24 h interval (AUBC/AUBKC20), and bi-
nary predictions on whether the predicted log10 ΔCFU/
mL was ≥0, ≥1 or ≥2. In addition, seven clinical variables, 
measured at the start of the study, were considered as 
predictors: SOFA score, Charlson comorbidity index, age, 
hemodialysis, consciousness, site of infection, and recent 
surgery.

RESULTS

PK predictions

Predicted plasma concentrations of colistin and 
meropenem showed high inter- individual variability. The 
predicted PK profiles for both drugs from the first CMS 
dose up to 24 h thereafter (i.e., the time period used for PD 
predictions) are displayed in Figure S1.

Drug interaction model

The distribution of INTi values estimated with the models for 
AB1845 and AB2092 based on the checkerboard assay obser-
vations are visualized in Figure 2. The median INT value was 
positive for both PKPD models (2.06 and 3.44 for the AB1845 
and AB2092, respectively), that is, typically a synergistic in-
teraction between colistin and meropenem was predicted.

PD predictions

Model- averaged predictions of ΔCFU/mL in response to the 
corresponding free fractions of predicted drug concentra-
tions are displayed in Figure 3. Many of the isolates in both 
treatment arms were predicted to reach their maximal bacte-
rial density within 24 h after the first CMS dose. The colistin 
MIC had limited impact on ΔCFU/mL (Figure 3a), while the 
maximal change in bacterial density as measured in mice 
had a strong impact for both treatment arms (Figure 3b).

Logistic regression model

The final model for probability of clinical failure included 
four significant predictors: SOFA score, Charlson co-
morbidity index, age at randomization, and ΔCFU/mL 

F I G U R E  2  Box plot visualizing the distribution of the individual 
drug interaction (INTi) estimates. Estimation was performed with 
parameters for both the AB1845 and AB2092 strains.
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predicted to be ≥2- log10 at 24 h after the first CMS dose. 
The most influential variable was SOFA score with a rela-
tively steep increase in the probability of clinical failure 
as the SOFA score increased (Figure 4). Some significant 
variables in the model (global test) had their (symmetric) 
95% confidence intervals including 1 for the adjusted odds 
ratio (aOR) (Charlson comorbidity index, age, and ΔCFU/
mL being ≥2- log10; Table 2).

The model for probability of death at day 14 included 
three significant predictors: SOFA score, Charlson co-
morbidity index, and age at randomization (Figure  5). 
The most influential variable was Charlson comorbidity 
index with a steep increase in clinical failure probability 
as the Charlson comorbidity index increased. The sym-
metric 95% confidence interval of the adjusted odds ratio 
(aOR) included 1 for SOFA score (Table 2).

F I G U R E  3  Change in bacterial density over time, predicted for patients in the colistin monotherapy arm (top rows) and colistin–
meropenem combination therapy arm (bottom rows) using model averaging. (a) Isolates grouped by colistin MIC (columns). (b) Isolates 
grouped by their fitness (columns) in the mouse thigh infection model, i.e., the change in bacterial density measured at 24 h in untreated 
mice.
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   | 9 of 13MODEL- BASED TRANSLATION OF ANTI- INFECTIVE PKPD

DISCUSSION

The presented framework is, to our knowledge, the first 
to integrate individual patient- level data on the infecting 
pathogens' MIC values, in vitro checkerboard data, in vivo 
fitness data, as well as individual PK, in a PKPD model 
of antibiotic effects. The resulting bacterial response 
predictions for each individual were subsequently 
evaluated, together with patient health status and 
demographics, as predictors of survival and clinical cure 
using logistic regression models.

The analysis showed an increase in odds of clinical fail-
ure when the increase in predicted bacterial burden at 24 h 
exceeded 2 log10 CFU/mL. Inclusion of ≥2- log10 bacterial 
growth as a predictive factor improved the model fit sig-
nificantly. It was, however, noted that the symmetric 95% 
confidence interval included 0 (i.e., included 1 on the aOR 
scale), but the effect size, here represented by the aOR, is 
important to consider for exploratory studies,21–23 and was 
2.01 with a confidence interval upper bound of 4.60, indi-
cating that when underlying patient characteristics such 
as SOFA score, age, and Charlson morbidity index were 
accounted for, the predicted bacterial density was related 
to the outcome.

The proposed framework shows promise for linking 
individual- level preclinical information, together with 

patient demographics and clinical PK data, to clinical out-
comes, considering that bacterial burden can most often 
not be measured in patients. The PKPD model predictions 
should be seen as a proxy of treatment response related 
to the outcome, which may also be valuable for compar-
ing treatment strategies based on preclinical data before 
clinical information, is available. In future studies, mea-
surements of circulating bacterial DNA as a biomarker 
of bacterial burden24 could be used to connect the PKPD 
model predictions and clinical outcomes. Other exten-
sions of the pharmacometric framework could include 
linking the predicted bacterial growth to the transitions 
in a multi- state model describing clinical and/or microbi-
ological outcomes over time,25 or to a model of repeated 
measurements of SOFA scores.26

The PKPD modeling methodology that was applied 
in this study has several strengths. First, it integrates dif-
ferent types of patient- level data in a translational frame-
work. Consideration of all types of data simultaneously 
can provide insights that would be hard to deduce from 
evaluating the data sources individually. Second, the 
model predictions take into account the full time course 
of PK and PD simultaneously. This is an advantage over 
using, for example, the PK/PD index approach, in which 
dynamic PK and PD profiles are separately captured in 
a single summary value and subsequently linked (e.g., 

F I G U R E  4  Predicted probabilities of clinical failure at day 14 by logistic regression when predicted change in bacterial density at 24 h 
post first CMS dose was <2- log10 growth (top row) and ≥2- log10 growth (bottom row). The probabilities of clinical failure at day 14 are plotted 
against SOFA score (a and d), Charlson comorbidity index (b and e), and age (c and f). The variables that are not illustrated in a panel were 
set to their median in the population (e.g., SOFA score = 6 and Charlson comorbidity index = 2 in the rightmost panel). The gray areas are 
the 95% confidence intervals around the prediction.
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AUC/MIC), which cannot readily be applied to drug com-
binations. Considering the full PKPD time course is par-
ticularly important in the context of drug combinations, 
since the strength of the drug interaction may depend on 
the concentrations of the two drugs, which fluctuate over 
time clinically. Third, we used a novel method to estimate 

a parameter governing the strength and direction of drug 
interactions. The estimates were based on checkerboard 
assay data, which, compared to time- kill experiments, are 
relatively easy to obtain experimentally for a large num-
ber of strains. To estimate an interaction factor for each 
strain, the checkerboard data were handled as categorical 
data, using the M3 method to estimate the probability of 
bacterial density in each well- being above or below the 
threshold for visible growth. The strain- specific interac-
tion parameter estimates could be incorporated into the 
PKPD model to simulate the aforementioned time- varying 
strength of drug interaction expected to occur clinically 
due to fluctuating drug concentrations. This is an ad-
vantage over the static nature of the interaction metric 
normally derived from checkerboard experiments, the 
fractional inhibitory concentration index (FICI), which 
may explain why the checkerboard FICI data alone were 
not significantly related to clinical outcomes.3

A limitation of the present work is that the PKPD model 
parameters have, as is commonly done, been estimated 
based on time- kill data over 24 h only, and we therefore 
restricted the predictions to a 24 h time frame, which is 
not representative of therapy duration in the clinic. It can, 
however, be argued that the first 24 h is most important for 
reducing the bacterial burden in critically ill patients27 and 
is related to outcomes observed later. Second, the predic-
tions of bacterial response were based on strain- specific 
in vitro data on antibiotic susceptibility and drug interac-
tion as well as in vivo fitness data but lacked information 
on other strain- specific characteristics such as resistance 
development rates. Moreover, the PKPD time- kill model 
used to predict bacterial densities was built with data from 
two A. baumannii strains, which is not representative of 
the population pharmacodynamics across the infecting 

T A B L E  2  Parameter estimates and adjusted odds ratios for the 
logistic regression model linking predicted bacterial density and 
clinical characteristics to clinical failure and microbiological failure 
or death. Estimates are reported with standard errors. Adjusted 
odds ratios were computed as the exponential of the estimated 
regression coefficients, and their 95% confidence intervals 
(95%CI) were computed from the standard errors of the estimated 
regression coefficients assuming they follow a normal distribution.

Parameter
Estimate 
[standard error]

Adjusted odds 
ratio [95%CI]

Clinical failure at day 14

Baseline −1.62 [0.834] –

SOFA score 0.212 [0.0702] 1.24 [1.08–1.42]

Charlson 
comorbidity index

0.178 [0.0936] 1.19 [0.99–1.43]

Age 0.0145 [0.00971] 1.01 [1.00–1.03]

≥2- log10 bacterial 
growth predicted 
24 h after first CMS 
dose

0.697 [0.423] 2.01 [0.880–4.60]

Death at day 14

Baseline −3.73 [0.845] –

SOFA score 0.0964 [0.0527] 1.10 [0.990–1.22]

Charlson 
comorbidity index

0.176 [0.0688] 1.19 [1.04–1.36]

Age 0.0302 [0.0105] 1.03 [1.01–1.05]

F I G U R E  5  Logistic regression predicted probabilities of death at day 14 plotted against SOFA score (a), Charlson comorbidity index 
(b), and age (c). Variables that are not illustrated in a panel were set to their median in the population (e.g., SOFA score = 6 and Charlson 
comorbidity index = 2 in the right panel). The gray areas are the 95% confidence intervals around the predictions.
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   | 11 of 13MODEL- BASED TRANSLATION OF ANTI- INFECTIVE PKPD

pathogens in the AIDA trial. These limitations could be 
overcome by generating data from static and/or dynamic 
time- kill experiments for each isolate and estimate strain- 
specific pharmacodynamic parameters. High- throughput 
and low- cost approaches, such as the spotting method,28 
should be used for these experiments to maintain fea-
sibility. Alternatively, time- kill experiments could be 
performed with a subset of isolates, followed by the devel-
opment of a population PD model. Integration of such data 
in the presented methodology would be straightforward. 
The limitations listed above are related to the availability 
of data used to develop the models within the framework 
and thus apply to the results of the present analysis using 
data from the AIDA trial but are not inherent to the ap-
plied methodology. Indeed, the developed workflow could 
be applied to other drugs, bacteria, and sources of in vitro 
and/or in vivo data that can be linked with bacterial den-
sity predictions through semi- mechanistic PKPD models. 
For example, predictions from PK models describing the 
unbound concentrations at the site of action may provide 
a more precise link to outcome,29 and ideally the impact 
of the immune system on the infecting pathogen could be 
considered.30 Future research should focus on the contri-
bution of host- related factors to bacterial killing and clini-
cal outcomes, as this will also enhance our understanding 
of the relative contributions of drug and pathogen- related 
factors.31

To conclude, we developed a reverse translational, 
model- based approach integrating different types of 
data from in  vitro, in  vivo, and clinical sources to ex-
plore whether individualized predictions of bacterial 
response were related to observed clinical outcomes. 
Based on data from the AIDA trial, we found that a pre-
dicted bacterial growth over 24 h exceeding 2- log10 was 
significantly correlated with an increased risk of clinical 
failure, together with SOFA score, Charlson comorbid-
ity index, and age. The methodological concepts pre-
sented in this study can be applied to other types of data 
and other clinical trials to explore the explanatory and 
predictive abilities of such models for various patient 
populations, infection types, pathogens, and antimicro-
bial therapies. Moreover, in cases where strong links 
between individual PKPD and clinical outcomes can be 
established, these integrative models have the potential 
to contribute to an improved understanding of transla-
tional antibiotic PKPD.
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