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ABSTRACT 

Occupational noise exposure is a widespread concern, impacting millions of workers. The present research 

focuses on the audibility of acoustic alarms to ensure worker safety while minimizing exposure to unnecessarily 

high alarm levels. It introduces a laboratory experiment carried on normal-hearing participants to assess the 

perceived audibility of acoustic alarms in various workplace noise conditions. The experiment aimed to enhance 

comprehension of the audibility of acoustic alarms at supra-threshold levels, sought to facilitate the formulation 

of improved guidelines for alarm design. The results reveal the inappropriateness of the most commonly employed 

alarm level setting criterion of the ISO 7731 international standard, leading to excessive alarm levels in highly 

noisy work environments. Based on our data, we propose a revised value for this criterion. In addition, an 

acoustical analysis of the sounds used in the experiment shows that alarms that are more salient are perceived as 

more audible, thereby providing leads for alarm design. The study also introduces an innovative technique using 

a convolutional neural network model to predict the audibility of alarms in noise. Moving beyond generic arbitrary 

criteria, this data-driven approach leverages knowledge from perceptually annotated examples sourced from our 

contributed dataset. Evaluation on the experimental data and further analysis of the model outputs demonstrate 

solid alignment of the model predictions with human perception.  

Keywords: Psychoacoustics, Alarms, Audibility, Occupational noise, Convolutional Neural Network, Dataset 

1. INTRODUCTION 

Exposure to high-level occupational noise affects millions of workers around the world. In France, more than 

3 million workers (10%) are subject to prolonged exposure to hazardous occupational noise levels. This number 

is close to 3.7 million in Canada (15%) and 22 million in the U.S. (14%) [1,2], making noise one of the most 

prevalent occupational risk factors in these countries. The deleterious effects of noise exposure on hearing [3,4] 

and more generally on health [5,6] have been widely studied for years. In addition, occupational noise has also 

been discussed as a contributing factor to workplace accidents, especially when it impairs communication and 

perception of acoustic alarms [7–10]. 

In many occupational settings, acoustic alarms are used to alert workers to hazardous situations that may 

require immediate action. Therefore, the audibility of these sounds plays a critical role in ensuring worker safety. 

The ISO 7731 international standard dedicated to auditory danger signals for public and work areas [11] requires 

that acoustic alarms be “clearly audible”, meaning that the masked threshold has to be “distinctly exceeded”. In 

order to eliminate any uncertainty around the terms “clearly” and “distinctly”, the standard specifies three level 

criteria for alarms relative to ambient noise. These criteria rely on time-averaged objective measures. Meeting at 

least one of them is necessary to comply with the standard. The first criterion imposes a minimum difference of 

15 dB between the respective A-weighted levels of the alarm and background noise. It leads, however, to 

unnecessary high alarm levels, especially in work environments with a high noise level. This is acknowledged by 

the standard itself, which describes the requirements as “sufficient but not always necessary” for alarms to be 

properly heard and recognized. Numerous studies confirm this observation and demonstrate the absence of 

consensus on an audibility criterion expressed as an overall fixed signal-to-noise ratio (SNR) [12–17]. In an 
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experiment performed on normal-hearing listeners, Żera and Nagórski asked participants to adjust the level of 

acoustic alarms in noise so that they were perceived as “clearly audible”. Results showed that the SNR decreased 

continuously from 15 dB to about – 2 dB when the noise level was raised from 60 to 90 dB [12]. Dolan and Rainey 

suggested a lower SNR limit of – 10 dB for perception of train horns, corresponding to a 50% detection rate [13]. 

More recently, two experimental studies carried on reverse alarms in different workplace noises established that 

the SNR criterion of 15 dB or higher leads to excessive alarm levels, while the criterion imposing a minimum SNR 

of 0 dB, specified in the ISO 9533 standard for earth-moving machinery [14], seems adequate for reverse 

alarms [16,17]. The second and third criteria of the ISO 7731 standard are based on the computation of an effective 

masked threshold, respectively computed from one octave-band and one-third octave-band spectra of the alarm 

and background noise. Although leading to more appropriate alarm levels than the global SNR criterion of at least 

15 dB [15], the differences can be negligible in the case of pure tones or sounds with a largely dominant frequency 

component. Furthermore, the practical application of these last two criteria is less frequent due to their higher level 

of complexity. As a result, the criterion based on a global SNR of at least 15 dB remains predominantly used in 

various workplaces, thereby exposing workers to excessive alarm levels. 

In the interests of occupational safety and health, it is crucial to establish a suitable level for acoustic alarms 

to ensure they are effectively heard without being overly loud. Low alarm levels may be too weak to properly 

transmit emergency information and prompt a quick response to control or eliminate the danger. Conversely, in 

addition to being a source of annoyance, very high levels can lead to permanent damage to the hearing of workers. 

Moreover, a sudden increase of the sound pressure level in the work area caused by loud acoustic alarms is likely 

to induce startle reactions, which could endanger workers [11,12]. In that respect, the absence of consistent 

guidelines established in the field to ensure appropriate levels of acoustic alarms poses a significant problem [16]. 

This can be addressed by adjusting the level of acoustic alarms through listening tests. However, it requires 

recruiting volunteers whose hearing status matches the target population and presenting them with stimuli under 

well-controlled conditions, which can be demanding and time-consuming. Most importantly, the experimental 

approach is stimulus-dependent, as the audibility of an acoustic alarm depends on various parameters such as the 

temporal envelope and long-term power spectrum of the alarm, the background noise spectrum, and the interaction 

between these factors [18]. Therefore, the slightest change in the sound environment or the acoustic alarm should 

necessitate a new experimental assessment. Hence, the use of predictive approaches is more convenient. In that 

perspective, many auditory models have already been developed, some of which show convincing performance in 

predicting detection thresholds of complex time-varying target sounds in complex backgrounds [19–21]. 

Notwithstanding their accuracy, those models are of limited use when determining the appropriate level for 

acoustic alarms in complex noisy environments. There are three reasons for this. First, many of those models are 

exclusively designed to predict detection thresholds and cannot provide any relevant information regarding the 

perception of target sounds at supraliminal levels. Second, these models are intrusive, in that they require the 

separate consideration of the alarms and background noises. Finally, the decision stage of a model capable of 

determining the proper level of an acoustic alarm should require prior knowledge about what is considered “clearly 

audible”, which is largely unknown. As such, one of the objectives of the present study is to better assess and 

discuss what is meant by “clearly audible”. In addition, we propose a solution based on the use of a neural network 

model to address the issue of adjusting alarm levels. This approach offers the advantage of being data-driven, 

meaning that the decision criterion regarding the audibility of a sound can be implicitly contained in the perceptual 

data used to train the model with no need to be formulated at design stage. 

Recent advancements in deep learning have had a significant impact in the field of ambient sound analysis, 

facilitating the accurate and efficient recognition of environmental sounds. Deep neural networks such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have demonstrated a great ability 

to learn complex patterns in acoustic data and adapt to new environments. This has led to the predominant use of 

deep learning methods in a wide variety of ambient sound analysis applications. Such applications include acoustic 

scene classification [22], sound event detection [23], sound source localization [24], or anomalous sound 

detection [25]. In the area of auditory perception and cognition, a number of researchers have explored deep neural 

networks to draw parallels between the internal representations of the human brain and those in deep network 

models [26–28]. Several studies also investigated similarities between human and model behavior in auditory tasks 

like word recognition, musical genre recognition, sound localization, fundamental frequency estimation [28–30]. 

In two recent papers, we proposed a proof of concept of an automatic approach to evaluate the audibility of acoustic 

alarms in noise using a CNN trained on perceptually annotated data [31,32]. In the present study, we provide a 

more detailed presentation of this approach, including evaluation of the model on a larger and more elaborate 

dataset, as well as an in-depth analysis of the perceptual data and model performance. 
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The purpose of this article is two-fold. Firstly, it seeks to provide better understanding of the audibility of 

acoustic alarms at supra-threshold levels, which can help formulate guidelines for alarm design. This will be 

achieved by the means of a laboratory experiment carried on normal-hearing subjects and involving a large variety 

of acoustic alarms and workplace noise conditions. Secondly, it introduces a low-complexity CNN-based approach 

to predict the audibility of acoustic alarms in complex noisy environments. The remainder of the paper is structured 

as follows. In Section 2, we define the notion of audibility referred to throughout the article, taking care to clarify 

any semantic discrepancies with other uses of this term found in the literature. Section 3 is dedicated to the 

description of the experimental procedure developed to evaluate the audibility of acoustic alarms in noise, followed 

by an analysis of the experimental results. Section 4 presents the collection of a perceptually annotated dataset, as 

well as the learning and evaluation of a CNN model on the perceptual data of Section 3 to make audibility 

predictions. In Section 5, we conduct a comprehensive comparative analysis between the model and human 

responses, encompassing examination of machine learning performance metrics and psychoacoustical 

interpretation of the model outputs. We conclude in Section 6. 

2. PROBLEM STATEMENT AND RELATION TO THE ISO STANDARD 

Numerous works refer to the notion of audibility to characterize a wide variety of sounds including alarms. 

Most of the time, the term audibility is used as a synonym of detectability which refers to the probability of a sound 

being detected under specific conditions. However, the specific meaning and criteria used to assess this concept 

may vary across studies depending on their specific goals and methodologies. Besides, the study of sound 

perception – especially for acoustic alarms – is not restricted to levels at which the sounds are just detected and 

can involve concepts different from audibility but for which the boundaries with audibility are narrow and not well 

established. In this article, to be in line with the ISO 7731 international standard, we will use the term audibility 

as a property of what is “clearly audible”. While we acknowledge that this definition is vague and goes beyond 

the single question of detectability, it is intended to capture the vocabulary of the standard. The purpose of this 

section is to introduce the different concepts related to or interacting with the perception of the audibility of 

acoustic alarms in noise based on the literature. 

An acoustic alarm is expected to possess acoustic characteristics that allow for perceptibility and appropriate 

response by individuals located within the designated reception area [11]. This was first defined by Wilkins as the 

“effectiveness” of an acoustic alarm [33]. According to Wilkins, the perception of an alarm involves three 

components: audibility, attention demand, and recognition. Audibility determines if the sound can be heard amid 

background noise. Attention demand relates to the ability of the sound to attract attention and be consciously 

perceived when unexpected. Finally, recognition requires the sound to be distinguishable from other sounds and 

convey the meaning of danger. In the ISO 7731 standard, the idea of “effectiveness” of a danger signal is referred 

to as “reliable recognition”. Like Wilkins, the standard expresses criteria of effectiveness, namely audibility, 

distinctiveness, unambiguity and independence from source movement. Here, audibility means that the danger 

signal has to be “clearly audible”, and that the effective masked threshold must be “distinctly exceeded”. 

Distinctiveness requires that the signal be designed to stand out from all other sounds in the reception area 

including any other signals. Eventually, the signal must have an unambiguous meaning, and its characteristics 

must be recognizable no matter the potential movement of the source.  

From the above, the standard mainly considers audibility as a masking issue. In order to meet the audibility 

criterion, the alarms are required to “distinctly” exceed the masked thresholds. However, there is no clear guidance 

on the optimal amount by which the alarms should surpass the masked thresholds. Previous studies have suggested 

that alarms should be 12 to 25 dB above the masked thresholds [16,34–36], but this range is too broad to be 

practically useful in most situations. Therefore, it is difficult to establish a more precise criterion solely based on 

masking that would be widely accepted. This indicates that other processes operating at supraliminal levels may 

also play a role in the perception of an alarm in noise as “clearly audible” and should be taken into account. In 

particular, it is likely that distinctiveness, as it is defined above, has a significant impact on the perception of an 

alarm as “clearly audible”. In this regard, recent works on auditory salience have highlighted the fact that sound 

events with divergent acoustic properties from those of the surrounding environment are more perceptually 

prominent, therefore easier to hear [37,38]. Nonetheless, while salience may influence audibility, it represents a 

distinct concept that focuses on the properties of sound eliciting involuntary attention, independently of top-down 

factors. Measuring salience therefore requires purely passive listening, contrary to audibility, which entails active 

listening to assess the “clearly audible” aspect of the sounds. In that respect, salience refers more to attention 

demand than to audibility per se [39]. This observation somehow reflects the fuzzy boundaries that exist between 

the different components of alarm effectiveness. In their study, Laroche et al. measure reaction thresholds [16], 
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defined as the levels at which the alarms elicit a response, such as turning towards the source, or moving away 

from the danger zone. This definition, while resembling the broader notion of alarm efficiency, emphasizes the 

crucial point that alarms must exceed a certain level to be effective, aligning with the ISO 7731 requirement for 

alarms to be “clearly audible”. While it does not assume accurate source recognition, it is still based on the idea 

that the sound must indicate danger or urgency to trigger a reaction, which is only achievable if the alarm exhibits 

sufficient distinctiveness. This understanding of audibility supports the idea that the optimal level for an alarm to 

be perceived as “clearly audible” is modulated by factors beyond detectability, such as distinctiveness and attention 

demand. 

In the present work, the choice was made to measure audibility in accordance with the terms of the ISO 7731 

international standard. We assess the detectability as well as the “clearly audible” aspect of auditory alarms in 

occupational environments. Through data analysis, we compare our results to existing audibility criteria while also 

shedding light on the overlaps and disparities with detectability. Additionally, as there is currently no established 

linkage between the ISO 7731 standard requirements and recent research on auditory salience, we undertake a 

preliminary effort to connect audibility and salience, investigating potential relationships between these two 

notions. In addition to traditional psychoacoustical techniques, we introduce an automatic deep learning-based 

method to evaluate the audibility of acoustic alarms. This approach avoids reliance on a predefined explicit 

audibility criterion, which could potentially be subject to debate. Instead, we leverage a model that learns from 

examples of subjective audibility evaluations to produce outputs that emulate human judgments. 

3. EXPERIMENTAL EVALUATION OF AUDIBILITY 

3.1. Experimental design 

3.1.1. Participants 

The experiment involved the participation of 20 volunteers, aged from 20 to 50. All of them had normal-

hearing according to the International Bureau of Audiophonology criteria, with an average tone loss of less than 

20 dB HL across the frequencies 500, 1000, 2000 and 4000 Hz on both ears. The participants were compensated 

for the time spent on the tests.  

3.1.2. Stimuli and material 

Fifteen alarms and ten recordings of noisy work environments (backgrounds) were used to create the stimuli. 

The alarms and background sounds were mainly sourced from public platforms, namely Freesound [40] and 

BigSoundBank [41]. Additionally, we received some files from authors of published studies [42,43], and a few 

others were from personal recordings. Both the alarms and noisy backgrounds were evenly split into five categories 

based on their associated environmental contexts. A total of 30 alarm-background pairs were made by associating 

acoustic alarms and background noises within each contextual category1. To create the stimuli, monophonic sound 

clips were generated by adding an alarm to its background noise using a pseudo-random temporal onset, with 

boundary values set to avoid extreme temporal onset locations. Each sound clip was 5.5-second long and sampled 

at a rate of 44.1 kHz. Within the 5.5 s of a given sound clip, the alarm was played once. This single alarm 

occurrence could involve several bursts for intermittent alarms such as reverse alarms, but the overall alarm 

duration was limited to 1.8 s, which was the duration of the longest alarm. In order to avoid any clicking effect 

arising from a sudden volume change at the start or end of the stimuli, 20 ms raised-cosine onset and offset ramps 

were applied to the clips. The stimuli were output through a Babyface Pro soundcard (RME, Germany) and 

presented over DT 770 Pro circumaural headphones (Beyerdynamic, Germany) calibrated with an AEC101 

artificial ear and a Model 824 sonometer (Larson Davis, USA). To manage stimulus presentation and participant 

responses, a custom interface was created using Matlab App Designer.  

 
1 Information regarding the contextual categories and alarm-background pairs, as well as spectrograms of the sounds, are provided in 

the supplementary material accompanying this paper 
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3.1.3. Procedure 

The experiment consisted of two tasks: the first task aimed to measure detection thresholds; the second was 

an audibility assessment. Both tasks evaluated the 30 alarm-background pairs at two levels of background noise 

(60 and 80 dBA) using the method of constant stimuli. The value of 80 dBA was chosen in alignment with common 

practices observed in studies on workplace sound environments. As one of our objectives was to investigate the 

impact of ambient noise level on detection and audibility, we employed two distinct noise levels. We wanted to 

reflect ecological conditions while ensuring participant safety by avoiding exposure to excessively loud stimuli. 

Consequently, for the second noise level, we preferred the value of 60 dBA to levels above 80 dBA, which could 

have been hazardous. 

By definition, at detection threshold, an alarm is minimally audible. For an alarm to be considered “clearly 

audible”, its level must be much greater than detection threshold. Therefore, the study of audibility involves a scale 

of alarm levels different from that of detectability. This was accounted for by using a distinct range of SNRs for 

each task, varying alarm levels to reach a full coverage of the psychometric function domains.  

The detection task followed a two-interval two-alternative forced choice (2I-2AFC) design. During each trial, 

participants were presented with two consecutive intervals separated by a 500 ms pause. Both intervals were 

generated using the same background noise, but only one of them contained the alarm to be detected. After the 

two intervals were presented in a random order, participants were required to indicate which interval contained the 

alarm. The 30 noise-alarm pairs were all presented at six different SNRs, namely – 30, – 22.5, – 17.5, – 12.5, – 7.5 

and 0 dB. To ensure robustness of the results, each condition was repeated three times for each participant. 

To assess audibility, participants were instructed to listen to the overall auditory environment without 

specifically focusing on attempting to detect the alarm2. The evaluation consisted in a straightforward Yes-No 

task. Each trial consisted of a single presentation of the stimulus, followed by the question “Was the alarm clearly 

audible?”. The binary assessment of audibility using the term “clearly audible” was directly derived from the ISO 

7731 standard. Despite the ambiguity of this expression, our choice was motivated by the necessity to offer a 

clearer understanding of this concept through our results and to enable comparison with the recommendations of 

the standard. Each alarm-background pair was presented three times at six different SNRs: – 25, – 15, – 10, – 5, 0 

and 10 dB. This range is broad and extends down to very low SNR values. Even though an SNR of – 25 dB would 

probably not be encountered in practice, it was included in our experiment to cover the lower end of the 

psychometric function domain. 

To minimize order effects, the task and stimulus presentation sequences were randomized for each 

participant. Considering the combinations of alarm-background pairs, SNRs, and noise levels, the listeners were 

presented with 360 different stimuli per task. As each stimulus was presented three times, the cumulative number 

of trials for each participant amounted to a total of 2160 trials. In order to avoid auditory fatigue among 

participants, the experiment was structured into discrete sessions. Each session was limited to a maximum duration 

of 2 hours. Within each session, the activity was subdivided into 3 to 4 blocks, with each block spanning 

approximately 25 minutes and separated with 5-minute breaks. 

3.2. Results 

3.2.1. Psychometric functions: general observations 

For each participant, the output of each task is represented as a probability score, determined for a specific 

alarm-background pair at fixed noise level and SNR. In the detection part of the experiment, this score represents 

the correct response rate, which is the probability of the participant providing the correct answer in a 2I-2AFC 

trial. It is bounded between 0.5 and 1, where 0.5 indicates chance performance or random guessing between the 

two intervals, and 1 signifies perfect accuracy. Alternatively, for the audibility assessment, the score ranges from 

0 to 1 and denotes the probability that the participant considers the alarm as “clearly audible”.  

Cumulative Gaussian sigmoids were fitted to these perceptual data using psignifit (version 4) toolbox [44]. 

The shape of these individual psychometric functions is determined by the four fitted parameters, which are the 

inflection point 𝑚, the slope (or width) 𝑤, and the upper and lower asymptotes 𝜆 and 𝛾. The general form of the 

psychometric functions is expressed in Equation 1, with 𝑥 representing the SNR and 𝐹(𝑥; 𝑚, 𝑤) a cumulative 

Gaussian distribution function. 

 
2 This instruction aimed to encourage participants to consider the surrounding sound context and prevent them from placing excessive 

emphasis on the alarm, which could potentially lead to distorted audibility judgments.   
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𝜓(𝑥; 𝑚, 𝑤, 𝜆, 𝛾) = 𝛾 + (1 − 𝛾 − 𝜆)𝐹(𝑥; 𝑚, 𝑤) (1) 

Figure 1 shows the mean psychometric curves, grouped by noise level for both tasks. As we are not interested 

in individual curves, we rather represent the mean psychometric curves across listeners. These curves were derived 

by computing the average of the 20 individual curves for each alarm-background pair, and then averaging the 

resulting curves across all pairs. In order to visualize the variability across the various sound conditions, the 

representation includes the corresponding standard errors across the set of 30 alarm-background combinations. 

Notably, both detectability and audibility are influenced by the noise level, albeit with opposite effects. 

Specifically, in the detection task, the average psychometric function in the background noise level of 60 dBA is 

consistently positioned above that in the noise level of 80 dBA across the entire range of SNR. This result shows 

that higher noise levels negatively impact alarm detection, making it more challenging. This effect is likely 

attributed to frequency masking. In higher noise conditions, the auditory filters are broadened, leading to increased 

frequency masking and consequently decreased detectability. Conversely, for the audibility assessment, the order 

between the two curves is inverted. This indicates that, at supra-threshold levels, higher noise levels are associated 

with increased audibility for a given SNR. A possible explanation for this phenomenon is that audibility may 

primarily depend on loudness. Beyond the masked threshold, the loudness growth steepens in higher noise levels 

due to the elevated absolute alarm levels at a constant SNR. This, in turn, could result in higher audibility scores. 

Additionally, we observe that the audibility psychometric functions are superimposed in the low SNR region up 

to the inflection point. This superimposition indicates that the effect of noise level on audibility is not apparent 

when the alarm level is not high enough for reliable detection. In other words, the effect of noise level becomes 

evident in the region where studying audibility is of particular interest. 

From an SNR of 7.5 dB, the correct response rate for the detection task is at a plateau value of nearly 100%, 

regardless of the noise level. Similarly, at the same SNR, the mean audibility scores are high for both noise levels 

of 60 and 80 dBA (90% and 95%, respectively). This observation supports the idea that a SNR of 15 dB, as stated 

in the ISO 7731 standard, may not always be necessary to ensure reliable detection and a strong level of reported 

audibility. 

To further analyze our results and confirm our observations, we conducted a series of statistical tests. We 

performed Bayesian ANOVAs, due to the flexibility and interpretability offered by the Bayesian framework in 

handling uncertainty and incorporating prior knowledge, facilitating robust and insightful inferences from the 

observed data. The first Bayesian ANOVA was applied to the detection threshold, defined as the value 𝑚 of the 

SNR at the inflection point of the psychometric function, with the participant as a random variable. It revealed 

significant effects of the noise level (BF = 2.3 × 104), of the alarm-background pair (BF = ∞), and of their 

interaction (BF = 124.5). Regarding audibility, we chose not to study the inflection point, as an audibility score of 

around 50% is too weak and lacks practical interest. Instead, we considered the audibility score reported at an SNR 

Figure 1: Mean across-participants psychometric curves, averaged across alarm-background pairs for both tasks, grouped by 

noise level. Standard errors across the 30 alarm-background pairs are represented in shaded areas. Left axis, plain line: Correct 

response rate as a function of SNR. The 2I-2AFC task leads to a scale ranging from 0.5 to 1. Right axis, dashed line: “Clearly 

audible” rate as a function of SNR. The Yes-No task leads to a scale ranging from 0 to 1.  
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of 7.5 dB. To compensate for floor and ceiling effects, all scores were first transformed from percentages into 

rationalized arcsine units (RAU) before the analyses [45]. The second Bayesian ANOVA, applied to the audibility 

score with the participant as a random variable showed significant effects of the noise level (BF = 1.1 × 1013), of 

the alarm-background pair (BF = 2.0 × 1014), and of their interaction (BF = 63.4). Overall, these results provide 

confirmatory evidence that the background noise level, noise environment, and alarm type significantly influence 

the perception of acoustic alarms in terms of both detectability and audibility. 

3.2.2. Comparison with existing criteria 

The ISO 7731 standard sets two major requirements to adjust alarms at levels considered “clearly audible”. 

First, alarm levels should be greater than 65 dBA. Second, they should meet at least one of the three following 

criteria: (Method A, Section 5.2.2.1) “the difference between the two A-weighted sound–pressure levels of the  

signal and the ambient noise shall be greater than 15 dB”, (Method B, Section 5.2.3.1) “the sound–pressure level 

of the signal in one or more octave-bands shall exceed the effective masked threshold by at least 10 dB in the 

octave-band under consideration”, (Method C, Section 5.2.3.2) “the sound–pressure level of the signal in one or 

more 1/3 octave-bands shall exceed the effective masked threshold by at least 13 dB in the 1/3 octave-band under 

consideration”. For these two last methods (i.e. B and C), the “effective masked threshold” is computed from the 

octave-band or the third-octave band spectrum of the ambient noise using a simplified model of masking provided 

by the standard.   

To assess the relevance of these recommendations, we compared them to the measured psychoacoustic data 

of our experiment. The upper panel of Figure 2 represents the SNR values computed according to the three criteria 

of the standard for each alarm-background pair. Method B and Method C yield close recommendations, reliably 

lower and significantly distant from the fixed SNR criterion of minimum 15 dB provided by Method A. 

Additionally, the SNRs corresponding to a measured average audibility score of 85% for the two noise levels are 

also plotted on the upper panel of Figure 2. They demonstrate that Method B and Method C of the standard not 

only effectively predict the relative differences in audibility between the tested alarm-background pairs but also 

consistently ensure an audibility score greater than 85%, for both noise levels in most cases.  

The lower panel of Figure 2 also presents the recommendations of the three criteria of the ISO 7731 standard, 

on a new scale corresponding to the measured audibility score. As the measured audibility score is dependent on 

the ambient noise level, each criterion now appears twice per alarm-background pair. The chart also includes boxes 

that represent the range of 12 to 25 dB above the measured detection threshold, as recommended by the 

literature [16,34–36]. This representation combines information regarding both detectability and audibility, 

allowing for an evaluation of the standard criteria with regard to the actual measured detection thresholds and 

audibility scores. We observe that the lowest end of the range 12 – 25 dB above detection threshold often yields 

rather low audibility scores, particularly when the noise level is low (i.e. 60 dBA). This observation supports our 

reflection on the limited practical applicability of this range. Besides, comparing the positions of the boxes and the 

markers representing Method A, we notice that the fixed, over 15 dB SNR criterion, despite ensuring a 100% 

audibility score, appears to lead to excessive alarm levels for almost all alarm-background pairs. This result 

suggests that the criterion advocated by Method A is excessively conservative and not aligned with the other two 

criteria from the same standard. By comparison, a fixed SNR of 7.5 dB would result in lower alarm levels, falling 

almost exclusively within the 12 – 25 dB above threshold range, while maintaining good audibility. As evidenced 

by the variations in audibility scores observed among distinct alarm-background pairs, the choice of a fixed 

criterion relying on a global SNR may not be the most suitable. However, our findings indicate that if such a 

criterion were to be applied in accordance with the recommendations of Method A, it would be advisable to set it 

at a lower SNR value. In that respect, the proposed lower fixed SNR criterion of 7.5 dB appears to be equally 

effective and offers a more balanced compromise to take into account the risk of overexposure for workers. By 

adopting a lower alternative criterion, a better balance could be struck between ensuring adequate audibility and 

avoiding unnecessary alarm levels, resulting in a safer and more practical implementation of the standard. 
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3.2.3.  Understanding audibility: influencing factors 

Given the absence of a precise meaning associated with the expression “clearly audible”, most of the 

perceptually grounded criteria depend on the detection thresholds. This reliance is evident both in the standard, 

with the use of the effective masked threshold, and more generally in the literature, where the 12 – 25 dB range 

above the detection threshold is often recommended for optimal audibility [16,34–36]. It is based on the 

assumption that the audibility at supraliminal levels can be inferred from the detection thresholds. However, while 

a clear relationship exists between detectability and audibility, as levels close to or below detection threshold are 

naturally associated with low audibility scores, this relationship becomes less direct at higher levels. Figure 3 

illustrates the correlation between the detection threshold and two different parameters for each alarm-background 

pair: the inflection point 𝑚 of the average audibility psychometric curve (left panel) and the SNR at which the 

average audibility score reaches 0.8 (right panel). The left panel shows at first sight a quasi-linear relationship 

between the inflection points of audibility and detection curves, with an adjusted-R² of 0.66. This finding suggests 

that the detection threshold indeed determines the level from which the notion of audibility becomes relevant. 

However, the scatter plot on the right panel highlights that the detection threshold is not a reliable predictor of 

audibility at higher levels. In the present case, the detection thresholds and the levels corresponding to an audibility 

score of 0.8 are poorly correlated (adjusted-R² = 0.33). This indicates that, despite an existing relationship between 

detectability and audibility at supraliminal levels, detection thresholds alone cannot fully explain audibility or 

serve as a basis for establishing optimal level recommendations.  

Figure 2: Adjustment of alarm levels based on ISO 7731 (Methods A, B and C) and psychoacoustic data, for each alarm-

background pair, in the two noise levels (60 and 80 dBA). Upper panel: SNR as recommended by the ISO 7731 criteria and 

SNR leading to an averaged measured audibility score of 0.85. Lower panel: Measured audibility scores associated with all 
three ISO 7731 requirements along with vertical rectangular boxes representing audibility scores in the range 12-25 dB above 

detection threshold. 
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In order to identify the other factors influencing the audibility of acoustic alarms in occupational 

environments, we carried an acoustic analysis of the stimuli used in our experiment. Our aim was to determine 

whether the audibility of an auditory alarm could be partially explained by the divergence in certain acoustic 

features compared to the surrounding acoustic environment. For each of the 360 listening conditions, we extracted 

nine features for both the alarm-background mix and the background alone, using a random alarm temporal onset. 

These features, namely spectral irregularity, spectral flatness, brightness, bandwidth, spectral modulations (scale), 

pitch, harmonicity, temporal modulations (rate), and loudness, were computed in accordance with the definitions 

and methods presented by Huang and Elhilali [38].  

To ensure fair comparisons and remove the impact of different scales and distributions, a z-score 

normalization was applied across the features for each sound clip. Subsequently, the features were time-averaged 

over the period during which the alarm was supposed to be present. By time averaging the features, we obtained a 

representative measure of their behavior within the stimuli over this specific period, considering both the alarm-

background mix and the background alone. The measure of the divergence in the acoustic features of the 

environment caused by the alarm was derived by computing the difference between the features of the alarm-

background mix and those of the background alone. We collected these feature difference vectors for all listening 

conditions and then concatenated them into a single array. 

To identify the acoustic features that contribute significantly to the audibility of the alarms, we performed a 

partial least squares logistic regression (PLSR) following the methodology employed by Thévenet et al. [46]. 

PLSR is a powerful multivariate statistical technique that combines aspects of principal component analysis and 

multiple regression. It is well-suited for handling situations involving high-dimensional predictor variables and 

potential multicollinearity among them. Unlike traditional regression methods that treat each predictor 

independently, PLSR identifies latent variables that capture shared information between the predictors and the 

response. Furthermore, it differs from classical principal component analysis by focusing on maximizing 

covariance between the predictors and the response variable, rather than just maximizing the variance in the 

predictors. This property makes PLSR particularly valuable for predictive modeling. The analysis was conducted 

using the plsRglm (version 1.5.1) package [47], employing the nine feature differences as predictor variables and 

the corresponding audibility scores as the response variable. 

Figure 3: Scatter plots of audibility against detectability for each combination of alarm, background and noise level. 

Left panel: Inflection point of the average audibility psychometric curve as a function of the corresponding detection threshold. 

Right panel: SNR leading to an average audibility score of 0.8 as a function of the corresponding detection threshold. 
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Following a preliminary cross-validation, we opted to retain only one component in the PLSR model. 

Figure 4 displays the results of the PLSR, represented by standardized regression coefficients and bias-corrected 

and accelerated bootstrap intervals. These intervals were obtained using the balanced bootstrap method with 1000 

resampling iterations. Statistically significant coefficients are those whose bootstrap distributions lie either above 

or below zero. As anticipated, our analysis confirms that loudness serves as a robust predictor of audibility. This 

supports our interpretation that audibility is predominantly and positively influenced by the loudness of the alarms. 

Furthermore, the results reveal that variations in loudness, scale, brightness, pitch and harmonicity significantly 

contribute to predicting the audibility score. Remarkably, these findings closely align with the main predictors of 

auditory salience identified by Huang and Elhilali [38]. The strong agreement between our results and those of 

Huang and Elhilali supports the idea that the audibility of acoustic alarms is intricately related to auditory salience. 

Specifically, an alarm is more likely to be considered “clearly audible” if it induces variations in one or several of 

the aforementioned acoustic features in the acoustic environment, rendering it more attention-grabbing on the same 

occasion. 

3.3. Discussion 

In high noise level conditions, the audibility of the alarms was found to be greater compared to lower noise 

levels. This is consistent with the findings of Żera and Nagórski [12]. This outcome underscores a divergence 

between audibility and detectability, as the latter becomes more difficult in the presence of higher noise levels. 

Additionally, while our results evidenced a link between detectability and audibility, we observed that detection 

thresholds were not a reliable predictor of audibility scores. This was particularly evident at higher alarm levels, 

which are closer those encountered in real-world scenarios. This finding emphasizes the importance of considering 

the perception of audibility at supraliminal levels as a distinct factor from detectability when characterizing 

acoustic alarms. 

Consistent with earlier research [15,16,18], our experiment corroborated that the fixed criterion established 

by Method A of the ISO 7731 standard systematically leads to unnecessarily high alarm levels. On the other hand, 

although more complex, Method B and Method C, which are based on octave and third-octave band measurements 

are more suitable for achieving optimal audibility while avoiding reaching excessive alarm levels. The proposed 

global SNR criterion of minimum 15 dB already results in excessive alarm levels at the two noise levels tested in 

this study (60 and 80 dBA), and does not account for the noise level dependency of audibility. As a result, it may 

prove unnecessarily dangerous and even cause hearing impairments, especially in higher levels of noise. In this 

regard, while expressing reservations about the use of a fixed global SNR criterion, we advise setting this criterion 

to a lower SNR value. As such, our data demonstrated that a 7.5 dB SNR value is sufficient to maintain good 

audibility, making it a viable substitute for the current 15 dB criterion. An alternative approach could be to establish 

an adaptive criterion that would be adjusted based on the ambient noise level, thereby mitigating the risks 

associated with excessively loud alarm levels while ensuring reliable audibility. 

Figure 4: Coefficients of the first PLSR component. Acoustic features whose coefficients have bootstrap distributions above or 

below zero are considered statistically significant predictors. 
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Eventually, our acoustical analysis of the stimuli showed that the acoustic features associated with auditory 

salience were also those who best predicted audibility. This result suggests that the most distinctive sounds tend 

to be perceived as the most audible. For comparison purposes, our study focused only on the same features as 

explored in the work of Huang and Elhilali [38]. However, other features, such as roughness which also contributes 

to salience [48], could be added to get an even better picture. 

4. DEEP LEARNING-BASED AUDIBILITY PREDICTION 

4.1. Problem definition 

In accordance with the ISO 7731 standard, which stipulates that alarms must be “clearly audible”, we frame 

the evaluation of audibility as a binary classification task in which we classify acoustic alarms as either “clearly 

audible” or not within different work environments. To achieve this, we implement a system that makes binary 

audibility predictions. Given an input sound clip containing an alarm played against an occupational background 

noise, the system produces a binary estimate �̂� of whether the alarm is “clearly audible” (�̂� = 1) or not (�̂� = 0). 

 Our proposed approach is data-driven and leverages deep learning methodologies. By embracing a 

supervised learning framework, we can train a neural network to assess the “clearly audible” attribute of alarms 

with no need for explicit criteria, as the network learns through exposure to alarm examples paired with human 

perceptual assessments of audibility. To accommodate the data requirements of deep learning, this approach 

necessitates the collection of a substantial dataset3. This dataset is divided and used across two stages. In the first 

stage, referred to as development, the model is trained to extract relevant patterns and features from the data. The 

second stage, known as evaluation, consists in assessing the performance of the trained model on a separate and 

independent subset4. 

4.2. Dataset 

The dataset comprises a collection of sound clips generated by mixing recordings of occupational noises 

(backgrounds) with acoustic alarms, using a random temporal alarm onset. Each clip is 5.5-second long and 

contains a single alarm whose duration varies between 0.2 and 1.8 seconds. The acoustic data is accompanied by 

perceptual annotations, acquired through a listening test involving normal-hearing participants. Specifically, the 

listeners were presented with the clips and subsequently queried regarding the audibility of the alarms, with the 

question: “Was the alarm clearly audible?”. 

The dataset is divided in two subsets: one for development and another for evaluation. These subsets serve 

different purposes and consequently have distinct constraints. A prior study [32] demonstrated that, while 

reliability and interpretability are crucial for evaluation data, using a lighter annotation for development data does 

not significantly affect the model performance. As a result, the annotation procedure differs for each subset. For 

the evaluation data, a well-controlled annotation procedure is essential to yield responses suitable for extensive 

analysis, similar to a standard psychoacoustic experiment. In contrast, for development data, the emphasis lies 

more on the richness of the sound corpus rather than the purity of the annotations. Therefore, a more flexible 

annotation procedure is desirable as it allows for coverage of a broader range of listening conditions in less time.  

In an ideal scenario, the collection of such a dataset would necessitate independent groups of participants for 

annotating the development and evaluation data. However, due to challenges in recruiting participants for the 

listening tests, adopting this approach would have resulted in an insufficient number of annotations for either 

subset. As a practical compromise, we proposed the involvement of some individuals in the annotation of both 

development and evaluation sets. For methodological clarity, we categorized them into three distinct pools denoted 

as A, B, and C. The number of annotators and the involvement of each pool in the annotation process are shown 

in Table 1. The potential implications of sharing common annotators between the development and evaluation sets 

may be explored in future studies.  

For each subset, we present its contents and provide a comprehensive description of the employed procedure 

for annotation. In contrast to the conventional practice of starting with development data, we intentionally present 

 
3 The dataset containing both the acoustic data and metadata along with the perceptual annotations will be uploaded and publicly 

available at: https://zenodo.org/doi/10.5281/zenodo.8417086 
4 The code for neural network model development and evaluation as well as the weights of the models analyzed in the paper will be 

made accessible at: https://github.com/effajr/predicting_alarm_audibility 

https://zenodo.org/doi/10.5281/zenodo.8417086
https://github.com/effajr/predicting_alarm_audibility
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the evaluation data first. This choice aims to better connect with the preceding section on the psychoacoustic 

experiment. 

 

 Size Development Evaluation 

Pool A 12  × 

Pool B 8 × × 

Pool C 2 ×  

Table 1: Pools of participants involved in the dataset annotation. 

4.2.1. Evaluation data 

We use the sound clips and subjective responses from the experiment presented in Section 3 as the evaluation 

data. The subset consists of 360 monophonic sound clips, which corresponds to the 30 alarm-background pairs 

mixed at six different SNRs, and across two levels of noise as determined in the psychoacoustic experiment. The 

annotations for the evaluation data are derived from the responses provided by the 20 participants. In the 

experimental procedure, each clip was presented to the subjects three times, resulting in a total of 60 binary 

annotations per example in the evaluation set. A binary value of 1 indicates that the alarm was reported as “clearly 

audible” by the participant, whereas a 0 signifies that the alarm was not perceived as such. Among the twenty 

annotators, twelve exclusively annotated the evaluation data (pool A), while the remaining eight (pool B) also 

contributed to the annotation of development data.  

4.2.2. Development data 

The development set is composed of 2000 monophonic sound clips, generated using a combined total of 70 

alarms and 52 backgrounds. All sounds used for development were sourced exclusively from the Freesound 

library [40]. In order to maintain a strict separation between development and evaluation sets, care was taken to 

ensure that the alarms and backgrounds used for development were distinct from those present in the evaluation 

set. Additionally, in the consideration of Freesound being a collaborative library, we selected development alarms 

and backgrounds from various Freesound users, distinct from those in the evaluation set. This aimed to prevent 

biasing the evaluation set with sounds potentially recorded under identical conditions as some of the development 

data. 

The distinction between development and evaluation sounds implies that they were not the exact same 

signals. However, some of them roughly shared spectral or temporal attributes with sounds of the evaluation set. 

Notable examples of these shared characteristics included a pulsed temporal structure or a complex harmonic 

frequency content for alarms, and the presence of broadband factory noise for background sounds. The selection 

criteria for sounds of the development set were less restrictive compared to those of the evaluation set. 

Consequently, not all alarms within the development data can be unequivocally categorized into specific types. 

We provide a global overview of alarm characteristics in the supplementary material accompanying this paper. 

For illustrative purposes, we also show examples of spectrograms of the development sounds.  

The clips were generated through a random pairing process, where an alarm and a background noise were 

randomly drawn from our pool of sounds. The background noise level was randomly set at either 60 or 80 dBA, 

and the mixing was made at a randomly selected integer SNR ranging from –30 to +15 dB. The choice of the noise 

level values was guided by the same motivations as in the psychoacoustic experiment.  The setup used to present 

the stimuli was the same as described in the psychoacoustic experiment. As the annotation procedure was intended 

to be faster than for evaluation, each clip within the development set was presented to the listeners only once (as 

opposed to the standard three times for evaluation data). A total of 10 normal-hearing individuals participated in 

the annotation of the development clips. This group consisted of the eight annotators of (pool B), along with two 

additional annotators (pool C). As a result, each sample in the development set received 10 binary annotations.  
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4.2.3. Summary 

Table 2 succinctly recapitulates the key aspects of the distinct procedures employed in the generation and 

annotation of development and evaluation sound clips. Additionally, Table 3 provides a summary of the 

divergences in the content of the two subsets following the data collection process. 

 

 Development Evaluation 

Alarm and background pairing Random In predefined list 

Selection of the SNR 
Random in 

⟦– 30 ; 15⟧ dB 

List of 6 values 

– 25, – 15, – 10, – 5, 0 and 10 dB 

Selection of the background noise level 
Random in 

{60 ; 80} dBA 
List of 2 values 
60 and 80 dBA 

Number of presentations for each clip 1 3 

Table 2: Summary of the procedures used to generate and annotate sound clips for development and evaluation sets. 

 Development Evaluation 

Number of sound clips 2000 360 

Number of different alarms sounds 70 15 

Number of different background sounds 52 10 

Annotators  10 20 

Total number of annotations per clip 10 60 

Table 3: Differences between the contents of the development and evaluation sets. 

4.3. Labels and evaluation metrics 

4.3.1. Labeling strategies 

Measuring the model ability to correctly classify positive (i.e. “clearly audible”) and negative (i.e. not “clearly 

audible”) samples relies on the prior definition of the expected class associated with each sample. This expected 

class is typically denoted as the label or ground truth. However, in our specific problem, inferring the “truth” is 

challenging due to the subjective nature of perceiving an alarm as “clearly audible”. As such, each sample in the 

dataset comes with multiple annotations, which may not all be identical. Consequently, the question arises of how 

to derive single binary labels from these diverse annotations. In our study, we employed three distinct strategies 

to label the data. These strategies are elucidated below.  

Average Psychometric Function: The evaluation data are the most comprehensive in our dataset, as each 

sample has undergone three annotations by each annotator. In addition, the listening experiment encompasses 

multiple SNRs, enabling the fitting of psychometric functions. The first labeling approach consists in fitting the 

individual psychometric curves of all annotators and subsequently averaging them across the annotators for each 

combination of alarm, background, and noise level. Then, for each sample within the evaluation set, we extract 

the corresponding value from the average psychometric function at the given SNR. This continuous value is 

eventually transformed into a binary label by applying a binarization threshold, which is set to 0.5 by default. We 

term this strategy the Average Psychometric Function (APF) strategy. This approach maximizes the utilization of 

all annotations collected for each sample, drawing upon psychometric functions that are widely used and easily 

interpretable in the field of psychoacoustics. It is used as the main labeling method to evaluate the model on 

evaluation data. 

Majority Voting: The annotation procedure employed for the development data precludes the fitting of 

psychometric functions. Consequently, an alternative labeling strategy is required, applicable to both the 

development and evaluation sets, allowing for meaningful comparisons. We propose majority voting (MV), which 

is a widely used and straightforward labeling method, particularly suitable for crowdsourced data [49,50]. It relies 

on binary individual annotator responses, in contrast with the continuous individual values of APF. For 

development data, the binary responses provided by the 10 annotators are aggregated for each sample, taking the 
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majority opinion as the final label. As for the evaluation data, where each annotator has provided three binary 

responses per sample, we average and binarize these individual responses. Following that, we aggregate the 

binarized responses from all annotators, again using the majority opinion. 

Random Drawing: Lastly, the third labeling method is exclusively employed during development. It consists 

in randomly drawing, for each example in the development set, one of the 10 available annotations and use it as 

the actual label. This method simulates a worst-case scenario where we must learn a model with a limited number 

of annotations. This limitation arises due to the time-consuming nature of the annotation process, which may lead 

to the temptation of employing a single annotator per development example to accelerate data collection. It is 

worth noting that the binary response given by a single annotator is a noisy estimate of the consensus, potentially 

resulting in some mislabeled samples. However, it has been observed that these noisy labels act as a form of 

regularization, preventing overfitting to the training data rather than compromising the overall classification 

performance [32]. This method is referred to as the random drawing (RD) strategy in the remainder of the paper. 

4.3.2. Metrics 

In order to assess the classification performance, we employ two widely used metrics: the area under the 

receiver operating characteristic curve (AUROC) and the F1-score. The AUROC quantifies the overall 

performance of a binary classifier. It measures the ability of the model to discriminate the positive and negative 

instances. It is determined through the integration of the receiver operating characteristic (ROC) curve, which 

depicts the relationship between the model true positive rate and false positive rate. This integration summarizes 

the model overall classification performance in a single metric ranging from 0 to 1. The F1-score is a measure of 

the model performance, taking into account both precision and recall. It balances the trade-off between correctly 

identifying positive samples (precision) and capturing all positive samples (recall). The F1-score ranges from 0 to 

1, with 1 indicating perfect precision and recall. 

4.3.3. Human baseline performance 

To establish a benchmark for model performance comparison, we suggest evaluating the metrics against the 

performance of an average human. This approach will serve as a baseline. To achieve this, we calculate the 

evaluation metrics for each annotator in the dataset, while employing the remaining annotators to derive the 

reference labels on each iteration. Subsequently, we compute the mean and the standard error across all annotators 

for both metrics. 

We first calculate the human baseline performance using MV labels to enable comparison between the 

development and evaluation sets. The results, reported in Table 4, demonstrate consistently high performance in 

both subsets. The similarity in scale between development and evaluation performance suggests that one subset 

should not be significantly more challenging to predict than the other. However, we do notice a slight discrepancy 

between the two subsets, indicating that, on average, there is less agreement between a single annotator and a 

reference annotator group for the evaluation data. 

 
 

Development Evaluation 

AUROC 87.68 ± 1.71 84.53 ± 1.79 

F1 87.70 ± 1.79 82.78 ± 2.82 

Table 4: Performance metrics computed for the human baseline on development and evaluation sets. 

Second, we proceed to compare the human baseline performance on the evaluation data, computed with two 

different label types: MV labels and APF labels. As presented in Table 5, the labeling strategy acts differently on 

AUROC and F1-score. While the F1-score remains consistent regardless of the labeling strategy, the AUROC 

significantly increases when APF labels are used. This disparity arises from the inherent differences in how these 

metrics are computed. Both metrics require binary reference labels, but they impose different constraints on the 

individual responses (outputs) of the annotator whose performance is being assessed.  

The F1-score requires binary outputs, as it relies on precision and recall, which are computed from binary 

predictions obtained by applying a binarization threshold to the continuous outputs. Conversely, the AUROC can 

handle continuous outputs since it examines the classifier ability to distinguish between classes across various 

discrimination thresholds. Consequently, for both MV and APF labeling methods, the F1-score is computed with 
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binarized individual annotator responses. The only difference lies in the accuracy of individual responses, which 

are binarized from the full psychometric function, rather than relying just on three Yes-No trials. In contrast, the 

AUROC is computed with continuous individual outputs for APF labels, against binary individual responses for 

MV labels. As a result, the AUROC takes advantage of the entire range of continuous response probabilities 

provided by the psychometric function and is not affected by the choice of the binarization threshold applied to 

the individual annotator responses.  

This last observation underlines the significance of using APF labels to evaluate the model on evaluation data 

on two counts. First, it leverages comprehensive knowledge of the psychometric functions of the annotators, 

thereby elevating the human baseline score in terms of AUROC and enhancing the interpretability of this metric. 

Second, it provides justification for utilizing both AUROC and F1-score metrics. While the F1-score directly 

measures the binary classification performance, the AUROC facilitates the comparison of the classifier continuous 

output with the psychometric function of an average human.  

 
 

MV APF 

AUROC 84.53 ± 1.79 97.01 ± 0.49 

F1 82.78 ± 2.82 83.48 ± 2.93 

Table 5: Performance metrics computed for the human baseline on evaluation data, using MV and APF labels. 

4.4. System 

Our system uses 5.5-second sound clips to generate an estimate, at the clip-level, of whether the alarm within 

the sound clip is “clearly audible” or not. The process consists of two distinct stages: feature extraction and 

classification. In the first stage, spectro-temporal representations of the sound clips are extracted. These 

representations are then fed into a classifier in the second stage, which generates audibility predictions for each 

clip. The general structure of the system is depicted in Figure 5. 

4.4.1. Input acoustic features 

The input acoustic features used in our study are mel-spectrograms, which find extensive application in 

machine listening. To generate the mel-spectrogram for a combination of an alarm and background noise, we 

compute a short-time Fourier transform (STFT) using a Hamming window with a segment size of 1024 and a hop 

size of 512. Subsequently, we apply a mel-filterbank over the resulting spectrogram to convert it into 64 mel-

spaced frequency bins, covering the range from 20 Hz to 22.05 kHz. With only 64 frequency bins, these mel-

spectrograms offer more compact representations than conventional magnitude spectrograms, making them more 

computationally efficient. Additionally, they are based on the Mel scale, which makes them more aligned with 

human perception.  

4.4.2. Model architecture 

The proposed classifier is a CNN whose architecture is inspired by models used in rare sound event 

detection [51,52]. A similar architecture has demonstrated ability to reach high classification performance in two 

preliminary studies [31,32]. 

The model is composed of four convolutional layers, each having a different number of filters: 32, 64, 64, 

and 128 filters per layer, respectively. These filters are essentially small grids used to scan the input data. They 

Figure 5: Illustration of the different stages of the system. 
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have a receptive field size of 3 by 3, meaning they analyze a 3-by-3 section of the input mel-spectrograms at a 

time. 

Following each convolutional layer, Rectified Linear Unit (ReLU) activations [53] are applied, and max 

pooling is performed along the frequency axis. ReLU is a mathematical function that introduces non-linearity into 

the model, thereby facilitating the capture of complex patterns and features within the data. Max pooling is a 

downsampling technique that retains the maximum value from a set of values within a certain region. The pooling 

operations have different strides for each layer, which control how the pooling regions overlap or skip. Specifically, 

the strides are (1, 4), (1, 4), (1, 2), and (1, 2) for the respective layers. This operation reduces the dimensions of 

the data, thus decreasing computational complexity and memory usage across layers while preserving essential 

features.  

The activation outputs from the final convolutional layer are then fed into a fully connected layer that 

processes each time frame separately, followed with a sigmoid activation function. This step transforms the data 

into a one-dimensional vector representing frame-level posteriors, where each value in the vector ranges between 

0 and 1 due to the sigmoid activation.  

To obtain a clip-level score, an Lp aggregation with p=5 is applied over the time axis on this vector. This 

process aggregates the information across time to make a decision at the level of the entire sound clip. The resulting 

score is a continuous value that aims to be as close to 1 as possible when the alarm is considered “clearly audible” 

and close to 0 when it is not. By default, we set the discrimination threshold to 0.5, meaning that the value is simply 

rounded to yield a binary output. 

4.4.3. Development procedure 

In order to prevent overfitting, the model is not trained using the entire development set. Instead, a portion 

of the development data is reserved for continuous monitoring of the model performance on data that the model 

has not learned from. This practice is commonly referred to as validation. In our work, we randomly allocated 20% 

of the development data for validation purposes, while the remaining 80% was exclusively designated for training. 

This random allocation was performed once and kept fixed throughout the study.  

In accordance with the commonly recommended practice in deep learning approaches, especially for 

accelerating the convergence of the training process [54], we scale the data to zero mean and unit variance along 

mel frequency bins prior to feeding it into the model. The standardization coefficients are computed on the training 

samples. The same standardization coefficients are used to scale the whole dataset, ensuring uniform treatment of 

both development and evaluation data. 

The CNN is trained with backpropagation, a fundamental deep learning method for adjusting model 

parameters to minimize prediction errors. The training samples are fed into the model in mini-batches of size 16. 

Within each mini-batch, we quantify the prediction error of the model by the means of a binary cross-entropy loss 

function. We then calculate the gradients of the loss function with respect to the internal parameters of the model. 

These gradients indicate the direction and magnitude of the adjustments required to minimize the loss. Using Adam 

optimizer [55], we leverage the gradient information to iteratively update the parameters, progressively improving 

model predictions. We set the learning rate, which determines the step size during weight update, to 0.0001.   

To prevent the model from overfitting the training data, we fix a 0.0001 weight decay within the Adam 

optimizer. Weight decay imposes a penalty on the model parameters, discouraging them from growing too large 

during training. Additionally, we apply dropout with a rate of 0.25. Dropout randomly deactivates a fraction of 

neurons in the network during training, preventing the model from overly relying on any individual neuron or 

group of neurons. 

The model is trained for 250 epochs, with each epoch representing the complete processing of all mini-

batches of training data through the model. Throughout training, the model performance on the validation data is 

evaluated after each epoch, using RD labels. The final parameters of the models are retained from the epoch with 

the highest validation accuracy for subsequent evaluations and predictions. 

4.5. Model performance 

To capture the variance and uncertainty in the training process resulting from weight initialization and data 

sampling, we perform 10 runs of model training, each with different random initialization and data sampling. 

Before each training run of the network, a random draw is performed to determine the training RD labels. 

In order to guarantee that the evaluation of the model performance on the evaluation set is only based on its 

capacity to generalize to unseen data, we employ separate and non-overlapping groups of annotators for 
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development and evaluation. For this purpose, we derive the APF labels for the evaluation set exclusively from 

the responses provided by the 12 annotators of (pool A). Meanwhile, our development procedure relies on RD 

labels sourced from the eight annotators of (pool B) and the two annotators of (pool C). This way, we aim to 

mitigate any potential annotator biases that may have been learned during development and ensure a fair and 

reliable evaluation. 

We report both the model and human performance on the evaluation set with mean value and standard error 

across the 10 runs in Table 6. As we can observe, the model performance closely approximates that of humans, 

albeit with a slight deficit in comparison to the human baseline. The disparity between model and human baseline 

is much more pronounced and significant for the AUROC metric than it is for the F1-score, suggesting comparable 

binary classification performance in terms of precision and recall. This observation is further supported by the 

AUROC value of the model, which aligns closely with that of the human baseline when evaluated on binary MV 

labels.  

 

 

 

 

 

Table 6: Performance on the evaluation set for the model and the human baseline. 

5. COMPARATIVE ANALYSIS AND DISCUSSION 

The evaluation of the system using the two classification metrics has provided valuable insights into the 

achievable performance using a low-complexity deep-learning model for predicting alarm audibility. In this 

section, we expand upon this initial analysis by conducting a more comprehensive examination of the model 

performance, drawing comparisons with the human baseline. 

5.1. Audibility criterion and binary classification performance 

First, our specific focus centers on the binarization threshold employed to generate the APF labels within the 

evaluation set. For the model evaluation presented in Table 6, the evaluation label binarization threshold was set 

at a default value of 0.5. This choice, guided by pragmatic technical factors, corresponds to a rounded mean 

audibility score for each sample and ensures a balanced evaluation set. Additionally, this threshold is closer to a 

majority voting approach, as it defines samples as positive if that have a 50% or higher probability of being 

considered as “clearly audible”, on average, by the participants. Nevertheless, it may not be the most suitable in 

terms of practical applicability of the model. While the model holds potential for alarm level configuration, the 

evaluation label binarization threshold, governing the audibility score at which an alarm becomes labelled as 

“clearly audible”, should be selected with care. Opting for a threshold of 0.5 adopts a rather permissive criterion, 

as all samples with an audibility score above 50% would be considered as “clearly audible”. This liberal approach 

might prove inadequate for ensuring reliable audibility if the model was to be employed in setting alarm levels. 

We conducted a study of the effects resulting from different binarization thresholds applied to obtain the 

evaluation labels. We compare the effects on both the model and the human baseline performance. To evaluate the 

model, we analyzed the outputs obtained from the 10 runs, as presented in Section 4, by comparing them against 

the APF labels subjected to different evaluation label binarization thresholds. The evaluation was conducted based 

on precision, recall and F1-score. The results are presented in Figure 6. 

In Figure 6(a), the precision demonstrates a monotonic decline with increasing evaluation label binarization 

thresholds, signaling an increase in false positives. This trend is consistent for both the model and the baseline. 

From the perspective of the model, this outcome can be attributed to the fact that, as the evaluation label 

binarization threshold increases, the number of positive samples in the evaluation set decreases. Since the model 

discrimination threshold remains fixed, its outputs do not change with the binarization threshold of the labels. 

Consequently, samples that were correctly classified as positive with a low binarization threshold gradually 

become false positives as the threshold increases. In contrast, the interpretation of decreasing precision in the 

human baseline performance differs. Since the binarization threshold is identical for both individual annotators’ 

outputs and reference labels, the diminishing precision with increasing binarization threshold reflects a distinct 

mechanism. This shows that, on average, a reference group of listeners adopts a more conservative stance 

compared to an individual listener when assessing alarm audibility. In essence, as we deviate from an audibility 

 Model Human baseline 

AUROC 85.84 ± 0.75 97.28 ± 0.48 

F1 76.03 ± 0.57 81.50 ± 3.86 
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score of 0.5 toward higher values, an individual listener's audibility score tends to overestimate that of a collective 

listener group. This discrepancy leads to an increased number of false positives in the human baseline. 

Furthermore, our analysis reveals that the model consistently falls short of the baseline precision across the entire 

range of evaluation label binarization thresholds. 

 The recall, depicted in Figure 6(b), shows a different evolution. As the evaluation label binarization threshold 

increases, more samples in the evaluation set are labeled as negative. This results in a higher recall for the model, 

as it correctly identifies a larger proportion of positive samples. In contrast, the baseline recall remains steady 

throughout the range of evaluation label binarization thresholds. Regarding the comparison between the model 

and the baseline, the baseline initially outperforms the model up to an evaluation label binarization threshold of 

approximately 0.6. Beyond this threshold, the model recall continues to increase, while the baseline's remains 

constant. Consequently, the model gradually surpasses the baseline in recall as the evaluation label binarization 

threshold increases. 

The F1-score, which is the harmonic mean between precision and recall, is represented in Figure 6(c). 

Consistent with the results presented in Table 6, the model is outperformed by the baseline when an evaluation 

label binarization threshold of 0.5 is used. Between threshold values of 0.5 and 0.6, the model F1-score remains 

constant, while the baseline performance slightly declines. At a binarization threshold of 0.6, both the model and 

baseline achieve equivalent F1-scores, and from there, both show a gradual decrease until they reach a value of 0 

for a binarization threshold of 1. The model performance approaching the baseline for higher evaluation label 

binarization threshold values is highly promising. This observation indicates that the model performs well under 

more stringent audibility criteria, crucial for ensuring reliable assessments, as they represent more prudent 

operating conditions for setting alarm levels. 

These comparable trends in metrics for the model and the human baseline suggest a substantial similarity in 

their behavior. The model performance closely resembles that of an average normal-hearing listener in a Yes-No 

listening task, which is consistent with its learning on binary labels using a single normal-hearing listener per 

example. However, it is important to note that a single listener cannot accurately predict the response of a reference 

group of listeners, highlighting the necessity of involving multiple participants in psychoacoustic experiments. 

This limitation becomes more evident when the audibility criterion defined by the evaluation label binarization 

threshold is increased, resulting in a notable collapse in precision for both the baseline and the model. Reduced 

precision signifies an increased occurrence of false positives within positive predictions. This indicates a highly 

undesired scenario, where alarms are classified as “clearly audible” when they are not, which could potentially 

compromise user safety. 

5.2. Psychoacoustical perspective on model evaluation 

The previous diagnosis, considering precision and recall, offers insights into the model and human baseline 

performance on the specific binary classification problem formulated in this paper. However, these metrics are 

limited since they are computed for a given discrimination threshold, and therefore only provide a partial view of 

the system. In particular, the decrease in precision observed in Figure 6(a) could be simply attributed to a non-

optimal discrimination threshold that would cause wrong predictions.  

As the model binary predictions rely on continuous outputs that are subjected to a discrimination threshold, 

we decide to focus on the continuous output of the model before applying any threshold. Figure 7 depicts the mean 

Figure 6: Precision, recall and F1-score for model and human baseline, computed with different evaluation label binarization 

thresholds. 
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outputs of the model, along with the mean values of the average psychometric function, both plotted against SNR 

across all evaluation clips. Before analyzing the curves, it should be pointed out that the human listeners and the 

model are not evaluated in the same exact way. The human psychometric function is influenced by multiple factors. 

Such factors may include personal experience or familiarity with a specific type of alarm or sound environment, 

but also the sounds heard during the listening test itself [56]. In our data, subjects-related factors were mitigated 

by averaging the responses within a representative group of listeners. Regarding the continuous aspect of human 

learning, it leads to a psychometric function that is potentially influenced by the experimental design. For instance, 

it is likely that hearing an alarm at a very high SNR after lower SNR values (or vice versa) might have had an 

effect on the participants’ responses. We tried to limit this effect as much as possible by randomizing the 

presentation order of the multiple conditions during the listening experiment. The way the model produces outputs 

is different. While the model output is also influenced by what it has seen in the past, its parameters are fixed at 

inference time. This means that the model does not change after being presented with evaluation clips [57]. 

Evaluating the model does not have any impact on future predictions. This difference with human should be kept 

in mind when comparing the model continuous output to a human psychometric function. 

With that being said, noteworthy parallels do exist in the responses of model and human. One shared aspect 

is the susceptibility to order effects. Although such effects are not related to the evaluation data for the model, the 

training can be influenced by the sequential arrangement of the training samples. This is comparable to the 

phenomenon described with the human responses. To address this issue, we employed sample shuffling during the 

training process, just as we randomized the presentation order in human experiments. Furthermore, an additional 

point of convergence between human and model responses is their shared reliance on temporal context. The results 

of our psychoacoustic experiment showed that human assessment of audibility is influenced by how distinctive 

the alarm is from its surrounding acoustic environment. Human therefore uses what is heard before and after an 

alarm to evaluate its audibility. Likewise, the model uses temporal context to produce an output. First, the CNN 

filters have a receptive field that spans over multiple time frames of the input mel-spectrograms. This feature 

enables the model to capture local temporal context to produce frame level estimates of audibility. Second, the 

clip-level model output is obtained through the aggregation of these frame-level estimates. In essence, the final 

model estimate of audibility incorporates information from the entire 5.5-second long sound clip, including parts 

after and before the alarm. These similarities between the model output and human responses offer scope for a 

meaningful comparative analysis. 

Figure 7 illustrates the model and human baseline behavior as a function of the SNR. Interestingly, while the 

model is only trained to generate outputs that approach 0 or 1, we observe that the model output evolution with 

alarm signal strength exhibits similarities to the shape of a psychometric function. However, the two curves show 

distinct horizontal position, width and dynamic range, making difficult to establish a direct relationship between 

the model continuous output and a human psychometric value. As a result, while it would make sense choosing a 

specific discrimination threshold that is directly based on the value of psychometric function for the human 

baseline, selecting a discrimination threshold for the model is not as straightforward. A comprehensive analysis of 

the system should therefore consider the plurality of possible discrimination thresholds, rather than being restricted 

to a single operating point. 

The model and human baseline ability to discriminate between positive and negative samples based on their 

respective continuous “psychometric outputs” can be visualized with ROC curves. ROC curves represent the trade-

Figure 7: Average human baseline psychometric curve and model continuous output values over all the evaluation clips 



  

20 

 

off between true positive rate and false positive rate across different discrimination threshold values. Each point 

of the ROC curve is obtained by setting a discrimination threshold along the “psychometric curve”, where alarms 

are classified as either “clearly audible” when they fall above the threshold or not “clearly audible” when they fall 

below it, and subsequently comparing the predictions with the actual evaluation labels. The upper right corner of 

the ROC curve represents the lowest possible discrimination threshold, classifying all samples as positive, resulting 

in a true positive rate of 1 and a false positive rate of 1. Conversely, the lower left corner of the ROC curve 

corresponds to the highest possible discrimination threshold, leading to a true positive rate of 0 and a false positive 

rate of 0 as all samples are classified as negative.  

Figure 8 shows ROC curves of the model (left panel) and human baseline (right panel) for different evaluation 

label binarization thresholds. This allows us to visualize the model performance for different values of the 

binarization threshold used to define the labels, independently of the choice of a discrimination threshold. As we 

can observe in Figure 8, the human baseline ROC curves are unaffected by the choice of a different evaluation 

label binarization threshold. This is likely due to the similarity in shape between the psychometric curve of an 

individual and the average curve of a reference group. Contrastively, a closer look at the model ROC curves shows 

that when the evaluation label binarization threshold is higher, the model achieves higher true positive rates at 

lower false positive rates. However, even though, in proportion, the model is able to correctly identify more 

positive samples while predicting fewer false positives, it must be said that the absolute number of positive samples 

in the dataset considerably decreases when the binarization is increased. Specifically, the number of positive 

samples in the dataset changes from 148 for a binarization threshold of 0.5 to 53 for a binarization threshold of 

0.9. This indicates that the model performs very well at discriminating “easy” positive samples, i.e. samples where 

the alarm is very likely to be considered by a group of human listeners as “clearly audible”. On the other hand, it 

is less able to identify all positive samples without making false positive predictions when the samples are defined 

as positive from a lower average audibility score. In both cases, however, model performance remains similar in 

scale to that of the human baseline, which is a satisfactory result.  

These results highlight the model capacity to predict alarm audibility consistent with human perception. The 

model continuous output can be leveraged to discriminate between “clearly audible” and not “clearly audible” 

alarms for various audibility criteria, provided the selection of an appropriate operating mode. Such operating 

mode should be selected depending on the specific application framework of the model, including tolerance to 

false positives or false negatives for instance. Finally, a binary response may not be the most appropriate way to 

characterize human auditory perception. The analysis using the ROC curves shows that, even if the model was 

trained on a binary classification task, it produces a continuous output that could be exploited in a way that better 

reflects perception, which is often more nuanced and complex. Further developments should explore strategies to 

align the model outputs more closely with human psychometric functions, particularly focusing on the high-

probability region of the curves. The formulation of safe alarm level recommendations should rely on this specific 

region. It is therefore imperative that the model output emulates human behavior in this critical area as closely as 

possible. In particular, a safe application of the model requires being able to properly select a discrimination 

threshold that minimizes the number of false positive predictions while maintaining a high overall performance 

Figure 8: ROC curves of the model (left panel) and human baseline (right panel) for three different test label 

binarization thresholds (0.5, 0.75, and 0.9). 
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level. This would enable enhancing the potential of the model to provide well-informed recommendations 

concerning alarm levels by avoiding positively classifying alarms that are not “clearly audible”. 

6. CONCLUSION 

In this study, we presented an experiment that provided subjective evaluations of the audibility of acoustic 

alarms in occupational environments. Following the terms of the ISO 7731 standard, we assessed the “clearly 

audible” aspect of these alarms, and additionally measured their detection thresholds. Our analysis of these data 

has underscored the true importance of assessing audibility at supraliminal levels as a distinctive property that 

goes beyond direct and exclusive correlation with detectability.  

By contrasting our findings with established standards and commonly employed criteria, we have formulated 

general guidelines to ensure a reliable audibility of acoustic alarms, thereby corroborating existing criticisms that 

the requirements of ISO 7731 are not always necessary and may lead to excessively high alarm levels. In particular, 

we proposed revising the current SNR criterion of minimum 15 dB to a lower value, such as 7.5 dB. An alternative 

option could be to carry additional investigations to implement an adaptive criterion that adjusts according to the 

ambient noise level, which would account for the reduced need for high alarm levels in environments with higher 

noise levels. As stated in the standard, such audibility criteria are designed for normal-hearing people with no 

hearing protection. It is crucial to carefully adapt these criteria in situations where individuals with hearing 

impairments or personal hearing protection are present. 

Furthermore, through our acoustic feature analysis, we have identified some amount of correlation between 

audibility and salience. This analysis has shed light on the fundamental acoustic attributes that drive audibility and 

has highlighted the pivotal role of distinctiveness in enhancing the perceived audibility of alarms.  

Audibility is contingent upon an array of multiple factors, whose individual and cumulative effects remain 

incompletely understood and quantified, making it difficult to model using a purely psychophysical parametric 

approach. As a solution, we developed a model based on data-driven deep learning techniques to assess the 

audibility of acoustic alarms in contexts where subjective testing may not be employed. We described the 

collection of an extensive dataset of perceptually annotated sound clips mixing acoustic alarms with occupational 

noise, necessary to learn and evaluate the model. Our approach was shown to achieve close-to-human performance 

at classifying alarms as “clearly audible” or not “clearly audible”.  

A more detailed analysis determined the most favorable operating conditions of the model in its most 

straightforward application as a binary classifier, evaluating the model performance using various audibility 

criteria to label the evaluation data. It showed that the agreement between model and human performance was 

stronger when the minimum audibility score required to label alarms as “clearly audible” was high. However, both 

the model and human performance collapsed when this minimum audibility score was set to extremely high values.  

 Eventually, a closer examination of the model outputs evidenced similarities between model and human 

responses, offering a more intuitive interpretation of the ROC curves from a psychophysical point of view. This 

analysis, encompassing all possible discrimination thresholds of the model, offered a broader view on model 

performance. It revealed that the model is actually able to perform well at discriminating “clearly audible” alarms, 

even better when high audibility scores are required to label alarms as “clearly audible”, provided a proper 

configuration of its decision stage. However, despite the existing similarities between the model and human 

responses, our approach is open to development to align more closely the model behavior with that of humans for 

more reliable model predictions. 

In conclusion, our findings demonstrated the great potential of a deep learning model to solve the problem of 

setting appropriate alarm levels in work environments. At this point, we have a binary classifier capable of 

discriminating between “clearly audible” and not “clearly audible” alarms that demonstrates strong correlation 

with human responses. This model could serve as a basis for formulating alarm level recommendations. At the 

current stage of development, this could be done by adjusting alarm levels based on the SNRs at which the model 

predictions turn from negative to positive. Additional research is needed to refine this approach. For instance, the 

development of a decision-making framework that leverages the continuous output of the classifier, as opposed to 

the fixed threshold currently in use, could be beneficial. Alternatively, one may consider training a deep-learning 

model on another task, such as regression to predict psychometric functions. However, training a model on 

psychometric functions would require new and more extensive development data, annotated through a more 

demanding and time-consuming procedure.  
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