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ABSTRACT

Occupational noise exposure is a widespread concern, impacting millions of workers. The present research
focuses on the audibility of acoustic alarms to ensure worker safety while minimizing exposure to unnecessarily
high alarm levels. It introduces a laboratory experiment carried on normal-hearing participants to assess the
perceived audibility of acoustic alarms in various workplace noise conditions. The experiment aimed to enhance
comprehension of the audibility of acoustic alarms at supra-threshold levels, sought to facilitate the formulation
of improved guidelines for alarm design. The results reveal the inappropriateness of the most commonly employed
alarm level setting criterion of the 1SO 7731 international standard, leading to excessive alarm levels in highly
noisy work environments. Based on our data, we propose a revised value for this criterion. In addition, an
acoustical analysis of the sounds used in the experiment shows that alarms that are more salient are perceived as
more audible, thereby providing leads for alarm design. The study also introduces an innovative technique using
a convolutional neural network model to predict the audibility of alarms in noise. Moving beyond generic arbitrary
criteria, this data-driven approach leverages knowledge from perceptually annotated examples sourced from our
contributed dataset. Evaluation on the experimental data and further analysis of the model outputs demonstrate
solid alignment of the model predictions with human perception.
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1. INTRODUCTION

Exposure to high-level occupational noise affects millions of workers around the world. In France, more than
3 million workers (10%) are subject to prolonged exposure to hazardous occupational noise levels. This number
is close to 3.7 million in Canada (15%) and 22 million in the U.S. (14%) [1,2], making noise one of the most
prevalent occupational risk factors in these countries. The deleterious effects of noise exposure on hearing [3,4]
and more generally on health [5,6] have been widely studied for years. In addition, occupational noise has also
been discussed as a contributing factor to workplace accidents, especially when it impairs communication and
perception of acoustic alarms [7-10].

In many occupational settings, acoustic alarms are used to alert workers to hazardous situations that may
require immediate action. Therefore, the audibility of these sounds plays a critical role in ensuring worker safety.
The ISO 7731 international standard dedicated to auditory danger signals for public and work areas [11] requires
that acoustic alarms be “clearly audible”, meaning that the masked threshold has to be “distinctly exceeded”. In
order to eliminate any uncertainty around the terms “clearly” and “distinctly”, the standard specifies three level
criteria for alarms relative to ambient noise. These criteria rely on time-averaged objective measures. Meeting at
least one of them is necessary to comply with the standard. The first criterion imposes a minimum difference of
15 dB between the respective A-weighted levels of the alarm and background noise. It leads, however, to
unnecessary high alarm levels, especially in work environments with a high noise level. This is acknowledged by
the standard itself, which describes the requirements as “sufficient but not always necessary” for alarms to be
properly heard and recognized. Numerous studies confirm this observation and demonstrate the absence of
consensus on an audibility criterion expressed as an overall fixed signal-to-noise ratio (SNR) [12-17]. In an



experiment performed on normal-hearing listeners, Zera and Nagoérski asked participants to adjust the level of
acoustic alarms in noise so that they were perceived as “clearly audible”. Results showed that the SNR decreased
continuously from 15 dB to about — 2 dB when the noise level was raised from 60 to 90 dB [12]. Dolan and Rainey
suggested a lower SNR limit of — 10 dB for perception of train horns, corresponding to a 50% detection rate [13].
More recently, two experimental studies carried on reverse alarms in different workplace noises established that
the SNR criterion of 15 dB or higher leads to excessive alarm levels, while the criterion imposing a minimum SNR
of 0dB, specified in the 1SO 9533 standard for earth-moving machinery [14], seems adequate for reverse
alarms [16,17]. The second and third criteria of the ISO 7731 standard are based on the computation of an effective
masked threshold, respectively computed from one octave-band and one-third octave-band spectra of the alarm
and background noise. Although leading to more appropriate alarm levels than the global SNR criterion of at least
15 dB [15], the differences can be negligible in the case of pure tones or sounds with a largely dominant frequency
component. Furthermore, the practical application of these last two criteria is less frequent due to their higher level
of complexity. As a result, the criterion based on a global SNR of at least 15 dB remains predominantly used in
various workplaces, thereby exposing workers to excessive alarm levels.

In the interests of occupational safety and health, it is crucial to establish a suitable level for acoustic alarms
to ensure they are effectively heard without being overly loud. Low alarm levels may be too weak to properly
transmit emergency information and prompt a quick response to control or eliminate the danger. Conversely, in
addition to being a source of annoyance, very high levels can lead to permanent damage to the hearing of workers.
Moreover, a sudden increase of the sound pressure level in the work area caused by loud acoustic alarms is likely
to induce startle reactions, which could endanger workers [11,12]. In that respect, the absence of consistent
guidelines established in the field to ensure appropriate levels of acoustic alarms poses a significant problem [16].
This can be addressed by adjusting the level of acoustic alarms through listening tests. However, it requires
recruiting volunteers whose hearing status matches the target population and presenting them with stimuli under
well-controlled conditions, which can be demanding and time-consuming. Most importantly, the experimental
approach is stimulus-dependent, as the audibility of an acoustic alarm depends on various parameters such as the
temporal envelope and long-term power spectrum of the alarm, the background noise spectrum, and the interaction
between these factors [18]. Therefore, the slightest change in the sound environment or the acoustic alarm should
necessitate a new experimental assessment. Hence, the use of predictive approaches is more convenient. In that
perspective, many auditory models have already been developed, some of which show convincing performance in
predicting detection thresholds of complex time-varying target sounds in complex backgrounds [19-21].
Notwithstanding their accuracy, those models are of limited use when determining the appropriate level for
acoustic alarms in complex noisy environments. There are three reasons for this. First, many of those models are
exclusively designed to predict detection thresholds and cannot provide any relevant information regarding the
perception of target sounds at supraliminal levels. Second, these models are intrusive, in that they require the
separate consideration of the alarms and background noises. Finally, the decision stage of a model capable of
determining the proper level of an acoustic alarm should require prior knowledge about what is considered “clearly
audible”, which is largely unknown. As such, one of the objectives of the present study is to better assess and
discuss what is meant by “clearly audible”. In addition, we propose a solution based on the use of a neural network
model to address the issue of adjusting alarm levels. This approach offers the advantage of being data-driven,
meaning that the decision criterion regarding the audibility of a sound can be implicitly contained in the perceptual
data used to train the model with no need to be formulated at design stage.

Recent advancements in deep learning have had a significant impact in the field of ambient sound analysis,
facilitating the accurate and efficient recognition of environmental sounds. Deep neural networks such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have demonstrated a great ability
to learn complex patterns in acoustic data and adapt to new environments. This has led to the predominant use of
deep learning methods in a wide variety of ambient sound analysis applications. Such applications include acoustic
scene classification [22], sound event detection [23], sound source localization [24], or anomalous sound
detection [25]. In the area of auditory perception and cognition, a number of researchers have explored deep neural
networks to draw parallels between the internal representations of the human brain and those in deep network
models [26—-28]. Several studies also investigated similarities between human and model behavior in auditory tasks
like word recognition, musical genre recognition, sound localization, fundamental frequency estimation [28-30].
In two recent papers, we proposed a proof of concept of an automatic approach to evaluate the audibility of acoustic
alarms in noise using a CNN trained on perceptually annotated data [31,32]. In the present study, we provide a
more detailed presentation of this approach, including evaluation of the model on a larger and more elaborate
dataset, as well as an in-depth analysis of the perceptual data and model performance.



The purpose of this article is two-fold. Firstly, it seeks to provide better understanding of the audibility of
acoustic alarms at supra-threshold levels, which can help formulate guidelines for alarm design. This will be
achieved by the means of a laboratory experiment carried on normal-hearing subjects and involving a large variety
of acoustic alarms and workplace noise conditions. Secondly, it introduces a low-complexity CNN-based approach
to predict the audibility of acoustic alarms in complex noisy environments. The remainder of the paper is structured
as follows. In Section 2, we define the notion of audibility referred to throughout the article, taking care to clarify
any semantic discrepancies with other uses of this term found in the literature. Section 3 is dedicated to the
description of the experimental procedure developed to evaluate the audibility of acoustic alarms in noise, followed
by an analysis of the experimental results. Section 4 presents the collection of a perceptually annotated dataset, as
well as the learning and evaluation of a CNN model on the perceptual data of Section 3 to make audibility
predictions. In Section 5, we conduct a comprehensive comparative analysis between the model and human
responses, encompassing examination of machine learning performance metrics and psychoacoustical
interpretation of the model outputs. We conclude in Section 6.

2. PROBLEM STATEMENT AND RELATION TO THE ISO STANDARD

Numerous works refer to the notion of audibility to characterize a wide variety of sounds including alarms.
Most of the time, the term audibility is used as a synonym of detectability which refers to the probability of a sound
being detected under specific conditions. However, the specific meaning and criteria used to assess this concept
may vary across studies depending on their specific goals and methodologies. Besides, the study of sound
perception — especially for acoustic alarms — is not restricted to levels at which the sounds are just detected and
can involve concepts different from audibility but for which the boundaries with audibility are narrow and not well
established. In this article, to be in line with the ISO 7731 international standard, we will use the term audibility
as a property of what is “clearly audible”. While we acknowledge that this definition is vague and goes beyond
the single question of detectability, it is intended to capture the vocabulary of the standard. The purpose of this
section is to introduce the different concepts related to or interacting with the perception of the audibility of
acoustic alarms in noise based on the literature.

An acoustic alarm is expected to possess acoustic characteristics that allow for perceptibility and appropriate
response by individuals located within the designated reception area [11]. This was first defined by Wilkins as the
“effectiveness” of an acoustic alarm [33]. According to Wilkins, the perception of an alarm involves three
components: audibility, attention demand, and recognition. Audibility determines if the sound can be heard amid
background noise. Attention demand relates to the ability of the sound to attract attention and be consciously
perceived when unexpected. Finally, recognition requires the sound to be distinguishable from other sounds and
convey the meaning of danger. In the ISO 7731 standard, the idea of “effectiveness” of a danger signal is referred
to as “reliable recognition”. Like Wilkins, the standard expresses criteria of effectiveness, namely audibility,
distinctiveness, unambiguity and independence from source movement. Here, audibility means that the danger
signal has to be “clearly audible”, and that the effective masked threshold must be “distinctly exceeded”.
Distinctiveness requires that the signal be designed to stand out from all other sounds in the reception area
including any other signals. Eventually, the signal must have an unambiguous meaning, and its characteristics
must be recognizable no matter the potential movement of the source.

From the above, the standard mainly considers audibility as a masking issue. In order to meet the audibility
criterion, the alarms are required to “distinctly” exceed the masked thresholds. However, there is no clear guidance
on the optimal amount by which the alarms should surpass the masked thresholds. Previous studies have suggested
that alarms should be 12 to 25 dB above the masked thresholds [16,34-36], but this range is too broad to be
practically useful in most situations. Therefore, it is difficult to establish a more precise criterion solely based on
masking that would be widely accepted. This indicates that other processes operating at supraliminal levels may
also play a role in the perception of an alarm in noise as “clearly audible” and should be taken into account. In
particular, it is likely that distinctiveness, as it is defined above, has a significant impact on the perception of an
alarm as “clearly audible”. In this regard, recent works on auditory salience have highlighted the fact that sound
events with divergent acoustic properties from those of the surrounding environment are more perceptually
prominent, therefore easier to hear [37,38]. Nonetheless, while salience may influence audibility, it represents a
distinct concept that focuses on the properties of sound eliciting involuntary attention, independently of top-down
factors. Measuring salience therefore requires purely passive listening, contrary to audibility, which entails active
listening to assess the “clearly audible” aspect of the sounds. In that respect, salience refers more to attention
demand than to audibility per se [39]. This observation somehow reflects the fuzzy boundaries that exist between
the different components of alarm effectiveness. In their study, Laroche et al. measure reaction thresholds [16],

3



defined as the levels at which the alarms elicit a response, such as turning towards the source, or moving away
from the danger zone. This definition, while resembling the broader notion of alarm efficiency, emphasizes the
crucial point that alarms must exceed a certain level to be effective, aligning with the 1ISO 7731 requirement for
alarms to be “clearly audible”. While it does not assume accurate source recognition, it is still based on the idea
that the sound must indicate danger or urgency to trigger a reaction, which is only achievable if the alarm exhibits
sufficient distinctiveness. This understanding of audibility supports the idea that the optimal level for an alarm to
be perceived as “clearly audible” is modulated by factors beyond detectability, such as distinctiveness and attention
demand.

In the present work, the choice was made to measure audibility in accordance with the terms of the 1ISO 7731
international standard. We assess the detectability as well as the “clearly audible” aspect of auditory alarms in
occupational environments. Through data analysis, we compare our results to existing audibility criteria while also
shedding light on the overlaps and disparities with detectability. Additionally, as there is currently no established
linkage between the ISO 7731 standard requirements and recent research on auditory salience, we undertake a
preliminary effort to connect audibility and salience, investigating potential relationships between these two
notions. In addition to traditional psychoacoustical techniques, we introduce an automatic deep learning-based
method to evaluate the audibility of acoustic alarms. This approach avoids reliance on a predefined explicit
audibility criterion, which could potentially be subject to debate. Instead, we leverage a model that learns from
examples of subjective audibility evaluations to produce outputs that emulate human judgments.

3. EXPERIMENTAL EVALUATION OF AUDIBILITY

3.1. Experimental design

3.1.1.Participants

The experiment involved the participation of 20 volunteers, aged from 20 to 50. All of them had normal-
hearing according to the International Bureau of Audiophonology criteria, with an average tone loss of less than
20 dB HL across the frequencies 500, 1000, 2000 and 4000 Hz on both ears. The participants were compensated
for the time spent on the tests.

3.1.2.Stimuli and material

Fifteen alarms and ten recordings of noisy work environments (backgrounds) were used to create the stimuli.
The alarms and background sounds were mainly sourced from public platforms, namely Freesound [40] and
BigSoundBank [41]. Additionally, we received some files from authors of published studies [42,43], and a few
others were from personal recordings. Both the alarms and noisy backgrounds were evenly split into five categories
based on their associated environmental contexts. A total of 30 alarm-background pairs were made by associating
acoustic alarms and background noises within each contextual category®. To create the stimuli, monophonic sound
clips were generated by adding an alarm to its background noise using a pseudo-random temporal onset, with
boundary values set to avoid extreme temporal onset locations. Each sound clip was 5.5-second long and sampled
at a rate of 44.1 kHz. Within the 5.5 s of a given sound clip, the alarm was played once. This single alarm
occurrence could involve several bursts for intermittent alarms such as reverse alarms, but the overall alarm
duration was limited to 1.8 s, which was the duration of the longest alarm. In order to avoid any clicking effect
arising from a sudden volume change at the start or end of the stimuli, 20 ms raised-cosine onset and offset ramps
were applied to the clips. The stimuli were output through a Babyface Pro soundcard (RME, Germany) and
presented over DT 770 Pro circumaural headphones (Beyerdynamic, Germany) calibrated with an AEC101
artificial ear and a Model 824 sonometer (Larson Davis, USA). To manage stimulus presentation and participant
responses, a custom interface was created using Matlab App Designer.

1 Information regarding the contextual categories and alarm-background pairs, as well as spectrograms of the sounds, are provided in
the supplementary material accompanying this paper



3.1.3.Procedure

The experiment consisted of two tasks: the first task aimed to measure detection thresholds; the second was
an audibility assessment. Both tasks evaluated the 30 alarm-background pairs at two levels of background noise
(60 and 80 dBA) using the method of constant stimuli. The value of 80 dBA was chosen in alignment with common
practices observed in studies on workplace sound environments. As one of our objectives was to investigate the
impact of ambient noise level on detection and audibility, we employed two distinct noise levels. We wanted to
reflect ecological conditions while ensuring participant safety by avoiding exposure to excessively loud stimuli.
Consequently, for the second noise level, we preferred the value of 60 dBA to levels above 80 dBA, which could
have been hazardous.

By definition, at detection threshold, an alarm is minimally audible. For an alarm to be considered “clearly
audible”, its level must be much greater than detection threshold. Therefore, the study of audibility involves a scale
of alarm levels different from that of detectability. This was accounted for by using a distinct range of SNRs for
each task, varying alarm levels to reach a full coverage of the psychometric function domains.

The detection task followed a two-interval two-alternative forced choice (21-2AFC) design. During each trial,
participants were presented with two consecutive intervals separated by a 500 ms pause. Both intervals were
generated using the same background noise, but only one of them contained the alarm to be detected. After the
two intervals were presented in a random order, participants were required to indicate which interval contained the
alarm. The 30 noise-alarm pairs were all presented at six different SNRs, namely — 30, — 22.5, - 17.5,-12.5,- 7.5
and 0 dB. To ensure robustness of the results, each condition was repeated three times for each participant.

To assess audibility, participants were instructed to listen to the overall auditory environment without
specifically focusing on attempting to detect the alarm?. The evaluation consisted in a straightforward Yes-No
task. Each trial consisted of a single presentation of the stimulus, followed by the question “Was the alarm clearly
audible?”. The binary assessment of audibility using the term “clearly audible” was directly derived from the ISO
7731 standard. Despite the ambiguity of this expression, our choice was motivated by the necessity to offer a
clearer understanding of this concept through our results and to enable comparison with the recommendations of
the standard. Each alarm-background pair was presented three times at six different SNRs: — 25, — 15, -10,-5,0
and 10 dB. This range is broad and extends down to very low SNR values. Even though an SNR of — 25 dB would
probably not be encountered in practice, it was included in our experiment to cover the lower end of the
psychometric function domain.

To minimize order effects, the task and stimulus presentation sequences were randomized for each
participant. Considering the combinations of alarm-background pairs, SNRs, and noise levels, the listeners were
presented with 360 different stimuli per task. As each stimulus was presented three times, the cumulative number
of trials for each participant amounted to a total of 2160 trials. In order to avoid auditory fatigue among
participants, the experiment was structured into discrete sessions. Each session was limited to a maximum duration
of 2 hours. Within each session, the activity was subdivided into 3 to 4 blocks, with each block spanning
approximately 25 minutes and separated with 5-minute breaks.

3.2. Results

3.2.1.Psychometric functions: general observations

For each participant, the output of each task is represented as a probability score, determined for a specific
alarm-background pair at fixed noise level and SNR. In the detection part of the experiment, this score represents
the correct response rate, which is the probability of the participant providing the correct answer in a 21-2AFC
trial. It is bounded between 0.5 and 1, where 0.5 indicates chance performance or random guessing between the
two intervals, and 1 signifies perfect accuracy. Alternatively, for the audibility assessment, the score ranges from
0 to 1 and denotes the probability that the participant considers the alarm as “clearly audible”.

Cumulative Gaussian sigmoids were fitted to these perceptual data using psignifit (version 4) toolbox [44].
The shape of these individual psychometric functions is determined by the four fitted parameters, which are the
inflection point m, the slope (or width) w, and the upper and lower asymptotes A and y. The general form of the
psychometric functions is expressed in Equation 1, with x representing the SNR and F (x; m,w) a cumulative
Gaussian distribution function.

2 This instruction aimed to encourage participants to consider the surrounding sound context and prevent them from placing excessive
emphasis on the alarm, which could potentially lead to distorted audibility judgments.
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Figure 1 shows the mean psychometric curves, grouped by noise level for both tasks. As we are not interested
in individual curves, we rather represent the mean psychometric curves across listeners. These curves were derived
by computing the average of the 20 individual curves for each alarm-background pair, and then averaging the
resulting curves across all pairs. In order to visualize the variability across the various sound conditions, the
representation includes the corresponding standard errors across the set of 30 alarm-background combinations.
Notably, both detectability and audibility are influenced by the noise level, albeit with opposite effects.
Specifically, in the detection task, the average psychometric function in the background noise level of 60 dBA is
consistently positioned above that in the noise level of 80 dBA across the entire range of SNR. This result shows
that higher noise levels negatively impact alarm detection, making it more challenging. This effect is likely
attributed to frequency masking. In higher noise conditions, the auditory filters are broadened, leading to increased
frequency masking and consequently decreased detectability. Conversely, for the audibility assessment, the order
between the two curves is inverted. This indicates that, at supra-threshold levels, higher noise levels are associated
with increased audibility for a given SNR. A possible explanation for this phenomenon is that audibility may
primarily depend on loudness. Beyond the masked threshold, the loudness growth steepens in higher noise levels
due to the elevated absolute alarm levels at a constant SNR. This, in turn, could result in higher audibility scores.
Additionally, we observe that the audibility psychometric functions are superimposed in the low SNR region up
to the inflection point. This superimposition indicates that the effect of noise level on audibility is not apparent
when the alarm level is not high enough for reliable detection. In other words, the effect of noise level becomes
evident in the region where studying audibility is of particular interest.

From an SNR of 7.5 dB, the correct response rate for the detection task is at a plateau value of nearly 100%,
regardless of the noise level. Similarly, at the same SNR, the mean audibility scores are high for both noise levels
of 60 and 80 dBA (90% and 95%, respectively). This observation supports the idea that a SNR of 15 dB, as stated
in the 1SO 7731 standard, may not always be necessary to ensure reliable detection and a strong level of reported
audibility.
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Figure 1: Mean across-participants psychometric curves, averaged across alarm-background pairs for both tasks, grouped by
noise level. Standard errors across the 30 alarm-background pairs are represented in shaded areas. Left axis, plain line: Correct
response rate as a function of SNR. The 2I-2AFC task leads to a scale ranging from 0.5 to 1. Right axis, dashed line: “Clearly
audible” rate as a function of SNR. The Yes-No task leads to a scale ranging from 0 to 1.

To further analyze our results and confirm our observations, we conducted a series of statistical tests. We
performed Bayesian ANOVAs, due to the flexibility and interpretability offered by the Bayesian framework in
handling uncertainty and incorporating prior knowledge, facilitating robust and insightful inferences from the
observed data. The first Bayesian ANOVA was applied to the detection threshold, defined as the value m of the
SNR at the inflection point of the psychometric function, with the participant as a random variable. It revealed
significant effects of the noise level (BF =2.3 x 10%), of the alarm-background pair (BF =), and of their
interaction (BF = 124.5). Regarding audibility, we chose not to study the inflection point, as an audibility score of
around 50% is too weak and lacks practical interest. Instead, we considered the audibility score reported at an SNR
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of 7.5 dB. To compensate for floor and ceiling effects, all scores were first transformed from percentages into
rationalized arcsine units (RAU) before the analyses [45]. The second Bayesian ANOVA, applied to the audibility
score with the participant as a random variable showed significant effects of the noise level (BF = 1.1 x 10%), of
the alarm-background pair (BF = 2.0 x 10'%), and of their interaction (BF = 63.4). Overall, these results provide
confirmatory evidence that the background noise level, noise environment, and alarm type significantly influence
the perception of acoustic alarms in terms of both detectability and audibility.

3.2.2.Comparison with existing criteria

The ISO 7731 standard sets two major requirements to adjust alarms at levels considered “clearly audible”.
First, alarm levels should be greater than 65 dBA. Second, they should meet at least one of the three following
criteria: (Method A, Section 5.2.2.1) “the difference between the two A-weighted sound—pressure levels of the
signal and the ambient noise shall be greater than 15 dB”, (Method B, Section 5.2.3.1) “the sound—pressure level
of the signal in one or more octave-bands shall exceed the effective masked threshold by at least 10 dB in the
octave-band under consideration”, (Method C, Section 5.2.3.2) “the sound—pressure level of the signal in one or
more 1/3 octave-bands shall exceed the effective masked threshold by at least 13 dB in the 1/3 octave-band under
consideration”. For these two last methods (i.e. B and C), the “effective masked threshold” is computed from the
octave-band or the third-octave band spectrum of the ambient noise using a simplified model of masking provided
by the standard.

To assess the relevance of these recommendations, we compared them to the measured psychoacoustic data
of our experiment. The upper panel of Figure 2 represents the SNR values computed according to the three criteria
of the standard for each alarm-background pair. Method B and Method C yield close recommendations, reliably
lower and significantly distant from the fixed SNR criterion of minimum 15 dB provided by Method A.
Additionally, the SNRs corresponding to a measured average audibility score of 85% for the two noise levels are
also plotted on the upper panel of Figure 2. They demonstrate that Method B and Method C of the standard not
only effectively predict the relative differences in audibility between the tested alarm-background pairs but also
consistently ensure an audibility score greater than 85%, for both noise levels in most cases.

The lower panel of Figure 2 also presents the recommendations of the three criteria of the ISO 7731 standard,
on a new scale corresponding to the measured audibility score. As the measured audibility score is dependent on
the ambient noise level, each criterion now appears twice per alarm-background pair. The chart also includes boxes
that represent the range of 12 to 25 dB above the measured detection threshold, as recommended by the
literature [16,34-36]. This representation combines information regarding both detectability and audibility,
allowing for an evaluation of the standard criteria with regard to the actual measured detection thresholds and
audibility scores. We observe that the lowest end of the range 12 — 25 dB above detection threshold often yields
rather low audibility scores, particularly when the noise level is low (i.e. 60 dBA). This observation supports our
reflection on the limited practical applicability of this range. Besides, comparing the positions of the boxes and the
markers representing Method A, we notice that the fixed, over 15 dB SNR criterion, despite ensuring a 100%
audibility score, appears to lead to excessive alarm levels for almost all alarm-background pairs. This result
suggests that the criterion advocated by Method A is excessively conservative and not aligned with the other two
criteria from the same standard. By comparison, a fixed SNR of 7.5 dB would result in lower alarm levels, falling
almost exclusively within the 12 — 25 dB above threshold range, while maintaining good audibility. As evidenced
by the variations in audibility scores observed among distinct alarm-background pairs, the choice of a fixed
criterion relying on a global SNR may not be the most suitable. However, our findings indicate that if such a
criterion were to be applied in accordance with the recommendations of Method A, it would be advisable to set it
at a lower SNR value. In that respect, the proposed lower fixed SNR criterion of 7.5 dB appears to be equally
effective and offers a more balanced compromise to take into account the risk of overexposure for workers. By
adopting a lower alternative criterion, a better balance could be struck between ensuring adequate audibility and
avoiding unnecessary alarm levels, resulting in a safer and more practical implementation of the standard.
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Figure 2: Adjustment of alarm levels based on 1SO 7731 (Methods A, B and C) and psychoacoustic data, for each alarm-
background pair, in the two noise levels (60 and 80 dBA). Upper panel: SNR as recommended by the 1SO 7731 criteria and
SNR leading to an averaged measured audibility score of 0.85. Lower panel: Measured audibility scores associated with all
three ISO 7731 requirements along with vertical rectangular boxes representing audibility scores in the range 12-25 dB above
detection threshold.

3.2.3. Understanding audibility: influencing factors

Given the absence of a precise meaning associated with the expression “clearly audible”, most of the
perceptually grounded criteria depend on the detection thresholds. This reliance is evident both in the standard,
with the use of the effective masked threshold, and more generally in the literature, where the 12 — 25 dB range
above the detection threshold is often recommended for optimal audibility [16,34-36]. It is based on the
assumption that the audibility at supraliminal levels can be inferred from the detection thresholds. However, while
a clear relationship exists between detectability and audibility, as levels close to or below detection threshold are
naturally associated with low audibility scores, this relationship becomes less direct at higher levels. Figure 3
illustrates the correlation between the detection threshold and two different parameters for each alarm-background
pair: the inflection point m of the average audibility psychometric curve (left panel) and the SNR at which the
average audibility score reaches 0.8 (right panel). The left panel shows at first sight a quasi-linear relationship
between the inflection points of audibility and detection curves, with an adjusted-R2 of 0.66. This finding suggests
that the detection threshold indeed determines the level from which the notion of audibility becomes relevant.
However, the scatter plot on the right panel highlights that the detection threshold is not a reliable predictor of
audibility at higher levels. In the present case, the detection thresholds and the levels corresponding to an audibility
score of 0.8 are poorly correlated (adjusted-R? = 0.33). This indicates that, despite an existing relationship between
detectability and audibility at supraliminal levels, detection thresholds alone cannot fully explain audibility or
serve as a basis for establishing optimal level recommendations.
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Figure 3: Scatter plots of audibility against detectability for each combination of alarm, background and noise level.
Left panel: Inflection point of the average audibility psychometric curve as a function of the corresponding detection threshold.
Right panel: SNR leading to an average audibility score of 0.8 as a function of the corresponding detection threshold.

In order to identify the other factors influencing the audibility of acoustic alarms in occupational
environments, we carried an acoustic analysis of the stimuli used in our experiment. Our aim was to determine
whether the audibility of an auditory alarm could be partially explained by the divergence in certain acoustic
features compared to the surrounding acoustic environment. For each of the 360 listening conditions, we extracted
nine features for both the alarm-background mix and the background alone, using a random alarm temporal onset.
These features, namely spectral irregularity, spectral flatness, brightness, bandwidth, spectral modulations (scale),
pitch, harmonicity, temporal modulations (rate), and loudness, were computed in accordance with the definitions
and methods presented by Huang and Elhilali [38].

To ensure fair comparisons and remove the impact of different scales and distributions, a z-score
normalization was applied across the features for each sound clip. Subsequently, the features were time-averaged
over the period during which the alarm was supposed to be present. By time averaging the features, we obtained a
representative measure of their behavior within the stimuli over this specific period, considering both the alarm-
background mix and the background alone. The measure of the divergence in the acoustic features of the
environment caused by the alarm was derived by computing the difference between the features of the alarm-
background mix and those of the background alone. We collected these feature difference vectors for all listening
conditions and then concatenated them into a single array.

To identify the acoustic features that contribute significantly to the audibility of the alarms, we performed a
partial least squares logistic regression (PLSR) following the methodology employed by Thévenet et al. [46].
PLSR is a powerful multivariate statistical technique that combines aspects of principal component analysis and
multiple regression. It is well-suited for handling situations involving high-dimensional predictor variables and
potential multicollinearity among them. Unlike traditional regression methods that treat each predictor
independently, PLSR identifies latent variables that capture shared information between the predictors and the
response. Furthermore, it differs from classical principal component analysis by focusing on maximizing
covariance between the predictors and the response variable, rather than just maximizing the variance in the
predictors. This property makes PLSR particularly valuable for predictive modeling. The analysis was conducted
using the plsRglm (version 1.5.1) package [47], employing the nine feature differences as predictor variables and
the corresponding audibility scores as the response variable.



Following a preliminary cross-validation, we opted to retain only one component in the PLSR model.
Figure 4 displays the results of the PLSR, represented by standardized regression coefficients and bias-corrected
and accelerated bootstrap intervals. These intervals were obtained using the balanced bootstrap method with 1000
resampling iterations. Statistically significant coefficients are those whose bootstrap distributions lie either above
or below zero. As anticipated, our analysis confirms that loudness serves as a robust predictor of audibility. This
supports our interpretation that audibility is predominantly and positively influenced by the loudness of the alarms.
Furthermore, the results reveal that variations in loudness, scale, brightness, pitch and harmonicity significantly
contribute to predicting the audibility score. Remarkably, these findings closely align with the main predictors of
auditory salience identified by Huang and Elhilali [38]. The strong agreement between our results and those of
Huang and Elhilali supports the idea that the audibility of acoustic alarms is intricately related to auditory salience.
Specifically, an alarm is more likely to be considered “clearly audible” if it induces variations in one or several of
the aforementioned acoustic features in the acoustic environment, rendering it more attention-grabbing on the same
occasion.
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Figure 4: Coefficients of the first PLSR component. Acoustic features whose coefficients have bootstrap distributions above or
below zero are considered statistically significant predictors.

3.3. Discussion

In high noise level conditions, the audibility of the alarms was found to be greater compared to lower noise
levels. This is consistent with the findings of Zera and Nagérski [12]. This outcome underscores a divergence
between audibility and detectability, as the latter becomes more difficult in the presence of higher noise levels.
Additionally, while our results evidenced a link between detectability and audibility, we observed that detection
thresholds were not a reliable predictor of audibility scores. This was particularly evident at higher alarm levels,
which are closer those encountered in real-world scenarios. This finding emphasizes the importance of considering
the perception of audibility at supraliminal levels as a distinct factor from detectability when characterizing
acoustic alarms.

Consistent with earlier research [15,16,18], our experiment corroborated that the fixed criterion established
by Method A of the ISO 7731 standard systematically leads to unnecessarily high alarm levels. On the other hand,
although more complex, Method B and Method C, which are based on octave and third-octave band measurements
are more suitable for achieving optimal audibility while avoiding reaching excessive alarm levels. The proposed
global SNR criterion of minimum 15 dB already results in excessive alarm levels at the two noise levels tested in
this study (60 and 80 dBA), and does not account for the noise level dependency of audibility. As a result, it may
prove unnecessarily dangerous and even cause hearing impairments, especially in higher levels of noise. In this
regard, while expressing reservations about the use of a fixed global SNR criterion, we advise setting this criterion
to a lower SNR value. As such, our data demonstrated that a 7.5 dB SNR value is sufficient to maintain good
audibility, making it a viable substitute for the current 15 dB criterion. An alternative approach could be to establish
an adaptive criterion that would be adjusted based on the ambient noise level, thereby mitigating the risks
associated with excessively loud alarm levels while ensuring reliable audibility.
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Eventually, our acoustical analysis of the stimuli showed that the acoustic features associated with auditory
salience were also those who best predicted audibility. This result suggests that the most distinctive sounds tend
to be perceived as the most audible. For comparison purposes, our study focused only on the same features as
explored in the work of Huang and Elhilali [38]. However, other features, such as roughness which also contributes
to salience [48], could be added to get an even better picture.

4. DEEP LEARNING-BASED AUDIBILITY PREDICTION

4.1. Problem definition

In accordance with the ISO 7731 standard, which stipulates that alarms must be “clearly audible”, we frame
the evaluation of audibility as a binary classification task in which we classify acoustic alarms as either “clearly
audible” or not within different work environments. To achieve this, we implement a system that makes binary
audibility predictions. Given an input sound clip containing an alarm played against an occupational background
noise, the system produces a binary estimate y of whether the alarm is “clearly audible” (y = 1) or not (¥ = 0).

Our proposed approach is data-driven and leverages deep learning methodologies. By embracing a
supervised learning framework, we can train a neural network to assess the “clearly audible” attribute of alarms
with no need for explicit criteria, as the network learns through exposure to alarm examples paired with human
perceptual assessments of audibility. To accommodate the data requirements of deep learning, this approach
necessitates the collection of a substantial dataset®. This dataset is divided and used across two stages. In the first
stage, referred to as development, the model is trained to extract relevant patterns and features from the data. The
second stage, known as evaluation, consists in assessing the performance of the trained model on a separate and
independent subset*.

4.2. Dataset

The dataset comprises a collection of sound clips generated by mixing recordings of occupational noises
(backgrounds) with acoustic alarms, using a random temporal alarm onset. Each clip is 5.5-second long and
contains a single alarm whose duration varies between 0.2 and 1.8 seconds. The acoustic data is accompanied by
perceptual annotations, acquired through a listening test involving normal-hearing participants. Specifically, the
listeners were presented with the clips and subsequently queried regarding the audibility of the alarms, with the
question: “Was the alarm clearly audible?”.

The dataset is divided in two subsets: one for development and another for evaluation. These subsets serve
different purposes and consequently have distinct constraints. A prior study [32] demonstrated that, while
reliability and interpretability are crucial for evaluation data, using a lighter annotation for development data does
not significantly affect the model performance. As a result, the annotation procedure differs for each subset. For
the evaluation data, a well-controlled annotation procedure is essential to yield responses suitable for extensive
analysis, similar to a standard psychoacoustic experiment. In contrast, for development data, the emphasis lies
more on the richness of the sound corpus rather than the purity of the annotations. Therefore, a more flexible
annotation procedure is desirable as it allows for coverage of a broader range of listening conditions in less time.

In an ideal scenario, the collection of such a dataset would necessitate independent groups of participants for
annotating the development and evaluation data. However, due to challenges in recruiting participants for the
listening tests, adopting this approach would have resulted in an insufficient number of annotations for either
subset. As a practical compromise, we proposed the involvement of some individuals in the annotation of both
development and evaluation sets. For methodological clarity, we categorized them into three distinct pools denoted
as A, B, and C. The number of annotators and the involvement of each pool in the annotation process are shown
in Table 1. The potential implications of sharing common annotators between the development and evaluation sets
may be explored in future studies.

For each subset, we present its contents and provide a comprehensive description of the employed procedure
for annotation. In contrast to the conventional practice of starting with development data, we intentionally present

3 The dataset containing both the acoustic data and metadata along with the perceptual annotations will be uploaded and publicly
available at: https://zenodo.org/doi/10.5281/zenodo.8417086

4 The code for neural network model development and evaluation as well as the weights of the models analyzed in the paper will be
made accessible at: https://github.com/effajr/predicting_alarm_audibility
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the evaluation data first. This choice aims to better connect with the preceding section on the psychoacoustic
experiment.

Size Development  Evaluation

Pool A 12 X
Pool B 8 X x
Pool C 2 X

Table 1: Pools of participants involved in the dataset annotation.

4.2.1.Evaluation data

We use the sound clips and subjective responses from the experiment presented in Section 3 as the evaluation
data. The subset consists of 360 monophonic sound clips, which corresponds to the 30 alarm-background pairs
mixed at six different SNRs, and across two levels of noise as determined in the psychoacoustic experiment. The
annotations for the evaluation data are derived from the responses provided by the 20 participants. In the
experimental procedure, each clip was presented to the subjects three times, resulting in a total of 60 binary
annotations per example in the evaluation set. A binary value of 1 indicates that the alarm was reported as “clearly
audible” by the participant, whereas a 0 signifies that the alarm was not perceived as such. Among the twenty
annotators, twelve exclusively annotated the evaluation data (pool A), while the remaining eight (pool B) also
contributed to the annotation of development data.

4.2.2.Development data

The development set is composed of 2000 monophonic sound clips, generated using a combined total of 70
alarms and 52 backgrounds. All sounds used for development were sourced exclusively from the Freesound
library [40]. In order to maintain a strict separation between development and evaluation sets, care was taken to
ensure that the alarms and backgrounds used for development were distinct from those present in the evaluation
set. Additionally, in the consideration of Freesound being a collaborative library, we selected development alarms
and backgrounds from various Freesound users, distinct from those in the evaluation set. This aimed to prevent
biasing the evaluation set with sounds potentially recorded under identical conditions as some of the development
data.

The distinction between development and evaluation sounds implies that they were not the exact same
signals. However, some of them roughly shared spectral or temporal attributes with sounds of the evaluation set.
Notable examples of these shared characteristics included a pulsed temporal structure or a complex harmonic
frequency content for alarms, and the presence of broadband factory noise for background sounds. The selection
criteria for sounds of the development set were less restrictive compared to those of the evaluation set.
Consequently, not all alarms within the development data can be unequivocally categorized into specific types.
We provide a global overview of alarm characteristics in the supplementary material accompanying this paper.
For illustrative purposes, we also show examples of spectrograms of the development sounds.

The clips were generated through a random pairing process, where an alarm and a background noise were
randomly drawn from our pool of sounds. The background noise level was randomly set at either 60 or 80 dBA,
and the mixing was made at a randomly selected integer SNR ranging from —30 to +15 dB. The choice of the noise
level values was guided by the same motivations as in the psychoacoustic experiment. The setup used to present
the stimuli was the same as described in the psychoacoustic experiment. As the annotation procedure was intended
to be faster than for evaluation, each clip within the development set was presented to the listeners only once (as
opposed to the standard three times for evaluation data). A total of 10 normal-hearing individuals participated in
the annotation of the development clips. This group consisted of the eight annotators of (pool B), along with two
additional annotators (pool C). As a result, each sample in the development set received 10 binary annotations.
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4.2.3.Summary

Table 2 succinctly recapitulates the key aspects of the distinct procedures employed in the generation and
annotation of development and evaluation sound clips. Additionally, Table 3 provides a summary of the
divergences in the content of the two subsets following the data collection process.

Development Evaluation
Alarm and background pairing Random In predefined list
. Random in List of 6 values
SR [-30; 15] dB ~25,-15,- 10, 5,0and 10 dB
. . Random in List of 2 values
Selection of the background noise level £60 ; 80} dBA 60 and 80 dBA
Number of presentations for each clip 1 3

Table 2: Summary of the procedures used to generate and annotate sound clips for development and evaluation sets.

Development  Evaluation

Number of sound clips 2000 360
Number of different alarms sounds 70 15
Number of different background sounds 52 10
Annotators 10 20
Total number of annotations per clip 10 60

Table 3: Differences between the contents of the development and evaluation sets.

4.3. Labels and evaluation metrics

4.3.1.Labeling strategies

Measuring the model ability to correctly classify positive (i.e. “clearly audible”) and negative (i.e. not “clearly
audible”) samples relies on the prior definition of the expected class associated with each sample. This expected
class is typically denoted as the label or ground truth. However, in our specific problem, inferring the “truth” is
challenging due to the subjective nature of perceiving an alarm as “clearly audible”. As such, each sample in the
dataset comes with multiple annotations, which may not all be identical. Consequently, the question arises of how
to derive single binary labels from these diverse annotations. In our study, we employed three distinct strategies
to label the data. These strategies are elucidated below.

Average Psychometric Function: The evaluation data are the most comprehensive in our dataset, as each
sample has undergone three annotations by each annotator. In addition, the listening experiment encompasses
multiple SNRs, enabling the fitting of psychometric functions. The first labeling approach consists in fitting the
individual psychometric curves of all annotators and subsequently averaging them across the annotators for each
combination of alarm, background, and noise level. Then, for each sample within the evaluation set, we extract
the corresponding value from the average psychometric function at the given SNR. This continuous value is
eventually transformed into a binary label by applying a binarization threshold, which is set to 0.5 by default. We
term this strategy the Average Psychometric Function (APF) strategy. This approach maximizes the utilization of
all annotations collected for each sample, drawing upon psychometric functions that are widely used and easily
interpretable in the field of psychoacoustics. It is used as the main labeling method to evaluate the model on
evaluation data.

Majority Voting: The annotation procedure employed for the development data precludes the fitting of
psychometric functions. Consequently, an alternative labeling strategy is required, applicable to both the
development and evaluation sets, allowing for meaningful comparisons. We propose majority voting (MV), which
is a widely used and straightforward labeling method, particularly suitable for crowdsourced data [49,50]. It relies
on binary individual annotator responses, in contrast with the continuous individual values of APF. For
development data, the binary responses provided by the 10 annotators are aggregated for each sample, taking the
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majority opinion as the final label. As for the evaluation data, where each annotator has provided three binary
responses per sample, we average and binarize these individual responses. Following that, we aggregate the
binarized responses from all annotators, again using the majority opinion.

Random Drawing: Lastly, the third labeling method is exclusively employed during development. It consists
in randomly drawing, for each example in the development set, one of the 10 available annotations and use it as
the actual label. This method simulates a worst-case scenario where we must learn a model with a limited number
of annotations. This limitation arises due to the time-consuming nature of the annotation process, which may lead
to the temptation of employing a single annotator per development example to accelerate data collection. It is
worth noting that the binary response given by a single annotator is a noisy estimate of the consensus, potentially
resulting in some mislabeled samples. However, it has been observed that these noisy labels act as a form of
regularization, preventing overfitting to the training data rather than compromising the overall classification
performance [32]. This method is referred to as the random drawing (RD) strategy in the remainder of the paper.

4.3.2.Metrics

In order to assess the classification performance, we employ two widely used metrics: the area under the
receiver operating characteristic curve (AUROC) and the Fl-score. The AUROC quantifies the overall
performance of a binary classifier. It measures the ability of the model to discriminate the positive and negative
instances. It is determined through the integration of the receiver operating characteristic (ROC) curve, which
depicts the relationship between the model true positive rate and false positive rate. This integration summarizes
the model overall classification performance in a single metric ranging from 0 to 1. The F1-score is a measure of
the model performance, taking into account both precision and recall. It balances the trade-off between correctly
identifying positive samples (precision) and capturing all positive samples (recall). The F1-score ranges from 0 to
1, with 1 indicating perfect precision and recall.

4.3.3.Human baseline performance

To establish a benchmark for model performance comparison, we suggest evaluating the metrics against the
performance of an average human. This approach will serve as a baseline. To achieve this, we calculate the
evaluation metrics for each annotator in the dataset, while employing the remaining annotators to derive the
reference labels on each iteration. Subsequently, we compute the mean and the standard error across all annotators
for both metrics.

We first calculate the human baseline performance using MV labels to enable comparison between the
development and evaluation sets. The results, reported in Table 4, demonstrate consistently high performance in
both subsets. The similarity in scale between development and evaluation performance suggests that one subset
should not be significantly more challenging to predict than the other. However, we do notice a slight discrepancy
between the two subsets, indicating that, on average, there is less agreement between a single annotator and a
reference annotator group for the evaluation data.

Development Evaluation
AUROC 87.68+1.71 84.53+1.79
F1 87.70+1.79 82.78 +2.82

Table 4: Performance metrics computed for the human baseline on development and evaluation sets.

Second, we proceed to compare the human baseline performance on the evaluation data, computed with two
different label types: MV labels and APF labels. As presented in Table 5, the labeling strategy acts differently on
AUROC and F1-score. While the F1-score remains consistent regardless of the labeling strategy, the AUROC
significantly increases when APF labels are used. This disparity arises from the inherent differences in how these
metrics are computed. Both metrics require binary reference labels, but they impose different constraints on the
individual responses (outputs) of the annotator whose performance is being assessed.

The F1-score requires binary outputs, as it relies on precision and recall, which are computed from binary
predictions obtained by applying a binarization threshold to the continuous outputs. Conversely, the AUROC can
handle continuous outputs since it examines the classifier ability to distinguish between classes across various
discrimination thresholds. Consequently, for both MV and APF labeling methods, the F1-score is computed with
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binarized individual annotator responses. The only difference lies in the accuracy of individual responses, which
are binarized from the full psychometric function, rather than relying just on three Yes-No trials. In contrast, the
AUROC is computed with continuous individual outputs for APF labels, against binary individual responses for
MV labels. As a result, the AUROC takes advantage of the entire range of continuous response probabilities
provided by the psychometric function and is not affected by the choice of the binarization threshold applied to
the individual annotator responses.

This last observation underlines the significance of using APF labels to evaluate the model on evaluation data
on two counts. First, it leverages comprehensive knowledge of the psychometric functions of the annotators,
thereby elevating the human baseline score in terms of AUROC and enhancing the interpretability of this metric.
Second, it provides justification for utilizing both AUROC and F1-score metrics. While the F1-score directly
measures the binary classification performance, the AUROC facilitates the comparison of the classifier continuous
output with the psychometric function of an average human.

MV APF
AUROC  8453+179  97.01+0.49

F1 82.78+282  83.48+293

Table 5: Performance metrics computed for the human baseline on evaluation data, using MV and APF labels.

4.4. System

Our system uses 5.5-second sound clips to generate an estimate, at the clip-level, of whether the alarm within
the sound clip is “clearly audible” or not. The process consists of two distinct stages: feature extraction and
classification. In the first stage, spectro-temporal representations of the sound clips are extracted. These
representations are then fed into a classifier in the second stage, which generates audibility predictions for each
clip. The general structure of the system is depicted in Figure 5.

Background noise

Sound clip Mel-spectrogram
Mel-spectrogram extraction Scaling
et Convolutional
. X -
e Mg STFT Mel =t Neural Network e
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Figure 5: lllustration of the different stages of the system.
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1: “clearly audible

4.4.1.Input acoustic features

The input acoustic features used in our study are mel-spectrograms, which find extensive application in
machine listening. To generate the mel-spectrogram for a combination of an alarm and background noise, we
compute a short-time Fourier transform (STFT) using a Hamming window with a segment size of 1024 and a hop
size of 512. Subsequently, we apply a mel-filterbank over the resulting spectrogram to convert it into 64 mel-
spaced frequency bins, covering the range from 20 Hz to 22.05 kHz. With only 64 frequency bins, these mel-
spectrograms offer more compact representations than conventional magnitude spectrograms, making them more
computationally efficient. Additionally, they are based on the Mel scale, which makes them more aligned with
human perception.

4.4.2 Model architecture

The proposed classifier is a CNN whose architecture is inspired by models used in rare sound event
detection [51,52]. A similar architecture has demonstrated ability to reach high classification performance in two
preliminary studies [31,32].

The model is composed of four convolutional layers, each having a different number of filters: 32, 64, 64,
and 128 filters per layer, respectively. These filters are essentially small grids used to scan the input data. They
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have a receptive field size of 3 by 3, meaning they analyze a 3-by-3 section of the input mel-spectrograms at a
time.

Following each convolutional layer, Rectified Linear Unit (ReLU) activations [53] are applied, and max
pooling is performed along the frequency axis. ReLU is a mathematical function that introduces non-linearity into
the model, thereby facilitating the capture of complex patterns and features within the data. Max pooling is a
downsampling technique that retains the maximum value from a set of values within a certain region. The pooling
operations have different strides for each layer, which control how the pooling regions overlap or skip. Specifically,
the strides are (1, 4), (1, 4), (1, 2), and (1, 2) for the respective layers. This operation reduces the dimensions of
the data, thus decreasing computational complexity and memory usage across layers while preserving essential
features.

The activation outputs from the final convolutional layer are then fed into a fully connected layer that
processes each time frame separately, followed with a sigmoid activation function. This step transforms the data
into a one-dimensional vector representing frame-level posteriors, where each value in the vector ranges between
0 and 1 due to the sigmoid activation.

To obtain a clip-level score, an L, aggregation with p=5 is applied over the time axis on this vector. This
process aggregates the information across time to make a decision at the level of the entire sound clip. The resulting
score is a continuous value that aims to be as close to 1 as possible when the alarm is considered “clearly audible”
and close to 0 when it is not. By default, we set the discrimination threshold to 0.5, meaning that the value is simply
rounded to yield a binary output.

4.4.3.Development procedure

In order to prevent overfitting, the model is not trained using the entire development set. Instead, a portion
of the development data is reserved for continuous monitoring of the model performance on data that the model
has not learned from. This practice is commonly referred to as validation. In our work, we randomly allocated 20%
of the development data for validation purposes, while the remaining 80% was exclusively designated for training.
This random allocation was performed once and kept fixed throughout the study.

In accordance with the commonly recommended practice in deep learning approaches, especially for
accelerating the convergence of the training process [54], we scale the data to zero mean and unit variance along
mel frequency bins prior to feeding it into the model. The standardization coefficients are computed on the training
samples. The same standardization coefficients are used to scale the whole dataset, ensuring uniform treatment of
both development and evaluation data.

The CNN is trained with backpropagation, a fundamental deep learning method for adjusting model
parameters to minimize prediction errors. The training samples are fed into the model in mini-batches of size 16.
Within each mini-batch, we quantify the prediction error of the model by the means of a binary cross-entropy loss
function. We then calculate the gradients of the loss function with respect to the internal parameters of the model.
These gradients indicate the direction and magnitude of the adjustments required to minimize the loss. Using Adam
optimizer [55], we leverage the gradient information to iteratively update the parameters, progressively improving
model predictions. We set the learning rate, which determines the step size during weight update, to 0.0001.

To prevent the model from overfitting the training data, we fix a 0.0001 weight decay within the Adam
optimizer. Weight decay imposes a penalty on the model parameters, discouraging them from growing too large
during training. Additionally, we apply dropout with a rate of 0.25. Dropout randomly deactivates a fraction of
neurons in the network during training, preventing the model from overly relying on any individual neuron or
group of neurons.

The model is trained for 250 epochs, with each epoch representing the complete processing of all mini-
batches of training data through the model. Throughout training, the model performance on the validation data is
evaluated after each epoch, using RD labels. The final parameters of the models are retained from the epoch with
the highest validation accuracy for subsequent evaluations and predictions.

4.5. Model performance

To capture the variance and uncertainty in the training process resulting from weight initialization and data
sampling, we perform 10 runs of model training, each with different random initialization and data sampling.
Before each training run of the network, a random draw is performed to determine the training RD labels.

In order to guarantee that the evaluation of the model performance on the evaluation set is only based on its
capacity to generalize to unseen data, we employ separate and non-overlapping groups of annotators for
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development and evaluation. For this purpose, we derive the APF labels for the evaluation set exclusively from
the responses provided by the 12 annotators of (pool A). Meanwhile, our development procedure relies on RD
labels sourced from the eight annotators of (pool B) and the two annotators of (pool C). This way, we aim to
mitigate any potential annotator biases that may have been learned during development and ensure a fair and
reliable evaluation.

We report both the model and human performance on the evaluation set with mean value and standard error
across the 10 runs in Table 6. As we can observe, the model performance closely approximates that of humans,
albeit with a slight deficit in comparison to the human baseline. The disparity between model and human baseline
is much more pronounced and significant for the AUROC metric than it is for the F1-score, suggesting comparable
binary classification performance in terms of precision and recall. This observation is further supported by the
AUROC value of the model, which aligns closely with that of the human baseline when evaluated on binary MV
labels.

Model Human baseline
AUROC 85.84 £ 0.75 97.28 +0.48

F1 76.03 £ 0.57 81.50 + 3.86

Table 6: Performance on the evaluation set for the model and the human baseline.

5. COMPARATIVE ANALYSIS AND DISCUSSION

The evaluation of the system using the two classification metrics has provided valuable insights into the
achievable performance using a low-complexity deep-learning model for predicting alarm audibility. In this
section, we expand upon this initial analysis by conducting a more comprehensive examination of the model
performance, drawing comparisons with the human baseline.

5.1. Audibility criterion and binary classification performance

First, our specific focus centers on the binarization threshold employed to generate the APF labels within the
evaluation set. For the model evaluation presented in Table 6, the evaluation label binarization threshold was set
at a default value of 0.5. This choice, guided by pragmatic technical factors, corresponds to a rounded mean
audibility score for each sample and ensures a balanced evaluation set. Additionally, this threshold is closer to a
majority voting approach, as it defines samples as positive if that have a 50% or higher probability of being
considered as “clearly audible”, on average, by the participants. Nevertheless, it may not be the most suitable in
terms of practical applicability of the model. While the model holds potential for alarm level configuration, the
evaluation label binarization threshold, governing the audibility score at which an alarm becomes labelled as
“clearly audible”, should be selected with care. Opting for a threshold of 0.5 adopts a rather permissive criterion,
as all samples with an audibility score above 50% would be considered as “clearly audible”. This liberal approach
might prove inadequate for ensuring reliable audibility if the model was to be employed in setting alarm levels.

We conducted a study of the effects resulting from different binarization thresholds applied to obtain the
evaluation labels. We compare the effects on both the model and the human baseline performance. To evaluate the
model, we analyzed the outputs obtained from the 10 runs, as presented in Section 4, by comparing them against
the APF labels subjected to different evaluation label binarization thresholds. The evaluation was conducted based
on precision, recall and F1-score. The results are presented in Figure 6.

In Figure 6(a), the precision demonstrates a monotonic decline with increasing evaluation label binarization
thresholds, signaling an increase in false positives. This trend is consistent for both the model and the baseline.
From the perspective of the model, this outcome can be attributed to the fact that, as the evaluation label
binarization threshold increases, the number of positive samples in the evaluation set decreases. Since the model
discrimination threshold remains fixed, its outputs do not change with the binarization threshold of the labels.
Consequently, samples that were correctly classified as positive with a low binarization threshold gradually
become false positives as the threshold increases. In contrast, the interpretation of decreasing precision in the
human baseline performance differs. Since the binarization threshold is identical for both individual annotators’
outputs and reference labels, the diminishing precision with increasing binarization threshold reflects a distinct
mechanism. This shows that, on average, a reference group of listeners adopts a more conservative stance
compared to an individual listener when assessing alarm audibility. In essence, as we deviate from an audibility
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score of 0.5 toward higher values, an individual listener's audibility score tends to overestimate that of a collective
listener group. This discrepancy leads to an increased number of false positives in the human baseline.
Furthermore, our analysis reveals that the model consistently falls short of the baseline precision across the entire
range of evaluation label binarization thresholds.

The recall, depicted in Figure 6(b), shows a different evolution. As the evaluation label binarization threshold
increases, more samples in the evaluation set are labeled as negative. This results in a higher recall for the model,
as it correctly identifies a larger proportion of positive samples. In contrast, the baseline recall remains steady
throughout the range of evaluation label binarization thresholds. Regarding the comparison between the model
and the baseline, the baseline initially outperforms the model up to an evaluation label binarization threshold of
approximately 0.6. Beyond this threshold, the model recall continues to increase, while the baseline's remains
constant. Consequently, the model gradually surpasses the baseline in recall as the evaluation label binarization
threshold increases.

The F1-score, which is the harmonic mean between precision and recall, is represented in Figure 6(c).
Consistent with the results presented in Table 6, the model is outperformed by the baseline when an evaluation
label binarization threshold of 0.5 is used. Between threshold values of 0.5 and 0.6, the model F1-score remains
constant, while the baseline performance slightly declines. At a binarization threshold of 0.6, both the model and
baseline achieve equivalent F1-scores, and from there, both show a gradual decrease until they reach a value of 0
for a binarization threshold of 1. The model performance approaching the baseline for higher evaluation label
binarization threshold values is highly promising. This observation indicates that the model performs well under
more stringent audibility criteria, crucial for ensuring reliable assessments, as they represent more prudent
operating conditions for setting alarm levels.

These comparable trends in metrics for the model and the human baseline suggest a substantial similarity in
their behavior. The model performance closely resembles that of an average normal-hearing listener in a Yes-No
listening task, which is consistent with its learning on binary labels using a single normal-hearing listener per
example. However, it is important to note that a single listener cannot accurately predict the response of a reference
group of listeners, highlighting the necessity of involving multiple participants in psychoacoustic experiments.
This limitation becomes more evident when the audibility criterion defined by the evaluation label binarization
threshold is increased, resulting in a notable collapse in precision for both the baseline and the model. Reduced
precision signifies an increased occurrence of false positives within positive predictions. This indicates a highly
undesired scenario, where alarms are classified as “clearly audible” when they are not, which could potentially
compromise user safety.
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Figure 6: Precision, recall and F1-score for model and human baseline, computed with different evaluation label binarization
thresholds.

5.2. Psychoacoustical perspective on model evaluation

The previous diagnosis, considering precision and recall, offers insights into the model and human baseline
performance on the specific binary classification problem formulated in this paper. However, these metrics are
limited since they are computed for a given discrimination threshold, and therefore only provide a partial view of
the system. In particular, the decrease in precision observed in Figure 6(a) could be simply attributed to a non-
optimal discrimination threshold that would cause wrong predictions.

As the model binary predictions rely on continuous outputs that are subjected to a discrimination threshold,
we decide to focus on the continuous output of the model before applying any threshold. Figure 7 depicts the mean
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outputs of the model, along with the mean values of the average psychometric function, both plotted against SNR
across all evaluation clips. Before analyzing the curves, it should be pointed out that the human listeners and the
model are not evaluated in the same exact way. The human psychometric function is influenced by multiple factors.
Such factors may include personal experience or familiarity with a specific type of alarm or sound environment,
but also the sounds heard during the listening test itself [56]. In our data, subjects-related factors were mitigated
by averaging the responses within a representative group of listeners. Regarding the continuous aspect of human
learning, it leads to a psychometric function that is potentially influenced by the experimental design. For instance,
it is likely that hearing an alarm at a very high SNR after lower SNR values (or vice versa) might have had an
effect on the participants’ responses. We tried to limit this effect as much as possible by randomizing the
presentation order of the multiple conditions during the listening experiment. The way the model produces outputs
is different. While the model output is also influenced by what it has seen in the past, its parameters are fixed at
inference time. This means that the model does not change after being presented with evaluation clips [57].
Evaluating the model does not have any impact on future predictions. This difference with human should be kept
in mind when comparing the model continuous output to a human psychometric function.

With that being said, noteworthy parallels do exist in the responses of model and human. One shared aspect
is the susceptibility to order effects. Although such effects are not related to the evaluation data for the model, the
training can be influenced by the sequential arrangement of the training samples. This is comparable to the
phenomenon described with the human responses. To address this issue, we employed sample shuffling during the
training process, just as we randomized the presentation order in human experiments. Furthermore, an additional
point of convergence between human and model responses is their shared reliance on temporal context. The results
of our psychoacoustic experiment showed that human assessment of audibility is influenced by how distinctive
the alarm is from its surrounding acoustic environment. Human therefore uses what is heard before and after an
alarm to evaluate its audibility. Likewise, the model uses temporal context to produce an output. First, the CNN
filters have a receptive field that spans over multiple time frames of the input mel-spectrograms. This feature
enables the model to capture local temporal context to produce frame level estimates of audibility. Second, the
clip-level model output is obtained through the aggregation of these frame-level estimates. In essence, the final
model estimate of audibility incorporates information from the entire 5.5-second long sound clip, including parts
after and before the alarm. These similarities between the model output and human responses offer scope for a
meaningful comparative analysis.
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Figure 7: Average human baseline psychometric curve and model continuous output values over all the evaluation clips

Figure 7 illustrates the model and human baseline behavior as a function of the SNR. Interestingly, while the
model is only trained to generate outputs that approach 0 or 1, we observe that the model output evolution with
alarm signal strength exhibits similarities to the shape of a psychometric function. However, the two curves show
distinct horizontal position, width and dynamic range, making difficult to establish a direct relationship between
the model continuous output and a human psychometric value. As a result, while it would make sense choosing a
specific discrimination threshold that is directly based on the value of psychometric function for the human
baseline, selecting a discrimination threshold for the model is not as straightforward. A comprehensive analysis of
the system should therefore consider the plurality of possible discrimination thresholds, rather than being restricted
to a single operating point.

The model and human baseline ability to discriminate between positive and negative samples based on their
respective continuous “psychometric outputs” can be visualized with ROC curves. ROC curves represent the trade-

19



off between true positive rate and false positive rate across different discrimination threshold values. Each point
of the ROC curve is obtained by setting a discrimination threshold along the “psychometric curve”, where alarms
are classified as either “clearly audible” when they fall above the threshold or not “clearly audible” when they fall
below it, and subsequently comparing the predictions with the actual evaluation labels. The upper right corner of
the ROC curve represents the lowest possible discrimination threshold, classifying all samples as positive, resulting
in a true positive rate of 1 and a false positive rate of 1. Conversely, the lower left corner of the ROC curve
corresponds to the highest possible discrimination threshold, leading to a true positive rate of 0 and a false positive
rate of 0 as all samples are classified as negative.

Figure 8 shows ROC curves of the model (left panel) and human baseline (right panel) for different evaluation
label binarization thresholds. This allows us to visualize the model performance for different values of the
binarization threshold used to define the labels, independently of the choice of a discrimination threshold. As we
can observe in Figure 8, the human baseline ROC curves are unaffected by the choice of a different evaluation
label binarization threshold. This is likely due to the similarity in shape between the psychometric curve of an
individual and the average curve of a reference group. Contrastively, a closer look at the model ROC curves shows
that when the evaluation label binarization threshold is higher, the model achieves higher true positive rates at
lower false positive rates. However, even though, in proportion, the model is able to correctly identify more
positive samples while predicting fewer false positives, it must be said that the absolute number of positive samples
in the dataset considerably decreases when the binarization is increased. Specifically, the number of positive
samples in the dataset changes from 148 for a binarization threshold of 0.5 to 53 for a binarization threshold of
0.9. This indicates that the model performs very well at discriminating “easy” positive samples, i.e. samples where
the alarm is very likely to be considered by a group of human listeners as “clearly audible”. On the other hand, it
is less able to identify all positive samples without making false positive predictions when the samples are defined
as positive from a lower average audibility score. In both cases, however, model performance remains similar in
scale to that of the human baseline, which is a satisfactory result.
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Figure 8: ROC curves of the model (left panel) and human baseline (right panel) for three different test label
binarization thresholds (0.5, 0.75, and 0.9).

These results highlight the model capacity to predict alarm audibility consistent with human perception. The
model continuous output can be leveraged to discriminate between “clearly audible” and not “clearly audible”
alarms for various audibility criteria, provided the selection of an appropriate operating mode. Such operating
mode should be selected depending on the specific application framework of the model, including tolerance to
false positives or false negatives for instance. Finally, a binary response may not be the most appropriate way to
characterize human auditory perception. The analysis using the ROC curves shows that, even if the model was
trained on a binary classification task, it produces a continuous output that could be exploited in a way that better
reflects perception, which is often more nuanced and complex. Further developments should explore strategies to
align the model outputs more closely with human psychometric functions, particularly focusing on the high-
probability region of the curves. The formulation of safe alarm level recommendations should rely on this specific
region. It is therefore imperative that the model output emulates human behavior in this critical area as closely as
possible. In particular, a safe application of the model requires being able to properly select a discrimination
threshold that minimizes the number of false positive predictions while maintaining a high overall performance
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level. This would enable enhancing the potential of the model to provide well-informed recommendations
concerning alarm levels by avoiding positively classifying alarms that are not “clearly audible”.

6. CONCLUSION

In this study, we presented an experiment that provided subjective evaluations of the audibility of acoustic
alarms in occupational environments. Following the terms of the ISO 7731 standard, we assessed the “clearly
audible” aspect of these alarms, and additionally measured their detection thresholds. Our analysis of these data
has underscored the true importance of assessing audibility at supraliminal levels as a distinctive property that
goes beyond direct and exclusive correlation with detectability.

By contrasting our findings with established standards and commonly employed criteria, we have formulated
general guidelines to ensure a reliable audibility of acoustic alarms, thereby corroborating existing criticisms that
the requirements of ISO 7731 are not always necessary and may lead to excessively high alarm levels. In particular,
we proposed revising the current SNR criterion of minimum 15 dB to a lower value, such as 7.5 dB. An alternative
option could be to carry additional investigations to implement an adaptive criterion that adjusts according to the
ambient noise level, which would account for the reduced need for high alarm levels in environments with higher
noise levels. As stated in the standard, such audibility criteria are designed for normal-hearing people with no
hearing protection. It is crucial to carefully adapt these criteria in situations where individuals with hearing
impairments or personal hearing protection are present.

Furthermore, through our acoustic feature analysis, we have identified some amount of correlation between
audibility and salience. This analysis has shed light on the fundamental acoustic attributes that drive audibility and
has highlighted the pivotal role of distinctiveness in enhancing the perceived audibility of alarms.

Audibility is contingent upon an array of multiple factors, whose individual and cumulative effects remain
incompletely understood and quantified, making it difficult to model using a purely psychophysical parametric
approach. As a solution, we developed a model based on data-driven deep learning techniques to assess the
audibility of acoustic alarms in contexts where subjective testing may not be employed. We described the
collection of an extensive dataset of perceptually annotated sound clips mixing acoustic alarms with occupational
noise, necessary to learn and evaluate the model. Our approach was shown to achieve close-to-human performance
at classifying alarms as “clearly audible” or not “clearly audible”.

A more detailed analysis determined the most favorable operating conditions of the model in its most
straightforward application as a binary classifier, evaluating the model performance using various audibility
criteria to label the evaluation data. It showed that the agreement between model and human performance was
stronger when the minimum audibility score required to label alarms as “clearly audible” was high. However, both
the model and human performance collapsed when this minimum audibility score was set to extremely high values.

Eventually, a closer examination of the model outputs evidenced similarities between model and human
responses, offering a more intuitive interpretation of the ROC curves from a psychophysical point of view. This
analysis, encompassing all possible discrimination thresholds of the model, offered a broader view on model
performance. It revealed that the model is actually able to perform well at discriminating “clearly audible” alarms,
even better when high audibility scores are required to label alarms as “clearly audible”, provided a proper
configuration of its decision stage. However, despite the existing similarities between the model and human
responses, our approach is open to development to align more closely the model behavior with that of humans for
more reliable model predictions.

In conclusion, our findings demonstrated the great potential of a deep learning model to solve the problem of
setting appropriate alarm levels in work environments. At this point, we have a binary classifier capable of
discriminating between “clearly audible” and not “clearly audible” alarms that demonstrates strong correlation
with human responses. This model could serve as a basis for formulating alarm level recommendations. At the
current stage of development, this could be done by adjusting alarm levels based on the SNRs at which the model
predictions turn from negative to positive. Additional research is needed to refine this approach. For instance, the
development of a decision-making framework that leverages the continuous output of the classifier, as opposed to
the fixed threshold currently in use, could be beneficial. Alternatively, one may consider training a deep-learning
model on another task, such as regression to predict psychometric functions. However, training a model on
psychometric functions would require new and more extensive development data, annotated through a more
demanding and time-consuming procedure.
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