

Antennes optiques RX

pour champ E et H

Our raison d'être

Providing solutions to issues of EM field measurement in any environment.

Kapteos in figures

- 14 years of experience
- A presence on 3 continents
- 100+ customers in 16 countries
- Portfolio of 8 patent families
- 145+ scientific publications
- >80% export turnover

Field probe specifications

- Linear response vs field single axis vector meas.
- Flat response vs frequency (in modulus & phase)
- Ultra high dynamic range vs field strength & freq.
- Compliant with all media (gases, liquids, plasmas...)
- No induced interference (even in near field)
- Local measurement with high spatial resolution
- Compliant with harsh environment (P, T, UV & X rays...)
- Immune to radiated & conducted disturbances
- Long distance remote measurement

Principle of optical E-field probes

- Based on Pockels effect (1893)
 - Refractive index variation induced by E field

Linear response vs field - single axis vector meas.

- Immune to radiated & conducted disturbances
- Long distance remote measurement: IL ~ 0.1 dB/km

- Local measurement with high spatial resolution
- No induced interference (even in near field)

- Compliant with harsh environment (P, T, UV & X rays...)
 - 5 ns laser pulse on AI target with 33.8 J (ENEA Frascati)

- Ultra high dynamic range vs field strength & freq.
 - E-field measurement from 10 Hz up to 60+ GHz
 - Dynamic range of 130+

Compliant with all media (gases, liquids, plasmas...)

- Flat response vs frequency (in modulus & phase)?
 - − Flat on 10 Hz \rightarrow 500 kHz
 - Piezoelectric resonances in the 500 kHz 10 MHz freq. range
 - Flat on 10 MHz \rightarrow 10 GHz
 - Mie-type diffusion effect above 10 GHz (periodically enhanced sensitivity vs frequency)

What about H field?

- Pockels effect: linear variation of n vs E_x
 - Longitudinal & transverse E-field probe
 - Pockels effect is doubled during a forth-&-back path
- * Faraday effect: linear variation of n vs H_z
 - Longitudinal H-field probe only
 - Faraday effect is cancelled during a forth-&-back path

H-field probe POC

with COTS: same forth-&-back config. as E-field probe

H-field probe POC

• POC response vs appl. volt. to Helmholtz coils

Probe response versus Helmoltz coil applied voltage

H-field probe POC

Intrinsic POC response vs frequency

Intrinsic frequency response of the MO probe

POC response vs temperature

• Acceptable variation of ~ 0.1 dB/°C

Résumé

- E-field probe
 - − Freq. BW: 10 Hz \rightarrow 60 GHz
 - E-field (1Hz RBW): 25 mV_{peak}/m \rightarrow 1.4 MV_{peak}/m
- H-field probe
 - Freq. BW: 10 kHz \rightarrow 1 MHz DC \rightarrow 1 GHz expected
 - − H-field (1Hz RBW): $0.025 \rightarrow 250 \text{ A}_{\text{peak}}/\text{m}$ x 200 expected
 - − B-field (1Hz RBW): $0.03 \rightarrow 300 \mu$ T x 200 expected