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Abstract: The next generation of propeller-driven aircraft raises new concerns about their
stability regarding the whirl flutter phenomenon. This instability has to be evaluated early in
the design phase, thereby raising a need for fast and robust prediction methods. The key to
analyzing such instability is the modeling of the motion-induced aerodynamic loads on the
propeller. This paper proposes to build and compare different aerodynamic modeling methods
ranging from low- to mid-fidelity. The comparison of the resulting stability boundaries shows
that certain low-fidelity models give results close to mid-fidelity, emphasizing the advantages
of these fast low-fidelity methods for the whirl flutter prediction. The interest of mid-fidelity
modeling techniques in the study of non-conventional situations is also looked at. In particular,
the occurrence of whirl flutter under non-axial flow is studied. The obtained stability boundaries
highlight a slight stabilizing influence, demonstrating that the axial flight situation remains a
conservative framework for whirl flutter studies.

1 INTRODUCTION

In a drive to improve the efficiency of air travel, new aircraft configurations based on uncon-
ventional architectures are emerging. They favor the use of high aspect ratio wings with large
diameter engines to minimize fuel consumption and maximize performance 1. However, with
the increase in wing and blade slenderness come questions about the robustness of these new
configurations to the whirl flutter aeroelastic instability [1]. This phenomenon, characterized by
a divergent motion of the propeller center, leads to irreversible damage and constitutes therefore
an important constraint in the aircraft development process [2].

Even though it was discovered by Taylor & Browne in 1938 [3], the first concrete interests
in whirl flutter date back to the 1960s after two accidents in 1959 and 1960 of the Lockheed
L-188 C Electra II aircraft. Modeling of this instability requires an expression of the motion-
induced aerodynamic loads on a propeller. Reed & Bland [4] used the work of Ribner [5,6], who

1https://aviationweek.com/shownews/paris-air-show/onera-studies-hydrogen-powered-truss-braced-wing-
airliner

1

https://aviationweek.com/shownews/paris-air-show/onera-studies-hydrogen-powered-truss-braced-wing-airliner
https://aviationweek.com/shownews/paris-air-show/onera-studies-hydrogen-powered-truss-braced-wing-airliner


IFASD-2024-150

primarily developed the expression of the forces and moments on a propeller in pitch and yaw, to
conduct the first stability analysis on a simple propeller structure. Houbolt & Reed [7] continued
the investigation of this phenomenon in 1962 to create what is considered to be the reference
model of whirl flutter. They developed linearized analytical expressions of the motion-induced
aerodynamic loads on a rigid blade propeller by means of a quasi-steady strip theory. Rodden &
Rose [8] later included them in the finite element solver MSC Nastran to provide a framework
commonly used to this day in the aircraft certification process [2].

Since then, several efforts have been made to enhance the aerodynamic modeling of the forces
and moments on the propeller. For the sake of synthesis, they can be classified from low- to
mid- and even high-fidelity. The low-fidelity models rely on 2D-aerodynamic theories used in
an analytical way. Usually, they start from the work of Houbolt & Reed and add improvements.
Gennaretti & Greco [9] for example upgraded these expressions to consider the unsteadiness
of the flow through Theodorsen’s theory [10]. They conducted stability studies on a simple
two degrees of freedom model and compared their results with a more advanced mid-fidelity
code based on a Boundary Element Method formulation. One of the findings was that the flow
modeling method could significantly alter the stability predictions. Other studies based on low-
fidelity models were performed by Koch et al. [11, 12] to investigate the influence of blade
flexibility through the use of an external code based on Wagner’s aerodynamic theory.

Besides these low-fidelity models, mid-fidelity ones appeared to tackle complex 3D-flow effects
that were incompletely modeled with 2D-aerodynamic theories. Numerous mid-fidelity studies
arose mainly due to the constraint whirl flutter represented for tilt-rotors, characterized by their
toggling engines positioned at the wing tip [13]. The weight of such systems combined with
the increased rotor diameter made them more sensitive to whirl flutter and created a need for
finer modeling from both an aerodynamic and structural standpoint. It was achieved through
the use of so-called rotorcraft comprehensive codes which prevail today in the field of whirl
flutter studies. They can provide modeling of the structure and of the aerodynamics on the same
platform, useful for the study of complex tilt-rotor configurations [14–16] but also propeller-
driven aircraft [17–19]. Other mid-fidelity studies rely on the external coupling between a
structural and aerodynamic solver [20–22].

Ultimately, attempts were made to pave the way towards high-fidelity whirl flutter modeling
through coupled Computational Fluid Dynamics (CFD)/Computational Structural Mechanics
(CSM) simulations, especially since mid-fidelity can still present significative discrepancies
with experimental results [23]. Such simulations can already be found in the field of helicopters
for a non-moving rotor rotation axis [24]. However, the intrinsic precession motion of this axis
during whirl flutter complicates the implementation of such coupled calculations. Verley &
Dugeai [1] developed to this end a chimera approach in ONERA’s CFD code to manage rigid
body motion of a counter-rotating open rotor. Corle & Floros [25] went further to perform time-
domain whirl flutter stability analysis with fully coupled CFD/CSM simulations. Instead of
direct coupling, Reveles & Rajagopal [26] proposed a method to perform whirl flutter stability
analysis by means of CFD response to imposed motion of the propeller. Despite these attempts
to bridge the gap with high-fidelity analysis, this ground remains rather unexplored as it is very
costly in computing time and offers less flexibility than the previously mentioned low- and
mid-fidelity models.

With the desire to evaluate the influence of aerodynamic modeling on the whirl flutter stability
of a rigid blade propeller, Koch et al. [27] recently compared the classical Houbolt & Reed
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model with more advanced low- and mid-fidelity codes. They found that the whirl flutter sta-
bility margins could present significant discrepancies between the models and that the classical
Houbolt & Reed framework could not guarantee conservatism of the results. In the spirit of this
work, this paper proposes in a first part to do a review of some existing low- and mid-fidelity
aerodynamic models, and details the construction of novel low-fidelity ones addressing the
limitations of Houbolt & Reed’s reference modeling. The methodology employed to conduct
stability analysis on a simple structure model is then detailed in a second part. Finally, in a third
part, the stability predictions of these models are compared for axial flow conditions before in-
vestigating with the mid-fidelity methods the unconventional and rather unstudied configuration
of non-axial flow.

2 STRUCTURAL AND AERODYNAMIC MODELS
2.1 Structural model
The structural model displayed in Figure 1 is used in this study to perform stability analysis. It
is the reference model for whirl flutter studies [28], and constitutes therefore a good benchmark
to evaluate the influence of aerodynamic modeling. The structure is made of a rigid blade pro-
peller rotating at constant speed Ω around a rigid pylon of length La. The pylon is connected
to the frame by two rotational springs of stiffnesses Kψ and Kθ, with viscous dampers of coef-
ficient Cψ and Cθ. The system has therefore two degrees of freedom (dof) which are the pitch
θ and yaw ψ angles. These angles represent the precession motion of a nacelle on a wing, a
motion inherent to whirl flutter. The whole system is immersed in a flow of speed V⃗ . Two con-
figurations are used. First, a case where the flow is along the x⃗ axis. It constitutes the reference
configuration widespread in the literature as it models a propeller mounted on an airplane in
axial flight [28]. Then, a more original setup is studied where the flow has components along
the x⃗ and z⃗ axis. This represents a take-off or turning phase of the aircraft where the propeller is
subjected to a non-negligible cross-flow. Whirl flutter studies in this last case are not numerous
which leaves open questions about the influence of this cross-flow on stability.

Kψ, Cψ

ψ

θ

Ω

V⃗

x⃗

z⃗

y⃗

Kθ, Cθ

O

C

Figure 1: Classical structural model used for whirl flutter stability analysis.

Noting u = (θ, ψ)T the system’s dof, the motion equation can be written as:

Mstructü+Cstructu̇+Kstructu = maero(ü, u̇,u) (1)

where Mstruct is the mass matrix, Cstruct the damping matrix and Kstruct the stiffness matrix.
When there are three blades or more (to avoid periodicity of the rotor’s inertia in the reference
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frame), the structural matrices are constant. They are expressed by:

Mstruct =

[
Jn 0
0 Jn

]
, Cstruct =

[
Cθ −JpΩ
JpΩ Cψ

]
, Kstruct =

[
Kθ 0
0 Kψ

]
(2)

with Jn the pitch and yaw inertia of the nacelle and rotor, Jp the polar inertia of the rotating
parts. maero is the aerodynamic moment at the pivot point O resulting from the propeller
aerodynamics loads. Its particularity is that it depends on the degrees of freedom since the
induced velocities and the incidence angle of the flow on the blades evolve as the propeller
center moves.

The next sections focus on obtaining an expression of the second member of the motion equa-
tion maero with different levels of fidelity. In a more general perspective of coupling with any
structural model (not only the one Figure 1), the propeller forces and moments are first ex-
pressed at the propeller center C depending on the center dof in translation uc = (uxc , u

y
c , u

z
c)
T

and rotation θc = (φ, θ, ψ)T . The link with the pivot moment maero is then established in
section 3 in order to perform whirl flutter stability analysis on the simple structure considered
here.

2.2 Houbolt & Reed’s low-fidelity aerodynamic model

Houbolt & Reed created the reference model of whirl flutter [7]. In their work, they developed
an expression of the motion-induced aerodynamic loads on a rigid blade propeller under an
axial flow. Starting from the expression of the elementary lift on a blade profile, they summed
the forces and moments on each profile (strip theory) to obtain the resulting loads on the whole
propeller. Their expression of the transverse forces (f yc , f zc ) and moments (my

c , m
z
c) at the

propeller center is written under:
f yc
f zc
my
c

mz
c

 = −Ca


u̇yc
u̇zc
θ̇

ψ̇

−Ka


uyc
uzc
θ
ψ

 (3)

uyc and uzc are the transverse displacements of the propeller center C whereas θ and ψ are its
rotations associated to pitch and yaw motions (for the specific model displayed in Figure 1, they
are linked at first order through the relations uyc = −Laψ and uzc = Laθ). Matrices Ca and Ka

represent added damping and added stiffness effects. They are expressed through:

Ca = −ρπV 2R3


− Cyψ

2RV
− Cyθ

2RV

Cyq
2V

−Cyr
2V

Czψ
2RV

Czθ
2RV

−Czq
2V

Czr
2V

−Cmψ
V

−Cmθ
V

CmqR

V
−CmrR

V
Cnψ
V

Cnθ
V

−CnqR

V
CnrR
V

 (4a)

Ka = −ρπV 2R3


0 0

Cyθ
2R

−Cyψ
2R

0 0 −Czθ
2R

Czψ
2R

0 0 Cmθ −Cmψ
0 0 −Cnθ Cnψ

 (4b)

where ρ is the air density, V the free stream velocity andR the propeller radius. The coefficients
of these matrices are called the ”aerodynamic derivatives”. They express the dependency of the
loads on the propeller motion. The derivatives linking the loads to the translation displacements
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of the propeller (first two columns of Ka) are equal to zero as these displacements are not
responsible for a modification of the induced velocities nor incidence angle, resulting in no net
variation of the loads. The complete analytical expression of the derivatives can be found in
the paper of Rodden & Rose who synthesize Houbolt & Reed’s work [8]. For example, the
derivative Cmψ linking the change in moment my

c caused by a rotation in yaw ψ is expressed
by:

Cmψ =
2Ω

V

N

4

a0
2π
µ

∫ 1

η0

η2c(η)F (k)√
µ2 + η2

A[
2 + A

√
1−M2

(
1 + η2

µ2

)] dη (5)

where N is the number of propeller blades (supposed equal or greater than three to avoid time-
dependency of the derivatives), a0 is the 2D-lift coefficient curve slope (usually taken to 2π
which is its value for infinitely thin profiles), c is the chord of the profile and µ = V

ΩR
is

the advance ratio. This derivative is expressed by integration along blade span with η0 = r0
R

being the dimensionless hub radius r0. The last coefficient of the integral is the result of the
multiplication of two corrective factors:

Ccomp =
1√

1−M2
r

(6a)

C3D =
A
√

1−M2
r

2 + A
√

1−M2
r

(6b)

Ccomp is the Prandtl-Glauert compressibility correction which depends on the relative Mach

number Mr defined with respect to the free flow Mach number M by Mr = M
√
1 + η2

µ2
.

C3D is a finite length correction factor used to tackle 3D flow effects such as tip vortices. It
depends on the blade aspect ratio A = R(1−η0)2∫ 1

η0
c(η) dη

and comes from Prandtl Lifting Line theory

applied to an elliptical wing [29]. The derivative Cmψ is dependent as well on a function F (k)
which is the real part of Theodorsen’s complex lift deficiency function C(k) = F (k) + iG(k).
It comes from Theodorsen’s theory [10] which predicts the unsteady aerodynamic loads on an
oscillating profile (2D theory). The lift deficiency function models the convoluted unsteady flow
effects induced by the oscillation and depends on the reduced frequency k through the relation

C(k) =
H

(2)
1 (k)

H
(2)
1 (k)+iH

(2)
0 (k)

where H(2)
n is the n-th order Hankel function of the second kind. The

reduced frequency is expressed as k = ωc

2
√
V 2+(Ωr)2

where ω is the oscillation pulsation of the

blade profiles. This pulsation is linked to the propeller vibration pulsation ωv by two harmonics
ωv + Ω and ωv − Ω. For the sake of simplicity, Houbolt & Reed considered that the propeller
pulsation of vibration ωv is usually small compared to the rotor speed Ω. This choice leads
to constant derivatives (independent of ωv) which simplifies the stability problem. Please note
that while the derivative Cmψ depends only on the real part of the lift deficiency function, some
others depend on the imaginary part (e.g. Cyθ).

There are in total 16 derivatives but due to the system symmetry, they can be reduced to 8 (for
example Cmψ = −Cnθ). Note that the aerodynamic derivatives do not depend on the twist of
the blades. This is due to the assumption made by Houbolt & Reed that the flow is aligned with
the profile chord when the propeller is in its reference position (the twist angle of the blades
is therefore implicitly defined by arctan

(
V
Ωr

)
). This restriction also signifies that the model

cannot predict static loads (windmilling condition with no thrust or torque).
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In the present paper, Houbolt & Reed’s model is declined in two versions. First, a quasi-steady
version where the lift deficiency function is taken equal to one which constitutes its limit when
the reduced frequency tends towards zero (i.e. when the propeller is not moving). The flow is
then supposed to adapt instantly to the propeller motion. Secondly, an unsteady version where
the full expression of the lift deficiency function is kept (the flow unsteady effects are thus
considered).

2.3 Proposed improvements in the low-fidelity aerodynamic modeling of the propeller
loads

2.3.1 Restrictions of Houbolt & Reed’s model

The previous Houbolt & Reed’s model, despite having a reference role in whirl flutter studies,
presents some limitations:

• Blade twist: it does not consider the exact evolution of the blade twist angle and thereby
cannot predict static thrust. The non-utilization of the real twist angle distribution also
alters the expression of the derivatives.

• Induced flow model: there is no modeling of the acceleration and rotation of the flow
when it passes through the propeller. This assumption can be justified by the fact that in
high-speed axial flows (where whirl flutter is more likely to occur), the induced velocities
on the rotor disk are usually small compared to the free stream velocity. However, for
thorough modeling of whirl flutter, induced flow models must be considered (see for
example [20]).

• Unsteady aerodynamics: inclusion of unsteady aerodynamics effects through
Theodorsen’s lift deficiency function remains an approximate version of the complete
Theodorsen theory [10]. Indeed, the rotor pulsation of vibration ωv is neglected in the
expression of the lift deficiency function C(k) and additional developments derived by
Theodorsen are not considered (e.g. non-circulatory flow effects).

• Airfoil simplification: the pitching moment and drag of the profiles are neglected.
• Loads components: axial force fxc and moment mx

c on the propeller are not predicted.
This can be explained by their non-influence on the configuration of Figure 1 but it could
be of importance for systems with more than two degrees of freedom.

In an attempt to make up for these restrictions, the authors have developed in a precedent work a
model declined in a quasi-steady and an unsteady formulation [30]. They are recalled herein for
the sake of understanding. Note that, as for the Houbolt & Reed model, the free flow velocity is
supposed to be along the x⃗ axis. A summary of all the models used in this article is given later
in Table 1 but the the reader is invited to refer to it from now on for greater clarity.

2.3.2 Quasi-steady aerodynamic model

At first, an improvement of Houbolt & Reed’s quasi-steady formulation is considered. This
amounts to answering all limitations laid above, except the third one regarding the full
Theodorsen theory which will be addressed next section.

A linearized expression of the loads regarding the propeller center translational uc =
(uxc , u

y
c , u

z
c)
T and rotational θc = (φ, θ, ψ)T degrees of freedom is sought (the model is de-

veloped in a general way, not only for the configuration of Figure 1). Figure 2 presents a blade
profile with the associated in-plane uT and out-of-plane uP velocities of the blade section rela-
tive to the airflow. The aerodynamic lift fl, drag fd and pitching moment m1/4 are expressed at
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the quarter chord point P through:

fl =
1

2
ρ al c (u

2
T + u2P ) (γ − ϕ− α0) (7a)

fd =
1

2
ρ cCd (u

2
T + u2P ) (7b)

m1/4 = m0 (7c)

where al is the lift coefficient curve slope, γ the blade twist angle, ϕ the inflow angle, α0 the
zero lift incidence angle, Cd the drag coefficient (supposed constant) and m0 the static pitching
moment. The angle α0 and the constant momentm0 are used to take into account the asymmetry
of the profile as they model the non-zero lift and moment that are generated when the incidence
angle γ − ϕ is zero. They can be obtained analytically depending on the profile camber (with
the thin airfoil theory [29]) or can be deduced from experimental or numerical polar diagrams.

Rotor plane

ϕ γ
u⃗T

u⃗Pu⃗
f⃗l

f⃗d

Figure 2: Lift & drag on a blade section.

The treatment of 3D flow effects is different from what is done in Houbolt & Reed’s work. The
averaging factor C3D defined in (6) corrects all profiles in nearly the same manner (”nearly”
because it depends on the relative Mach number which changes with the radius). The modeling
of tip vortices therefore affects each section identically whereas in reality, it is the sections at the
blade root and end that are more concerned. Moreover, Houbolt & Reed do not model the drag
caused by the downwash originating from the tip vortices (induced drag). To overcome these
limitations, the Prandtl lifting line theory is employed here to calculate the stationary lift and
induced drag distribution along the span [29]. From these distributions, it is possible to calculate
correcting factors affecting the 2D lift and drag expression (C l

3D for lift and Cd
3D for drag). The

lift coefficient curve slope and the drag coefficient are then expressed by al = a0CcompC
l
3D and

Cd = Cd0+C
d
3D where a0 is the 2D-lift coefficient slope of a profile, Ccomp the correcting factor

used by Houbolt & Reed to tackle compressibility effects and Cd0 the 2D-drag coefficient of the
profiles. a0 and Cd0 can be chosen according to their ideal values (a0 = 2π, Cd0 = 0) or can be
taken from external data. It is important to keep in mind that correcting factors C l

3D and Cd
3D

are obtained regarding the stationary configuration (the propeller motion is not considered) and
that certain characteristic effects of the propeller (e.g inter-blade influence, helical wake effects,
etc.) are not modeled since Prandtl lifting line theory was developed for wings.

In order to obtain a linearized expression of the loads, the blade section apparent velocities
are perturbed around their steady-state values – uT = u0T + u′T and uP = u0P + u′P – and (7)
is linearized for small disturbed velocities (the inflow angle ϕ can be linked to the apparent
velocities). These disturbed velocities u′T and u′P are then expressed as a function of the pro-
peller center displacement uc and rotation θc. By integrating along blade span and summing
for all blades, the resulting aerodynamic force fc and moment mc at the propeller center can
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be written in the reference frame as:(
fc

mc

)
= −Ca

(
u̇c

θ̇c

)
−Ka

(
uc

θc

)
+

(
fstat
c

mstat
c

)
(8)

where Ca is the aerodynamic damping matrix and Ka is the aerodynamic stiffness one. fstat
c

is the steady force and mstat
c the steady torque at the propeller center.

To tackle induced flow effects unmodeled in the work of Houbolt & Reed, the steady-state
values u0T and u0P are expressed taking into account the modification of the flow by the propeller
that occurs when it generates thrust. Indeed, in this situation the flow is accelerated and put in
rotation to satisfy the conservation of momentum. This phenomenon is modeled with the Blade
Element Momentum Theory (BEMT) [31]: the stream tube passing through the propeller is
discretized into rings of different radii on which balances of linear and angular momentum
are performed in order to obtain the induced velocities “seen” by the blade profiles. It leads
to the apparition of two corrective functions Va(r) and Vt(r) in the expression of the steady
state velocities u0P = Ωr − Vt(r) and u0T = V + Va(r). This modeling of the induced flow is
therefore made at order zero as the BEMT is developed for non-moving propellers in axial flow.
The consideration of the propeller motion is left out for future work as it would considerably
complicate the expression of the corrective velocities.

2.3.3 Unsteady aerodynamic model

The previous quasi-steady aerodynamic model supposes that the flow, and thus the loads, in-
stantly adapt to the movement of the blade profiles. In reality, a phase shift can appear due to
wake memory effects. Theodorsen [10] developed a theory for harmonic motion to take into
account this phenomenon, as well as non-circulatory effects, by introducing the lift deficiency
function defined in the complex plane. Using its extension by Greenberg [32] to deal with
the time dependency of the incoming velocity and the steady incidence angle, the following
expression of lift and pitching moment about the 1

4
chord point are obtained:

fl = π ρ
c2

4

[
−u̇P cos(γ) + u̇T sin(γ) +

c

4
ε̇
]

+
1

2
ρ al c u

[
(γ − ϕ0 − α0)u0 + ℜ

{
C(k)

[
[(γ − ϕ− α0)u]

′˜ +
c

2
ε̃

]}]
(9a)

m1/4 = m0 − π ρ c
( c
4

)2
[
−u̇P cos(γ) + u̇T sin(γ) + u0ε+

3c

8
ε̇

]
(9b)

where ∼ denotes the complex expression (the physical value of a function is obtained by taking
the real part ℜ{} of its complex expression2), ε is the angular velocity of the blade section in the
rotating frame and C(k) the lift deficiency function which depends on the reduced frequency
k = ωc

2
√
u0P

2
+u0T

2
, ω being the pulsation of uT , uP and ε. The notation u0 (resp. ϕ0) refers to the

constant part of the velocity (resp. the inflow angle) and the exponent ′ refers to the fluctuating
part of the quantity [(γ − ϕ− α0)u]). Drag is still given by (7b).

These expressions of the aerodynamic loads are much more complex than the ones given in last
section. The quasi-steady model can be seen as an approximation of this unsteady formulation
when the angular velocity ε is taken equal to zero, when the lift deficiency function is equal to

2For example, the complex expression of f0 cos (ωt+ φ) is f0ei(ωt+φ)
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one and when the added mass terms are neglected (terms depending on u̇T and u̇P ). Houbolt
& Reed’s unsteady model is also a simplified version of this model. It neglects also the added
mass terms and the angular velocity ε but does not take the lift deficiency function equal to one.
Instead, as detailed in Section 2.2, it takes its full expression but neglects in the expression of
the reduced frequency k the contribution of the rotor pulsation of vibration ωv to the expression
of ω.

When the full expressions of the force and moment are considered, a non-linear dependency on
the vibratory pulsation ωv appears due to the lift deficiency function and the loads on the whole
propeller can be expressed by:(

fc

mc

)
= −Ca(ωv)

(
u̇c

θ̇c

)
−Ka(ωv)

(
uc

θc

)
+

(
fstat
c

mstat
c

)
(10)

As before, Ca is associated to damping effects and Ka to stiffness effects. The added mass
effects appearing in (9) are included in the aerodynamic stiffness matrix since they both share
the same phase.

2.4 Mid-fidelity aerodynamic models

The different models developed in sections 2.2 and 2.3 can be referred to as ”low-fidelity” mod-
els. Indeed, they are mostly analytical and present some limitations regarding more advanced
models. In particular:

• they rely on 2D aerodynamics theories extended in a 3D manner with the strip theory: the
loads on the whole propeller are supposed to be the sum of the individual loads on each
blade profile. By doing so, the influence of blade sections on each other is neglected.
Corrective factors are used to model this effect but it still remains an approximate way to
tackle complex 3D flow effects (flow unsteadiness, complex wake shape, etc.).

• modeling of the induced flow remains incomplete as it is done only for the stationary part
since the BEMT does not consider propeller motion.

• the free flow velocity is supposed to be along the x⃗ axis, preventing stability studies in
case of non-axial flow.

To tackle these limitations, this paper proposes to use more advanced models that fall within the
mid-fidelity category. To this end, DUST aerodynamic solver is used [33]. This code developed
by Politecnico di Milano is a flexible tool to perform unsteady aerodynamics simulation in time-
domain with different levels of accuracy. A brief review of its capabilities is detailed here but
the reader is invited to refer to [33] for more details. To tackle the limits of 2D-aerodynamic
theories, this code considers the propeller in its entirety and does not consider anymore each
blade profile independently. The wake of the propeller is unconstrained and free to evolve
using a modeling mixing flat panels and vortex particles. Concerning the propeller blades, three
methods are available for their modeling.

First, the Lifting Line Method (LLM) where the blades are discretized spanwise with lifting line
elements. These elements rely on aerodynamic tables to compute the sectional lift, drag and
moment coefficients. Despite being one-dimensional, thickness, compressibility and viscosity
effects can be taken into account if they are present in the tabulated data.

Second, the Unsteady Vortex Lattice Method (UVLM) where the blades are meshed spanwise
and chordwise. In this theory, thickness is not considered so the mesh is flat. Camber can
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be taken into account but thickness remains unmodeled. Compressibility is itself tackled with
a Prandtl-Glauert correction. A non-linear version of this model exists (NL-UVLM) where
the discretization is combined with the use of aerodynamic databases (like LL elements) to
introduce compressibility, thickness and viscosity corrections. However, this last version is not
used in the present paper.

Finally, the Panel Method (PM) where the blade skin is meshed spanwise and chordwise but
with the real shape of the blade profiles. Surface panels are used in this way on the intrados
and extrados. Thickness effects can therefore be described without relying on external data. It
cannot however consider viscosity effects. As for UVLM, compressibility is modeled through
a Prandtl-Glauert correction factor.

DUST aerodynamic code cannot be used directly to perform eigenvalue stability analysis (see
section 3) since it is a time-domain solver. Instead, it can be used to identify the frequency
behavior of the aerodynamic loads on the propeller. This amounts to identifying the transfer
matrix H(ωv) linking the propeller center displacement to the aerodynamic forces and moments
(as a reminder, the symbol ∼ denotes the complex expression):(

f̃c

m̃c

)
= H(ωv)

(
ũc

θ̃c

)
+

(
fstat
c

mstat
c

)
(11)

This matrix presents a priori a non-linear dependency on the vibratory pulsation ωv. To iden-
tify this behavior, several harmonic excitations of the hub dof can be performed at different
frequencies which, after measurement of the resulting loads, allow to track back the frequency
evolution of the individual coefficients of the transfer matrix. However, this method is quite
time-consuming since a lot of sinusoidal excitations have to be realized in order to have a good
frequency representation of the transfer matrix. So instead of this approach, the transfer matrix
is identified with pulse perturbations, in the same approach as the work of Koch et al. [11, 27].
It is performed in two steps:

• First the stationary solution is computed. Since DUST is an unsteady solver, a simulation
with a sufficiently long time length is performed until proper convergence of the loads.

• Then, each dof of the hub is disturbed with a triangle perturbation (Figure 3) and the
resulting propeller loads are recorded until the transient response has vanished. The re-
sulting frequency evolution of the transfer matrix coefficients is obtained by dividing the
Fourier transform of the loads with the one of the input perturbation (the stationary part
of the loads identified at the first step is previously removed). For example, the coefficient
H26 linking the disturbed transverse force on the propeller f ′

y to the yaw angle ψ is given
by:

H26(ωv) =
F
(
f ′
y(t)

)
F (ψ(t))

(12)

where F() denotes the Fourier transform. The triangle signal amplitude h is chosen
so that the excitation remains sufficiently small to ward off nonlinear effects but high
enough to avoid numeric noise. Regarding the triangle width ∆t, a maximum value of
the vibratory pulsation is estimated (depending on the practical application) and the pulse
width is chosen so that its Fourier transform presents a sufficiently high magnitude up
to this frequency. In practice, convergence studies must be performed (especially with
regard to the time step) to ensure a proper excitation.

10
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t

ψ(t)

h

∆t
Figure 3: Example of a triangle pulse perturbation of the yaw angle ψ.

It is interesting to note that this method is not restricted to DUST code but can be employed with
any aerodynamic solver. The main benefit of this approach is that it makes stability analysis pos-
sible without performing time-consuming fully coupled simulations between an aerodynamic
and a structural solver, where convergence at each time step must be assured. In particular, it
would be interesting in future work to use the pulse method with CFD calculations as it would
allow high-fidelity whirl flutter analysis with a suitable calculation time.

Once (11) is identified, it is transformed into time domain to give:(
fc

mc

)
= −Ca(ωv)

(
u̇c

θ̇c

)
−Ka(ωv)

(
uc

θc

)
+

(
fstat
c

mstat
c

)
(13)

with Ca(ωv) = − 1
ωv
ℑ{H(ωv)} the aerodynamic damping matrix (ℑ denotes the imaginary

part) and Ka(ωv) = −ℜ{H(ωv)} the aerodynamic stiffness matrix (ℜ denotes the real part).

By writing the propeller center dof in the complex domain under the generic form
(
ũc

θ̃c

)
=(

u0
c

θ0
c

)
e(α+iωv)t, note that the above formulation of the aerodynamic matrices is valid only when

the damping factor α is zero, i.e. for neither amplified nor damped motion. However, it is not a
problem for the calculation of the stability boundaries as the motion is purely sinusoidal at the
flutter point.

3 STABILITY ANALYSIS METHOD
A review of the main features of the different aerodynamic models is given in Table 1. Previous
sections established an expression of the force fc and moment mc on the propeller expressed
at its center. The resulting aerodynamic moment at the pivot point of the structure Figure 1 is
then expressed by:

maero =

(
my
c + Laf

z
c + Laf

x
cstatθ

mz
c − Laf

y
c + Laf

x
cstatψ

)
(14)

In practice, the constant part of maero is neglected since the system Figure 1 is supposed to be
already in its pre-deformed shape. For the two Houbolt & Reed models and for the quasi-steady
one, the motion equation (1) can then be written with (3) and (8) under:

Mstructü+Cstructu̇+Kstructu = −Caerou̇−Kaerou (15)

This yields in the state space domain an equation of the form B

(
u̇
ü

)
= A

(
u
u̇

)
. The stability

can then be classically estimated regarding the eigenvalues of this system: if all the eigenvalues
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have a negative real part, the system is stable whereas if one has a positive real part, the system
becomes unstable.

For the unsteady aerodynamic model and for the mid-fidelity ones, the motion equation is more
cumbersome as a non-linear dependency of the aerodynamic matrices to the vibration pulsation
exists. With (10) and (13), the motion equation (1) can be written under:

Mstructü+Cstructu̇+Kstructu = −Caero(ωv)u̇−Kaero(ωv)u (16)

Once in the state space domain, it yields an eigenvalue problem of the form B(ωv)

(
u̇
ü

)
=

A(ωv)

(
u
u̇

)
. This stability problem is non-linear since the vibratory pulsation ωv constitutes

the imaginary part of the sought eigenvalue. It is solved iteratively with the pk-method through
a fixed-point algorithm [34] (other methods exist to make this problem linear through a rational
matrix approximation of the aerodynamic loads, see for example [30]).

Table 1: Aerodynamic models summary.

Model Method Blade twist Induced
flow

Stability
analysis

Houbolt & Reed
quasi-steady [7]

Linearized strip theory:
quasi-steady lift, no pitching

moment and drag

Idealized twist
angle, no

prevision of the
static loads

No induced
flow model Linear

L
ow

-fi
de

lit
y Houbolt & Reed

unsteady [7]

Linearized strip theory:
quasi-steady lift corrected by

Theodorsen’s function, no pitching
moment and drag

Idealized twist
angle, no

prevision of the
static loads

No induced
flow model Linear

Quasi-steady
Linearized strip theory:

quasi-steady lift, pitching moment
and drag

Real twist angle
with static loads BEMT [31] Linear

Unsteady

Linearized strip theory: unsteady
lift and pitching moment through

the complete Theodorsen
theory [10] (with Greenberg’s

extension [32]), quasi-steady drag

Real twist angle
with static loads BEMT [31] Non-linear

DUST Lifting
Line Method
(LLM) [33]

Lifting line elements using external
polar diagrams

Real twist angle
with static loads Free wake Non-linear

M
id

-fi
de

lit
y

DUST Unsteady
Vortex Lattice

Method
(UVLM) [33]

Vortex lattice elements Real twist angle
with static loads Free wake Non-linear

DUST Panel
Method

(PM) [33]
Surface panels Real twist angle

with static loads Free wake Non-linear
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4 NUMERICAL RESULTS
4.1 Case under study
The propeller under consideration in this paper is typically representative of twin-engine small
commuter aircrafts (parameters given in Table 2). It has four blades and rotates at a constant
speed. The advance ratio, defined by V

ΩR
, is a classical dimensionless number used to compare

the aircraft speed to the rotor velocity. In the present study, it equals 0.8 which is classical for
such kind of propellers. The blade chord evolution is represented in Figure 4. It increases up to
the mid-radius and then reduces till the blade end to minimize loss caused by tip vortices. The
resulting blade aspect ratio, a measure of slenderness, is 8.3.

All blade profiles are positioned so that their quarter chord points are aligned. For the low-
fidelity models, 2D-drag is not considered (Cd0 = 0) and profiles are assumed to be symmetric
(m0 = 0 and α0 = 0) with a 2D-lift coefficient curve slope a0 equals to 2π. For DUST
mid-fidelity models, the same individual polar diagrams are used for the Lifting Line solver,
whereas a NACA 0012 profile shape is specified for the Unsteady Vortex Lattice Method and
for the Panel Method as they do not use explicit polar diagrams.

Table 2: Model parameter values.

Parameter Symbol Unit Value
Number of blades N — 4

Rotor radius R m 1.2
Hub radius r0 m 0.15

Rotor + pylon pitch/yaw moment of
inertia at the pivot point

Jn kg.m2 22.05

Rotor + pylon polar moment of inertia Jp kg.m2 2.46
Pylon length to rotor radius ratio a = La

R
— 0.7

Rotor rotation speed Ω rad/s 157
Wind speed V m/s 150
Air density ρ kg/m3 1.225
Blade chord c m cf Figure 4

Blade twist angle γ rad cf Figure 5
Pitch/Yaw damping Cθ/Cψ N.m.s/rad 0
Pitch/Yaw stiffness Kθ/Kψ N.m/rad variable

The propeller generates static thrust, which is intrinsically linked to the twist of the blades. A
twist angle whose evolution with the radius r is given by γ0 = arctan

(
V
Ωr

)
would cause all the

blade profiles to be aligned with the undisturbed inflow, thus generating almost no lift (”almost”
comes from the fact that the flow is in reality disturbed by the propeller). Herein, the twist angle
is chosen by γ = γ0 + 2.4◦. The evolution of blade twist, depicted in Figure 5, is maximum at
the blade root and decreases gradually with the radius. The thrust coefficient Ct =

4π2|fxc |
ρΩ216R4 is a

dimensionless number useful to measure how much the propeller is thrusting. With the present
parameters, it is equal to 0.05 (measured with the low-fidelity aerodynamic models), placing
this study in a case of moderate thrusting conditions.

From the standpoint of the bearing structure, the pylon length to rotor radius ratio is 0.7 which
corresponds to Koch et al. ”medium pylon length” situation in their article [27]. No pivot
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Figure 4: Chord evolution with the radius.
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Figure 5: Twist angle distribution (the zero thrust twist
angle γ0 is plotted for comparison).

damping is considered and the mounting stiffnesses are independently varied for the parametric
stability studies presented next part.

4.2 Axial flow condition
At first, the classical configuration for whirl flutter analysis is studied, i.e. when the wind
is oriented along the x⃗ axis in Figure 1. The fundamental mechanisms of whirl flutter are
presented in Section 4.2.1 before comparing the different aerodynamic models in Section 4.2.2.

4.2.1 Whirl flutter principle
The mounting stiffnesses play a crucial role in the whirl flutter stability of propeller engines
[28]. Therefore, it is common to look at the system status depending on their values. Figure
6 consequently displays the stability boundaries for different dimensionless stiffnesses Kθ =
Kθ
JnΩ2 and Kψ =

Kψ
JnΩ2 . These boundaries are obtained with the quasi-steady aerodynamic model

presented in Section 2.3.2.

Figure 6: Stability boundaries: whirl flutter & static divergence.

Two types of instabilities are visible in this plot: a whirl flutter instability (eigenvalue with a
positive real part and non-zero imaginary part) and a static divergence-like instability (eigen-
value with a positive real part and an imaginary part equal to zero). The whirl flutter instability
is associated with a parabola whose vertex is located on the isotropic stiffness line (Kθ = Kψ).
In this area, the system is subject to a divergent precession motion which occurs in a backward
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whirl, i.e. in a direction opposite to the rotor rotation (for flexible propeller, it can happen in a
forward whirl [28]). The two zones associated with a static divergence are parallel to the x and
y axis and correspond to a situation where one of the mounting stiffnesses becomes too small
to efficiently bring back the propeller aligned with the wind, causing a sudden reversal of the
system. It is interesting to note that for a situation where the two stiffnesses are sufficiently
small (near the origin of the identity line), the two static divergences seem to cancel each other
so that the system becomes dynamically unstable. The instability then takes the form of a for-
ward whirl, differentiating itself from the classical backward whirl instability. This situation is
however rather academic since it corresponds to very low stiffness values situated very far from
the stable to unstable boundary. Moreover, it does not appear in every situation as for other sets
of parameters it may not happen (see for example [30]).

The effect of thrust is analyzed in Figure 7 which compares the stability boundary obtained
previously (thrust coefficient Ct = 0.05) with the one obtained for a propeller generating no
thrust (obtained by choosing the idealized twist angle γ0). Between these two configurations,
thrust has a stabilizing effect as the unstable area for the thrusting propeller is the smallest.
This conclusion is also valid for other thrusting conditions since the vertex of the parabola is
constantly reduced when the thrust coefficient increases (Figure 8). This stabilizing effect can
be attributed to the static moment in the propeller frame that contributes to stiffness terms once
passed in the fixed frame. These stiffness terms favor a forward whirl, opposite to the backward
whirl occurring during whirl flutter, explaining the stabilizing influence.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
K

0.00

0.05

0.10

0.15

0.20
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0.30

K

Ct = 0.05
Ct = 0

Figure 7: Thrust influence on the mounting stiffnesses
stability boundary.

Figure 8: Evolution of the vertex of the whirl flutter
boundary with the thrust coefficient.

4.2.2 Comparison of the different aerodynamic models

Now that the basic characteristics of whirl flutter have been presented, it is interesting to eval-
uate the influence of the different aerodynamic models on the stability boundaries. Their main
features are recalled in Table 1. While the low-fidelity models give direct access to the second
member matrices of the motion equation (1), the process is not as straightforward for the mid-
fidelity models where they have to be built ad hoc. As explained in Section 2.4, it consists of
two steps:

• Steady-state convergence of the propeller under axial flow.
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• Pulse perturbations of the rigid body degrees of freedom to identify the aerodynamic
transfer matrix.

This process is realized for the three modeling methods included in DUST being the Lifting Line
Method, the Unsteady Vortex Lattice Method and the Panel Method. Following convergence
studies, 200 time steps per rotor revolution and 20 spanwise discretization points are chosen.
For the Unsteady Vortex Lattice Method, 10 chordwise elements are chosen whereas 14 are
needed for the Panel Method to achieve proper convergence of the loads.

Steady-state

The steady flow field is represented in Figure 9 for a Panel Method simulation. Isosurfaces of the
Q-criterion are displayed since it is a useful tool to represent vortex concentration. As expected,
the flow is entirely symmetrical. Tip vortices are visible and propagate helically downstream.
The same type of vortices are present at the blade root due to the absence of spinner. This
choice, made for the sake of simplicity, is not without impact since it affects the resulting
propeller loads (see for example [35] where the spinner influence on the propeller loads under
non-axial flow is discussed). It should however be the subject of further investigations as it lies
beyond the scope of this paper.

x⃗

z⃗

y⃗ x⃗

z⃗

y⃗

Figure 9: Front and side views of the propeller in axial flow for a DUST Panel Method simulation. Skin pressure
and isosurfaces of Q-criterion (Q = 500), colored by velocity, are displayed.

Figure 10: Comparison of the spanwise distribution of the axial force on a blade, depending on the different aero-
dynamic models.

Figure 10 presents a comparison of the steady axial force on a blade (along −x⃗) between the
different aerodynamic models. Houbolt & Reed’s results (Section 2.2) are not given since they
cannot predict steady loads. Results given by the quasi-steady (Section 2.3.2) and unsteady
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(Section 2.3.3) models are identical and referred to by the name ”Low-fi”. They are compared
with all three mid-fidelity methods. For every model, the axial force increases with the spanwise
position up to approximately the three-quarter radius where it suddenly drops due to tip vortices
loss and blade chord reduction. As expected, differences are observed between the low-fidelity
results and the mid-fidelity ones. In general, the low-fi result underestimates the loads for any
radius. Differences tend to reduce at the blade root and the blade end. DUST Lifting-Line is
the closest to the low-fi result. It is probably because the low-fi models employ a correction
factor based on Prandtl Lifting-Line theory to tackle 3D flow effects like tip vortices. From
a stationary point of view, this theory is quite close to the Lifting-Line theory used in DUST
except Prandtl supposed a flat wake and does not consider the inter-blade influence while DUST
does not have these limitations (it can handle any wake shape such as the helical one observed
here). Disparities are also observed between the mid-fidelity results since the Unsteady Vortex
Lattice Method overestimates the force regarding the other two methods. The profile thickness
influence (comparison between UVLM and PM) seems therefore to lower the loads. Results
given by the Lifting Line Method and Panel Method are however quite close except at the blade
end where discrepancies appear.

Identification of the mid-fidelity aerodynamic transfer matrices
Once the steady state is computed for all three DUST modeling methods, pulse perturbations
of the propeller rigid body modes are prescribed to determine the aerodynamic transfer matrix.
Due to the system symmetry, only two perturbations are needed for the stability analysis (one
perturbation in pitch or yaw and one perturbation of the transverse displacement along the y⃗
or z⃗ axis). Coefficients of the aerodynamic transfer matrix are then obtained by dividing the
Fourier transform of the individual load components with the Fourier transform of the imposed
pulse motion (in this case a triangle signal), see (12). Figure 11 illustrates the procedure by
showcasing with DUST Lifting Line Method the evolution of the H22 coefficient linking the
force along the y⃗ axis to the propeller displacement along the same axis uyc . Three simulations
with an imposed sinusoidal motion at pulsations {20-60-100}rad/s were also performed to vali-
date the results given by the pulse method. Both cases coincide which validates this procedure.
This method is advantageous since only one simulation gives access to the coefficient frequency
dependency whereas otherwise, multiple simulations with imposed sinusoidal motion (at dif-
ferent frequencies) should be performed to obtain the coefficient value on the frequency band
of interest.

Figure 11: Real (left) and imaginary (right) parts of theH22 coefficient of the transfer matrix obtained with a pulse
excitation (DUST Lifting Line solver). Results acquired with a harmonic excitation are also displayed
for validation.

A constant real part and a linear imaginary part of the coefficients of matrix H would produce
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constant stiffness and damping matrices. Even though the second condition is verified here for
H22, its real part is not constant which prevents the use of such constant matrices that could
render the stability problem linear. Instead, the true evolution of these matrices is kept and the
stability problem is solved non-linearly with (16).

Stability analysis

The aerodynamic transfer matrix being identified for all three mid-fidelity aerodynamic mod-
els, it is now possible to conduct stability analysis and to compare these predictions with the
ones given by low-fidelity models. Figure 12 displays the boundaries, regarding the mounting
stiffnesses, obtained with these different models (the low-fidelity models have dotted or dashed
boundaries while the mid-fidelity models have plain ones). First, it is observed that the static di-
vergence boundaries coincide between all models. On these frontiers, the system does not move
since the associated pulsation of the unstable mode is zero. Therefore, such similarities can be
explained by the weak influence of the flow’s unsteady effects on these boundaries, especially
since they are at the origin of the model differences. The whirl flutter boundaries and espe-
cially the position of the vertex are rather diverse between the different aerodynamic theories.
The mid-fidelity results seem quite grouped and positioned between the two low-fi unsteady
and the two low-fi quasi-steady models. The two low-fidelity quasi-steady models constitute a
conservative framework as they overestimate the stability boundaries given by the mid-fidelity
models. However, they are less precise than their unsteady counterparts which better approach
the mid-fidelity results but are in turn non-conservative since they underestimate the vertex po-
sition. It is interesting to note that the quasi-steady (resp. unsteady) model developed by the
authors better approaches mid-fi results than Houbolt & Reed’s quasi-steady (resp. unsteady)
one. Thus, the consideration of the real twist angle distribution with a modeling of the induced
flow and the use of the full terms of Greenberg’s theory constitutes a good improvement of the
reference models. Regarding the mid-fidelity results, it is interesting to note that the Lifting
Line boundary is nearly identical to the one obtained with the Panel Method. The Unsteady
Vortex Lattice Method for its part leads to a reduced unstable area compared to these last two
methods.

Figure 12: Stability boundaries comparison between different aerodynamic models.
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As noticed by Koch et al. [27], these conclusions may vary for different sets of parameters,
especially regarding the pylon length to rotor radius ratio a. Readers are therefore invited to
refer to the above-mentioned work for further details regarding the influence of mid-fidelity
modeling techniques on the stability boundaries.

An interesting behavior was noticed in [30] when a vertical translation of the system is free to
happen through the addition of a vertical spring of stiffness Kz at the pivot point O. With the
quasi-steady and unsteady aerodynamic models, unconventional stability graphs were obtained
with the presence of islands of instability. This unfamiliar behavior is also obtained here with
the mid-fidelity models when the rotor mass m is reduced by a factor 10, with a pylon length to

rotor radius ratio of 0.1 and with a dimensionless vertical pulsation
√

Kz
mΩ2 of 0.69. The resulting

stability map obtained with DUST Lifting Line Method (with and without vertical motion of
the pivot point) and with the low-fidelity unsteady model (with vertical motion) is displayed
in Figure 13. It is interesting to note that the vertical spring stabilizes overall the system as
the unstable areas obtained with the vertical translation are located inside the area of instability
obtained with a fixed pivot point. When a vertical translation is possible, an unstable area is
detached from the rest of the unstable zone. As explained in [30], this phenomenon is caused
by the vertical spring-mass system that plays the role of a tuned mass damper, concentrating
and dissipating aerodynamically the vibratory energy of the system. It occurs mainly when its
characteristic frequency matches the whirl frequency which in the case of Figure 13 corresponds
to the peninsular area separating the island of instability from the rest of the unstable zone. At
this point, the vertical motion induced by the translational spring extracts enough energy to
make the system locally stable, thus isolating an island of instability.

Figure 13: Stability boundaries with and without vertical motion of the pivot point.

4.3 Non-axial flow condition

Whirl flutter studies carried out in the previous section add on the classical studies available in
the literature for axial flow conditions. The case of non-axial flow, representing for example
a climbing or turning phase of the aircraft, is subject however to far fewer studies. Reed [36]
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briefly examined the influence of flow angle using experimental propeller derivatives. He found
a stabilizing influence of this angle on the instability boundaries. The same stabilizing influ-
ence was noticed by Kunz [13] who analyzed this configuration with a quasi-steady aerody-
namic model taking into account an angle of the nacelle with respect to the free stream velocity.
However, these two studies were devoted to a state-of-the-art on whirl flutter modeling and
therefore addressed only shortly this subject. The relative absence of this topic in literature can
be explained by the complex phenomena arising when modeling such configuration which lim-
its the use of low-fidelity aerodynamic models (classical Houbolt & Reed’s derivatives as well
as the low-fidelity models developed by the authors do not consider non-axial flow). Indeed,
the peculiarity of this configuration lies in the variation of the flow incidence angle with the
azimuthal position of the blade. Figure 15 presents its evolution, at three-quarters of the pro-
peller radius, for a flow angle of 10◦ (Figure 14). For an axial wind, the profile incidence angle
remains constant regardless of the azimuthal position of the blade. In the present situation, it
changes significantly covering values from nearly −10◦ to +10◦. The angle is the greatest for
a descending blade (90◦ position) when the cross-flow is frontal and adds to the flow induced
by the blade rotation. On the other hand, the angle is the smallest when the blade is ascending
(270◦ position) since the cross-flow is then coming from its back and deduces from the flow
induced by the rotation. This situation generates periodic loads on the blade at the rotor fre-
quency (so-called 1P loads for one per revolution). These loads can reach substantial amplitude
and therefore generate significant blade vibrations. Even though this study concerns rigid blade
propellers, it would be interesting in future works to take into account blade flexibility in the
study of such phenomenon.

x⃗

z⃗

y⃗10◦

V⃗

Figure 14: 10◦ flow angle.

x⃗

z⃗

y⃗

Figure 15: Incidence angle at three-quarters of the
propeller radius as a function of the blade
azimuthal position (front view of the pro-
peller).

Due to the high values covered by the blade incidence angle, nonlinear polar diagrams are
used to account for the lift loss due to stall at high angles of incidence (Figure 16). To tackle
compressibility effects, these polar diagrams are Mach dependent (at blade tip, it reaches 0.7).
It results in a slight increase of the lift coefficient curve slope when the Mach grows.

It is found that the static propeller force fstat
c and moment mstat

c are slightly periodic with
a frequency equal to four times the rotation speed (four being the number of blades). How-
ever, the amplitude of oscillation is very small which means the 1P loads of each blade seem
to compensate each other so that the resulting loads on the whole propeller are almost constant.
This phenomenon is visible in Figure 17 where the time evolution of the axial force on a single
blade and on the whole propeller are displayed. Since the propeller loads are nearly constant,
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Figure 16: Blade section lift coefficient polar diagram
for different Mach numbers.

Figure 17: Comparison of the axial force on one blade
and on the whole propeller (DUST Lifting
Line Method simulation).

the system is supposed to be time-independent and the pulse method can be employed to deter-
mine the aerodynamic transfer matrix H(ωv). The time-independency is necessary as the pulse
method cannot capture the time-evolution of the coefficients of H(ωv). Otherwise, it would
require tools to analyze the stability of systems with periodic coefficients, such as Floquet anal-
ysis [37]. Also, note that static forces fstat

c and moments mstat
c have now components along

the three axes compared to the axial flow case where they were only existing along the x⃗ axis.

The steady flow field is displayed in Figure 18. For a propeller in axial wind, the flow was
entirely symmetric and the isosurfaces of Q-criterion were perfectly helical (cf Figure 9). How-
ever, strong dissymmetries are present here due to the cross-flow. As for the incidence angle,
the blades going down create more vorticity than the blades going up. It prevents the isosur-
faces from wrapping finely around the rotation axis. The vertical component of the flow also
generates a slightly upward-directed wake.

x⃗

z⃗

y⃗ x⃗

z⃗

y⃗

Figure 18: Front and side views of the propeller under a 10-degree flow angle for a DUST Lifting Line simulation.
Skin delta pressure and isosurfaces of Q-criterion (Q = 500), colored by velocity, are displayed.

To obtain the aerodynamic transfer matrix, pulse perturbations are realized on the y⃗ and z⃗ trans-
lation and rotation of the propeller center (the x⃗ component does not intervene for the structure
Figure 1 and is therefore left out). While the symmetry of a propeller in axial wind made it
possible to perform only two perturbations, all four perturbations have to be realized here. It
is important to keep in mind that this process wipes out the system 4Ω periodicity since the
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identified transfer matrix is time-independent (but depends on the frequency). As mentioned
previously, given that the periodicity is very weak, it should not be of primary importance.

The resulting stability graph is presented in Figure 19. One main difference with respect to
the case of axial flow is that the graph is now asymmetric regarding the identity line. It leans
to the side of the x-axis as the system is now more stable in pitch than in yaw. Moreover, the
system’s overall stability is increased as the position of the vertex is reduced (this stabilizing
influence was also noticed by Reed [36] and Kunz [13]). These two effects are in fact caused by
the non-linearity of the polar diagrams. Indeed, the same graph obtained with linear diagrams
(as in Section 4.2.2) presents almost identical boundaries between the axial and non-axial flow
conditions. The dissymmetry can be explained by the difference between the equivalent pitch
and yaw aerodynamic stiffness at the pivot point. Indeed, for a displacement θ, the resulting
aerodynamic moment at the pivot point along the y⃗ axis is lesser than the moment along the
z⃗ axis for a motion ψ of the same magnitude. This difference is caused by the lift-loss effects
at high angles of incidence (visible in Figure 16) that are stronger due to the vertical flow
component for a motion in pitch than in yaw. These lift-loss effects are also responsible for
the system’s overall stabilization as it reduces the magnitude of the derivative Cnθ compared to
Cmψ (whereas they are of equal magnitude for the case with axial wind).

From a general standpoint, the stability boundaries for the case with non-axial flow are almost
entirely inside the unstable area obtained with an axial wind. This should be verified for other
configurations but is interesting since it grants the axial flight setup a conservative status, useful
as this latter case is simpler to study (with low-fidelity models for example).

Figure 19: Stability graph with an axial vs non-axial flow (DUST Lifting Line Method simulation).
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5 CONCLUSION

The first aim of this paper was to develop aerodynamic models, ranging from low- to mid-
fidelity, in order to compare and analyze their predictions of the whirl flutter stability of a
simple structure. Starting from the classical well-known low-fidelity model of Houbolt & Reed,
two new models (quasi-steady and unsteady) previously developed by the authors were used
in an attempt to address the limitations of the reference modeling. With a view of having
more realistic results, DUST aerodynamic solver was employed, in conjunction with the pulse
method, to create three different mid-fidelity models (based respectively on the Lifting Line
Method, the Unsteady Vortex Lattice Method and the Panel Method). All these models were
utilized to study the stability of a simple propeller-airplane structure immersed in an axial flow.
The mid-fidelity models gave rather clustered results, positioned between the unsteady and the
quasi-steady version of the low-fidelity models. The low-fidelity model giving the best results
is the unsteady version developed by the authors, thus highlighting the importance of extending
the hypothesis of Houbolt & Reed’s modeling.

Stability studies were also performed in the case of non-axial flow, representative of take-off
or turning phase of the aircraft. Such situation, little studied in the literature, goes beyond the
limits of the low-fidelity models and constitutes a good example of the utility and versatility of
the mid-fidelity ones. Results demonstrated a stabilizing influence of the cross-flow, although
the stability boundaries were only slightly modified. This therefore makes the axial flow set up
a conservative case for whirl flutter studies, even though this should be verified for other sets of
parameters.

The structural model used in this paper is rather simple and an extension of this study to more
complex structures, including blade deformation, should be addressed. In particular, an external
coupling of the different aerodynamic models with a finite element solver will be implemented
to analyze the stability of a full wing-nacelle-propeller system. Also, the influence of the wing
aerodynamics and its interference with the propeller should be studied, especially with the mid-
fidelity aerodynamic models that can easily tackle such complex situations. Finally, it would be
interesting to compare the presented results with stability studies coming from CFD calculations
(obtained with the pulse method). This would provide whirl flutter comparison across the entire
fidelity spectrum, useful to benchmark the different models.
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