
HAL Id: hal-04645809
https://hal.science/hal-04645809

Preprint submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and simulations of hydrodynamic shocks in a
plasma flowing across randomized ICF scale laser beams
Stefan Hüller, D T Ludwig, H A Rose, C Bruulsema, W Farmer, P Michel, A

L Milder, W Rozmus, George F. Swadling

To cite this version:
Stefan Hüller, D T Ludwig, H A Rose, C Bruulsema, W Farmer, et al.. Modeling and simulations
of hydrodynamic shocks in a plasma flowing across randomized ICF scale laser beams. 2024. �hal-
04645809�

https://hal.science/hal-04645809
https://hal.archives-ouvertes.fr


Modeling and simulations of hydrodynamic shocks in a plasma flowing across
randomized ICF scale laser beams

Modélisation et simulations numériques de chocs hydrodynamiques dans un plasma avec flot à
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High-energy laser beams interacting with flowing plasmas can produce a plasma response that
leads to deflection of the beam, beam bending. Such beams have usually a speckle structure gen-
erated by optical smoothing techniques that reduce the spatial and temporal coherence in the laser
field pattern. The cumulative plasma response from laser speckles slows down the velocity of the
incoming flow by momentum conservation. For slightly super-sonic flow the cumulative plasma re-
sponse to the ponderomotive force exerted by the beam speckle ensemble is the strongest, such that
slowing down the flow to subsonic velocities leads eventually to the generation of a shock around
the cross section of the beam. This scenario has been predicted theoretically and is confirmed here
by our hydrodynamic simulations in two dimensions with speckled beams and in one dimension
with a reduced model. The conditions of shock generation are given in terms of the ponderomotive
pressure, speckle size and the flow velocity. The nonlinear properties of the shocks are analyzed
using Rankine-Hugoniot relations. According to linear theory, temporally smoothed laser beams ex-
hibit a higher threshold for shock generation. Numerical simulations with beams that are smoothed
by spectral dispersion compare well with the linear theory results, diverging from those produced
by beams with only a random phase plates in the nonlinear regime. The conditions necessary for
shock generation and their effects on the laser plasma coupling in inertial confinement fusion (ICF)
experiments are also discussed.

L’interaction d’un faisceau laser de puissance avec un plasma en écoulement peut produire une
réponse du plasma tel que le faisceau subit une déflection. Les faisceaux des lasers de puissance ont
généralement une sous-structure de ‘points chauds’ générée par les techniques du ‘lissage’ optique
qui a le but de réduire la cohérence spatiale et temporelle du champ laser sur la cible. La réponse
cumulative du plasma chaud suite aux points chauds peut décélérer la vitesse du flot entrant due à
la conservation du moment. Pour un flot faiblement super-sonique cette réponse cumulative due à
la force pondéromotrice exercée par les points chauds est assez forte pour que la décélération du flot
à des vitesses sub-soniques provoque la formation d’une onde de choc qui se propage contre le flot
entrant. Ce scénario a été prédit par des travaux théoriques. Nos simulations hydro-dynamiques en
deux dimensions avec des faisceaux ‘lissés’ et en une dimension avec un modèle réduit confirment
la formation de ce type de chocs qui dépend essentiellement du potentiel pondéromoteur des faiscaux
laser, de la taille des points chauds et du nombre Mach du flot entrant. Deux méthodes de lissage
optique sont étudiées, le lissage spatial par lames de phases aléatoires (random phase plates :‘RPP’)
et le lisssage spatio-temporel par dispersion spectrale (smoothing by spectral dispersion: ‘SSD’), ce
dernier provoquant des chocs plus forts que dans le cas de la RPP pour le régime non linéaire des
flux laser élévés. Les conditions nécessaires pour observer la formation de ce type de chocs dans le
contexte de la Fusion par confinement intertiel (FCI) par laser sont également discutées.
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I. INTRODUCTION

The laser facilities designed for Inertial Confinement laser Fusion (ICF) use so-called optical ‘smoothing’ methods
for the laser beams interacting with the plasma corona in the ablating target, which is the outer target shell for the
direct-drive scheme[1, 2] and the inner hohlraum wall for the indirect-drive scheme[3, 4]. Optical smoothing reduces
the spatial and temporal coherence of the laser beams. It has the goal of mitigating and/or controlling the nonlinear
processes related to laser-plasma interactions and hydrodynamic evolution of a target. So-called ‘smoothed’ laser
beams have a smooth intensity distribution only on a coarse scale, while on a micro-scale, in the range of the laser
wavelength, they exhibit a speckle structure. Such speckles, also called laser hot spots, generally all have similar sizes,
along and across the laser propagation direction, which are defined by the focusing optics, and their peak intensity
follows a well-known statistical distribution.

In both direct drive and indirect drive ICF schemes, laser beams cross each other, either by design of the beam
configuration or because of partial reflections from the target surface. Besides the fact that laser beams can exchange
energy due to resonances with plasma waves, known as Cross Beam Energy Transfer (CBET)[5–10], such beams can
have a complex substructure with important peak intensities in the speckles with values easily up to 10 times the
average laser beam intensity. The ponderomotive force from the laser field on a plasma is defined as the gradient of

the ponderomotive potential U . Using the definition of laser electric field E⃗ = 1
2 [E⃗e

−iω0t + c.c.] with its envelope E⃗,
obeying the time-dependent Helmholtz wave equation, the ponderomotive potential is defined as

U = e2|E⃗|2/(4meω
2
0). (1)

where ω0 is the laser frequency, e and me are the electron charge and mass, respectively. In the isothermal model of
a plasma[11–13], usually satisfied for laser interactions with hot plasmas the low-frequency plasma response can be
described by the continuity and momentum equations for cold ions

∂ni
∂t

+∇ · (niv⃗i) = 0 ,
∂v⃗i
∂t

+ (v⃗i · ∇)v⃗i = −Ze
mi

∇ϕ ≡ −c2s
(
∇U
Te

+∇ ln
ne
n0

)
(2)

where the electrostatic potential ϕ is replaced by the ponderomotive potential and the logarithm of electron density
using the Boltzmann distribution for the electron density ne, ne = n0 exp(eϕ/Te − U/Te) with n0 describing the

equilibrium density. In addition, cs ≡
√
ZTe/mi stands for the ion sound speed, involving the electron temperature

Te, the ion charge Z and mass mi. The ponderomotive potential, expressed in practical units related to the laser
beam intensity, reads U/Te ≡ 0.09 (⟨I⟩/1015W cm−2) (λ/µm)2/(Te/keV), wherein ⟨I⟩ denotes the average intensity
and λ stands for the laser wavelength.

FIG. 1. Schematic view of the interaction geometry: a large scale smoothed laser beam generates an imprint on the plasma
in the beam focal region via its ponderomotive force. In numerical simulations, a two-dimensional (2D) domain is considered
in the plane of the laser beam cross section at best focus where a super-sonic plasma flow is in the vertical direction (see the
arrow).

In a flowing plasma, the process of beam bending in the direction of the flow velocity has been examined in theory
and experiments [14–17]. The density perturbations resulting from the ponderomotive force of the laser are skewed
by flow, which redirects the laser beam and by momentum conservation introduces a drag on the plasma flow slowing
it down. The effect of beam bending is maximized producing the largest drag on the plasma flow when the flow
velocity is close to the sound speed. The latter results in deceleration of the flow, and as the flow transitions from
supersonic to subsonic velocity, conditions favourable to shock generation in the plasma can be reached. Our paper
focuses on the formation of such shocks related to ponderomotively-driven density and velocity perturbations across
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FIG. 2. Cross sections from a simulation showing the plasma flow vy/cs (see bar with gray scale)in x and y, in units of
the laser wave length λ. (a) at early time t =40λ/cs, showing laser speckle imprint. (b) late time, t =400λ/cs, with already
developed shock front departing from the laser speckle pattern. Simulation parameters: incoming flow at M =1.2 (from below),
normalized ponderomotive potential U/Te =0.02, average electron- to critical density ne/nc =0.1, optical F-number F=6.

the laser beam cross section. Also spatio-temporal smoothing techniques, such as smoothing by spectral dispersion
(SSD), commonly used at ICF facilities can lead to shock formation, as shown in this paper. Application of the SSD
and RPP beams produces an enhancement of threshold conditions for shock generation.

One can estimate that a small change in the laser field averaged momentum flux due to angular deflection of the
beam, characterized by the wave vector ratio, k⊥/k0, will affect the momentum of the flowing plasma. The change
of the field momentum as (k⊥/k0)⟨I⟩/c, with ⟨I⟩ = cϵ0⟨E2⟩/2 denoting the laser intensity, has to be compared with
the change in the ion momentum flux nimic

2
sδM were the flow velocity is normalized to the speed of sound δM .

Close to sonic flow with vi ≈ cs, this yields an effective reduction of the flow velocity, namely δM = (k⊥/k0)(⟨I⟩/5×
1014W/cm2)(1020cm−3/ni)(1keV/Te). Deflecting the beam by an angle comparable with its angular aperture k⊥/k0 ∼
1/(2F ), corresponds to a flow reduction δM of ∼ 0.125 for ⟨I⟩ ≈ 1015W/cm2, ni = 1020cm−3, the beam optical f-
number F = 8 and for the electron temperature Te = 1keV .

The article is organized as follows: in Section II the theory of laser beam deflection and shock formation in the
presence of transverse flow to the beam propagation direction is summarized; in Section III, we show the results from
two-dimensional (2D) fluid simulations in which the plasma is under the influence of the ponderomotive force of an
optically smoothed laser beam with speckle structure; in Section IV we compare these 2D results with simulations, in
1D, based on the simplified model based on the drag term, as developed in Section II; Section V includes conclusions
and final discussions.

II. THEORY OF LASER BEAM DEFLECTION AND SHOCK FORMATION BY TRANSVERSE
PLASMA FLOW

The collective action of the speckles in the fine structure of smoothed laser beams with their intensities up to 10×
the average beam intensity can exert strong ponderomotive forces on the plasma, as described by Eqs. (2). Although
local flow perturbations on the scale of individual speckles may be small, their cumulative effect over large beams
as used in ICF studies will lead to shock formation[18–20], which can be intensified in regions of intersecting beams.
We investigate here how the small deflection of the electromagnetic momentum flux associated with beam bending
induces an opposing change in momentum by decelerating the plasma flow.

For the plasma fluid momentum nv⃗⊥ in the direction perpendicular to the laser propagation, we consider a pertur-
bative approach to the isothermal fluid equations (2). Linearization around the background flow velocity, v⃗0 in the x
- y plane, v⃗⊥ = v⃗0 + δv⃗⊥ leads to the following set of equations [15]

(∂t + v⃗0 · ∇⊥) ln
ne
n0

+∇⊥ · δv⃗⊥ = 0, (∂t + v⃗0 · ∇⊥) δv⃗⊥ + 2ν̂iaδv⃗⊥ = −c2s∇⊥

(
ln
ne
n0

+ (1 + ĝ )
U

Te

)
(3)

where ν̂ia is a spatial convolution operator approximating Landau damping of ion acoustic perturbations. In Eqs. (3)
the coupling between the laser and the plasma fluid is augmented with respect to Eqs. (2), by applying an additional
wave-number dependent spatial convolution operator ĝ to the ponderomotive term, that accounts for both classical and
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non-local heat transport effects. This correction is obtained from a closure of the energy equation, see Ref. [21] and
references therein. Equation (3) has to be solved by applying ĝ in a Fourier space especially in the case when thermal
effects dominate ponderomotive coupling. The Fourier transformed ĝ reads[21] g(k) = (1 + 50kλe)meν

2
ei/(7Tek

2),

where kλe ∝ T 2
e is the electron mean free path and νei ∝ T

|3/2
e is the electron-ion collision frequency. In the regime

of classical thermal transport, 50kλe <1, the coefficient g(k) scales with temperature as g(k) ∼ T−4
e ; in the non-local,

kinetic regime, 50kλe >1, it scales as g(k) ∝ T−2
e where the spatial scale of the temperature inhomogeneity 1/k

corresponds to k ∼ π/(Fλ).
For the isothermal case, ignoring the correction ĝ, a stationary equilibrium can be reached in absence of flow by

balancing the local density and the ponderomotive potential, namely (ne/n0)v⊥=0 ≡ exp(−U/Te).
Flow can considerably modify the response of the plasma fluid[14, 15, 22–24]. Note that in the following we

distinguish between the notation for local flow Mach number M and the incoming flow Mach number M .
Time independent solution of Eqs. (3) yield in Fourier space[15] [lnne/n0]k⊥ = [ln(ne/n0)v⊥=0]k⊥ [1−(ky/k⊥)M(kyM/k⊥−

2iν̂)]−1 in which the background flow v⃗0 is chosen along the y-axis, the (local) Mach number M = vy/cs and the
normalized damping operator ν̂ = νia/(kcs). The density perturbation shows a skewed profile due to the flow com-
pared to ρ0 in the stationary plasma and the ponderomotive potential U of a single laser speckle. This asymmetry
in density perturbations averaged over speckles of the randomized laser beam leads to beam bending. In the small
angle approximation the beam bending can be quantified by the averaged angular deflection rate [15] in presence of
small density perturbations δn = ne−⟨n⟩ ( ≃ ⟨n⟩ ln(ne/⟨n⟩) ),

∂⟨θ⟩
∂z

=
∂

∂z

〈
k⃗⊥
k0

〉
k

· e⃗v = −e⃗v ·
⟨∇⊥δn⟩r

2nc
=

2β

Fλ

⟨n⟩
nc

U

Te
κ f(M, ν̂) κ (4)

with κ ≡ |e⃗v · e⃗⊥| accounting for the projection between the unit vectors e⃗v and e⃗⊥ pointing in the flow direction
and the direction perpendicular to the laser propagation, respectively. Note that the averages ⟨...⟩k,r in Eq. (4) are

evaluated via integrals weighted over the squared laser field, either in the two dimensional Fourier (k)- or configuration

(r)- space of any function h(...) namely as ⟨h⟩k(z) =
∫
|E(k⃗⊥, z)|2h(k⃗⊥)d2k⊥/(

∫
|E(k⃗⊥, z)|2d2k⊥) and ⟨h⟩r(z) =∫

U(x⃗⊥, z)h(x⃗⊥)d
2x⊥/U with the simple spatial average U(z) ≡

∫
|E(x⃗⊥, z)|2d2x⊥. The rate of beam deflection Eq.

(4) and the averaging involve the electric field amplitude E⃗ which is determined by solving the paraxial wave equation
for the laser field.

The right-hand-side (rhs) of Eq. (4) has been derived in Ref. [19], see in particular Eq. (157) there, for the
case of a randomized laser field generated by introducing random phase plates (RPP) in the focusing optics, which
is characterized by the averaged ponderomotive potential U and the speckle correlation length, namely the effective
speckle width given by ℓsp = Fλ/β with β = 64/45, and with F and λ denoting the focusing F-number and the laser
wave length, respectively. The function f(M, ν̂) in the rhs of Eq. (4), results from an integral over the angle between
the flow and the wave vector of the ponderomotively driven ion acoustic waves[25]. The following expression, valid
for spatially smoothed laser beams, depends on the plasma flow component across the laser beam cross section,

f(M, ν̂)=
1

2MD
√
Q

sin (ψ/2)

(
≃ 1

2M
√
M2 − 1

for M2(1− ν̂2) > 1

)
(5)

with the argument ψ = arccos([1 − M2(1 − 2ν̂2)]/Q) as well as Q =
√

(1−M2(1− 2ν̂2))2 + 4ν̂2D2M4 and D =√
1− ν̂2 in terms of the Mach number M, and the ion acoustic damping coefficient ν̂ (= νia(k)/(csk), being wave

number-dependent). There is no effective beam deflection for subsonic flow, 0 ≤ M2 < 1. In the close vicinity of
sonic flow a resonant transfer into another beam arises, however only over a short range until the flow is no longer
orthogonal to the beam propagation. Efficient beam deflection occurs for a super-sonic flow, M2(1− ν̂2) > 1, see Fig.
3.

Note that for regimes in which thermal effects modify the laser-plasma coupling via the ponderomotive potential
with the 1 + ĝ correction (see above), the rhs of Eq. (4) is modified: additional terms coming from g(k) have to be
taken into account via the integration over the speckle correlation function[20]. In order to determine the cumulative
effect of the ponderomotive force from numerous speckles it is useful to introduce a scale separation between the mean
values and the fluctuation of the fluid quantities in Eqs. (3). This results[15, 20] in reduction of the averaged fluid
momentum as a function of time, due to the collective action of speckles. The slowing down of the plasma flow can
be described in terms of a drag force by ignoring the averages of fluctuating terms except in the last term on the rhs
of Eq. (3). This leads to the set of equations

∂t⟨n⟩+∇⊥ · ⟨nv⃗⊥⟩ = 0 (6)

∂t⟨nv⃗⊥⟩+∇⊥ ·(⟨nv⃗⊥⟩⟨v⃗⊥⟩) + 2⟨n⟩ (νia.δv⃗⊥) =−c2s
(
⟨∇⊥n⟩+⟨n⟩∇⊥U

Te

)
−α ⟨nv⃗⊥⟩ (7)
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FIG. 3. Plasma response from Eq. (5), f(M, ν̂ = 0.025)
as a function of the (local) flow Mach number M. Dashed:
approximation, also given in Eq. (5).

FIG. 4. Scaled position ysonic from Eq. (9) (line) and from
RPP simulations (data points). Different colours indicate the
interval of U/Te values.

in which the drag coefficient α, using ⟨δn∇⊥U⟩r = −⟨U∇⊥δn⟩r, for e⃗v||e⃗⊥ is given by

α ≡ − c2s
Mcs

e⃗v ·⟨U∇⊥δn⟩r
⟨n⟩Te

≡ 4β
cs
Fλ

(
U

Te

)2
f(M, ν̂)

M
. (8)

The system of Eqs. (6-7) describes a non linear fluid of an isothermal plasma. However, the response function used
in the drag term relies on a derivation from linear theory.

In the following we assume an idealized laser beam whose spatial envelope is a slab, varying in the y-direction, and
assume flow in positive y-direction with the (local) Mach number M ≡ ⟨vy⟩/cs > 1 at y = 0. The density profile is
initially unperturbed, but the ponderomotive force inside the speckle pattern acts on the plasma. The drag effect,
as described above, leads to the deceleration of supersonic flow, transitioning it from the supersonic to subsonic flow
regime. Assuming steady state flow in Eqs. (6)-(7), and neglecting the term without speckle structure ∼ ∇⊥U , we
obtain ( ⟨v⃗⊥⟩·∇⊥) ⟨v⃗⊥⟩+c2s∇⊥ ln⟨n/n0⟩+α ⟨v⃗⊥⟩ ≃ 0. For the isothermal case without thermal correction, and written
in terms of the Mach number M this yields together with Eq. (4) and ∇⊥ → ∂y,

d

dy

(
M+

1

M

)
= − 2β

Fλ

(
U

Te

)2
1

M2
√
M2 − 1

yielding
ysonic
yp

=
1

2β

∫ M

M=1

(M2 − 1)3/2dM (9)

which determines the position ysonic, at which the incoming super-sonic flow is decelerated to sonic velocity. The
integral in (9) is simply a function of the Mach number of the incoming flow M . The position ysonic depends on
the value of M, and it defines the plasma penetration depth within the laser beam necessary for the onset of shock

formation, see Fig. 4; ysonic scales with yp = Fλ/( U
Te
)2, i.e. with the effective speckle width, Fλ/β and is inversely

proportional to the square of the ponderomotive potential. For regimes in which thermal effects dominate the laser-
plasma coupling, the ysonic length will be modified with respect to Eq. (9).
Knowing the function f(M, ν̂) for the randomised laser beam such as Eq. (5) for the RPP, the average momentum

and continuity equations (7) can be solved in one spatial dimension along the flow y-direction. This results in the
formation of a shock propagating against the incoming flow, due to the action of the drag force and the ponderomotive
force at the edges of the spatially averaged laser beam profile. In section III we will show full 2D simulations of Eqs.
(3) including the beam speckle structure, for which the knowledge of f(M, ν̂) is not needed. We compare these results
with simulations of this simplified 1D model in Section IV.

III. SHOCK FORMATION IN NUMERICAL SIMULATIONS WITH OPTICALLY SMOOTHED LASER
BEAMS

We have performed numerical simulations with a conservative hydrodynamic scheme, based on the Clawpack package
[26, 27] and adapted to a hot isothermal plasma[28] in two dimensions (2D). The ponderomotive potential of the laser
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beam with speckle structure, taken in a single cross section close to the laser beam focus was applied as source term
in Eq. (2). For these simulations an initially homogeneous electron density of ne =0.1nc is assumed where nc is the
critical density. The simulations are performed in dimensionless units, where spatial coordinates are normalized to
the laser wavelength λ and time is measured in λ/cs. The ion sound speed, cs, reads in practical units as ∼ 0.3µm/ps

×
√
ZT (keV )/A.

For the smoothed laser beams we have used the focusing F-number F =8. The spatial domain was resolved with
4096x4096 mesh points. For the typical laser wave length of λ =0.351µm this corresponds to a domain size defined
by Lx = Ly =1.977mm. The spatial incoherence of laser beams is introduced using the top hat model for the
Random Phase Plates (RPP)[29]. For the beam intensity distribution within the x−y-plane inside the plasma, the

corresponding near field configuration at the focusing lens is composed of elements with a random phase ϕ(k⃗), i.e. 0

or π/2 (RPP), and a constant amplitude |E(k⃗)| for |⃗k| ≤ k0/(1 + 4F 2)1/2 (and 0 outside) with k0 = 2π/λ for the
laser wave number. The laser electric field in the interaction zone, where the plasma is situated, is computed via the

Fourier transform of E(k⃗⊥) exp(ik
2
⊥z/2k0). The cross-section of the speckle patterns produced by such disk-shaped

RPP beams are seen in the ponderomotively induced flow velocity (vy/cs) perturbations in Fig. 2, left subplot. In
the same figure, right subplot, a smooth shock front emerges from the region dominated by the beam speckle pattern.

In an early stage of shock formation, the position ysonic at which the flow transitions from the super- (y < ysonic) to
the sub-sonic (y > ysonic) velocity appears inside and close to the edge of the laser beam cross section with a speckle
structure. This position ysonic has been determined from a set of simulations with RPP-smoothed laser beams by
varying the amplitude of U/Te and the incoming flow Mach numberM . The comparison with the theory developed in
the preceding section, Eq. (9), blue line, shows good agreement between simulations and the model, and confirms the

scaling with yp = Fλ/( U
Te
)2. Different colours distinguish data points with different ponderomotive coupling strength,

see legend.
The shock front that emerges from the beam cross section, as seen in Fig. 2, right subplot, can be quantified by

determining the density and flow speed jumps, n1/n0, and vy/cs, respectively, as illustrated for the central cut in x
in Fig. 5.

At the major laser laser facilities dedicated to ICF and laser-plasma interaction experiments, spatio-temporal
smoothing techniques are used, in particular Smoothing by Spectral Dispersion (SSD)[30, 31] such as at the US
National Ignition Facility (NIF), the OMEGA laser at the University of Rochester and the French Laser MégaJoule
(LMJ). SSD makes use of a bandwidth in the laser pulse in combination with a grating that tilts the phase front
and consequently introduces phase modulation. This leads to speckle motion[32], which is in contrast to the steady
state speckle pattern for the case of RPP. Both transverse and longitudinal SSD methods exist, and a combination of
both. For longitudinal SSD important speckle motion arises in the direction longitudinal to the beam propagation,
while for transverse SSD speckles move both in transverse and longitudinal direction[33]. We restrict ourselves here
to transverse SSD, as is implemented on the NIF. The sinusoidal phase modulations to the pulse introduce bandwidth
before the beam passes through a dispersion grating, which can be written in terms of the electric field at the lens,
E(y, t) = 1

2E0(y, t) exp{i[ω0t+ δm sin(ωmt+ 2πNccy/wy) + ϕ0]}+ c.c. where ω0 is the central laser frequency, ϕ0 the
initial phase, ωm the modulation frequency, δm the modulation depth (here = 0.6), wy is the beam width in y direction,
and Ncc is called the number of colour cycles that characterizes the time delay ∆τ = NccTm introduced by the grating
over the period of modulation, Tm = 2π/ωm. The resulting total bandwidth of the laser pulse ∆ω ≈ 2δmωm which is
still small relative to the ω0. The value of δm has to be multiplied by 3 for frequency-tripled laser pulses (λ =0.351µm).
In our simulations by applying the spatio-temporal smoothing technique SSD, we observe very similar evolution of

the shock front departing from the laser beam cross section, as seen for the case of RPP. Please consult Ref. [25] for
details that distinguish RPP and SSD as far as the ysonic position is concerned. The results for SSD are in qualitative
agreement with RPP simulations, as shown in Fig. 6, which summarizes results from a set of simulations by varying
the incoming flow Mach number M and U/Te. However, for the same parameters M and U/Te >0.08, the effect of
transverse SSD tends to produce stronger shocks with respect to RPP. Note that for transverse SSD speckle motion
occurs in the beam cross section, which is not the case for the longitudinal SSD (and for which we have not carried
out simulations).

IV. SHOCK STRENGTH AND SHOCK SPEED: 2D SIMULATIONS VS. 1D MODELING

The results of our sets of simulations are shown in Figs. 6 and 7 for cases with pure spatial and with spatio-temporal
smoothing, RPP and SSD, respectively, both for the shock strength in terms of the density jump across the shock
front, n1/n0, and the shock speed in the laboratory frame vsh/cs. Shown are the values for both the full 2D simulations
with speckles in the laser beam cross section and 1D simulations in the single y-direction, solving the non linear Eqs.
(6)-(7) with the drag term ∼ α that accounts for the cumulative effect of speckles.

The computationally much less expensive 1D simulations with a drag force show good agreement with the 2D
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FIG. 5. Density and flow profiles, n1/n0 (in black) and vy/cs (red colour), respectively, along the y-axis across the beam
propagation and along the incoming supersonic flow, here M =1.2 taken in the center of the beam cross section. Left (a) :
profiles across the entire laser beam speckle pattern taken at late time, t =2.38ns, right (b): profiles zoomed around the shock
emerging from the speckle pattern, y ∼700µm, taken at two instants, t =1.33ns and later t =2.38ns. Spatial units in µm for
λ = 0.351µm. Parameters: U/Te =0.1, n0/nc =0.1.

simulations with speckled laser beams. We observed the good agreement between results of two simulations in spite of
the linear plasma response function (5) used in Eq. (7) to model the nonlinear physics of the shock front steepening.
In particular the values obtained for the shock speed are well reproduced, while the 1D model leads to slightly stronger
shock strength for M >1.1. Both sets of values are determined from the shock front evolution as shown in Fig. 5 for
the 2D simulations.

The speed of the emerging shock depends on the ponderomotive force and can be determined by integrating the
Eqs. (6)-(7) in steady state from unperturbed plasma upstream of the shock front into the region of the speckled
beam cross section. It yields for the cases of RPP (without temporal smoothing, i.e. not for SSD), the following
relation between the density jump n1/n0, the ponderomotive potential U/Te, Mach number of the incoming flow, and
the shock speed in the laboratory frame,(

M− vsh
cs

)2

= 2
U/Te + ln(n1/n0)

1− (n1/n0)−2
. (10)

for the derivation of which we have used the continuity equation in the shock frame. The data points in Fig. 7
correspond to the values directly deduced from the simulations, by inspecting the advancing shock front for each case.
The lines in Fig. 7 have been deduced from our model, Eq. (10), that takes into account the ponderomotive action of
the laser beam on the plasma flow. For the evaluation of expression Eq. (10) we have used the values for the density
jumps (reported in Fig. 6) from our simulations in order to determine −vsh/cs, as shown in the lines of Fig. 7.
Our simulations confirm that the values obtained for smooth shock fronts that propagate outside the beam cross

section obey the Rankine-Hugoniot relations (e.g. [34]) for continuity and momentum up- and downstream of the
discontinuity in the shock’s reference frame.[25] For an isothermal plasma, as considered in our simulations, we
disregard the internal energy relations on both sides of the shock. For this case, the sound speed is the same on both
sides, such that the simplified Rankine-Hugoniot relations result in n1/n0 = M2

0 = M−2
1 together with M0M1 = 1,

in the shock frame, with ’0’ for upstream, unperturbed, and ’1’ for downstream. The resulting density jump is then
essentially a function of the Mach numbers, relating M2

1 = M2 to the incoming flow, and to the shock speed vsh in

the laboratory frame as −vsh/cs=
√
n1/n0−M . This implies that the formation of a shock propagating against the

incident flow (−vsh > 0) can only occur for a sufficiently high density jump, namely n1/n0 > M2; consequently for
M =1.1, 1.2, and 1.3 this means that shocks should not be able to leave the laser beam cross-section and propagate
freely unless n1/n0 >1.21, 1.44, and 1.69, respectively. This explains also why both 2D and 1D simulation data in Fig.
7 for M =1.3 are incomplete for smaller U/T values. Consequently, the data points for M =1.3 and U/Te <0.08 have
large uncertainty. At the same time, as shown in Fig. 6, the strength of the shock in terms of the jump conditions
increases with the incoming flow Mach number M , as a consequence of the condition n1/n0 > M2, and increases with
the cumulative action of the ponderomotive force in the beam speckles, ∝ U/Te.
It is important to note that the time required in simulations (in particular in 2D) to observe a shock emerging out

of the laser beam cross-section can be very long, beyond the run time of our simulations, because of the low shock
speed. This trend of lower shock speeds, but at the same time higher shock strengths, increases with the incoming
Mach number as seen in Fig. 7.
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FIG. 6. Shock density jump, for RPP and SSD full 2D
simulations (lines with data points) and 1D simulations of
Eq. (7) (dash-dotted) as a function of the normalized pon-
deromotive potential U/Te for Mach number values of the
incoming flow, M =1.1, 1.2, and 1.3. Beam F-number F =8.

FIG. 7. Speed of the shock front after outbreak from the beam
cross section, from full 2D RPP simulations (data points),
1D simulations (dash-dotted), and values following Eq. (10)
(dashed), as a function of U/Te for incoming flow withM =1.1,
1.2, and 1.3.

V. CONCLUSION

We have shown that optically smoothed laser beam with speckle structure can lead to the formation of macroscopic
shocks emerging from the beam cross section in presence of incoming flow that has a supersonic speed perpendicular
to the laser beam propagation axis.

It is known from earlier work [14, 15, 22–24] that plasma flow with a component orthogonal to the propagation
direction of a laser beam can deflect the beam when the flow velocity is close to the sound speed of the plasma. The
ponderomotive force of the beam’s laser field acts on the plasma such that incoming supersonic flow is slowed down.
For sufficiently strong fields the plasma response, see Eq. (5) and Fig. (3), leads to the transition form super- to
subsonic flow, which gives rise to the formation of density and flow perturbations that eventually steepen and develop
a shock propagating against the incoming flow direction.

For optically smoothed laser beams with speckle structure, a smooth shock front forms due to the cumulative action
of the ponderomotive force from the laser speckle ensemble. The characteristic distance of plasma penetration across
the randomized laser beam required for the flow to slow down to subsonic velocity and form a shock, given by Eq.
(9), defines the necessary condition for the shock generation. The emergence of such shocks occurs as a result of
laser beam bending and subsequent momentum change induced by the redirected laser light. Beam bending and the
shock formation occur over a limited range along the beam propagation until the flow component perpendicular to
the deflected beam becomes subsonic. Such scenarios are likely to occur in laser-generated hot plasmas in the context
of laser-driven ICF, both for the indirect- and the direct-drive schemes. The beam bending[14–17] is an important
mechanism that can alter the angular spectra of the laser beams similarly to self-focusing and stimulated scattering
instabilities enhanced by the plasma waves excited by speckles in a flowing plasma. The shock formed by the beam’s
action on the plasma flow affects the plasma hydrodynamic evolution and can impact the propagation of neighbouring
beams, eventually leading to uncontrolled beam deflection in multi-beam configurations.

Based on our simulations with RPP beams, we can estimate the energy required in experiments to observe the effect
of shock formation. The scaling of Eqs. (8) and (9) predicts stronger effects for relatively small speckle sizes that can be
attained by bundles of beams crossing at small angles. The latter leads to reduced effective F-numbers, characterizing
the speckles in the beam cross section, with respect to the F-number of a single beam. As a realistic example, based
on multi-beam configurations, we assume the effective F-number such that Fλ ∼ 1µm, the average laser intensity
I = 2 × 1015 W/cm2, and the electron temperature Te=2 keV, resulting in the normalized ponderomotive potential
U/Te ≈ 0.011. For incoming flow Mach numbers M , corresponding to 1.05<M <1.2, we find then that the estimated
time to observe such a shock, would be roughly 1.3-2.7 ns. Hence, within the square cross section of 400µm× 400µm
or 810µm × 810µm of the laser beam with an average intensity I = 2× 1015 W/cm2 will require the laser energy of
9kJ or 36kJ, respectively.
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The set of model equations Eqs. (6)-(7) for the transverse flow, with the drag coefficient α that accounts for the
cumulative action of speckles and knowing the response function f(M, ν̂) for the smoothing technique (see Eq. (5) for
RPP, see also [25]), can potentially be implemented in radiation-hydrodynamics codes to examine the slowing down
of flow, without resolving the detail of the speckle structure.

In the current work, we have restricted ourselves to the case of an isothermal plasma without any effects from local
or non-local heat transport and collisional plasma heating. The latter may play a role in cases of non-uniform heating
and/or transport mechanisms with electron mean free paths comparable or beyond the speckle size. This may be
of importance for plasma electron temperatures below 1keV. Currently we study the shock generations taking into
account such processes, both by considering the enhancement of the speckle structure and its ponderomotive force
following adequate models[21] and by performing numerical simulations taking into account collisional absorption and
thermal transport.

Acknowledgments

SH acknowledges the access granted to the French HPC resources of IDRIS under the allocations A0100500573
and AD010500573R1 by GENCI, as well as the support by the CPHT computer team. AM and WR acknowledge
support from the Digital Research Alliance of Canada and support from the U.S. Department of Energy Contract
number: DE-NA0004144. This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LLNL’s WPD, ICF Program’s Academic
Collaboration Teams’s University Program (ACT-UP) under Subcontract No. B645970.

We wish to dedicate this article to our colleague Harvey A. Rose who passed away during our latest discussion on
this work.

[1] R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W.
McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L.
Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B.
Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, J. D. Zuegel, “Direct-drive inertial
confinement fusion: A review”, Physics of Plasmas 22 (2015), no. 11, p. 110501, https://doi.org/10.1063/1.4934714.

[2] E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins, M. S. Wei,
R. Betti, S. P. Regan, D. H. Froula, C. Dorrer, D. R. Harding, V. Gopalaswamy, J. P. Knauer, R. Shah, O. M. Mannion,
J. A. Marozas, P. B. Radha, M. J. Rosenberg, T. J. B. Collins, A. R. Christopherson, A. A. Solodov, D. Cao, J. P. Palastro,
R. K. Follett, M. Farrell, “Direct-drive laser fusion: status, plans and future”, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 379 (2021), no. 2189, p. 20200011.

[3] J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition
and gain”, Physics of Plasmas 2 (1995), no. 11, p. 3933-4024.

[4] O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan, S. A. Slutz, M. R. Gomez, M. A. Sweeney, “Physics
principles of inertial confinement fusion and U.S. program overview”, Rev. Mod. Phys. 95 (2023), p. 025005, https:

//link.aps.org/doi/10.1103/RevModPhys.95.025005.
[5] W. L. Kruer, S. C. Wilks, B. B. Afeyan, R. K. Kirkwood, “Energy transfer between crossing laser beams”, Phys. Plasmas

3 (1996), no. 1, p. 382-385.
[6] R. K. Kirkwood, B. B. Afeyan, W. L. Kruer, B. J. MacGowan, J. D. Moody, D. S. Montgomery, D. M. Pennington, T. L.

Weiland, S. C. Wilks, “Observation of Energy Transfer between Frequency-Mismatched Laser Beams in a Large-Scale
Plasma”, Phys. Rev. Lett. 76 (1996), p. 2065-2068.

[7] V. V. Eliseev, W. Rozmus, V. T. Tikhonchuk, C. E. Capjack, “Interaction of crossed laser beams with plasmas”, Phys.
Plasmas 3 (1996), no. 6, p. 2215-2217.

[8] P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit,
D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, L. J. Suter, “Tuning the Implosion Symmetry
of ICF Targets via Controlled Crossed-Beam Energy Transfer”, Phys. Rev. Lett. 102 (2009), p. 025004.

[9] P. Michel, L. Divol, E. A. Williams, C. A. Thomas, D. A. Callahan, S. Weber, S. W. Haan, J. D. Salmonson, N. B. Meezan,
O. L. Landen, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, L. J. Suter, “Energy
transfer between laser beams crossing in ignition hohlraums”, Phys. Plasmas 16 (2009), no. 4, p. 042702.
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