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A B S T R A C T   

This paper describes a dynamic model of two stage gear power transmission including shafts, ball 
and roller bearings as well as spur and helical gears. The fundamental objective of this model is to 
introduce a simulator of realistic signals for monitoring the dynamic behavior of such trans-
missions in non-stationary operating conditions. Special attention is paid to the couplings be-
tween mechanical components through the shaft rotation. The analyses carried out are mainly 
based on the Instantaneous Angular Speed (IAS) as an alternative signal to classical vibrations. 
Simulations have demonstrated the relevance of IAS as a tool for health monitoring of common 
gear or bearing faults in non-stationary operating conditions. Suggested angular approaches offer 
the ability to separate excitations from the transfer function of the system. The interactions be-
tween bearings and gears appear as modulation sidebands and suggest a new way to use 
demodulation methods. Finally, the influence and the detectability of damages on both me-
chanical components (spall on bearings, spall and crack on gears) using the mentioned techniques 
are discussed, offering new incomes for signal processing tools in gear transmission monitoring.   

1. Introduction 

Gear power transmissions are central and key elements for numerous systems in various domains as transportation, energy pro-
duction, manufacturing or machining. Their failures are usually critical and are causes of operation interruptions or even damages for 
the whole system. Thus, it is important to detect and localize a damage as early as possible. Moreover, next power transmission 
generations will operate in non-stationary conditions mainly with the electrification of transportation. For this purpose, the knowledge 
of the failure modes and their influence on the system dynamic behavior is fundamentally required for robust monitoring tools. 
Mechanical models are then needed and useful to predict healthy and damaged system dynamics in order to be able to detect fault on 
real systems and to understand their manifestations in various operating conditions. 

Rotating machinery monitoring is usually performed using accelerometric data and the literature is extensive on this topic with a 
strong insight about signal processing methods. Generally, well designed for stationary conditions these signal processing tools are 
built on signal models with low complexity and weak connections to kinematics and dynamics of the transmission. However, this paper 
focuses on the Instantaneous Angular Speed (IAS) signal because of its relevance in case of non-stationary operating conditions [1]. Its 
measurement method implies a natural angular sampling which is best suited for the monitoring of discrete periodic components in 
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rotation like bearings, gears or electrical rotors. The IAS signal may be obtained by measuring the time duration (number of clock ticks) 
between two successive events provided by an optical encoder signal. The IAS signal is then sampled with a constant step of the 
reference shaft given by the encoder resolution and is expressed as: 

IAS(iΔθ) =
Δθ
Δti

=
2π
R

fc

Ni
(1) 

With R being the encoder resolution, fc the clock frequency and Ni the number of clock ticks between shaft positions (i − 1)Δθ and 
iΔθ. 

Moreover, IAS perturbations generated by bearings and gears have been proved to be easily transmitted through connecting el-
ements and the whole transmission is possible to monitor using a single sensor. IAS has been firstly studied while measuring Trans-
mission Error in automotive gearboxes [2] and remains strongly related to the kinematics of the transmission. 

Gear modeling has been a subject of interest for several decades and numerous models of variable complexity have been proposed. 
The more precise ones are based on numerical methods such as Finite Elements (FE) [3] [4],. Other authors have developed hybrid 
models [5] [6], combining numerical and analytical approaches for structural and contact deflection respectively. These models 
require significant computation time and are less suitable for dynamic simulations, particularly for non-stationary conditions. In this 
paper, a fully analytical model is preferred to FEM approaches in order to be consistent with non-stationary conditions and to keep 
affordable computing time for long simulations. The model is similar to classical meshing stiffness calculations but introduces forces 
acting on the different components of the transmission. One of the first works on mesh stiffness calculation was performed by Weber 
[7] and then improved with Banaschek [8]. It adopts a non-uniform cantilever beam model for the gear teeth. The stiffness calculation 
considers the deflection associated to the beam, the contact and the foundation as a semi-infinite elastic plane. This work has been used 
and modified by numerous author like Attia [9] to extend it to thin rimmed gears or then by Cornell [10] and later by Sainsot & al. [11] 
regarding the foundation stiffness calculation. The works from Chen & al. [12] [13], and Chaari & al. [14] have introduced a tooth root 
crack and Mohammed & al. [15] have improved the estimation of a damaged tooth stiffness. In parallel, Tse & al. [16] have imple-
mented off-line-of-action contacts, the influence of which on the Static Transmission Error (STE) and on the dynamic behavior was 
highlighted by Lin & al. [17] and Singh & al. [18]. 

A first part of this paper describes the model of a transmission and goes into gear model details. Special attention is given to 
implementation of the complete geometry of teeth and on the introduction of damage. The bearing model has been detailed and 
discussed in a previous publication [19] and is extended to the case of cylindrical roller bearings. The second part of this paper is 
dedicated to the numerical study of the behavior of an academic power transmission operating under non-stationary conditions. The 
two-stage power transmission is composed by three flexible shafts, each of them supported by ball and roller bearings and linked by 
spur and helical gear pairs. The strong coupling intrinsic to the modeling method allows the study of gear-bearing interactions and 
their benefits in health monitoring. The relevance of IAS as a monitoring tool and the benefits of non-stationary conditions are also 
highlighted through the richness of signal components. Finally, the influence of damages like spalls for bearings and spalls or cracks for 
gears on the IAS is analyzed and discussed through numerical experiments. 

2. Rotating assembly model introduction 

2.1. Modeling principle 

The modeling of the flexible shafts is assumed by using Timoshenko beam elements and leads to the differential system introduced 
in eq (2) where M and K are the mass and stiffness matrices of the shafts. C is the damping matrix estimated using a classical modal 
approach with a modal damping coefficient set to 0.01. Finally, Xt = {X1,X2,…, Xn} is the state vector of the system with Xi =

{
xi, yi,

zi, θxi, θyi, θzi
}

being the translation and rotation displacements of node i. In the presented model, no assumption is made on the 
rotating speed and θz is the complete rotation degree of freedom, including the rigid body rotation and not limited to torsional effects. 
In general, this point of attention is rarely considered in conventional models where some degrees of freedom are considered at the 
same time as only a deformation or a global position, except when the models strongly need to take account of relative angular po-
sitions like for planetary gear sets [20]. Indeed, and specially for non-stationary conditions, the absolute angular position of the shaft is 
of first importance and leads to strong couplings associated with shaft rotation in the dynamic model [21]. 

MẌ + CẊ˙+ KX = Fext(t) (2) 

Bearings are then added as connecting forces acting on two nodes corresponding to their inner ring (IR) and their outer ring (OR) 
respectively. In a similar way, gears are introduced as connecting forces acting on the nodes associated to the center of the wheels. The 
use of connecting force vectors for gears and bearings allows a strong coupling between these two kinds of elements. Moreover, it does 
not require any linearization around an operating point and is particularly suitable for the investigation of non-stationary operating 
conditions. The mass matrix has been then completed to take account for the mass and inertia of rigid discs standing for the wheels of 

the gears. Eq. (3) introduces the whole differential system to integrate taking account of gear and bearing connecting forces Fb

(
X, Ẋ˙, Ẍ

)

for bearings and Fg(X, Ẋ˙) for gears described in the following sections. Unlike external forces, these connecting forces depend on the 
displacements of nodes and their derivatives rather than time. 
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MẌ + CẊ˙+ KX = Fext(t) + Fb

(
X, Ẋ˙, Ẍ

)
+ Fg(X, Ẋ˙) (3) 

The calculation of ball bearing forces is performed using the model proposed by Thibault & al. [19]. The model used for roller 
bearings is similar and the only difference lies in the expressions of forces acting on the rolling elements. The contact between rollers 
and races is of type cylinder-cylinder and the contact on flanges has to be considered to ensure stability. The model of roller bearings is 
based on the works of Bourdon [22] and Hamrock & al. [23]. The calculation of the gear forces is detailed in the following sections. 

2.2. Mesh deflection 

The gear mesh model is dedicated to the calculation of dynamic forces transmitted and not to the design and calculation of gear 
geometry. It is therefore important to limit computation time while assuring correct estimation of contacting forces. For this purpose, 
an analytical model is adopted. It takes as input the translational and rotational displacements 

(
xi, yi, zi, θxi, θyi, θzi

)
of the nodes 

associated to the center of both wheels and return the connecting forces applied to these nodes. The wheel node displacements allow an 
estimation of the tooth deformation from which one can estimate the corresponding force which should be applied to reach this 
deformation. The contacting forces are then computed separately on each tooth pair. In order to easily take account of helix angle and 
potential non-uniform damages along the tooth width, these are discretized as K thin slices in the axial or helical direction as shown in 
Fig. 1 [11,13-15]. The calculation of deflection is done separately on each slice. In the following, the index j ∈ [1 : Z] stands for the 
tooth considered while the index k ∈ [1 : K] corresponds to the slice. 

Without load or profile modification, the contact point Pjk between two slices moves on the line of action during the rotation of 
wheels. The contact exists for a rotation equal to the driving angle. The tooth or slice deflection at the contact point is calculated 
kinematically. For this purpose, the displacement of both wheels at the contact point are calculated separately. Since the principal 
rotation degree of freedom stands for the complete rotation, it has to be considered differently. Let Δθz = θz20 + Z1

Z2
θz10 be the 

Transmission Error, Oi the center of wheel i and RΔ(ϕ) the rotation matrix of angle ϕ around the axis Δ = x,y,z. We can then calculate 
the displacement of both wheels as follows: 

dijk
̅→

=

⎛

⎜
⎜
⎝

xi

yi

zi

⎞

⎟
⎟
⎠+

[
Rx(θxi) + Ry

(
θyi

)
− 2.Id3

]
⋅ OiPjk
̅̅̅→ i = 1, 2

dθz,jk
̅̅ →

= (Rz(Δθz) − Id3) ⋅ O2Pjk
̅̅̅→

(4) 

The total deflection is then: 

δjk =
(

d1jk
̅→

− d2jk
̅→

− dθz,jk
̅̅ →)

⋅ n→ (5) 

Here, n→ is the normal vector to the tooth profile and Id3 is the identity matrix. All the stiffness and deformation are also estimated 
with a corrective term which is introduced if the adjacent slices are unloaded. This correction is dedicated to the introduction of 
convective effects on flexion. The corrective term is defined for the unloaded slices corresponding to a given length and is defined by a 
comparison with a dedicated Finite Element model. 

2.3. Contact force 

The total deflection previously calculated is the sum of tooth deflection, contact deflection and fillet-foundation deflection. Tooth 
stiffness is determined using the expression given by Chen & al. [12,13] who assume it to behave as a cantilever beam accounting for 

Fig. 1. Tooth discretization in axial or helical direction.  
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bending, shear and compression. Fig. 2 shows a schema of a tooth under load. Eq. (6) gives formulae of the tooth stiffness for each 
deformation mode obtained using the potential energy stored in the tooth. Here, G is the shear modulus while A and I are the section 
area and moment of inertia respectively. Finally, beff is the angle defining the orientation of the contact force with respect to the 
bisector of the tooth. 

1
Kb

=

∫d

0

(
xcos

(
beff

)
− heff sin

(
beff

))2

EI(x)
dx

1
Ks

=

∫d

0

1.2cos2
(
beff

)

GA(x)
dx

1
Kc

=

∫d

0

sin2( beff
)

EA(x)
dx

(6) 

The fillet-foundation stiffness is calculated as suggested by Sainsot & al. [11] by assimilating the wheel to an elastic disc (see Fig. 2). 
The expression is given in Eq. (7) where δz is the tooth width and E the Young modulus. The coefficients L∗, M∗, P∗, Q∗ are obtained 
using polynomial regression based on FE results and given in Appendix 3. 

1
Kf

=
cos2

(
beff

)

Eδz

[

L∗

(
d

Sroot

)2

+M∗ d
Sroot

+P∗
(
1+Q∗tan2( beff

))
]

(7) 

Several contact laws are found in the literature as the empiric formula of Palmgren [24] or the formula of Lundberg [25]. In this 
work, the contact deflection is given by Eq. (8) which corresponds to the Johnson law [26] dedicated to cylinder-cylinder contacts. 
Here, ΔR is the sum of the radii of contacting cylinders, E is the Young’s modulus, ν is the Poisson’s coefficient and L is the width of the 
contact zone. 

δc =
F

πLE∗

(

ln
(

4πLE∗ΔR
F

)

− 1
)

with E∗ =
E

2(1 − ν2)
(8) 

The total deflection can then be written as a nonlinear function of the contact force as shown in Eq. (9). 

δjk
(
Fjk

)
= Fjk

[
1

Ktot
+

1
πLE∗

(

ln
(

4πLE∗ΔR
Fjk

)

− 1
)]

(9)  

with: 

Ktot =

(
1

Kb1
+

1
Ks1

+
1

Kc1
+

1
Kf1

+
1

Kb2
+

1
Ks2

+
1

Kc2
+

1
Kf2

)− 1 

By combining this expression with Eq. (4), it is easy to estimate the force applied on each slice. 
The main limitations of this model are essentially and deliberately associated with an approximate consideration of the flexibility of 

Fig. 2. Schema of a tooth associated to a cantilever beam under load [12].  
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housing elements and simplified gear geometry. These limitations are not specific to the transmission example chosen and could be 
easily corrected by introducing other flexible elements. Moreover, no connected device is included in the academic transmission 
system like turbines or driven machines, corrupting inertia, boundary or load conditions. These improvements would lead to the use of 
richer, more precise models and make the interactions between excitations and structure more complex. The choice has been made to 
limit this complexity, which is not required to explain the phenomena highlighted in this paper. 

2.4. Energy dissipation 

Due to the motion of both wheels, sliding occurs at the contact point. The ensuing tangential force is estimated using the Coulomb 
law assuming pure sliding. It can be artificially written as 

Ft,jk
̅̅→

= − μFjk t→where t→=
vt
→

‖vt
→

‖
and vt is the tangential part of the relative speed of the bodies. Here, the assumption of pure sliding is 

a simplification and does not precisely report the contact behavior and the value of μ is equal to 0.03. However, a stick-slip resolution 
would require too much computation time and is not suitable for this study. The relative tangential speed can be calculated as follows: 

vt
→

= (v2
→

− v1
→
) − [(v2

→
− v1
→
) ⋅ n→] n→ with vι =

⎛

⎝
ẋι
ẏι
żι

⎞

⎠ − OιPjk
̅̅̅→

∧

⎛

⎝
θ̇xι
θ̇yι

θ̇zι

⎞

⎠ (10) 

Since the gears are integrated as connecting forces, they are not considered in the computation of the modal damping matrix. Thus, 
it is required to add a viscous damping force in parallel with the contact force calculated previously and accounting for squeeze-film 
damping. It can be written as Fv

→
= − αengvn n→ where vn = (v2

→
− v1
→
). n→ is the normal part of the relative velocity of bodies calculated as 

previously and αeng = 100 N.s.m− 1. Once the deflection and the contact forces are computed on each slice for each tooth pair, the global 
forces transmitted from one wheel to the other can be obtained by a simple summation. 

2.5. Gear mesh model deepening 

2.5.1. Off-line-of-action contacts 
The kinematic contact zone is defined as the angular zone where contact exists between two teeth from a same pair without load or 

involute profile modifications. FE results in [5] [27], [28], and analytical results [17] have shown that the limitation of the contact 
force to kinematic contact zone is not enough to estimate the Static Transmission Error (STE) evolution nor to correctly describe the 
dynamics of the gears. The limitation to the kinematic contact zone leads to abrupt variations of the mesh stiffness at the entry and the 
exit of a tooth pair in the contact zone, generating vibrations and IAS variations more important and more impulsive than the real ones. 
In a more realistic manner the contact between two teeth of a same pair is established progressively before entering in the kinematic 
contact zone due to Loaded Transmission Error (LTE). The contact point is then not located on the line of action and the direction of the 
contact force is not given by that. Such contacts are detected by extending the contact research zone upstream and downstream of the 
theoretical limits. The total deflection outside of the kinematic contact zone is calculated as previously but the separation distance Djk 

is subtracted: 

Fig. 3. (a) Separation distance evolution and (b) STE evolution considering classical limitations and off-line-of-action contacts.  
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δjk =
(
d1jk − d2jk − dθz,jk

)
⋅ n→− Djk (11) 

The separation distance is defined as the minimum distance separating the profile of two conjugate teeth when this pair of teeth is 
not loaded and is obviously extended to conjugate slices. For readability purposes, the calculation of the separation distance, the 
contact point location and the contact force orientation are not detailed in this paper. However, the method used is similar to the one 
proposed by Tse & al. [16]. Fig. 3(a) shows the evolution of the separation distance as a function of the angular position expressed as a 
percentage of the driving angle. By definition, the separation distance is zero for an angular position between 0 and 100 % of the 
driving angle. It increases rapidly while moving away from this zone. Fig. 3(b) compares the evolution of STE computed with classical 
limitation and by considering off-line-of-action contacts for a spur gear. Accounting for off-line-of-action contact leads to an increase of 
the angular domain where two teeth of a same pair remain in contact. 

2.5.2. Tip fillets and profile corrections 
Involute profiles are usually corrected in order to decrease the impact of entry or exit of a tooth pair in the contact zone on the 

vibrations and on the IAS. These modifications are important to consider in a dynamic model in order to correctly estimate the vi-
brations and IAS variations generated by the gear mesh. Sun & al. [29] propose a complete model of the profile corrections for the 
determination of Transmission Error (TE). Since the profile modifications such as profile crowning are usually of small scale compared 
to the geometry of the teeth, they are assumed in the present work to be assimilable to total deflection reductions depending on the 
radius of the contact point and not to modify the contact point location nor the orientation of the contact force. A new term δcorr

(
rjk
)

is 
then added to the expression of the total deflection as follows: 

δjk =
(
d1jk − d2jk − dθz,jk

)
⋅ n→− Djk − δcorr

(
rjk
)

(12) 

Tooth tip fillets are more difficult to implement since their characteristic length is not small compared to the tooth dimensions. The 
principal modifications due to the introduction of tip relief are the modification of the contact point location on the tooth profile and 
the modification of the total deflection for a given angular position. The calculation of the total deflection for a contact on the tip fillet 
is similar to the one of a off-line-of-action contact. The presence of tip fillets leads to a reduction of the angular domain where the 
separation distance is zero. Fig. 4 compares STE for a classical model (in blue), a model that considers off-line-of-action contact and tip 
fillets (in red), and a model that considers in addition profile crowning (in black). The geometry of profile modifications implemented 
here is similar to profile correction performed for real aeronautical gears in use by Safran Helicopter Engines. All modifications lead to 
a softening of stiffness variations and are then relevant in a dynamic model aiming at estimating the IAS variation due to gears. 
Simulation shows that profile crowning has a deeper impact on the STE than tip fillets. 

2.6. Damages 

Since the gear model previously described is dedicated to the study of a damaged transmission, spalls and tooth root cracks have 
been implemented. Fig. 5 shows the geometric parameters implemented for each type of damage. The actual value of these parameters 
will be discussed in the second part of this paper. The spall is considered as a local decrease of the total deflection. When the location of 
the contact point is included in the area defining the spall, the total deflection on the corresponding slice is decreased by the depth of 
the damage. Spalls are supposed to be rectangular and are then determined by five parameters corresponding to their radial location 

Fig. 4. STE with and without profile modifications.  
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rspall, their radial width dr, their depth δspall, their axial location zspall and their axial length dz. This model is not perfect as some 
deformation due to an increase of Hertzian deformation on the edges of the spall should be accounted for. The expression of the total 
deflection in case of contact on a spall is given in Eq. (13): 

δjk =
(
d1jk − d2jk − dθz,jk

)
⋅ n→− Djk − δcorr

(
rjk
)
− δspall

(
rjk, zk

)
(13) 

The tooth root crack model is limited to plane cracks. They are defined by a depth law qc depending on the axial location, an 
orientation angle αc and a radial location on the tooth profile rc as presented in Fig. 5. The stiffness of the cracked tooth is calculated by 
considering a dead zone as proposed by Chen & al [12] [13],. The width and the area of section of the tooth involved in the deter-
mination of stiffness is modified by the presence of crack as follows. The border of the dead zone follows a parabolic law and connects 
the tooth tip and the crack tip. 

L(r) =
{

2h(r) if r < rc(z) − q(z)sin(αc(z))
h(r) + hc(r) else (14)  

3. Dynamic analysis of an academic transmission 

3.1. Simulated system and parameters 

The simulation goal is to predict and to understand the dynamic phenomena, their impact on the signal contents and the 

Fig. 5. Implemented damages geometry inspired by [12].  

Fig. 6. Simulated system (a) overall overview and (b) its schematic representation.  
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interactions between the different components of the transmission. The simulated system does not correspond to a real device but the 
geometries of the different components are realistic and based on actual ones. The transmission is composed of three shafts, two 
external cylindrical gear stages, three deep groove ball bearings and three cylindrical roller bearings. Fig. 6 schematizes the simulated 
transmission. All the geometric parameters defining the system and the material properties are summarized in the appendix section. 

The three shafts are identical and discretized into five Timoshenko beam elements leading to six nodes per shaft which are 
numbered from 1 to 18 and marked with red crosses in Fig. 6. Each shaft is maintained by one ball bearing and one cylindrical roller 
bearing. Since the casing is not modeled, the outer rings of all bearings are built in. The ball bearings are identical to each other as well 
as the roller bearings. In order to impose different reduction ratio for both gear stages and different working conditions for the 
bearings, the number of teeth and the helix angle are different for both gear stages. The low-speed gear stage, connecting the low-speed 
shaft (or output shaft) and the intermediate shaft is a spur gear while the high-speed gear stage has a helix angle of twenty degrees 
which connects the input shaft and the intermediate shaft. Hence, barely any axial load is transmitted to the low-speed shaft. A driving 
torque Td and a resistive torque Tr are applied on the high-speed shaft and the low-speed shaft at nodes 13 and 1 respectively. 
Furthermore, viscous damping torques are imposed on the nodes corresponding to the bearing inner rings. The damping coefficients 
are the same for each bearing and are chosen so that the global efficiency of the transmission is set to 90 %, including all the previous 
losses introduced in gears. The resulting dissipation torque introduced for each bearing is proportional to the shaft rotating speed Tr 
= − αbea.ω with 

αbea = 0.015 N.m.s.rad− 1. 

3.2. IAS as a monitoring tool 

In the present work, the IAS has been chosen as the monitoring signal because of its advantages. First, the IAS measurement implies 
a natural angular sampling which is convenient for the monitoring of angular periodic components such as gears or bearings. Second, 
the IAS carries enough information to the diagnostics the transmission because bearings and gears generate angle-varying torques 
which lead to IAS variations. When damaged, the signature of these components on the IAS changes in form and in magnitude allowing 
one to determine the health state of each component by using only the information contained in the IAS signal. In the following, the IAS 
variation will always be plot as a function of low-speed shaft angular position and not as a function of time. In the same way, in order to 
highlight gear and bearing behavior, the spectra of the IAS will be plotted using angular frequencies defined as the inverse of the 
angular length of periods representative of these cyclic behaviors. Angular frequencies are expressed as the number of events per 
revolution (ev/rev) or as inverse of the angular length in rev-1 instead of classical frequencies (Hz or s-1). In this paper, these angular 
frequencies are defined in reference to the low speed shaft. 

IAS is generally used as an additional monitoring signal and measured using an angular encoder coupled with a high frequency 
clock. It may be then estimated using the “Elapse Time” method by measuring the time between successive pulses on encoder signals. 
However, this method introduces biases, the most important of which is the quantification bias [30]. An approximation of the 
theoretical noise generated during measurement is given by André & al. [31]. The level of this noise is higher at high speed because the 
time separating two pulses of the angular encoder is shorter and the number of clock pulses is smaller which leads to higher quan-
tification error. However, for a system such as the one introduced here, this phenomenon represents no limitation. Fig. 7 exhibits in the 
angular and frequency domains the real IAS, which is the IAS signal obtained by numerical simulation, and the measured IAS, which 
corresponds to the IAS signal as it would be observable using sensor on an actual system. This measurement simulation has been 
performed using a 1000 pulses per revolution angular encoder and a 80 MHz clock. The quantification ceiling has been plotted in black 
in Fig. 7 and it corresponds to the theoretical limitation of the noise generated by the measurement method. The impact of the 
measurement on the IAS in angular domain is important and the quantification error can be easily observed. However, its impact on the 

Fig. 7. comparison of IAS and its simulated measurement in (a) angular domain and (b) its Power Spectral Density.  
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spectrum remains low as the level of noise is clearly lower than that of the spectral components of interest. 
All the simulated signals are obtained for a very long duration in the angular domain in order to gain a frequency discretization 

allowing a clear separation of all the cyclic contents of all the mechanical components. 
In the following sections two different operating conditions are used to highlight the benefits of non-stationary condition, IAS 

measurements as monitoring signal and angular analyses. The load is chosen to reach the operating conditions in speed and the two 
resulting conditions are described in Table 1. 

3.3. Bearing – gear interactions 

The dissipative torque generated by rolling resistance inside the bearings depends on the load applied on them. In the simulated 
system, the only axial and radial loads on the shafts are generated by the gears since the only external forces are the driving and the 
resistive torques and no unbalance is considered. Consequently, the IAS variations due to bearings can be schematically seen as the 
product of the mesh forces by a function of the bearing properties and the angular position [19]. Hence, in addition to the characteristic 
frequencies of the bearings and their harmonics, numerous modulations by these frequencies appear as sidebands around the gear 
frequencies. As an example, the sidebands spaced at the low-speed shaft ball bearing frequency and its harmonics around the 
high-speed gear stage frequency are marked in Fig. 8. The contributing mechanical components in the spectra are defined by different 
symbols and colors depending on the figure, their architecture location being based on the schematic representation in Fig. 6b. These 
can only be observed with a model that ensures strong coupling between bearing and gear components in non-stationary operating 
conditions (NSC). Classical gear simulations indeed introduce simplified bearing models such as Palmgren’s [24] which does not 
introduce any angular excitation. Moreover, usual ball bearing dynamic simulations use constant mesh stiffnesses for gears. Even if this 
kind of focused simulations are useful in order to study the behavior of one component, it does not enable the understanding of their 
interactions, particularly as modulations. 

As shown in Fig. 8, the level of the modulation sidebands is similar to, or even higher than the additive harmonics of the bearing 
Ball Pass Frequency on Outer ring (BPFO) and its harmonics. Thus, they could be easier to detect and still carry as much information as 
the BPFO. 

The study of these modulations can be complementary to the study of fundamental frequencies in health monitoring. The presence 
of these sidebands justifies the use of classical demodulation methods but encourages one to focus on the bands around a gear fre-
quency instead of some high frequency resonance when analyzing IAS signals. 

3.4. Non-stationary operating conditions and angular approach 

The main interest with respect to non-stationary operating conditions is to easily separate the phenomena related to the modal 
response of the system, which are time-periodic, from the phenomena generated by gears and bearings, the behavior of which is angle- 
periodic or cyclic. The global system dynamics indeed depends on the rotating velocity and of the interactions between its eigenmodes 
and the exciting frequencies. Fig. 9 shows an angular spectrogram of the low-speed shaft IAS obtained for an increasing speed. In this 
figure, the frequencies of several eigenmodes of interest have been plotted in black curves while the horizontal lines correspond to the 
bearing and gear frequencies. Curves of eigenmodes are curving because the angular spectrogram (or Short Angle Fourier Transform) is 
performed with a IAS signal sampled in the angle domain. Note that the vertical axis is oriented with increasing orders downward in 
order to keep the global shape of the speed operating condition. 

It is clear that the system dynamic behavior changes depending on the angular position of the shaft and therefore on the angular 
velocity of shafts. Here again, IAS is another dynamic response of the transmission and is analyzed with classical signal processing tools 
like FFT. IAS offers another transfer path from excitation to response which is complementary to conventional vibrations. 

The magnitude of angle-periodic phenomena increases when their frequencies correspond to those of an eigenmode or a group of 
eigenmodes. The modulation sidebands spaced at ball bearing frequencies around the gear mesh frequencies appear locally and form 
“hot” zones in the figure. Health monitoring in steady conditions is hence difficult as it requires a good knowledge of the system 
behavior at the concerned speed and of the interactions existing between angle and time-periodic phenomena. In the same figure, it can 
be observed that the resonance phenomena endure after the initial correspondence of cyclic excitations and eigenmodes. Indeed, the 
energy dissipation through damping is not instantaneous. A simulation in which the angular speed changes rapidly compared to the 
dynamics of the system leads to results that are more difficult to interpret. 

An angular approach and an Angle Fourier Transform decrease the magnitude of time dependent phenomena in the spectrum by 
spreading out their energy over several angular or cyclic frequencies. Conversely, the angular-periodic parts of the signal, even with 
small magnitude, are highlighted by the integration effect of the Fourier Transform. Long datasets are then more suitable as they 
ensure a better mitigation of time related effects. Moreover, the rotating speed variation has to be wide enough to spread out the energy 
of time related frequencies over wide angular frequency ranges. Finally, the angular range of exposure to each rotational speed has to 
be as homogenous as possible in order to avoid energy accumulation on one specific angular frequency and the appearance of artifacts 

Table 1 
speed profiles of stationary and non-stationary conditions.  

Almost Stationary Conditions (ASC) [360 – 430 rpm / 20 rev] 
Non-Stationary Conditions (NSC) [200 – 900 rpm / 300 rev]  
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in the spectrum. Fig. 10 and Fig. 11 show the low-frequency portion of the low-speed shaft IAS spectrum obtained for two different 
simulations of a healthy system. In the first one, the rotating speed ramps up from 360 to 430 rpm during 20 revolutions while in the 
second one, it moves from 200 to 900 rpm during 300 revolutions. On these figures, the frequencies associated to the low-speed shaft 
ball bearing and the high-speed gear stage are highlighted with color markers. For clarity reasons, only the first harmonics and the first 
modulation sidebands are marked. 

For the first simulation, the angular spectrum clearly contains time-dependent artifacts due to the small range of angular speed 
used. Two kinds of behavior are visible in Fig. 10 and are delimited by black dotted lines. The first one is associated to isolated ei-
genmodes and leads to enlarged peaks in the spectrum. An example can be observed in the range [16-19] events per revolution. The 
width of the peak corresponds approximately to 20 % of its frequency which is explained by the variation of 20 % of the rotational 
speed. This peak has no rectangular shape because the rotational speed variation is not linear in angle in this simulation but has a 
parabolic shape and the exposure to different speeds is then not homogenous. The second kind of behavior occurs when several 

Fig. 8. Modulations by the characteristic frequencies of low-speed shaft ball bearing of the low-speed stage gear mesh frequency.  

Fig. 9. Low-speed shaft IAS spectrogram for an increasing speed and frequencies of eigenmodes 
[200 – 900 rpm / 300 rev]. 
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Fig. 10. Angular spectrum of low-speed shaft IAS for a quick and low increase of rotating speed 
[800–1000 rpm / 20 rev]. 

Fig. 11. Angular spectrum of low-speed shaft IAS for a slow and long increase of rotating speed 
[200 – 900 rpm / 300 rev]. 
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eigenmodes have similar frequencies and create a wide range of frequencies in which the system response is magnified. This can be 
observed in the range [35–65] events per revolution. It accentuates the modulation sidebands spaced at ball bearing frequencies 
around the high-speed gear stage frequency in this zone while these modulations are difficult to detect outside of it. For this simulation, 
the characteristic frequency of low-speed shaft ball bearing and its harmonics are difficult to detect and partially hidden in the base 
noise level of the spectrum. 

For the second simulation with longer dataset and wider range of angular speed variation including the previous range of speed 
variation, the time related components are eliminated from the spectrum. The same dotted lines as in the previous figure have been 
drawn and it can be observed that the phenomena described in Fig. 10 such as the 16–19 events per revolution resonance or the 
spectrum foot shape are not visible in Fig. 11. This leads to balanced modulations spaced at the BPFO of low-speed shaft ball bearing 
around the gear mesh fundamental since they are no longer affected by time related phenomena during the whole simulation. This 
should obviously facilitate the implementation of demodulation methods in angular domain analysis. Consequently, long simulations 
under non-stationary conditions are best suited to gear and bearing monitoring since they allow the focus on their behavior by 
removing the effect of the structure dynamic response. In this way they can be seen as a simple alternative to complex and expensive 
deconvolution methods. Furthermore, longer datasets allow higher frequency precision and a better separation of the various phe-
nomena in the spectrum. However, they require higher computation time for simulation but they do not suffer from irregular sampling 
in the angular domain. 

During real experiments, it could be profitable to voluntarily impose stationary working conditions and choose the rotating speed 
so that one or several eigenmodes magnify some chosen frequencies in order to make the detection easier. Nevertheless, this requires a 
deep knowledge of the system behavior under faulty and healthy conditions at the selected speed in order to ensure a correct pro-
cessing of the collected data. Processing data under non-stationary conditions offers the possibility to avoid such signal perturbations 
and requires only the knowledge of the transmission kinematics. 

3.5. Health monitoring of a power transmission 

3.5.1. Detection of distant components 
One of the main benefits of the use of IAS as a monitoring tool is the possibility to monitor a whole transmission using one single 

sensor. A component generating a perturbing torque on one shaft indeed also affects the IAS of the other shafts through gear trans-
missions even in healthy condition [1,19,21,22]. As shown in Fig. 12 it is possible to detect the signature of the second gear stage on the 
low-speed shaft. On the same spectrum, the signature of the ball and roller bearings of the high-speed shaft are also visible. They 
appear as harmonics of the BPFOs and as a modulation by them of the gear mesh frequencies. The presence of damage on one of these 
distant components would be detectable through an increase of its signature in the spectrum. The detection is possible in both ways. 
The signature of ball and roller bearings of the low-speed shaft being also visible on the high-speed shaft IAS. 

Fig. 12. Signatures of high-speed shaft components on the low-speed shaft 
[200 – 900 rpm / 300 rev]. 
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3.5.2. Bearing damage 
When it comes to bearings, the damages often take the form of a spall. The distribution of the load over the rolling elements is 

affected each time one of them passes over the spalled area. This modifies the resistive torque due to rolling resistance in the bearing 
and then creates a small perturbation of the IAS through torque fluctuations. In order to study the impact of this kind of damage on the 
global dynamic of the system, a spall is implemented on the outer race of the ball bearing of the low-speed shaft. The spalled area is 
located in the direction of the radial load since it is the place where the contacting forces and the contact pressures are the highest ones 
and then the place where real damage are most likely to appear. The spall consists of a removal of material of 100 μm in depth, which is 
similar to typical real spall depth, as shown in Fig. 13. Its length corresponds to the third of the angular space separating to consecutive 
balls and it covers one quarter of the race in width. Hence, the implemented spall is a just propagated one since the objective is to show 
that this kind of damages are detectable using IAS even briefly after it initiates. 

Fig. 14 compares the spectra obtained for healthy and damaged bearings. The BPFO and its harmonics have been marked with dots 
and their sidebands from modulation of the gear mesh have been marked with squares. The number of harmonics and their magnitude 
increase in the presence of a fault which makes it easily detectable. However, the magnitude of the sidebands spaced at the bearing 
frequencies around the high-speed gear stage frequency, marked with squares, decrease. 

From these first and initial results some indicators should be proposed as, for instance, the difference between increases in the 
magnitude of harmonics and decrease in the magnitude of modulation sidebands. It is beyond the scope of this study to investigate the 
robustness of these indicators, especially if one takes advantage of the non-stationary conditions that were not used in this preliminary 
example. 

3.5.3. Gear mesh damage 
As mentioned previously, the implemented gear damages can either be tooth root cracks or spalls. The first kind of damages leads to 

a decrease of the affected tooth stiffness while the second one leads to a decrease of the total deflection of the tooth. In both cases, the 
damage generates a perturbation of IAS when the damaged tooth is under load. The characteristic frequency of both damages is then 
the same since such a perturbation appends once per revolution. One simulation has been carried out for each kind of damage. They 
have both been implemented on the low-speed shaft wheel, the angle helix of which is zero. The implemented crack is uniform along 
the tooth width and its depth, its location and its orientation do not vary with the axial position on the tooth flank. This choice is 
justified by the absence of phenomenon leading to the wear of one particular side of the teeth rather than the other in the modeled 
system. The crack depth is equal to roughly 15 % of the tooth thickness which corresponds to a substantial damage (normal crack 
condition). It is located at the tooth root where the stresses are known to be the most important. 

Coming to the gear spall description, the spall covers half of the width of the tooth and is located at its center in the axial direction. 
It is centered on the pitch radius and cover one third of the tooth height. This has been chosen since this area correspond to the position 
of contact point where only one tooth pair are in contact and when the contact forces are the highest. The depth of the spall is fixed at 
100 μm which corresponds to real spall typical depth. Fig. 15 presents the geometries of the implemented damages. 

Fig. 16 compares the IAS spectra of low-speed shaft obtained for healthy and cracked gears. For the damaged one, a perturbation at 
one event per revolution appears as well as harmonics at every order up to 40 events per revolution. The corresponding frequencies 
have been marked with red dots in the figure. It is then easy to detect the presence of damage on the gear by using the IAS spectra. The 
other components of the spectrum remain perfectly unchanged. The presence of fault on the low-speed shaft wheel seems then not to 
interfere with the behavior of the bearing or the low-speed gear stage. 

A second simulation has been performed with a deeper crack propagating on 25 % of the tooth thickness (deep crack condition). 

Fig. 13. Spall geometry.  
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This has proven that the gravity of the damage plays a role in the IAS perturbation. Fig. 17 shows that the magnitude of the frequency 
components at integer orders increase with the depth of the crack. Considering the spall damage, the observations are the same with a 
noticeable increase of integer shaft order frequencies and they are not detailed in a dedicated figure. Hence, it is possible to detect the 
presence of damage and to estimate its gravity by monitoring the presence and the magnitude of frequency components at integer 
orders. 

Fig. 18 compares IAS spectra for spalled and cracked gears. In both cases, the peaks associated to the damage are marked with dots. 
The IAS perturbation introduced in both cases is very similar which makes it difficult to distinguish the type of damage when it comes 
to health monitoring. The only observable difference on the spectrum is that the peaks associated to the crack sink a bit faster into the 
base noise level of the spectrum for the highest harmonics. This is to be expected since the duration of the effect of the crack is of the 
same order as the tooth mesh period, whereas it is shorter for the (modelled) spall as it can be seen in Fig. 20. 

Fig. 14. Comparison of low-speed shaft IAS spectra for a healthy (blue) and a damaged (red) ball bearing [360 – 430 rpm / 20 rev]. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Geometry of implemented damages.  

N. THIBAULT et al.                                                                                                                                                                                                   



Mechanism and Machine Theory 201 (2024) 105733

15

In order to build a more efficient indicator that better separates the two origins of gear failure, it is possible to use signal processing 
tools such as cepstrum, estimated from the angular spectrum. 

In Fig. 19, it is clearly proved that the spalled gear introduces a one revolution periodic phenomenon with higher energy in IAS 
signal. In the first graph, healthy condition and normal cracked gears are compared in order to highlight the emergence of these one- 
revolution rahmonics. In the second graph, the comparison of spalled and deep cracked conditions clearly shows that the spall default 
is proved to be more energetic on these rahmonics. 

Fig. 16. Low-speed shaft IAS spectra for healthy and cracked gears [360 – 430 rpm / 20 rev].  

Fig. 17. Low-speed shaft IAS spectra for two crack depths [360 – 430 rpm / 20 rev].  
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In order to check this fact Fig. 20 shows the low-speed shaft IAS difference between a healthy gear and a cracked one (red curve) 
and the IAS difference between a healthy and a spalled gear (blue curve) over more than one revolution of the low-speed shaft. The 
magnitude of these differences is small but, once per revolution, a disruption appears that correspond to the establishment of the 
contact on the damaged tooth and, a bit later, to the loss of contact on the previous tooth pair. As well as for a crack, an important 
difference exists at every entry in contact of the spalled tooth. However, the second impulse linked to the loss of contact on the previous 
tooth pair has a higher magnitude for a spall damage. 

In a real system, phenomena such as unbalance can lead to excitation at the same frequencies as tooth damages and make the 
diagnosis even harder. 

4. Conclusion 

This paper proposes a model of a power transmission suitable for the study of the dynamic behavior of gears and bearings. The main 
goals are to correctly describe and analyze the interactions existing between these two kinds of components and to characterize the 
influence of a damage on the global dynamics of the system including modal (structural) behavior. For these purposes, a classical 
model of shafts using Timoshenko beam elements is implemented. Particular attention was paid to the modeling of the gears and 
bearings as connecting forces, allowing strong couplings between these elements through torque perturbations. The bearing model has 
been detailed in a previous paper and links the contact forces to the resistive torque in order to introduce a realistic IAS perturbation. It 
also considers damages like spalls. The gear model is based on the discretization in thin slices of the teeth and a classical stiffness 
estimation with a precise estimation of connecting forces between the two wheels. The rigid body motions in rotation are kept for all 
shaft rotation and no particular assumption on speed is made as rotating speeds are considered as outputs of the model. It is refined by 
taking account for tip relief, profile corrections and off-line-of-action contacts. Finally, two kinds of gear damage are implemented: a 
spall and a tooth root crack. 

Several simulations have been carried out. The comparison of the results obtained for different operating conditions has high-
lighted the superiority of non-stationary regimes and angular approach when it comes to bearing and gear monitoring. The capability 
of IAS to monitor the whole transmission using one single sensor has also been theoretically demonstrated, showing the relevance of 
this tool for rotating machinery monitoring. The simulations integrate the modeling of the measurement principle to better demon-
strate the sensitivity of IAS. The use of non-stationary conditions and angular approaches have been proven to be relevant for the 
monitoring of bearings and gears. They can be seen as substitute for classical signal processing methods such as the deconvolution. 

Comparisons between the results of healthy and damaged systems showed that the detection of failure isn’t too difficult when 
monitoring the right frequencies and the evolution of the magnitude in the IAS spectrum. However, the precise diagnosis of gears is 
arduous since every tooth damage will induce a cyclic excitation located at once per revolution and could be masked by other phe-
nomena such as unbalance. One solution could be the use of the IAS of a distant shaft on which the signature of the gear would not 
correspond to an integer order. The use of signal processing tools such as Cepstrum could also be profitable and would require the 

Fig. 18. Low-speed shaft IAS spectra for spalled and cracked gears [360 – 430 rpm / 20 rev].  
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mastery of these tools and angular approaches. 
The spectra introduced in this paper are complex but do not include all the characteristic frequencies of real systems. For instance, 

the only forces applied on the bearings have a fixed direction so that only the BPFO appears in the IAS spectrum. In the presence of 
rotating forces or inner race damages, their BPFI would also be visible. Moreover, the model proposed here is limited to shafts, bearings 
and gears. One extension of this work could be the introduction of the wheel flexibility and of the casing [32]. In the same way, a more 
precise model of the power source (electrical motor) and the load would generate new spectral components in the angular spectrum 
[33]. 

One logical and natural extension of this work would be the establishment of numerical indicators allowing a fast and easy 
diagnosis of a rotating assembly. All these models and simulations are claimed to be realistic signal generators for the investigation of 
signal processing methods and for the validation of behavior monitoring indicators, exploring non-stationary operating conditions. It 

Fig. 19. Low-speed shaft IAS cepstrum for (a) healthy and normal cracked gears, and (b) spalled and deep cracked gears [360 – 430 rpm / 20 rev].  
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could also be profitable to compare the numerical result obtained through simulation to experimental ones in order to validate the 
assumptions made in the model and to analyze the influence of external sources of noise on the frequencies of interest. 
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Fig. 20. Low-speed shaft IAS difference between healthy and cracked gears [360 – 430 rpm / 20 rev].  
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Appendix 1. Nomenclature  

M General mass matrix of the dynamical system 
C General damping matrix of the dynamical system 
K General stiffness matrix of the dynamical system 
X State vector containing all the degrees of freedom 
Fext External load vector 
Fg Restoring force vector in the gear stages 
Fb Restoring force vector in the bearings 
(
xi,yi, zi,θxi ,θyi,θzi

)
Translational and rotational positions of the center of the wheel i 

E Young modulus 
G Shear modulus 
ν Poisson coefficient 
I Moment of inertia of tooth 
A Area of section of tooth 
L∗, M∗, P∗, Q∗ Coefficients from polynomial regressions for fillet-foundation calculation 
Kf Fillet-foundation stiffness 
Kb Tooth bending stiffness 
Kf Tooth shear stiffness 
Kf Tooth contact stiffness 
Ktot Total tooth stiffness 
δc Tooth contact deflection 
Fjk Load applied on slice k of tooth j 
δjk Total tooth deflection of slice k of tooth j 
vt
→ Tangential component of the relative speed of the bodies 
v1
→
, v2
→ Speed of body 1 or 2 

n→, t→ Normal and tangential direction 

d1jk
̅̅→

, d2jk
̅̅→

, dθz1jk
̅̅̅→ Displacement in translation and rotation of wheel 1 and 2 

Djk Separation distance 
δcorr Tip fillet or tooth profile corrections 
δspall Spall depth 
zspall , rspall, dz, dr Geometric spall parameters: location on tooth profile, width and height 
αc, qc, rc Geometric crack parameters: orientation angle, depth law, radial location  

Tables 1-4 

Appendix 2. Model parameters 

This appendix gathers all the material and geometric parameter used in the transmission model given in the second part of the 
paper.  

Table 1 
Shaft material and geometric parameters.  

Parameter Value 

Shaft length 500 mm 
Internal diameter 45 mm 
External diameter 60 mm 
Young’s modulus 210 GPa 
Poisson’s coefficient 0.3 
Density 7800 kg/m3   

Table 2 
Gear material and geometric parameters Gears are without profile modification, center distance 
correction or other gear optimization.  

Parameter low speed gear stage high speed gear stage 

Number of teeth 55/42 53/31 
Helix angle 0◦ 20◦

Addendum radius 85.5 / 66 mm 87.6 / 52.5 mm 
Dedendum radius 76.8 / 58.5 mm 80 / 45 mm 
Teeth width 25 mm 
Normal pressure angle 20◦

Normal modulus 3 mm 
Tip fillet radius 0.5 mm 
Young’s modulus 202 GPa 
Poisson’s coefficient 0.255 

(continued on next page) 
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Table 2 (continued ) 

Parameter low speed gear stage high speed gear stage 

Density 7850 kg/m3 

Artificial friction coefficient 0.03 
Squeeze-film damping 100 N.s.m-1   

Table 3 
Ball bearing material and geometric parameters.  

Parameter Value 

Number of balls 11 
Pitch diameter 80 mm 
Ball diameter 12.7 mm 
Relative curvature IR 0.51 
Relative curvature OR 0.5175 
Total radial clearance 45 μm 
Young’s modulus 179 GPa 
Poisson’s coefficient 0.3 
Density 7870 kg/m3 
Torque dissipation coefficient 0.015 N.m.s.rad-1   

Table 4 
Roller bearing material and geometric parameters.  

Parameter Value 

Number of rollers 18 
Pitch diameter 72.5 mm 
Roller diameter 10 mm 
total roller length 10 mm 
Roller curvature radius 350 mm 
Roller fillet radius 1.1 mm 
Total radial clearance 40 μm 
Total axial clearance 20 μm 
Shouldering presence BE only 
Young’s modulus 179 GPa 
Poisson’s coefficient 0.3 
Density 7870 kg/m3 

Torque dissipation coefficient 0.015 N.m.s.rad-1  

Appendix 3. Fillet foundation stiffness 

The fillet foundation stiffness is estimated with an analytical expression from Sainsot et al. [11] and coefficients L∗, M∗, P∗, Q∗ are 
obtained using polynomial regression based on FE results. 

1
Kf

=
cos2

(
beff

)

Eδz

[

L∗

(
d

Sroot

)2

+M∗ d
Sroot

+P∗
(
1+Q∗tan2( beff

))
]

(3.1) 

The expression of each coefficient X∗ is based on a common polynomial expression (3.2): 

X∗ =
AX

θ2
f
+ BX

(
Rf

Ra

)2

+ CX
Rf

θf Ra
+

DX

θf
+ EX

Rf

Ra
+ FX X∗ ∈ {L∗;M∗;P∗;Q∗} (3.2)  

Where the coefficients AX, BX, CX, DX, EX and FX are given in the following Table 5.  

Table 5 
Calculation coefficients for polynomial expression L∗, M∗, P∗, Q∗ [11].   

AX BX CX DX EX FX 

L∗ − 5.574 10–5 − 1.9986 10–3 − 2.3015 10–4 4.7702 10–3 0.0271 6.8045 
M∗ 60.111 10–5 28.100 10–3 − 83.431 10–4 − 9.9256 10–3 0.1624 0.9086 
P∗ − 50.952 10–5 185.50 10–3 0.0538 10–4 53.3 10–3 0.2895 0.9236 
Q∗ − 6.2042 10–5 9.0889 10–3 − 4.0964 10–4 7.8297 10–3 − 0.1472 0.6904  
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[6] J. Teixeira Alves, «Définition Analytique Des Surfaces De Denture Et Comportement Sous Charge Des Engrenages Spiro-Coniques», INSA Lyon, 2012. 
[7] C. Weber, The Deflection of Loaded Gears and the Effects On Their Load Carrying Capacity, Department of Scientific and Industrial Research, 1949. 
[8] C. Weber et, K. Banaschek, Formänderung Und Profilrücknahme bei Gerad-und Schrägverzahnten, F. Vieweg und Sohn, Germany, 1953. 
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[31] H. André, «Precision of the IAS monitoring system based on the elapsed time method in the spectral domain», Mech. Syst. Signal. Process. (2013). 
[32] B. Guilbert, «Hybrid Modular Models for the Dynamic Study of High-Speed Thin-Rimmed Webbed Gears», INSA, Lyon, France, 2017. 
[33] X. Li, A. Bourdon, D. Remond, et S. Kœchlin, «Angular-based modeling of unbalanced magnetic pull for analyzing the dynamical behavior of a 3-phase 

introduction motor», J. Sound. Vib. 494 (2021). 

N. THIBAULT et al.                                                                                                                                                                                                   

https://doi.org/10.1115/DETC2011-47470
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0002
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0002
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0003
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0004
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0005
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0005
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0006
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0007
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0008
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0009
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0010
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0011
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0011
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0012
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0012
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0013
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0013
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0014
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0014
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0015
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0015
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0017
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0019
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0019
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0020
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0021
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0021
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0022
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0024
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0025
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0026
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0027
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0027
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0029
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0029
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0031
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0032
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0033
http://refhub.elsevier.com/S0094-114X(24)00160-5/sbref0033

	Dynamic models for power transmission monitoring in non-stationary conditions based on IAS signals
	1 Introduction
	2 Rotating assembly model introduction
	2.1 Modeling principle
	2.2 Mesh deflection
	2.3 Contact force
	2.4 Energy dissipation
	2.5 Gear mesh model deepening
	2.5.1 Off-line-of-action contacts
	2.5.2 Tip fillets and profile corrections

	2.6 Damages

	3 Dynamic analysis of an academic transmission
	3.1 Simulated system and parameters
	3.2 IAS as a monitoring tool
	3.3 Bearing – gear interactions
	3.4 Non-stationary operating conditions and angular approach
	3.5 Health monitoring of a power transmission
	3.5.1 Detection of distant components
	3.5.2 Bearing damage
	3.5.3 Gear mesh damage


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix 1 Nomenclature
	Appendix 2 Model parameters
	Appendix 3 Fillet foundation stiffness
	References


