Modeling shocks in the WNM

B. Godard, F. Boulanger, A. Lehmann, G. Pineau des Forêts

Thermal instability and turbulence

Bellomi et al. (2020)

Goals

- physics of interstellar shocks in the context of phase transition Warm Neutral Medium (WNM) \rightarrow Cold Neutral Medium (CNM)
- parametric study : magnetic field, velocity, density
- study out-of-equilibrium effect, recombination scales
- observable quantities ?

Faraday rotation, H_{α} emission Bracco et al. (2020)

Numerical method

Paris-Durham shock code

- steady-state shocks
- 1D plane parallel geometry
- ultraviolet radiative transfer
- treatments of microphysical processes dust, chemistry, pumping

standard model

- J-type shock
- V_S = 50 km s⁻¹
- $n_H = 0.3 \text{ cm}^{-3}$ Wolfire et al. (2003)
- G₀ = 1 Mathis et al. (1983)
- $B_0 = 1 \ \mu G$ Frick et al. (2001)

grid of models

- n_H = 0.05 1 cm⁻³
- B₀ = 0.1 10 µG
- V_S = 10 100 km s⁻¹

Trajectories of WNM shocks

Trajectories of WNM shocks

Trajectories of WNM shocks

Shock profiles

Integration scale L_{φ}

Integration scale L_{φ}

Faraday rotation

H_{α} emission

$$\implies \frac{I(H_{\alpha})}{\frac{1}{2}\rho V_S^3} \sim 3 \times 10^{-2} \qquad \text{Lehmann et al. (2020)}$$

Conclusions

- J-type shocks in WNM induce phase transition 1D model $\rightarrow V_S \ge 40 \,\mathrm{km \, s^{-1}} \left(\frac{B^0}{1\mu \mathrm{G}}\right) \left(\frac{n_{\mathrm{H}}^0}{0.3 \,\mathrm{cm^{-3}}}\right)^{-3/2}$ postshock is supported by magnetic pressure shock trajectory almost analytical
- J-type shocks in the WNM produce Faraday rotation
 - ~ 0.1 1 rad m^-2 over distances ~ 0.1 to 10 pc
- J-type shocks in the WNM produce H_a emission reprocessing of mechanical energy $\frac{I(H_{\alpha})}{\frac{1}{2}\rho V_{c}^{3}} \sim 3 \times 10^{-2}$

On-going work

- exploration of C-, CJ, and C*-type shocks impact on phase transition impact on observables
- geometric model for the computation of φ caustics, inclination along the line of sight
- out-of-equilibrium initial conditions
 e.g. electronic fraction
- identification of other tracers
 FUV, NUV lines & continuum