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Abstract
For an educational purpose we develop the Python package AutoFreeFem which generates all ingre-
dients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the
expressions for use in LATEX. As an input, the objective function and the weak form of the problem
have to be specified only once. This ensures consistency between the simulation code and its docu-
mentation. In particular, AutoFreeFem provides the linearization of the state equation, the adjoint
problem, the shape derivative, as well as a basic implementation of the level-set based mesh evolution
method for shape optimization. For the computation of shape derivatives we utilize the mathemati-
cal Lagrangian approach for differentiating PDE-constrained shape functions. Differentiation is done
symbolically using SymPy. In numerical experiments we verify the accuracy of the computed deriva-
tives. Finally, we showcase the capabilities of AutoFreeFem by considering shape optimization of a
non-linear diffusion problem, linear and non-linear elasticity problems, a thermo-elasticity problem
and a fluid-structure interaction problem.

Keywords: code generation, FreeFEM++, shape derivative, shape optimization

1 Introduction
In order to solve challenging engineering prob-
lems, numerical simulation along with shape and
topology optimization tools have become an inte-
gral part of the design process. Since the com-
putation of linearizations and error-prone shape
derivatives for non-linear multi-physics problems
are involved, we have developed an educational
tool for their automatic code generation. The

developed tool outputs always two representa-
tions of each expression: one representation for
producing a LATEX documentation and one rep-
resentation for writing a simulation and shape
optimization script in FreeFEM++.

1.1 Principles and used software
AutoFreeFem is an open-source Python
package and can be downloaded at
https://gitlab.tugraz.at/autofreefem/autofreefem.
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All example files, discussed in this paper, can be
found on this repository. It builds on the symbolic
calculation capabilities of the open-source Python
library SymPy ? (see Section 4.1 for details). For
the numerical simulation and shape/topology
optimization, the popular open-source soft-
ware FreeFEM++ ? is utilized. FreeFEM++ is
designed for the efficient numerical solution of
partial differential equations using the finite ele-
ment method in both two and three dimensions.
For the documentation of the problem (input
equations, linearization, adjoint problem, shape
derivative), the typesetting system LATEX is used.
Thus, the main philosophy of AutoFreeFem is
to provide an implementation in a FreeFEM++
script and a documentation in LATEX from a
single source and therefore allows the fast and
reliable development of solutions to complicated
problems. In order to illustrate this principle, we
consider the following elementary example.

Example: divergence of a vector field
Consider the divergence of a vector field which is
denoted by the symbol u. Table 1 gives the cor-
responding outputs for LATEX and FreeFEM++,
respectively. In order to distinguish a vector field
from a scalar field, it is printed in bold font
in LATEX. On the other hand in FreeFEM++,
we need to define components, i.e.ux, uy for a
2d problem and ux, uy, uz in 3d. AutoFreeFem
works with a versatile unified input that dynam-
ically adapts to various use cases. In the current
example, the input takes the form of

div(VectorField(’u’, ...)

Here, the class div (see Section 4.4) implements
the divergence, whereas the class VectorField is
used to define the vector field u. It is worth noting
that the vector field, although not fully depicted
here for simplicity, requires five input arguments,
which give information on the domain of definition
and the boundary conditions (see Section 4.2 for
details).

Automatic simulation and shape
optimization in FreeFEM++
The main class of AutoFreeFem is called
Lagrangian (see Section 4.2). This class has
in particular the two methods ’setup simulation’

and ’setup optimization’. When the first method
is called, AutoFreeFem first checks if the prob-
lem is linear or non-linear (see Section 3.1). In
case of a linear problem, the output is a sim-
ple FreeFEM++ script for the simulation of the
problem. In case of a non-linear problem, the lin-
earization is computed and used in a Newton’s
method implemented in the output FreeFEM++
script. For simulations the input of the Lagrangian
are the primary field variables, the corresponding
test functions and a variational formulation of the
problem (see Section 2.1). For shape optimization
problems the method ’setup optimization’ has to
be called. Then a linearization in case of a non-
linear problem, an adjoint problem, and a shape
derivative are computed. Furthermore, a corre-
sponding FreeFEM++ script is generated (see e.g.
Section 2.2). For the numerical solution of shape
optimization problems in FreeFEM++ we employ
the level-set based mesh evolution method ?. To
this end we use the aditional open-source libraries
mmg1 ?, mshdist2 ?, and advection3.

1.2 Relation to the literature
The automatic generation of simulation code and
the automatic computation of shape derivatives
have been considered in some previous works. As
part of the FEniCS Project ?, the Unified Form
Language (UFL) offers a flexible interface for
choosing finite element spaces and defining expres-
sions for weak forms in a notation close to mathe-
matical notation ?. This allows also for the auto-
matic computation of derivatives and therefore
the easy treatment of non-linear problems. Based
on UFL, the open-source library FEMorph is an
automatic shape differentiation toolbox, which
can compute first- and second-order shape deriva-
tives ?. It refactors UFL expressions and applies
shape calculus differentiation rules recursively. In
?, the UFL is extended to shape differentiation
using a different strategy. The approach in ? is
based on pullbacks and standard Gateaux deriva-
tives. Furthermore, automated shape derivatives
for transient PDEs in FEniCS and Firedrake ?
are presented in ?. This has been further devel-
oped in the software Fireshape ?. Inspired by the

1http://www.mmgtools.org/
2https://github.com/ISCDtoolbox/Mshdist
3https://github.com/ISCDtoolbox/Advection
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LATEX FreeFEM++ (2D) FreeFEM++ (3D)
\operatorname{div} \mathbf{u} dx(ux) + dy(uy) dx(ux) + dy(uy) + dz(uz)
Table 1: LATEX and FreeFEM++ expressions for the divergence of a vector field

FEniCS Project, the finite element software pack-
age NGSolve ? has a flexible interface to Python,
which allows defining expressions for weak forms
in a mathematical notation. In ? it has been
extended for the automatic computation of first-
and second-order shape derivatives based on a
Lagrangian function, pullbacks, and directional
(Gateaux) derivatives. In ?, NGSolve has been
further developed to allow also for the auto-
matic computation of topological derivatives. We
mention also the software cashocs described in
??, which offers automated solutions for shape
optimization and optimal control.

All works mentioned so far are based on
symbolic shape differentiation. In the context of
density based methods for topology optimization,
an automatic differentiation (AD) tool is pre-
sented in ?. There, practically no difference in
the timings of AD and symbolic sensitivities was
found. For further references on AD we refer to
?. In all these references the focus is on the auto-
matic generation of the sensitivity information for
use within the computational optimization rou-
tine. The main novelty of the present work is to
consider, in a pedagogical perspective, the simul-
taneous generation of LATEX expressions for the
documentation and FreeFEM++ expressions for
numerical optimization.

1.3 Outline of the paper
The next section is a brief tutorial which fea-
tures two examples: the simulation of a 3d non-
linear fluid flow and the 2d shape optimization
of a linearly elastic structure. In Section 3 we
present the underlying mathematical theory of
AutoFreeFem. Section 4 details the implementa-
tion. Several numerical examples are discussed in
Section 5. Finally, we draw some conclusions from
the present work in Section 6.

2 Introductory examples
This section provides two hands-on introductory
examples to AutoFreeFem. First, the simulation of

a viscous fluid flowing through a pipe. Second, the
compliance minimization of a cantilever beam.

2.1 3d simulation of a fluid flow
In this example, the fluid flow in a winding
pipe is simulated by solving the incompressible
Navier-Stokes equations with Taylor-Hood finite
elements. In the next subsections, we explain
step by step how to solve this problem using
AutoFreeFem.

2.1.1 Step 1: 3d mesh generation with
FreeFEM++

For the generation of the computational mesh
we use built-in commands of FreeFEM++ in the
file ”meshNS3d.txt” (which can be found on the
AutoFreeFem repository). In particular, we use
border and buildmesh to generate a disk, which is
then extruded to a cylinder by buildlayers. The
final mesh is obtained by a mesh distortion using
the command movemesh. The chosen 3d geome-
try of a winding pipe is depicted in Figure 2a.
Note that more complicated 3d meshes can be cre-
ated with another mesh generator and loaded into
FreeFEM++.

2.1.2 Step 2: Definition of the problem
The input for AutoFreeFem for this example is
given in Listing 1. The first line imports all mod-
ules from the package AutoFreeFem. In the lines
4-6 the physical constants ρ (density) and µ (vis-
cosity), as well as a penalty parameter γ are
defined using the class Constant. Next, in line
10, we use the class VectorField to define the
fluid velocity v, which is discretized by finite ele-
ments of polynomial degree 2 (P2) on the domain
Th. Furthermore, here Dirichlet boundary condi-
tions (prescribed velocities) on boundaries with
labels 1, 3 and 4 are also defined. In order to define
the corresponding vector-valued inhomogeneous
boundary data, we use the class BoundaryFunc-
tion in line 9. In line 11 we define a corresponding
test function δv to the velocity field v. In lines
13 and 14 the class ScalarField is used to define
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the fluid pressure p discretized by P1 finite ele-
ments and the test function δp. A homogeneous
pressure is prescribed at the boundary with label
2. In order to increase the readability in the LATEX
output, we introduce the viscous fluid stress σσσf

as an Expression in lines 16 and 17 (see also
Section 4.2). In lines 19-25 a Lagrangian object
is set up. The first argument is a list of all primary
field functions (v, p), whereas the second argu-
ment (δv, δp) is a list of all test functions. The
third argument is the objective function, which
has no meaning in case of a simulation. The fourth
argument is the weak formulation of the governing
equations. Those are the momentum balance and
the continuity equation enhanced by a penalty
term. For example, the input in line 20 represents
the viscous stress term in the momentum equation
and the corresponding LATEX representation is∫

Ω
(σσσf (v) : ∇δv) dx. (1)

Note, that the domain integral over Ω is real-
ized by the class dx (see Section 4.5 ; not to
be confused with the x-derivative notation in
FreeFEM++), whereas inner2 (see Section 4.3)
implements the double dot product.

Finally, in line 26, we call the method
setup simulation of the Lagrangian and specify
the file ”meshNS3d.txt” for the definition of the
finite element mesh.

1 from autofreefem import *
2
3 name = ’Navier - Stokes ’
4 rho = Constant (’\\ rho ’, 1000. , ’fluid density ’,

’kg/mˆ3 ’)
5 mu = Constant (’\mu ’, 1.0e-3, ’fluid viscosity ’,

’N s/mˆ2 ’)
6 penalty = Constant (’\\ gamma ’, 1.e-9, ’penalty

term ’, ’1/( Pa s)’)
7 Th = Domain (’\\ Omega ’,’Th ’)
8 # fluid velocity
9 diri = BoundaryFunction ( ’0’, ’0’, ’5e -2*(rˆ2-x

ˆ2-yˆ2) *(z <0.05) ’)
10 v = VectorField (’v’, ’P2 ’, Th , diri , ’1/3/4 ’)
11 testv = VectorField (’\ delta v’, ’P2 ’, Th , ’0. ’,

’none ’)
12 # fluid pressure
13 p = ScalarField (’p’, ’P1 ’, Th , ’0. ’, ’2’)
14 q = ScalarField (’\ delta p’, ’P1 ’, Th , ’0. ’, ’

none ’)
15 # viscous fluid stress tensor
16 d = (grad(v) + transpose (grad(v))) / 2
17 sigmaFluidViscous = Expression (’\pmb \ sigma_f ’,

mu * d)
18 #
19 lag = Lagrangian ([v, p], [testv , q], 0,
20 dx (( inner2 ( sigmaFluidViscous , grad( testv ))),

Th) # viscous stress
21 - dx(div( testv ) * p, Th) # pressure

22 + dx(rho * inner ( inner (grad(v), v), testv ),
Th) # convection

23 + dx( penalty * p * q, Th) # penalty term
24 - dx(div(v) * q, Th), # continuity equation
25 dimensions =3)
26 lag. setup_simulation (name , mesh=’meshNS3d .txt ’)

Listing 1: Input file for the Navier-Stokes example
(run navierStokes.py)

2.1.3 Step 3: LATEX output
The simulation problem defined in Listing 1 is
documented using LATEX. The output is given
in Figure 1. The output starts with the user
input of the governing equations (here the momen-
tum equation and the continuity equation). Then
the abbreviations used, i.e. all objects of class
Expression, are defined (here the viscous fluid
stress σσσf ). AutoFreeFem automatically detects
that the problem is non-linear (due to the here
non-linear convective term, see Section 3.1) and
computes also a linearization for the use within a
Newton method. Thus, the problem for the New-
ton update is given in the remainder of Figure 1.
In addition, the numerical values of the con-
sidered physical parameters are supplied in the
automatically generated Table 2.

fluid density ρ 1.00e+03 kg/m3

fluid viscosity µ 1.00e-03 Ns/(m2)

penalty term γ 1.00e-09 1/(Pas)

Table 2: Automatically generated LATEX docu-
mentation of numerical values of constants defined
in Listing 1

2.1.4 Step 4: Simulation with
FreeFEM++

In addition to the LATEX output, Aut-
oFreeFem, run in the simulation mode (method
’setup simulation’), produces three ”.edp” files:
• run NavierStokes.edp
• NavierStokesResidual.edp
• NavierStokesNewton.edp

The file ”run NavierStokes.edp” implements a
basic solver based on Newton’s method for the
simulation of the flow problem in FreeFEM++. To
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The state [v, p] is the solution of the non-linear problem∫
Ω
ρ (δv · (∇v · v)) dx−

∫
Ω
p div δv dx+

∫
Ω

(σσσf (v) : ∇δv) dx = 0 ∀ δv,

−
∫

Ω
δpdiv v dx+

∫
Ω
γδpp dx = 0 ∀ δp,

with

σσσf (v) =
(
∇v +∇v⊤)

µ

2 .

The Newton update [v̂, p̂] at the state [v, p] is the solution of∫
Ω
ρ (δv · ((∇v̂ · v) + (∇v · v̂))) dx−

∫
Ω
p̂ div δv dx+

∫
Ω

(
∂(v,v̂)σσσf (v̂) : ∇δv

)
dx

= −
∫

Ω
ρ (δv · (∇v · v)) dx+

∫
Ω
p div δv dx−

∫
Ω

(σσσf (v) : ∇δv) dx ∀ δv,

−
∫

Ω
δpdiv v̂ dx+

∫
Ω
γδpp̂ dx =

∫
Ω
δpdiv v dx−

∫
Ω
γδpp dx ∀ δp,

with

∂(v,v̂)σσσf (v̂) =
(
∇v̂ +∇v̂⊤)

µ

2 .

Fig. 1: Automatically generated LATEX documentation of the problem formulation and linearization of
the Navier-Stokes problem defined in Listing 1.

this end, it uses the expressions (varf’s) defined
in the other two files for evaluating the resid-
ual vector and the Jacobian matrix. The latter
files can also be used as building blocks for
more advanced solvers (e.g. preconditioned itera-
tive solvers and/or domain decomposition meth-
ods) implemented by the user.

2.1.5 Step 5: Results
Running the file ”run NavierStokes.edp” with
FreeFEM++ produces a ”.vtu” file with the sim-
ulation results. This file can be viewed with a 3D
graphics program such as paraview4. The com-
puted fluid velocity and pressure are depicted in
Figure 2.

4https://www.paraview.org/

2.2 Shape optimization of a
cantilever

Our second introductory example is a classical 2d
compliance minimization for an elastic cantilever.
The working domain is a rectangle of size 2 × 1
with zero displacement boundary condition on the
left side and a vertical load applied on a small por-
tion of length 0.1 at the middle of the right side,
denoted by ΓN , such that the resultant force has
unit magnitude. All other boundaries are traction
free. The geometry and the boundary conditions
are illustrated in Figure 3. There are no body
forces.
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(a) (b) (c)

Fig. 2: Simulation of the fluid flow in a pipe: (a) 3d computational mesh; (b) Distribution of the norm of
the fluid velocity over a vertical slice of the domain. Red corresponds to high velocity, blue corresponds to
low velocity. On the lower surface the velocity distribution is prescribed as Dirichlet boundary condition.
(c) Distribution of the (relative) fluid pressure over a vertical slice of the domain. Red corresponds to high
pressure, blue corresponds to low pressure. The pressure on the upper surface is prescribed as Dirichlet
boundary condition.

ΓD ΓN

g = [0, f ]⊤

2

1
0.45
0.1

0.45

Fig. 3: Geometry and boundary conditions of the
elastic cantilever.

2.2.1 Step 1: Mesh
Again, for the generation of the computational
mesh, we use built-in commands of FreeFEM++
in the file meshelasticCantilever.txt.

2.2.2 Step 2: Definition of the problem

1 from autofreefem import *
2 name = ’linear Elasticity ’
3 bndN = Boundary (’\\ Gamma_N ’,’ThL ’,’2’)
4 Th = Domain (’D’,’Th ’,bndN)
5 # definition of the displacement field and the

test function
6 u = VectorField (’u’, ’P2 ’, Th , ’0. ’, ’4’) #

left fixed
7 testu = VectorField (’\ delta u’, ’P2 ’, Th , ’0. ’,

’none ’)
8 # definition of constants

9 f = Constant (’f’, -10, ’vertical load component ’
, ’N/m’)

10 nu = Constant (’\\ nu ’, .3, ’Poisson \’s ratio ’, ’-
’)

11 E = Constant (’E’, 200. , ’Young \’s modulus ’, ’N/m
ˆ2 ’)

12 Afac = Constant (’\ell ’, 0.25 , ’Lagrange
multiplier ’, ’-’ )

13 # definition of the material contrast
14 X = CharacteristicFunction (’\\ raisebox {\\ depth }{

$\\ chi$}’, 1, ’1/100 ’)
15 # definition of expressions
16 mu = Expression (sp. Symbol (’\mu ’), E /(2*(1+ nu)))
17 lam = Expression (sp. Symbol (’\ lambda ’), E*nu

/((1 -2* nu)*(1+ nu)))
18 strain = Expression (sp. Symbol (’\pmb \\ varepsilon

’), (grad(u) + transpose (grad(u))) / 2)
19 stress = Expression (sp. Symbol (’\pmb \\ sigma ’), X

*( lam*tr( strain )* identity () + 2 * mu* strain
) )

20 # definition of the shape optimization problem
21 J = Expression (’J’, dx( inner2 (stress , strain ), Th

) + dx(Afac*X, Th))
22 lag = Lagrangian ([u], [ testu ], J, dx( inner2 (

stress , grad( testu )), Th) - dsx(f* inner (
testu , ey ()), Th , 0))

23 lag. setup_optimization (name , mesh=’
meshelasticCantilever .txt ’,

24 hmin =0.01 , hmax =0.02 , diffusion
=1./10000. , v0 =0.002 , iterations =82 ,

25 phi=’ -0.4 - sin(pi * kx * (x +0.5) ) * cos
(pi * ky * (y))’,

26 boundaryLabels =[ ’1’,’4’], fixedLabels =[ ’
2’], show_weak_material = False )

Listing 2: Input file for the cantilever optimization
(run linearElasticity.py)
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The Python input for AutoFreeFem is given in
Listing 2. In lines 1-12 the displacement field,
the physical constants and the used expressions
are defined. These commands were already used
in Section 2.1. Thus, we focus on the following
lines which involve new aspects due to the con-
sidered shape optimization problem. In line 14
we introduce an object of the class Character-
isticFunction in order to distinguish between
solid and void material. The first input is a LATEX
symbol (χ) for this function. The second argu-
ment represents the relative strength of the solid
material (typically 1), whereas the third argument
refers to the void material. Here, we use a factor
of 1/100 in order to mimic void by a very weak
material. Strictly speaking, the object Charac-
teristicFunction, defined in line 14, is not the
characteristic function of a set but rather a ”color
function”, taking two different values (not nec-
essarily 0 and 1) in two sub-domains. In lines
16 to 19 we use the class Expression to define
the Lamé constants, the strain tensor and the
stress tensor. In line 21 the objective function J
is defined as a combination of the compliance and
a fixed Lagrange multiplier ℓ multiplied by the
area of the solid. Next, in line 22 the Lagrangian
object is set up. The load on the boundary is
incorporated in the problem by the correspond-
ing boundary integral using the class dsx (see
Section 4.5). Finally, in lines 22-26 we call the
method setup optimization of the Lagrangian and
specify the file ”meshelasticCantilever.txt” for the
definition of the finite element mesh. Specifically
for shape optimization, we also specify a mini-
mal (hmin) and maximal (hmax) element size for
remeshing with mmg ?, a diffusion parameter for
the regularization in the shape gradient identifi-
cation problem ?, an initial optimization velocity
v0 used in the advection of the level-set func-
tion, a maximal iteration number and an initial
level-set function ϕ defining the initial design. Fur-
thermore, we set labels for boundaries where the
normal component of the shape gradient should
be set to zero (boundaryLabels), and labels for
boundaries where the full gradient should vanish
(fixedLabels). Finally, we set the postprocessing
option show˙weak˙material such that the weak
material is not shown in the ”.vtu” outputs.

2.2.3 Step 3: LATEX output
The problem formulation defined in Listing 2 is
documented in Appendix A. AutoFreeFem auto-
matically detects that the state problem is linear
and therefore skips the statement of a superfluous
linearization. Furthermore, the numerical values
of the considered physical parameters are supplied
in the automatically generated Table 3.

Lagrange multiplier ℓ 0.25 N
m2

Poisson’s ratio ν 0.3 −
Young’s modulus E 200 N

m2

vertical load component f -10 N
m2

Table 3: Automatically generated LATEX docu-
mentation of numerical values of constants defined
in Listing 2

2.2.4 Step 4: Simulation with
FreeFEM++

In addition to the LATEX output, AutoFreeFem
in the shape optimization mode (method
’setup optimization’) produces six ”.edp” files:
• optimize linearElasticity.edp
• linearElasticityObjective.edp
• linearElasticityResidual.edp
• linearElasticityNewton.edp
• linearElasticityAdjoint.edp
• linearElasticityShape.edp

The file ”optimize linearElasticity.edp” imple-
ments a basic solver for the simulation of the
cantilever and a basic variant of the level-set based
mesh evolution method introduced in ??. To this
end, it uses the expressions (varf’s) defined in the
other files for evaluating the objective functional,
the residual vector, the stiffness matrix, the reso-
lution of the adjoint problem and finally the shape
derivative.

2.2.5 Step 5: Results
Running the file ”optimize linearElasticity.edp”
with FreeFEM++ produces a sequence of 200
”.vtu”-files with the optimization results. The ini-
tialization and the optimized design are depicted
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in Figure 4. The evolution of the objective func-
tion is reported in Figure 5.

(a)

(b)

Fig. 4: Linear elastic cantilever problem: (a)
Initialization; (b) Optimized design.

0 20 40 60 800.5

0.55

0.6

0.65

0.7

0.5181

iteration

J

Fig. 5: Convergence history for the linear elastic
cantilever problem

3 Theory on optimization
problems involving
non-linear multi-physics
PDE constraints

In this section, we briefly describe the under-
lying mathematical theory of AutoFreeFem. In
the present paper, we consider PDE-constrained
shape optimization problems of the form:

min
Ω∈A

J(Ω, u)

subject to u ∈ V (Ω):
R(Ω, u, v) = 0 for all v ∈ V (Ω).

(2)

Here, A is the a set of admissible shapes, J : A×
V (Ω)→ R the objective function and the state u
is the solution of the governing non-linear physics
incorporated in R(Ω, u, v) posed on a Hilbert
space V (Ω). For given shape Ω ∈ A let u(Ω) be the
unique solution of the state equation. This allows
to introduce the shape functional J : A → R,

J (Ω) = J(Ω, u(Ω)). (3)

In Section 3.1 and Section 3.2, we first focus on
the classification and resolution of the possibly
non-linear state equation R(Ω, u, v) = 0. Follow-
ing this, we describe the theory on computing
the shape derivative for single-physics problems
in Section 3.3 and for multi-physics problems in
Section 3.4.

3.1 Classifying the State Problem:
Linear vs. Non-Linear

In a linear state problem, R(Ω, u, v) contains only
terms that are either independent of the solution
field u or linearly dependent on u. So we check
whether the equation

d2

dτ2R(Ω, τu, v) = 0 (4)

is satisfied or not. Indeed, (4) holds for a linear
state problem, but not for a nonlinear problem.
In order to implement the automatic evalua-
tion of (4) and subsequent expressions in this
section, we use the SymPy commands subs and
diff (see Section 4.1). For multi-physics problems
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(see Section 3.4) condition (4) generalizes to

d2

dτ2Ri(Ω, τu1, .. ., τuN , vi) = 0, for i = 1, .. ., N.

3.2 Linearization
The solution of a non-linear state problem is
typically computed by Newton’s method. Thus,
at a discrete level, we should provide the Jaco-
bian matrix after the discretization of R(Ω, u, v).
However, here we compute the expression of
the Jacobian matrix at the continuous level.
Thus, we follow a first-differentiate-then-discretize
approach in the present paper, which might not
give the same Jacobian matrix obtained by the
first-discretize-then-differentiate approach. How-
ever, for linearizations both approaches typically
give the same Jacobian matrix (a typical coun-
terexample is that of plasticity problems, see ?).
Note, that for the shape derivative the result of
first-differentiate-then-discretize is usually differ-
ent from that of first-discretize-then-differentiate.

In order to illustrate the abstract setting in
(2), consider a non-linear diffusion problem with
homogeneous boundary conditions on a domain Ω.
Model 1. Find the solution u ∈ H1

0 (Ω) such that
R(Ω, u, v) = 0 for all test functions v ∈ H1

0 (Ω),
where

R(Ω, u, v) = a(Ω, u, v)− b(Ω, v), (5)

a(Ω, u, v) =
∫

Ω
λ(X, u(X))(∇u · ∇v) dX,

b(Ω, v) =
∫

Ω
f v dX,

with a spatially varying diffusion coefficient λ,
which might depend on the state u.

As usual R(Ω, u, v) is linear with respect
to the test function v. In order to lin-
earize u 7→ R(Ω, u, v), we introduce its
Fréchet derivative as the linear and bounded
form dFR(Ω, u, v), which satisfies

R(Ω, u+ η, v) = R(Ω, u, v) + dFR(Ω, u, v) · η + o(η), with lim
η→0

|o(η)|
∥η∥

= 0. (6)

Then, the linearization LR of R at state u0 reads
?

LR(Ω, u0, v, η) = R(Ω, u0, v) + dFR(Ω, u0, v) · η,

where LR is linear in the third and the last
argument, but still non-linear in the first two
arguments. In Newton’s method, the update of a
known state u0 reads u0 ← u0 + η, where η is the
solution to LR(Ω, u0, v, η) = 0, which has to hold
for all test functions v ∈ V . In order to practically
compute the linearization, it is more convenient
to use the notion of Gateaux (or directional)
derivative

dR(Ω, u, v, η) = d

dτ
R(Ω, u+ τη, v)

∣∣∣∣
τ=0

. (7)

If R is Fréchet differentiable, then it is Gateaux
differentiable too and dFR = dR. Note that for

Model 1 we have

dR(Ω, u0, v, η) =
∫

Ω
λ(X, u0)(∇η · ∇v) dX

+
∫

Ω

∂λ

∂u
(X, u0)η(∇u0 · ∇v) dX.

3.3 Shape derivative of
single-physics problems

In this section, we briefly review the Lagrangian
method for computing the shape derivative of
a PDE-constraint objective function. Mathemat-
ically rigorous treatments can be found in ???;
here we prefer a pedagogical presentation using
notations from continuum mechanics. The notion
of shape derivative relies on Hadamard method,
which considers variations of the domain Ω ⊂ Rd

of the form

Ωt = (Id+ tV)(Ω) = Tt(Ω), (8)
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where V : Ω→ Rd is a vector field and t a scalar
perturbation parameter. In the following, we use
the notation that X is a point in the unperturbed
domain Ω and x a point in the perturbed domain
Ωt. Thus, a point X ∈ Ω is therefore mapped to
x ∈ Ωt by

x = Tt(X) = X + tV(X), (9)

and the Jacobian matrix Ft : Ω→ Rd×d reads

Ft(X) = ∇Tt(X) = I + t∇V(X), (10)

where I denotes the identity matrix. From a con-
tinuum mechanics viewpoint, X is a Lagrangian
coordinate, while x is an Eulerian coordinate, the
vector field V can be interpreted as a displacement
field and (10) defines the associated deformation
gradient. For some shape functional J (Ω), the
shape derivative is defined as

DJ(Ω)(V) = lim
t→0

J (Ωt)− J (Ω)
t

. (11)

Remark 1. It is also possible to define the shape
derivative as the Fréchet derivative of the mapping
V 7→ J ((I + V)(Ω)) in V = 0 ?.

In the following we introduce the Eulerian and
Lagrangian states, which will be employed in the
subsequent derivation of an efficient formula for
the computation of the shape derivative (11). For
a perturbed domain Ωt we have the Eulerian state
uE,t ∈ V (Ωt), which satisfies the state equation

R(Ωt, u
E,t, v) = 0 ∀v ∈ V (Ωt). (12)

In a next step we introduce the Lagrangian state
uL,t ∈ V (Ω) defined by the pull-back of the
Eulerian state uE,t ∈ V (Ωt) to the unperturbed
domain Ω

uL,t(X) = uE,t ◦ Tt(X) = uE,t(x). (13)

Conversely, this allows to write

uE,t(x) = uL,t ◦ T−1
t (x) = uL,t(X). (14)

Obviously, for t = 0 in (9), we have x = X
and thus the Lagrangian and the Eulerian states
coincide uL,0 = uE,0 = u0.

In order to illustrate the difference between
the Eulerian and Lagrangian frameworks we con-
sider the residual equation of Model 1. The state
equation determining uE,t is (12) with

R(Ωt, u
E,t, v) =

∫
Ωt

λ(x, uE,t(x))(∇uE,t · ∇v) dx

−
∫

Ωt

f v dx.

A Lagrangian formulation is defined as

RL(t, uL,t, vL,t) = R(Ωt, u
L,t◦T−1

t , v◦T−1
t ). (15)

Using standard rules of integral transformation
and uL,t◦T−1

t ◦Tt = uL,t, (15) can be rewritten to

RL(t, uL,t, vL,t) =
∫

Ω
λ(Tt(X), uL,t)

[
∇(uL,t ◦ T−1

t ) · ∇(vL,t ◦ T−1
t )

]
◦ Tt det Ft dX

−
∫

Ω
f vL,t det Ft dX.

(16)
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Furthermore, using classical transforma-
tion rules for gradients (see Section 4.4)

the fully Lagrangian setting avoid-
ing the occurrence of T−1

t reads:

RL(t, uL,t, vL,t) =
∫

Ω
λ(Tt(X), uL,t)

(
∇uL,t · (F−1

t (X) · F−⊤
t (X)) · ∇vL,t

)
det Ft dX

−
∫

Ω
f vL,t det Ft dX.

(17)

This ”pullback of the shape perturbation to
the unperturbed domain” will be detailed for all
implemented operators in Section 4 .

In order to compute the shape derivative, it
is customary ? to introduce a Lagrangian, in
an Eulerian setting, by summing the objective
function and the state equations

L(Ωt, φ, ψ) = J(Ωt, φ) +R(Ωt, φ, ψ),

where (φ,ψ) ∈ V (Ωt) × V (Ωt) are any func-
tions (in the end, φ will be replaced by the state
u(Ω) and ψ by the adjoint state). The Lagrangian
allows us to rewrite the numerator in (11) as

J (Ωt)− J (Ω) = L(Ωt, u
E,t, ψE,t)− L(Ω, u0, ψ0).

However, here the drawback is that (uE,t, ψE,t) ∈
V (Ωt) × V (Ωt) and (u0, ψ0) ∈ V (Ω) × V (Ω),
i.e. they are not defined over the same functional
space. It turns out that this Eulerian setting is
not easily amenable to automatic differentiation,
contrary to the Lagrangian setting that we now
introduce. Recalling the Lagrangian state (13) we
define the Lagrangian G : R × V (Ω) × V (Ω) in a
Lagrangian setting by

G(t, φL,t, ψL,t) = L(Tt(Ω), φL,t ◦ T−1
t , ψL,t ◦ T−1

t )
(18)

Now, we have

J (Ωt)− J (Ω) = G(t, uL,t, ψL,t)− G(0, u0, ψ0),
(19)

which has the advantage that (uL,t, ψL,t) and
(u0, ψ0) are both defined over the unperturbed
domain Ω. Considering (19) in (11), and choos-
ing a test function ψL,t which is independent of t,

yields by the chain rule

DJ(Ω)(V) = ∂tG + ∂ϕG[u̇L], (20)

where

∂tG =
(
∂

∂t
G(t, u0, ψ0)

) ∣∣∣∣
t=0

,

∂ϕG[u̇L] =
(
d

dτ
G(0, u0 + τ u̇L, ψ0)

) ∣∣∣∣
τ=0

.

Here, u̇L is the Lagrangian shape derivative (also
called material derivative) of the state. Next we
introduce the adjoint state p0 with the goal to
eliminate the Lagrangian shape derivative of the
state. To this end, let p0 be the solution of(

d

dτ
G(0, u0 + τv, p0)

) ∣∣∣∣
τ=0

= 0 ∀v ∈ V (Ω).

(21)
Then, for ψ0 = p0 we have in particular ∂ϕG[u̇L] =
0, and (20) is reduced to

DJ(Ω)(V) =
(
∂

∂t
G(t, u0, p0)

) ∣∣∣∣
t=0

. (22)

As explained, e.g., in ? this shape derivative
formula is amenable to automatic differentiation.

3.4 Shape derivative of
multi-physics problems

For our multi-physics applications, the objective
functionals have the general structure

Ω 7→ J (Ω, u1(Ω), .. ., uN (Ω)),

where the N scalar or vector-valued fields ui,
i = 1, .. ., N are the solutions of the respective gov-
erning equations Ri(Ω, u1(Ω), .. ., uN (Ω), vi) = 0
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for all vi ∈ Vi(Ω). For a perturbed domain Ωt the
perturbed Eulerian states uE,t

i ∈ Vi(Ωt) satisfy

Ri(Ωt;uE,t
1 , .. ., uE,t

N ; vi) = 0 ∀vi ∈ Vi(Ωt). (23)

In accordance with (13) the Lagrangian states
uL,t

i ∈ Vi(Ω) are defined by

uL,t
i (X) = uE,t

i ◦ Tt(X) = uE,t
i (Tt(X)). (24)

The Lagrangian is then defined by summing up
the objective function and the state equations

L(Ω;φ1, .. ., φN ;ψ1, .. ., ψN ) = J (Ω;φ1, .. ., φN )

+
N∑

i=1
Ri(Ω;φ1, .. ., φN ;ψi),

for any functions φ1, .. ., φN and ψ1, .. ., ψN .
Recalling (8), Ωt = Tt(Ω), the perturbed
Lagrangian in a Lagrangian setting is defined by

G(t;φL,t
1 , .. ., φL,t

N ;ψL,t
1 , .. ., ψL,t

N ) = L(Tt(Ω);φL,t
1 ◦ T−1

t , .. ., φL,t
N ◦ T−1

t ;ψL,t
1 ◦ T−1

t , .. ., ψL,t
N ◦ T−1

t ). (25)

With (25) the analogous arguments from
Section 3.3 can be used to derive the shape
derivative formula

DJ(Ω)(V) =
(
∂

∂t
G(t;u0

1, .. ., u0
N ; p0

1, .. ., p0
N )

) ∣∣∣∣
t=0

,

(26)
where the adjoint solutions p0

1, .. ., p0
N are deter-

mined by(
d

dτ
G(0;u0

1, .. ., u0
i + τ vi, .. ., u0

N ; p0
1, .. ., p0

N )
) ∣∣∣∣

τ=0
= 0,

(27)
which have to hold for all test functions vi ∈
Vi(Ω). For (26) to hold it is crucial that the
adjoint solutions p0

1, .. ., p0
N are determined by (27)

in order to kill terms where the material derivative
of the state variables show up.

4 Implementation
In this section, we describe some implementation
details of AutoFreeFem. In view of the theory
described in Section 3, the symbolic differentia-
tion of expressions plays an important role. In
particular, differentiation with respect to the per-
turbation parameter t of the Lagrangian G in (18),
as well as the Gateaux derivative for the lineariza-
tion (7) and the adjoint problem (27) have to be
performed. Therefore, AutoFreeFem builds upon
the Python package SymPy ?. Beside the sym-
bolic differentiation, the change of variables in

(18) and the LATEX processing uses and extends
standard features of SymPy. We give a brief intro-
duction into these topics in SymPy in Section 4.1.
In Sections 4.2 to 4.7 we describe the implemented
classes.

4.1 A brief introduction to
differentiation, change of
variables and LATEX processing
in SymPy

In SymPy, symbolic expressions are stored in
expression trees. An expression tree is a data
structure with a hierarchical form and the prop-
erties:

1. Each internal node represents an operator,
e.g. addition, subtraction, multiplication, divi-
sion, etc.

2. The operands (numbers and variables) are
stored in the leaf nodes.

3. The edges between nodes indicate on which
expressions the operators operate.

See Figure 6a for a visualization of the expression
tree of expr = x**2 + x*y in SymPy.

Differentiation
To differentiate this expression expr with respect
to the variable x the SymPy command diff(expr,
x) is used:

1 from sympy import *

12



2 x,y = symbols("x y")
3 expr = x**2 + x*y
4 dexpr = diff(expr,x)
5 print(srepr(expr))
6 print(srepr(dexpr))

Add

Pow

x 2

Mul

x y

(a) Expression tree for x2 + xy

Add

Mul

2 x

y

(b) Expression tree for 2x + y

Fig. 6: Examples of expression trees

Here, the SymPy command srepr is used to asses
the internal tree representation. The above code
gives the outputs:

Add(Pow(Symbol(’x’), Integer(2)),
Mul(Symbol(’x’), Symbol(’y’)))

Add(Mul(Integer(2), Symbol(’x’)), Symbol(’y’))

They correspond to the expression trees in
Figure 6 respectively. In order to realize the
Gateaux derivative, we use twice the SymPy com-
mand subs and one time the SymPy command diff.
The differentiation of expr with respect to x into
the direction v is given by:

1 v,tau = symbols("v tau")
2 expr_vt = expr.subs(x,x+tau*v)
3 dexpr_vt = diff(expr_vt,tau)
4 dexpr_v = dexpr_vt.subs(tau,0)
5 print("expr_vt: ", expr_vt)
6 print("dexpr_vt: ", dexpr_vt)
7 print("dexpr_v: ", dexpr_v)

The above code gives the outputs:
expr vt: y*(tau*v + x) + (tau*v + x)**2
dexpr vt: v*y + 2*v*(tau*v + x)
dexpr v: 2*v*x + v*y

The last output is the sought directional deriva-
tive 2vx + vy. We remark that the result can be
simplified by using the SymPy command simplify:

1 print("dexpr_v: ", simplify(dexpr_v))

dexpr v: v*(2*x + y)

Change of variables
In addition to symbolic differentiation, we need
to perform a change of variables to obtain the
perturbed Lagrangian (18) in a Lagrangian frame-
work. To obtain G(t;uL,t

1 , .. ., uL,t
N ; pL,t

1 , .. ., pL,t
N ) in

an automatic way, we traverse the expression tree
and apply to each operator the corresponding
change of variable rule such that Tt and T−1

t can-
cel out. These rules are are non-trivial transfor-
mations for differential operators (see Section 4.4)
and for integrals (see Section 4.5).

LATEX and FreeFEM++ output
The special feature of AutoFreeFem is that it
offers a LATEX representation of the input and the
derived formulas in coordinate independent direct
notation and also a representation of them for the
use in FreeFEM++. Remark that SymPy has sev-
eral built-in options for the output of expressions
like the basic string output, a LATEX output, C
code output, and Fortran code output:

1 print("String:", expr)
2 print("Latex:", latex(expr))
3 print("C code:", ccode(expr))
4 print("Fortran code:", fcode(expr))

The above code gives the outputs:
String: x**2 + x*y
Latex: xˆ2 + x y
C code: pow(x, 2) + x*y
Fortran code: x**2 + x*y

We are augmenting these built-in output capa-
bilities in two directions. On the one hand, we
are extending the LATEX processing by introducing
coordinate independent direct notation. On the
other hand, we introduce the ability to generate
code for use in FreeFEM++.

Due to the considerations above, each imple-
mented field and operator is a subclass of the
SymPy Function class and thus uses the same
mechanisms as elementary functions in SymPy.
Additionally, we specify for each class
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1. a rule for the generation of LATEX output,
2. a rule for the generation of FreeFEM++ out-

put,
3. if necessary the change of variables to obtain

the perturbed Lagrangian functional using the
Lagrangian states,

4. a rule for computing the derivative,
5. and if possible some algebraic rules to simplify

the expressions.

In the following, we describe each implemented
class of AutoFreeFem. In particular, we give
a detailed explanation on how to implement
Model 1 (see ”nonlinearDiffusion.py” for the full
file). To this end, we first import AutoFreeFem:

1 from autofreefem import *

4.2 Fields, Domain, Constants,
Expressions and Lagrangian

In this section, two classes of unknown physi-
cal fields, such as temperatures, displacements
or velocities, are introduced. These classes are
summarized in Table 4. The ScalarField and
the VectorField both take five input arguments.
The first argument is a string representing the
symbol of the unknown field and is used in the
LATEX output and the FreeFEM++ code. The sec-
ond argument contains the information how this
field should be discretized in FreeFEM++. The
third argument is the domain on which the field
is defined. The fourth and the fifth argument
are related to Dirichlet boundary conditions. In
particular, the fourth argument specifies a func-
tion for the corresponding values of the Dirichlet
boundary data. The fifth argument specifies the
boundary labels on which Dirichlet boundary con-
ditions are applied. Thus, for Model 1 we make
the following definitions:

2 symbol = ’u’
3 fespace = ’P1 ’
4 mesh = Domain (’\\ Omega ’, ’Th ’)
5 dirichlet_boundary_function = ’0. ’
6 dirichlet_boundary_labels = ’4’
7 u = ScalarField (symbol , fespace , mesh ,

dirichlet_boundary_function ,
dirichlet_boundary_labels )

Here we use conforming finite elements of polyno-
mial degree 1 (P1) for the field u. Furthermore,
we interoperate homogeneous Dirichlet bound-
ary conditions on all boundaries with label 4.
The definitions of the computational domain
and of the corresponding mesh are done in

the class Domain. The first argument (here
’\\Omega’) is the LATEX expression, whereas
within FreeFEM++ code the second argument
(here ’Th’) will be used. We proceed by specifying
the test function v:

8 v = ScalarField (’v’, fespace , mesh ,
dirichlet_boundary_function , ’none ’)

Note that for the test functions the boundary
conditions are inherited form the corresponding
unknown fields and therefore the fourth and the
fifth argument on line 8 have no effect.

The chosen non-linearity is the diffusion coef-
ficient λ(u) = λ0/(1+u2):

9 Lambda0 = Constant (’\\ lambda_0 ’, 10. , ’diffusion
coefficient ’,’’)

10 Lambda = Expression (’\\ lambda ’, Lambda0 / (1 + u
** 2))

In line 9 we first define an object of type Con-
stant. It takes four arguments: a symbol, a
numerical value, a description text and a string
representing the unit. All constants will be auto-
matically gathered and a LATEX table will be
generated for the documentation of the used
numerical values (see e.g. Table 2 or Table 3). In
line 10, we used the class Expression, which has
mainly the purpose of introducing an abbrevia-
tion to achieve a nicely readable LATEX output.
It takes two arguments: a symbol and the actual
expression.
Remark 2. Note that the classes Domain,
Constant and Expression are not necessary
in order to set up a simulation in FreeFEM++
by AutoFreeFem. Their purpose is to provide the
capability to generate nice LATEX output.

Next we define the bulk source term f using
the class Constant:

11 f = Constant (’f’, 1., ’source term ’,’’)

For the definition of the variational formulation
we rely on the classes grad (see Section 4.4),
inner (see Section 4.3), and dx (see Section 4.5)

12 a = dx( Lambda * inner (grad(u),grad(v)), mesh)
13 b = dx(f*v, mesh)

In order to complete the implementation
of Model 1, we set up an object of the
class Lagrangian and call the method
’setup simulation’:

13 lag = Lagrangian ([u], [v], 0, a - b )
14 lag. setup_simulation (’non - linear diffusion ’)

The class Lagrangian has four input arguments.
The first is a list of all trial fields representing the
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description AutoFreeFem input
unknown scalar ScalarField(symbol, fe-space, mesh, b.c. function, b.c. label)
unknown vector VectorField(symbol, fe-space, mesh, b.c. function, b.c. label)

domain Domain(LATEX symbol, FreeFEM++ symbol, boundary 1, boundary 2, ...)
constant Constant(symbol, numerical value, description, unit)

expression/abbriviation Expression(symbol, formula)
class for computation Lagrangian(trial fields, test fields, objective, PDE )

Table 4: Implemented classes described in Section 4.2

physical states in the problem, the second input
argument is a list of all corresponding test fields.
The third argument is the objective function and
the last argument is the weak formulation of the
PDE constraints.

4.3 Tensor algebra
An overview of the three implemented opera-
tors of tensor algebra is given in Table 5. Let
{e1, e2, e3} be the standard Cartesian orthonor-
mal basis. In the present paper, a tensor field T (x)
of order k assigns to every point x a tensor of
the form Rd ⊗ .. .⊗ Rd︸ ︷︷ ︸

k copies

. In this way, we identify

scalars as tensors of order zero, vectors as tensors
of order one and matrices as tensors of order two.
In AutoFreeFem, the tensor product of two ten-
sors of arbitrary orders k and k′, giving rise to a
tensor of order k+k′, is realized by the class Ten-
sorProduct. Next, we define the dot product

operator AutoFreeFem input LATEX

tensor product TensorProduct(..., .. .) (...) ⊗ (...)
dot product inner(..., ...) (...) · (...)

double dot product inner2(..., ...) (...) : (...)

Table 5: Implemented operations from tensor alge-
bra. All three operators take two tensor fields as
inputs.

(class inner) of two tensors as the contraction of
these tensors with respect to the last index of the
first one, and the first index of the second one. For
example, the dot product of a third order tensor
A = Aijlei ⊗ ej ⊗ el and a second order tensor
B = Bkmek ⊗ em gives a third order tensor and

reads

A ·B = (Aijlei ⊗ ej ⊗ el) · (Bkmek ⊗ em)
= AijlBlmei ⊗ ej ⊗ em.

Here, and in the following, the Einstein sum-
mation convention applies. Whenever an index
occurs twice, we sum over this index, where Latin
indices i, j, .. . take the values 1, 2, 3. Furthermore,
we define the double dot product (class inner2)
of two tensors as the contraction of these ten-
sors with respect to the last two indices of the
first one, and the first two indices of the second
one. The contraction is performed on the closest
indices first, e.g.

A : B = (Aijlei ⊗ ej ⊗ el) : (Bkmek ⊗ em)
= AijlBljei.

As a consequence of these definitions, we have
for second order tensors A, B, C, the relation
(A ·B) : C = A : (B ·C). The operators in Table
5 commute with the pull back to the unperturbed
domain. For the implementation it is also impor-
tant to note that these operators obey the product
rule of differentiation, i.e.

(A ·B)′ = A′ ·B + A ·B′,

(A : B)′ = A′ : B + A : B′,

(A⊗B)′ = A′ ⊗B + A⊗B′,

where ′ denotes the derivation with respect to a
scalar parameter τ .

4.4 Differential operators
An overview of the two implemented differential
operators is given in Table 6. The gradient (class
grad) of some scalar-valued function f : R3 → R
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operator AutoFreeFem input LATEX

gradient grad(...) ∇(...)
divergence div(...) div(...)

Table 6: Implemented differential oper-
ators

is defined as

∇f(x) = ∂f(x)
∂xi

ei (29)

with the Cartesian coordinates x = (x1, x2, x3).
We also use the generalization of the gradient for
scalar-valued functions (29) to tensor fields. The
gradient of a tensor field A of arbitrary order o is
defined by

∇A(x) = ∂A(x)
∂xi

⊗ ei.

Note that ∇A is a tensor of order o + 1. For the
gradient, the pullback of the shape perturbation
can be obtained by application of the chain rule,

(∇xA(x))◦Tt(X) = ∇XA(Tt(X))·F−1
t (X). (30)

The second operator described in this section is
the divergence (class div). For a tensor field A of
order o ≥ 1, it is given by

div A = ∂A
∂xi
· ei = ∇A(x) : I. (31)

Note, that div A is a tensor of order o − 1 and
that the divergence is not defined for a scalar
field. For the divergence the pull back of the shape
perturbation is given by

(div A(x)) ◦ Tt(X) = (∇xA(x)) ◦ Tt(X) : I
= (∇XA(Tt(X)) · F−1

t (X)) : I.

4.5 Integrals and the normal vector
An overview of the implemented integral opera-
tors is given in Table 7. In AutoFreeFem domain
integrals are understood as integrals over volumes
(for 3d problems) or areas (for 2d problems) and
are realized by the class dx. This class takes two
arguments: the function to be integrated and the
integration domain. For domain integrals of some

operator AutoFreeFem input LATEX

domain integral dx(f, domain)
∫

Ω
f dx

surface/line integral dsx(f, domain, label)
∫

Γ
f dsx

normal vector SurfaceNormalVector() n

Table 7: Implemented integral operators and the
normal vector

tensor field A, the pullback to the unperturbed
domain reads∫

Ωt

A(x) dx =
∫

Ω
(A ◦ Tt(X)) det Ft(X) dX.

Boundary integrals (surfaces integrals for 3d prob-
lems, line integrals for 2d problems) are realized
by the class dsx. Let Γ be part of the boundary
of the domain Ω (characterized by some label).
The pullback of an integral over the perturbed
boundary Γt = Tt(Γ) of some function f is given
by ∫

Γt

f(x) dsx =
∫

Γ
f(Tt(X))JΓ(X) dsX , (32)

where the Jacobian determinant is

JΓ(X) = det Ft(X) ∥F−⊤
t (X) · n(X)∥,

with the normal vector n(X) to Γ at X. In
AutoFreeFem, the unit exterior normal vector is
implemented by the class SurfaceNormalVec-
tor.

4.6 Matrix functions
An overview of the implemented matrix functions
is given in Table 8. They have in common that
they take one matrix, i.e. a second order tensor,
as input argument. The operators in Table 8

operator AutoFreeFem input LATEX

matrix transpose transpose(...) (...)⊤

matrix trace tr(...) tr (...)
matrix determinant determinant(...) det (...)

matrix inverse inverse(...) (...)−1

transpose of inverse inverse transpose(...) (...)−⊤

Table 8: Implemented matrix functions

commute with the pull back to the unperturbed
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domain. Furthermore, for the differentiation we
have implemented the following rules:

(A⊤)′ = (A′)⊤,

(tr A)′ = tr(A′),
det(A)′ = det (A) tr

(
A−1 · A′) ,

(A−1)′ = −A−1 ·A′ ·A−1,

(A−⊤)′ = −A−⊤ · (A′)⊤ ·A−⊤.

4.7 Fixed quantities
An overview of the fixed quantities implemented
in AutoFreeFem is given in Table 9. The pull back

quantity AutoFreeFem input LATEX

identity matrix identity() I
Cartesian unit vector x-axis ex() ex

Cartesian unit vector y-axis ey() ey

Cartesian unit vector z-axis ez() ez

Table 9: Implemented fixed quantities

to the unperturbed domain does not alter these
quantities and they vanish upon differentiation.

5 Non-linear and multi-physics
shape optimization examples

This section presents some examples of shape
optimization, solved using the automatic code
generation capabilities developed in the present
paper. In all examples we use the level-set based
mesh evolution method introduced in ?. For a
recent tutorial on this method we refer to ?.

5.1 Verification
For each example, we verified the expressions
that we obtained in an automatic way for the
shape derivative by looking at the finite differ-
ence approximation, as well as the Taylor expan-
sion of the perturbed shape functional. However,
the results are shown only for the example of
Section 5.2 in Figure 8. For a fixed shape repre-
sented by some chosen level-set function and some
chosen fixed vector field V we plot the quantities

e1(t) =
∣∣∣∣J(Tt(Ω))− J(Ω)

t
−DJ(Ω)(V)

∣∣∣∣ ,

u = 0

1

1

0.4

0.2

0.4

f

Fig. 7: Geometry and boundary conditions of the
diffusion problem.

and

e2(t) = |J(Tt(Ω))− J(Ω)− tDJ(Ω)(V)| , (34)

for a sequence of decreasing perturbation param-
eters t. By definition of the shape derivative we
have

e1(t) = O(t) and e2(t) = O(t2) as t↘ 0.

We remark that in numerical experiments round-
off errors are unavoidable. Thus, for e1(t) we
notice a linear decrease in its magnitude with
decreasing t when t > t∗, where t∗ represents
a certain threshold. Conversely, e1(t) tends to
increase for t < t∗ due to cancellation errors.
For e2(t) we observe a quadratic decrease rate for
decreasing t as long as t > t∗ and a more or less
constant error measure e2 for t < t∗.

5.2 Non-linear diffusion
In this first example, we consider an extension
of Model 1 to a two material shape optimiza-
tion problem. To this end, we additionally con-
sider a compliance objective function and an area
penalization with a fixed Lagrange multiplier ℓ.
The working domain is the unit square, which
is heated by a uniform source of magnitude f .
On a small portion of the left side, we assume
Dirichlet boundary conditions, whereas all other
boundary parts are assumed to be perfectly iso-
lating (see Figure 7). For the non-linear state
dependent diffusion coefficient, we assume λ(u) =
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χ(x)(1 + αu2), where α is a parameter and χ(x)
distinguishes between the two materials. For the
material with high conductivity, we have χ = 1,
whereas for the material with low conductivity,
χ = 0.1. Note that for α = 0 the problem
becomes linear. A documentation of the formu-
lation of the problem, the adjoint equations and
the shape derivative can be obtained by running
run nonlinearDiffusion.py. The numerical values
of the considered physical parameters are supplied
in Table 10.

Lagrange multiplier ℓ 100
factor α 1.00e-02
source f -10

Table 10: Numerical values of the physical
parameters for the non-linear diffusion problem

10−10 10−7 10−4 10−1
10−15

10−7

101

t

er
ro
r

e1
e2
O(t)
O(t2)

Fig. 8: Results of the verification test for the non-
linear diffusion example

The initialization and the corresponding com-
puted optimal designs for a linear model (α = 0)
and the described non-linear model are displayed
in Figure 9. The evolution of the objective func-
tion is reported in Figure 10. We observe that
for the non-linear model the obtained value of
the objective function is lower than for the linear
model. This was expected because, in the nonlin-
ear model, the diffusion coefficient is larger than
in the linear model.

(a)

(b)

(c)

Fig. 9: Shape optimization of the diffusion prob-
lem: (a) initialization; (b) optimized material
distribution for the linear model (α = 0); (c)
optimized material distribution for the non-linear
model (α = 0.01)

5.3 Non-linear Elasticity
In this section, we revisit the elasticity cantilever
problem discussed in Section 2.2, but now explore
both geometrically non-linear and material non-
linear behaviors. Again, the working domain is
a rectangle of size 2 × 1, with zero displacement
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Fig. 10: Convergence history for the diffusion
problem: The blue curve shows the evolution
of the objective function for the linear model,
whereas the red curve for the non-linear model.

boundary condition on the left side and a vertical
load applied on a small portion of 0.1 at the mid-
dle of the right side denoted by ΓN such that the
resultant force has unit magnitude. All other sides
are traction free. The geometry and the boundary
conditions are illustrated in Figure 3. There are
no body forces. The objective function is analo-
gously to Section 2.2 (see also Section A) the sum
of compliance and a fixed Lagrange multiplier ℓ
multiplied by the area of the solid,

J(u) =
∫

D

ℓχ dx+
∫

D

S(u) : E(u) dx,

with the second Piola-Kirchhoff stress tensor S
and the Green-Lagrange strain tensor E.

5.3.1 Non-linear elasticity with Saint
Venant-Kirchhoff material

In this section, we consider geometrically non-
linear elasticity with the (linear) Saint Venant-
Kirchhoff material (see also (?, Section 8)).
The formulation of the non-linear elastic-
ity problem, the adjoint equations and the
shape derivative can be obtained by run-
ning run nonlinearElasticitySaintVernant.py. The
numerical values of the considered physical
parameters are supplied in Table 3.

As initialization we use the same geometry as
for the linear elastic case (see Figure 4a). The com-
puted optimal design is displayed in Figure 11.
Due to the non-linear model the design is not sym-
metric with respect to a horizontal line as it was

for the linear model. The evolution of the objective
function is reported in Figure 12.

Fig. 11: Optimal design for the non-linear elastic
cantilever with Saint Venant-Kirchhoff material.

0 50 100 150

0.5

0.6

0.7

0.5181
0.5117 0.5119

iteration

J

linear
Saint-Venant
Neo-Hookean

Fig. 12: Convergence history for the cantilever
problem with different material laws

5.3.2 Non-linear elasticity with
Neo-Hookean material

In this section, we consider now a geometri-
cally and materially non-linear elasticity for-
mulation by resorting to a Neo-Hookean mate-
rial law ?. The formulation of the non-linear
elasticity problem, the adjoint equations and
the shape derivative can be obtained by run-
ning run nonlinearElasticityNeoHookean.py. The
numerical values of the considered physical
parameters are supplied in Table 3.

As initialization we use the same geometry as
for the linear elastic case (see Figure 4a). The com-
puted optimal design is displayed in Figure 13a.
Again, due to the non-linear model, the design is
not symmetric with respect to a horizontal line
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as it was for the linear model. Furthermore, the
optimal design differs from the optimal design
obtained for the Saint Venant-Kirchhoff mate-
rial law. In Figure 13b the deformed optimal
design is shown. The evolution of the objective
function is reported in Figure 12. Although the
optimal designs for the different models differ from
each other, the obtained values of the objective
functions are quite similar.

(a)

(b)

Fig. 13: Non-linear elastic cantilever with Neo-
Hookean material: (a) undeformed optimal design;
(b) deformed optimal design. The colors indicate
the norm of the dispacement.

5.4 Thermo-elasticity
In this example, we optimize a bridge, which is
mechanically loaded as well as experiences defor-
mations due to a temperature change. The geom-
etry and the boundary conditions are illustrated
in Figure 14. The working domain D is a rectangle
of size 4m×1m, with zero displacement boundary
condition on the left and right sides ΓD. A verti-
cal load of constant magnitude q is applied on the
top edge ΓN of the domain. Furthermore, the self-
weight (density ρ, gravitational acceleration g) of

the bridge is taken into account. The bottom side
is traction free. For the thermal part of the prob-

Poisson’s ratio ν 0.23 −
Young’s modulus E0 3.20e+07 N

m2

density ρ 2.50e+03 kg
m3

disp. cost factor γ 100 N
m2

gravitational acc. g 9.81 m
s2

material cost factor ℓ 1 N
m2

penalty parameter βT 1.00e+11 W
Km2

penalty parameter β 1.00e+11 N
m3

ther. conductivity k0 1.25 W
Km

ther. expansion coeff. αT 3.60e-05 1
K

vert. load comp. q 5.00e+03 N
m2

Table 11: Numerical values of the physical and
numerical parameters for the thermo-elasticity
problem

lem we prescribe the temperature change T on
the lower and the upper edges ΓT = ΓN ∪ Γ1 and
consider three different cases: (a) no temperature
change (gT (x) = 0), (b) T = 30° on the upper edge
and T = 0° on the lower edge (gT (x) = 30y), and
(c) T = −30° on both edges (gT (x) = −30). The
state (T, u) ∈ H1(D)×[H1(D)]2 is the solution of
the classical one-sided coupled thermo-elasticity
problem ?∫

D

k (∇δT · ∇T ) dx+
∫

ΓT

βT (T − gT (x))δT dsx = 0,

(35)∫
ΓD

β (δu · u) dsx +
∫

D

σσσ(u, T ) : ϵϵϵ(δu) dx

=
∫

ΓN

q (ey · δu) dsx +
∫

D

ρgχ (ey · δu) dx,

(36)

for all test functions (δT, δu) ∈ H1(D) ×
[H1(D)]2. We have used the following abbrevia-
tions

ϵϵϵ(u) = ∇u +∇u⊤

2 ,

ϵϵϵe(u, T ) = ϵϵϵ(u)− αTT I,
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ΓN T = 0°/30°/−30°

Γ1 T = 0°/0°/−30°

4m

1m g

q

Fig. 14: Geometry and boundary conditions of the thermo-elastic bridge problem.

σσσ(u, T ) = λI tr (ϵϵϵe(u, T )) + 2µϵϵϵe(u, T ),

where αT is the isotropic thermal expansion coef-
ficient. For the domain occupied by material we
have k = k0, E = E0, and χ = 1. Contrary, for
the void space we have assumed k = k0/1000,
E = E0/1000, and χ = 0. Note that for the
imposition of Dirichlet boundary conditions the
penalty method is used (penalty parameter β for
u = 0 on ΓD, and βT for T = gT (x) on ΓT ). This
allows to easily post-process the bearing forces for
the evaluation of the objective function.

The numerical values of the considered physi-
cal and numerical parameters for concrete mate-
rial are supplied in Table 11. The objective is to
minimize the following three effects:
• the vertical deformation of the upper edge of

the domain (displacement cost factor γ),
• the horizontal bearing forces on ΓD,
• and the material consumption measured as the

area (material cost factor ℓ).

The precise objective function to be minimized is

J(u) = −
∫

ΓN

γ (ey · u) dsx

+
∫

ΓD

β (ex · u)2
dsx +

∫
Ω
ℓχ dx.

The the adjoint equations and the shape
derivative can be obtained by running
run thermoElastic.py.

The chosen initial design is depicted in
Figure 15a. The optimized designs for the three
load cases are visualized in Figures 15b to 15d.
The shapes obtained for load cases (a) and (b)
exhibit remarkable similarity, while load case (c)
yields a significantly different design. In the lat-
ter scenario, the optimal design retains the lower
horizontal part in the middle of the domain. This

(a)

(b)

(c)

(d)

Fig. 15: (a) initialization; (b) optimized design
for T = 0°; (c) optimized design for T = 30°;
(d) optimized design for T = −30°. The col-
ors in optimized designs indicate the temperature
distribution over the structure.

phenomenon is due to temperature shrinkage,
which creates an uplift force in this particular
region counteracting the loading q and the dead
load. The evolution of the objective function for
the three load cases are reported on Figure 16. We
note that the rise in temperature in load case (b)
positively impacts the objective function, in con-
trast to the temperature decrease in load case (c).
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Fig. 16: Convergence history for the thermo-
elasticity problem

5.5 Fluid-structure interaction
In this section, we describe a fluid-structure inter-
action example which is motivated by ?? and
?. Here, we assume non-linear fluid flow and
non-linear elastic deformations by the structure.
We use an arbitrary Lagrangian-Euler formu-
lation (ALE) ??? and therefore four unknown
fields are sought: the elastic displacement field
u, the fluid velocity v, the fluid pressure p, and
an extension of the displacement field to the
fluid domain uext. The geometry and bound-
ary conditions of the problem are illustrated in
Figure 17. The formulation of the fluid-structure

Ωf

p = 0vf

1.0

0.5
Ωs

Fig. 17: Geometry and boundary conditions of
the fluid-structure interaction problem.

interaction problem, the adjoint equations and
the shape derivative can be obtained by running
run FluidStructureInteractionNonlinear.py. Note
that the problem is quite complicated and we give
only the objective function

J =
∫

Ωs

ℓ dx+
∫

Ωs

S(u) : E(u) dx, (37)

with the second Piola-Kirchhoff stress tensor
S and the Green-Lagrange strain tensor E.
The numerical values of the considered physical
parameters are supplied in Table 12. The initial-

Lagrange multiplier ℓ 5.00e-03 N
m2

Lamé constant λ 0.2645 N
m2

Lamé constant µ 2.38 N
m2

coupling parameter γf 1.00e+08 N
m3

fluid density ρ 1 kg
m3

fluid viscosity µT 5.00e-03 Pas

penalty parameter ϵ 1.00e-08 1
P as

Table 12: Numerical values of the physical
parameters for the fluid-structure interaction
problem

ization and the optimized material distribution
are depicted in Figure 18. The evolution of the
objective function is reported in Figure 19.

6 Conclusion
We developed the Python package AutoFreeFem
designed for the automatic generation of simula-
tion code and corresponding problem documenta-
tion to facilitate the simulation and optimization
of complex non-linear multi-physics problems. A
LATEX component enables users to produce con-
sistent documentations, while the FreeFEM++
component focuses on the numerical simulation
aspect, providing a robust platform for solving
partial differential equations. The effectiveness of
our approach has been demonstrated through its
application to various shape optimization prob-
lems.

We believe that this integrated approach offers
several significant pedagogical advantages. Firstly,
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(a) (b)

Fig. 18: Fluid-structure interaction problem. The deformed structure is shown in grey. The undeformed
structure is indicated by the yellow outlines. The colors in the fluid domain represent the norm of the
fluid velocity. Red corresponds to high velocity, blue corresponds to low velocity: (a) initialization; (b)
optimized design
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Fig. 19: Convergence history for the fluid-
structure problem

it minimizes the risk of discrepancies between the
documented theory and the implemented code, as
both are derived from the same underlying source.
This consistency is crucial for the reproducibil-
ity of scientific results. Secondly, the automation
of code and documentation generation saves time
and reduces the potential for human error, espe-
cially for students or beginners in the field.

Supplementary information.

Compliance with ethical
standards
Funding
The authors did not receive support from any
organization for the submitted work.

Conflict of interest
The authors declare that they have no conflict of
interest.

Replication of results
The developed python package is available at
https://gitlab.tugraz.at/autofreefem/autofreefem.
This allows to reproduce all results of the present
paper. All computations were performed using
FreeFEM++ version 4.14.

23

https://gitlab.tugraz.at/autofreefem/autofreefem


Appendix A LATEX documentation of the linear elasticity
cantilever problem

All boxed content in the appendix has been automatically generated by AutoFreeFem. In order to
demonstrate the capabilities of the software, no manual improvements have been made to the output.

Let ϕ(x) be the level-set function and

χ(x) =
{

1 if ϕ(x) < 0
1/100 if ϕ(x) ≥ 0

.

The Lagrangian of the linear Elasticity problem is

L([u] , [δu]) = J(u)−
∫

ΓN

f (ey · δu) dsx +
∫

D

(σσσ(u) : ∇δu) dx,

with

λ = − Eν

2ν2 + ν − 1 ,

J(u) =
∫

D

ℓχ dx+
∫

D

(σσσ(u) : εεε(u)) dx,

εεε(u) = ∇u +∇u⊤

2 ,

µ = E

2 (ν + 1) ,

σσσ(u) = (λI tr (εεε(u)) + 2µεεε(u))χ.

The state [u] is the solution of the linear problem

−
∫

ΓN

f (ey · δu) dsx +
∫

D

(σσσ(u) : ∇δu) dx = 0 ∀ δu.

The adjoint state [ũ] to the direct state [u] is the solution of

∂(u,δu)J(u, δu) +
∫

D

(
∂(u,δu)σσσ(δu) : ∇ũ

)
dx = 0 ∀ δu,

with

∂(u,δu)J(u, δu) =
∫

D

(
∂(u,δu)σσσ(δu) : εεε(u)

)
+

(
σσσ(u) : ∂(u,δu)εεε(δu)

)
dx,

∂(u,δu)σσσ(δu) =
(
λI tr

(
∂(u,δu)εεε(δu)

)
+ 2µ∂(u,δu)εεε(δu)

)
χ,

∂(u,δu)εεε(δu) = ∇δu +∇δu⊤

2 .

In order to compute the shape derivative, we consider a shape pertubation x = Tt(X) = X + tV(X)
with a suitable velocity field V. The perturbed Lagrangian G using the Lagrangian state [u]L is
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given by

G(t, [u]L , [δu]L) = V(J)−
∫

ΓN

f det F(t) (ey · δu)
√

((n · F−1(t)) · (n · F−1(t))) dsx

+
∫

D

det F(t)
(
V(σσσ) :

((
∇δu · F−1(t)

)))
dx,

with

V(σσσ) = (λI tr (V(εεε)) + 2µV(εεε))χ,

V(εεε) =
(
∇u · F−1(t)

)
+

((
∇u · F−1(t)

))⊤

2 ,

V(J) =
∫

D

det F(t) (V(σσσ) : V(εεε)) dx+
∫

D

ℓχdet F(t) dx.

For the direct state [u] and the adjoint state [ũ], the volume expression of the shape derivative is
given by

DJ(Ω)(V) = ∂tJ(u,V)−
∫

ΓN

f div V (ey · ũ) dsx +
∫

ΓN

f (n · (n · ∇V)) (ey · ũ) dsx

+
∫

D

div V (σσσ(u) : ∇ũ) + (∂tσσσ(u,V) : ∇ũ)− (σσσ(u) : ((∇ũ · ∇V))) dx,

with

∂tJ(u,V) =
∫

D

ℓχ div V dx+
∫

D

div V (σσσ(u) : εεε(u)) + (∂tσσσ(u,V) : εεε(u)) + (σσσ(u) : ∂tεεε(u,V)) dx,

∂tσσσ(u,V) = (λI tr (∂tεεε(u,V)) + 2µ∂tεεε(u,V))χ,

∂tεεε(u,V) = − (∇u · ∇V) + ((∇u · ∇V))⊤

2 .
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