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Abstract. I study optimal monetary policy in a sticky-price economy wherein

households precautionary-save against uninsured, endogenous unemployment risk. In

this economy greater unemployment risk raises desired savings, causing aggregate de-

mand to fall and feed back to greater unemployment risk. This deflationary spiral is

constrained-ineffi cient and calls for an accommodative monetary policy response: af-

ter a contractionary aggregate shock the policy rate should be kept significantly lower

and for longer than in the perfect-insurance benchmark. For example, the usual pre-

scription obtained under perfect insurance of a hike in the policy rate in the face of

a bad supply (i.e., productivity or cost-push) shock is easily overturned. The optimal

policy breaks the deflationary spiral and takes the dynamics of the imperfect-insurance

economy close to that of the perfect-insurance benchmark. These results are derived

in an economy with zero asset supply (“zero liquidity”) and are thus independent of

any redistributive effect of monetary policy on household wealth.
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1. Introduction

Households’precautionary-saving response to uninsured unemployment risk may generate

substantial aggregate volatility, relative to a hypothetical situation of perfect insurance. The

reason for this is that greater unemployment risk strengthens the precautionary motive for

saving, causing aggregate demand, output and employment to fall, which ultimately feeds

back to greater unemployment risk.1 In this paper I ask how should the central bank respond

to aggregate shocks when faced with this feedback loop, by how much does this response

differ from that under perfect insurance, and how effective is it at stabilising welfare-relevant

aggregates.

To this purpose, I construct a New Keynesian model with imperfect unemployment

insurance and a frictional labour market and then derive the optimal monetary policy re-

sponse to two prominent aggregate shocks, namely transitory (but persistent) productiv-

ity and “cost-push” shocks.2 The optimal policy is that which best tracks a well-defined

constrained-effi cient allocation derived from a social welfare function exactly aggregating

the intertemporal utilities of heterogenous households and capturing all the frictions they

are facing. I show the feedback loop between unemployment risk and aggregate demand

to be constrained-ineffi cient and to affect the optimal path of the policy interest rate in

important ways. To summarise, while the ultimate goals of monetary policy are the same

as under perfect insurance —namely, stabilising prices and aligning output to its effi cient

level—, the implementation of this outcome may require (much) more policy accommodation

during recessions, so as to counter the ineffi cient rise in desired precautionary savings and

associated fall in aggregate demand ; and conversely, it may require significantly more policy

tightening in expansion, as consumption demand is boosted by the fall in desired precau-

tionary savings. Put differently, the combination of endogenous unemployment risk and

imperfect insurance leads to specific variations in desired savings that must be adequately

1See, e.g., Auclert and Rognlie (2018), Beaudry et al. (2018), Challe et al. (2017), Chamley (2014), Den
Haan et al. (2018), Heathcote and Perri (2018), Kekre (2018), McKay and Reis (2017), Ravn and Sterk
(2017, 2018) and Werning (2015) for alternative formulations of this feedback loop. Challe et al. (2017),
Den Haan et al. (2018) and Ravn and Sterk (2017) provide quantifications of this feedback loop for the U.S.
and the euro area.

2In Representative-Agent New Keynesian models, persistent productivity shocks move the IS curve that
determines the dynamics of the output gap, while cost-push shocks move the Phillips curve that determines
the dynamics of inflation (see Clarida et al., 1999; Gali, 2008; Woodford, 2003).
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stabilised by the central bank in order to avoid ineffi cient fluctuations in aggregate demand,

output, employment and prices. The paper characterises the path of the policy rate that

best achieves this stabilisation.

To understand why and how the precautionary motive affects the optimal path of the

policy rate, consider first the response to a contractionary cost-push shock, that is, an ex-

ogenous increase in unit production costs that is passed through to final goods prices. With

time-variations in desired precautionary savings the optimal response of the policy rate is

in general ambiguous. On the one hand, the central bank should act to mitigate the di-

rect inflationary impact of the shock, which typically commands a persistent increase in

the policy rate. On the other hand, the shock harms job creation and sets in motion a

deflationary feedback loop between unemployment risk and aggregate demand; this calls

for a muted, or even reverted, response of the policy rate. Under a parametric restric-

tion that gives the optimal response of the policy rate in closed form, these two effects

can be additively decomposed into a perfect-insurance response and an imperfect-insurance

correction. The perfect-insurance response calls for an increase in the policy rate, but the

imperfect-insurance correction pushes the policy rate in the opposite direction and is greater

the larger workers’mean consumption drop upon unemployment (a summary measure of the

lack of consumption insurance). Away from this parametric restriction the contribution of

imperfect insurance can be recovered numerically by comparing the optimal responses of the

policy rate in the imperfect-insurance economy and in the perfect-insurance benchmark. In

the calibrated imperfect-insurance model the central bank adopts a much more accommoda-

tive stance after a contractionary cost-push shock in order to offset its ineffi cient impact on

aggregate demand; in most specifications the policy rate should be persistently lowered, not

raised, after the shock. Moreover, implementation of the optimal path of the policy rate is

effective, in that it breaks the deflationary spiral and takes the aggregate dynamics of the

imperfect-insurance economy close to that of the perfect-insurance benchmark.

Uninsured unemployment risk also affects the optimal response of the policy rate to

productivity shocks in important ways. Indeed, a persistent productivity-driven contraction

(say) generates an increase in unemployment risk and elicits a precautionary response on
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the part of the households. The resulting fall in aggregate demand exerts an ineffi cient

downward pressure on inflation and employment that the central bank must stabilise. I

show that under imperfect insurance the required degree of policy accommodation after

a contractionary productivity shock depends on the two forces that ultimately determine

workers’consumption response, namely the precautionary motive (against unemployment

risk) and aversion to intertemporal substitution (as determined by the expected path of the

real wage). The optimal policy is to cut the policy rate whenever the precautionary motive

dominates aversion to intertemporal substitution. This happens to be the case under my

baseline calibration, but even away from it, any plausible alternative calibration implies that

substantially more accommodation against contractionary shocks is needed under imperfect

insurance than under perfect insurance. Finally, just as in the case of cost-push shocks,

implementation of the optimal policy after a productivity shock successfully undoes much

of the propagating effect of imperfect insurance on aggregate dynamics.

I reach these conclusions by first focusing on a baseline specification of the model, and

then exploring several departures from this baseline. For example, in my baseline imperfect-

insurance model the real wage that splits the match surplus between a firm and a worker is

determined via Nash bargaining, suitably augmented to allow for a plausible degree of wage

inertia. This decentralised wage is generically ineffi cient, but I check that my results continue

to hold when the real wage is the effi cient one —which ensures that my baseline results are

not driven by the ineffi ciency of the decentralised wage. Another feature of the baseline

specification is that there is a set of (constant) taxes and subsides that align the steady state

of the decentralised equilibrium to its constrained-effi cient counterpart. This ensures that

the optimal policy I obtain is not unduly driven by steady state distortions, but this requires

some subsidies that one does not observe in practice. I therefore check that my results

continue to hold without these subsidies. Finally, I systematically compare my baseline

results not only to the perfect-insurance benchmark —wherein the precautionary motive for

saving is shut down—but also to a model specification with a constant wage —wherein the

precautionary motive is maintained but it is aversion to intertemporal substitution that is

shut down instead.
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Broadly speaking, there are two reasons why imperfect insurance may affect positive

or normative conclusions one may reach about monetary policy, relative to the perfect-

insurance benchmark. One reason is that monetary policy may have redistributive effects

on heterogenous households’earnings or wealth. Another reason is that imperfect insurance

brings about countercyclical variations in desired savings that may destabilise aggregate

demand. Much of the recent literature on Heterogenous-Agent New Keynesian (“HANK”)

models has focused on the first issue, largely abstracting from the second (Auclert, 2018;

Bhandari et al., 2018; Kaplan et al., 2018; Gornemann et al., 2016; Nuño and Thomas,

2017.) I do the opposite: I almost entirely bypass distributional issues (by using a model

with minimal household heterogeneity) and I exploit the afforded tractability to study the

optimal stabilisation of aggregate demand when unemployment risk drives a countercyclical

precautionary motive.3

In so doing, my paper also complements two other strands of the literature. One is the

positive analysis of business cycles and monetary policy in Heterogenous-Agent New Keyne-

sian models with Search and Matching (“HANK & SaM”), wherein monetary policy is not

optimized but obeys an ad hoc interest-rate rule (Challe et al., 2017; Den Haan et al., 2017;

Gornemann et al., 2016; Ravn and Sterk, 2017, 2018).4 The model I construct is a variant

of Ravn and Sterk (2018), wherein a time-varying precautionary motive is operative while a

zero debt limit prevents the emergence of a cross-sectional wealth distribution. Relative to

all these papers, the present one shows that it is both desirable and possible to neutralise the

feedback loop between aggregate demand and unemployment risk via a suitable adjustment

of the path of the policy rate. The other strand of the literature that my paper complements

is the analysis of optimal monetary policy in New Keynesian models without a time-varying

precautionary motive. This includes the basic RANKmodel (Clarida et al., 1999; Woodford,

2003; Galí, 2008), as well as extensions with SaM and perfect insurance (Thomas, 2008; Faia,

3In particular, I construct the model in such a way that uninsured unemployment risk is the only source
of cyclicality in the income risk of precautionary savers. Alternative (but potentially controversial) sources
of cyclicality, such as that coming from the distribution of firm rents, fiscal transfers, or the unemployment
insurance scheme, are deliberately shut down.

4Acharya and Dogra (2018), Auclert and Rognlie (2018), Bilbiie (2019) and Werning (2015, Section
3.4) examine the sensitivity of aggregate demand to monetary policy in models wherein the cyclicality of
individual income risk is potentially time-varying but parameterised —rather than derived from an underlying
SaM structure.
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2009; Blanchard and Galí, 2010; Ravenna and Walsh, 2011) or model variants with partial

asset-market participation (Bilbiie, 2008; Bilbiie, 2018; Bilbiie and Ragot, 2017; Debortoli

and Galí, 2018).5 Inasmuch as I consider a cashless economy with Calvo pricing, my model

shares with those the effi ciency of price stability —possibly implemented gradually in case of

short-run policy trade-off (e.g., after to a cost-push shock). However, I stress that the way

the policy rate should be adjusted in response to aggregate shocks in order to achieve this

goal differs considerably when desired precautionary savings are time-varying.

Last but not least, an early paper and a precusor to the present one is Braun and

Nakajima (2012), wherein the optimal monetary-policy response to productivity shocks

is studied within a zero-liquidity HANK economy. My analysis extends theirs in several

directions, notably by considering transitory idiosyncratic (i.e., unemployment) shocks, an

endogenous cyclicality of income risk, as well as ineffi cient cost-push shocks.

Section 2 presents the model and characterises the equilibrium. Section 3 derives the

constrained-effi cient allocation and associated steady state. Section 4 calibrates the model

and studies two positive-policy benchmarks, namely one with flexible prices and the other

with a simple interest rate rule. Section 5 formulates and solves the optimal monetary policy

problem.

2. The model

2.1. Households. Time is discrete: t ∈ {0, 1, ...}. Households are of two types: there

is a unit measure of “workers”, who can be employed or unemployed, and a measure ν > 0

of “firm owners”who manage the firms and collect dividends. All households are infinitely-

lived and discount the future at the factor β ∈ [0, 1), and none of them can borrow against

future income.
5Two papers examine optimal unemployment insurance (UI) policies under the same frictions as those

I consider: McKay and Reis (2017), who show that they raise the optimal ex ante level of UI (due to
its role as an automatic stabiliser), and Kekre (2018), who show that they rationalise state-contingent UI
duration. One advantage of monetary policy over state-contigent UI is that a change in the policy rate
can be implemented readily and at virtually no cost to the public authority (aside from porential losses
in seignoriage revenue). But UI polices can usefully complement monetary policy in situations where the
policy rate is constrained (e.g., by an effective lower bound).
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Workers. A worker i ∈ [0, 1], who can be employed or unemployed, chooses the con-

sumption sequence {ci,t+k}∞k=0 that maximises V
i
t = Et

∑∞
k=0 β

ku (ci,t+k) , where ci,t ≥ 0 is

consumption and ei,t ∈ {0, 1} worker’s i status in the labour market —with ei,t = 1 if the

worker is employed and 0 otherwise. Et is the rational-expectations operator and u (·) is a

period utility function such that u′ > 0 and u′′ < 0 for all c ≥ 0. Employed workers earn the

real wage wt > 0, while unemployed workers earn the exogenous home production income

δt ∈ (0, wt). Workers transit randomly between labour market statuses and the associated

income risk is uninsured. The budget and borrowing constraints of worker i ∈ [0, 1] at date

t are given by, respectively:

ai,t + ci,t = ei,twt + (1− ei,t) δt +Rtai,t−1 and ai,t ≥ 0, (1)

where ai,t is the real value of worker’s bond wealth at the end of date t andRt the gross real re-

turn on assets. Workers hold no wealth initially, i.e., ai,t−1 = 0 for all i ∈ [0, 1]. Workers’op-

timal consumption-saving choices must satisfy the Euler condition βEt[u′ (ci,t+1)Rt+1/u
′ (ci,t)]

≤ 1, with an equality if the borrowing constraint is slack and a strict inequality if it is bind-

ing.

Firm owners. Firm owners share the period utility function ũ (c), with ũ′ > 0 and

ũ′′ ≤ 0, which may differ from u (c).6 They do not face any idiosyncratic income risk, and

they all hold the same asset wealth aF−1 at the beginning of time; they thus stay symmetric

at all times and I denote their common individual consumption and end-of-period asset

wealth by cFt and a
F
t , respectively. In every period they get an equal share of the aggregate

dividend Dt that results from firms’rents (see below), as well as a home production income,

of amount $ ≥ 0 in the aggregate, and a lump sum fiscal transfer, of amount τ t in the

aggregate. A firm owner thus maximises V F
t = Et

∑∞
k=0 β

kũ
(
cFt+k

)
, subject to:

aFt + cFt = (Dt +$ + τ t) /ν +Rta
F
t−1 and aFt ≥ 0. (2)

6As shown in Section 3, the preferences of workers and firm owners will affect the effi cient sharing of
aggregate risk between the two groups.



uninsured unemployment risk and optimal monetary policy 8

Firm owners hold no wealth initially, i.e., aFt−1 = 0. Given their preferences and con-

straints, the optimal consumption plan of a firm owner must satisfy Et[MF
t+1Rt+1] ≤ 1, where

MF
t+1 denotes firm owners’common marginal rate of intertemporal substitution (“MRIS”

henceforth):

MF
t+1 = βũ(cFt+1)/ũ(cFt ). (3)

This market structure with two household types is consistent with the fact that in practice

equity holding (whether public or private) is limited, while the MRIS of households who own

firms —and consequently decide for them—differs from that of households enjoying labour

earnings only. Moreover, Werning (2015), Bilbiie (2018) and others have stressed that the

cyclicality and distribution of household transfers (including firm rents) in HANK models

may affect, in a somewhat artificial —and potentially controversial—way the cyclicality of

income risk and implied savings response of precautionary savers. This issue does not arise

here because, as explained below, in equilibrium only the workers have a precautionary

motive for saving while only the firm owners collect firm rents and fiscal transfers.7

2.2. Firms. The production structure has three layers: intermediate goods firms pro-

duce out of workers’labour units, which they hire in a frictional labour market with search

costs. Those goods are sold to wholesale firms, each of whom turn them into a differentiated

good. Finally, wholesale goods are purchased and reassembled by final goods firms, the

output of which is used for consumption and search costs.

Final goods sector. There is a representative, competitive firm that produces the

final good by combining wholesale inputs according to the function:

yt =

(∫ 1

0

y
θ−1
θ

h,t dh
) θ

θ−1

, (4)

where yh,t is the quantity of wholesale good h used in production and θ > 1 the cross-partial

elasticity of substitution between wholesale inputs. Denoting ph,t as the price of wholesale

good h in terms of the final good, the optimal combination of inputs gives the following

7More generally, in the present paper I deliberately neutralise any source of cyclicality in the income risk
of precautionary savers, other than that arising from time-variations in unemployment risk.
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demands:

yh,t = ytp
−θ
h,t , h ∈ [0, 1] , (5)

while the zero-profit condition in the final goods sector implies that
∫ 1

0
p1−θ
h,t dj = 1.

Wholesale sector. Wholesale firm h ∈ [0, 1] turns every intermediate good into a

specialised good that is monopolistically supplied to the final goods sector. The profit of

wholesale firm h is

ΠW
h,t = yh,t[ph,t − ϕt(1− τW )], (6)

where ϕt is the price of intermediate goods in terms of the final goods and τ
W a production

subsidy to the wholesale sector, financed through a lump sum tax on firm owners.8

Wholesale firms face nominal pricing frictions a la Calvo: in every period a fraction

1−ω ∈ [0, 1] of the firms are able to reset their price optimally, while the other firms keep it

unchanged. The resulting time-varying distribution of wholesale prices can be summarised

by three moments, namely the optimal reset price common to all price-resetting firms p̃t,

final good inflation πt, and the price dispersion index ∆t ≡
∫ 1

0
p−θh,tdh ≥ 1 (see Woodford,

2003, for details). These moments evolve as follows. First, the optimal reset price is given

by:

p̃t =
θ(1− τW )Ξt

(θ − 1) Σt

, (7)

where Ξt and Σt obey the following forward recursions:

Ξt = ϕtyt + ω (1 + πt+1)θ Et[MF
t+1Ξt+1] and Σt = yt + ω (1 + πt+1)θ−1 Et[MF

t+1Σt+1],

and MF
t+1 is given by equation (3).

Second, current inflation depends on the optimal reset price according to:

πt = [ω−1 −
(
ω−1 − 1

)
(p̃t)

1−θ]
1
θ−1 − 1. (8)

8This subsidy will serve in Section 3 to correct the steady-state distortion due to monopolistic competi-
tion.
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Third, the dynamics of the price dispersion index as a function of (p̃t, πt) is given by:

∆t = (1− ω) (p̃t)
−θ + ω (1 + πt)

θ ∆t−1, (9)

and I assume that prices are symmetric at the beginning of time (i.e., ∆−1 = 1).

From equations (5)—(6) and the definition of∆t, the total rent generated by the wholesale

sector, which will contribute to the aggregate dividend paid out to firm owners, is given by:

ΠW
t =

∫ 1

0

ΠW
h,tdh = yt[1− ϕt

(
1− τW

)
∆t]. (10)

Intermediate goods sector and labour market flows. Intermediate goods firms

produce zt units of goods out of one unit of labour, and labour productivity evolves as

follows:

zt = 1 + µz (zt−1 − 1) + εz,t, (11)

where µz ∈ [0, 1), εz,t is a white noise process with mean zero, and εz,t and zt have small

bounded support.

These firms hire labour in a frictional market with search costs. At the beginning of

date t a constant fraction ρ ∈ (0, 1] of existing employment relationships are destroyed,

at which point the size of the unemployment pool goes from 1 − nt−1 to 1 − (1− ρ)nt−1.

At that time intermediate goods firms post vt vacancies, at a unit cost η > 0, a random

matching market opens and m (1− (1− ρ)nt−1)γ v1−γ
t (with m > 0 and γ ∈ (0, 1)) new

employment relationships are formed.9 It follows that the job-finding and vacancy-filling

rates are, respectively:

ft = m

[
vt

1− (1− ρ)nt−1

]1−γ

and λt = m

[
vt

1− (1− ρ)nt−1

]−γ
. (12)

9This timing assumption implies that firms may fill vacancies within the period in which they are opened,
while workers may change jobs without going through a period of unemployment. This is the standard
timing assumption for business-cycle models calibrated at the quarterly frequency, since it accommodates
labor market flows taking place within the period (see, e.g., Den Haan et al., 2000; Blanchard and Gali,
2010; Ravena and Walsh, 2011; Gornemann et al., 2016; Ravn and Sterk, 2017, 2018; Challe et al., 2017;
and many others).



uninsured unemployment risk and optimal monetary policy 11

The value to firm owners of an employment relationship, denoted Jt, is the sum of a flow

payoff —the after-tax rent generated by the match—and a continuation value that depends

on the survival rate of the match and firm owners’MRIS:

Jt = (1− τ I)(ztϕt − wt + T − ζt) + (1− ρ)Et[MF
t+1Jt+1], (13)

where τ I ∈ [0, 1] is the corporate tax rate and T a wage subsidy. ζt is a random wage tax

evolving as follows:

ζt = µζζt−1 + εζ,t, (14)

where µζ ∈ [0, 1) and εζ,t is a white noise process with mean zero, and εζ,t and ζt have small

bounded support.

The taxes and subsidy τ I and T will serve the same purpose as the production subsidy

τW in the wholesale sector: they will be set in such a way that the steady state of the

decentralised equilibrium be constrained-effi cient. Unlike in the basic RANK model the

production subsidy τW does not suffi ce for this here because the economy has two additional

distortions, namely congestion externalities in the intermediate-good sector (due to labour-

market frictions) and imperfect insurance against unemployment risk. We will see in Section

3 below how τW , τ I and T should be set to ensure to constrained-effi ciency of the steady

state. Finally, the random tax ζt perturbs the real marginal cost of intermediate goods firms

and is partly passed through to wholesale goods prices, and ultimately to final good prices.

It will manifest itself as a cost-push shock and make the decentralised equilibrium of the

stochastic economy generically constrained-ineffi cient.10 The net proceeds of all taxes and

subsidies to the intermediate goods sector are rebated lump-sum to firm owners (they enter

the transfer τ t in equation (2)).

Under free entry, the cost of a vacant job (η) must equate its expected payoff (λtJt, since

vacancies can be filled immediately). Then, using equations (12)—(13) and the fact that

10When the aggregate supply block of the model takes the form of a simple New Keynesian Phillips
curve (which is the case under the parametric restrictions of Section 5.1), then a change in the random
distortionary tax ζt is isomorphic to a shock to the cross-partial elasticity of substitution between wholesale
goods θ (i.e., it shows up a residual in the New Keynesian Phillips curve).
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λ−1
t = f

γ
1−γ
t /m

1
1−γ , I get the following forward recursion for the job-finding rate:

f
γ

1−γ
t = (1− τ I)m

1
1−γ η−1(ztϕt − wt + T − ζt) + (1− ρ)Et[MF

t+1f
γ

1−γ
t+1 ]. (15)

Since employed workers are separated from their firm with probability ρ at the very

beginning of the period, but can immediately find a job with probability ft, the period-to-

period transition rate from employment to unemployment is given by:

st = ρ (1− ft) . (16)

Note that it is the transition probability from employment to unemployment st, and

not the beginning-of-period match destruction rate ρ per se, that measures the extent of

unemployment risk faced by employed workers; consequently, it is this variable that will

determine their desired precautionary savings. The transition rates st and ft are perfectly

correlated here because ρ is constant by assumption, but it would be straightforward to

introduce shocks to ρ to relax this tight connection.11

From (ft, st) in equations (15)—(16), we obtain the law of motion for total employment:

nt = ft (1− nt−1) + (1− st)nt−1. (17)

Finally, from the flow payoff in equation (13), the aggregate rent generated by interme-

diate goods firms at time t is:

ΠI
t = nt(1− τ I)(ztϕt − wt + T − ζt)− ηvt, (18)

11Shimer (2005) showed that high-frequency variations in U.S. unemployment are dominated by fluctua-
tions in the exit flow from unemployment. This implies that if one time-aggregates labor market flows to
compute lower-frequency (e.g., quarterly) transition rates between employment and unemployment, then
both rates have a common underlying driver —namely, the sequence of higher-frequency job-finding rates —
and are thus highly correlated. It follows that a specification like equation (16) captures well the dynamics
of quarterly labor market flows in the US. For example, Challe et al. (2017) treat ρ as a residual after
time-aggregating ft and st and find that it moves very little over the business cyle. In Section 5.2 below the
model is calibrated on the basis of quarterly US data, so the specification of st in equation (16) is warranted
(but again, it can be relaxed a no cost).
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so the aggregate dividend Dt paid out to firm owners in equation (2) is Dt = ΠW
t + ΠI

t .

Ultimately, firms’vacancy-posting decisions —and implied employment dynamics— de-

pend on the real wage wt. In the remainder of this section I fully characterise the equi-

librium under the minimal requirement that all matches be bilaterally effi cient —that is, wt

is suffi ciently low for firms to find it worthwhile to post vacancies, and at the same time

suffi ciently large for matched workers to accept job offers. In Section 4 below I uniquely

pin down the wage through generalised Nash bargaining, suitably augmented to generate a

plausible degree of wage inertia.

2.3. Policymakers. There are two policymakers, namely the government and the cen-

tral bank. The government sets the (constant) taxes and subsidies τW , τ I and T and rebates

the (possibly negative) net revenue to firm owners in a lump sum manner. From equations

(10) and (18), the net transfer to firm owners is:

τ t = τ Int (ztϕt − wt)︸ ︷︷ ︸
corporate taxes

− τWϕt∆tyt︸ ︷︷ ︸
production subsidies

− nt(1− τ I) (T − ζt)︸ ︷︷ ︸
wage subsidies

. (19)

In most of my analysis I assume that the taxes and transfers are set in a way that de-

centralises the constrained-effi cient allocation in the absence of aggregate shocks. However,

in Section 5.2 I also explore a model variant wherein the government has a more restricted

set of instruments, which results in a distorted steady state.

The central bank controls the nominal interest rate on bonds it (the “policy rate”). The

gross real ex post return that results from the policy rate and the dynamics of inflation is:

Rt = (1 + it−1) / (1 + πt) . (20)

2.4. Market clearing. Given the measures of workers and firm owners (1 and ν, respec-

tively) and the market and home production of final goods, the market-clearing conditions

for bonds and final goods are given by
∫

[0,1]
ai,tdi + νaFt = 0 and

∫
[0,1]

ci,tdi + νcFt + ηvt =

yt + (1− nt) δt + $, respectively. The supply of intermediate goods is ztnt, while from (5)

the demand for intermediate goods is
∫

[0,1]
yh,tdh = ∆tyt. Hence, clearing of the market for
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intermediate goods requires:

∆tyt = ztnt (21)

2.5. Equilibrium: definition and characterisation. An equilibrium is a set of se-

quences of (i) optimal households’decisions ({cFt , aFt , cit, aFt , ait}∞t=0, i ∈ [0, 1]), firms’decisions

({yt, yh,t, , p∗t}∞t=0, h ∈ [0, 1]) and central bank’s decisions ({it}∞t=0) given prices; and (ii) ag-

gregate variables {vt, Jt, λt, ft,st, nt,∆t,ϕt,πt,Π
W
t ,Π

I
t , Rt}∞t=0 that solve equations (8) to (21),

together with the free entry condition η = λtJt.

Under the assumptions made so far, the model does not generate a distribution of wealth

across workers, despite imperfect unemployment insurance. The reason for this is that with

a zero debt limit no one is issuing the assets that the precautionary savers would be willing to

purchase for self-insurance. The structure of the equilibrium here is the same as in Ravn and

Sterk (2017, 2018). Intuitively, employed workers’precautionary-saving behaviour pushes

down the real interest rate below households’common rate of time preference. And at that

interest rate, both unemployed workers (who face a rising expected income profile) and firm

owners (who face no idiosyncratic risk) would like to borrow against future income, but they

cannot due to a binding debt limit. Hence the supply of assets is zero in equilibrium and

all households turn out to consume their current income. This feature of the equilibrium

allows the precautionary motive to be operative —as shows up in the fact that the interest

rate fluctuates below households’rate of time preference—without the need of tracking a

time-varying wealth distribution.

Two remarks about the quantitative implications of this no-trade property are in order

here. First, since in equilibrium all households consume their current income, δt/wt should

not be interpreted as the unemployment insurance replacement ratio but, rather, as the

ratio of consumption levels across employment statuses. In my calibration below I set

δ/w = 0.9, implying a 10% consumption loss upon unemployment, in the lower range of

available estimates for the US and the euro area.12 Therefore the zero-liquidity property

will not translate into an unrealistically low level of consumption insurance that could

overestimate the precautionary motive. Second, one may argue that it is liquid wealth, rather

12See Den Haan et al. (2018, Appendix A) for a discussion of the evidence on this parameter.
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than the entire net worth, that households can use to insulate nondurables consumption from

income fluctuations, and liquid wealth is very low for many households in the US (see, e.g.,

Challe et al., 2017). For both reasons, focusing on an equilibrium with zero liquidity may

not hugely distort the response of desired savings to aggregate shocks.

The existence of the no-trade equilibrium can be established formally by spelling out the

corresponding equilibrium conditions and showing that they hold in steady state. Provided

that aggregate shocks have small bounded support (my maintained assumption), then these

conditions will also hold in stochastic equilibrium. The first property of the equilibrium is

that employed workers do not face a binding debt limit (because they wish to precautionary-

save). Hence their Euler condition holds with equality:

Et[M e
t+1Rt+1] = 1, (22)

where their MRIS, incorporating both aggregate and idiosyncratic risk, and taking account

of the fact that all workers consume their current income (δt or wt), is given by:

M e
t+1 = β

(1− st+1)u′ (wt+1) + st+1u
′ (δt+1)

u′ (wt)
. (23)

The MRIS in equation (23) summarises an employed workers’desire to save and it is

driven by two forces here: aversion to intertemporal substitution and the precautionary

motive. Aversion to intertemporal substitution shows up in the fact that transitory wage

fluctuations affect M e
t+1: employed workers wish to save more for future consumption when

the current wage is unusually high, but less when the wage is unusually low. The precau-

tionary motive shows up in the fact that changes in unemployment risk also affectM e
t+1: the

greater this risk (as measured by st+1), the stronger the desire to save (since by assumption

δt < wt ∀t, hence u′ (wt+1) > u′ (δt+1)). Hence, by equation (22), a declining wage profile or

an increase in unemployment risk both exert a downward pressure on the equilibrium real

interest rate Rt+1. Holding the policy rate it constant, a fall in Rt+1 is brought about by

deflationary pressures in the current period associated with a rise in expected inflation.

The second feature of the equilibrium is that unemployed workers face a binding debt
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limit, i.e., their Euler condition holds with strict inequality:

Et[Mu
t+1Rt+1] < 1, (24)

where

Mu
t+1 = β

(1− ft+1)u′ (δt+1) + ft+1u
′ (wt+1)

u′ (δt)
.

Conditions (22) and (24) can jointly hold because employed workers face a decreasing

expected consumption profile —due to the risk of losing one’s job—while unemployed workers

face a rising expected consumption profile —due to the possibility of finding one. Hence

current marginal utility is low relative to expected marginal utility for the former, while the

opposite is true for the latter.

The third feature of the equilibrium is that firm owners also face a binding debt limit,

i.e.,

Et[MF
t+1Rt+1] < 1. (25)

Conditions (22) and (25) are mutually consistent because employed workers’precaution-

ary motive take the gross real interest rate below 1/β, while firm owners face no idiosyncratic

income shocks and hence have no reason to precautionary-save. Thus, instead of accepting

a low return on their savings, they turn (frustrated) borrowers and consume their current

income in every period. From equations (10), (18), (19) and (21), the consumption of a firm

owner, after all taxes and subsidies have been rebated lump-sum, is given by:

cFt = ν−1(ΠW
t + ΠI

t + τ t) = ν−1(nt(zt/∆t − wt)− ηvt +$). (26)

Equation (26) shows that, holding labour market conditions (nt, vt, wt) (hence workers’

welfare) fixed, price dispersion ∆t creates a productive ineffi ciency that is directly borne by

firm owners. By how much this ineffi ciency is passed through to workers ultimately depends

on the cyclicality of the real wage (discussed below).

It is easy to verify that equations (22), (24) and (25) hold in steady state. From (22)—(23),
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in steady state R is given by:

R = 1 + i = β−1 [1− s+ su′ (δ) /u′ (w)]
−1
< β−1. (27)

For f ∈ (0, 1) we have s = ρ (1− f) > 0 and hence (since δ < w), Mu < M e and MF =

β < M e. Thus, with M eR = 1 —i.e., employed workers are not borrowing-constrained—we

have Mu,MF < M e —so that both unemployed workers and firm owners are. The same is

true in stochastic equilibrium provided that aggregate shocks are suffi ciently small.13

3. Constrained efficiency

The economy is potentially plagued by four distortions: monopolistic competition in the

wholesale sector, asymmetric wholesale prices due to nominal rigidities, congestion exter-

nalities in the labour market, and imperfect insurance against unemployment risk. In what

follows I characterise the constrained-effi cient allocation of the economy and derive the val-

ues of steady-state inflation (π) and the tax instruments (τW , T, τ I) that decentralise this

allocation in steady state.

3.1. Social welfare function. Since in equilibrium all households consume their current

income in every period, the ex ante intertemporal utilities of employed workers, unemployed

workers and firm owners are given by, respectively:

V e
t = u(wt) + βEt[(1− st+1)V e

t+1 + st+1V
u
t+1], (28)

V u
t = u (δt) + βEt[ft+1V

e
t+1 + (1− ft+1)V u

t+1], (29)

and

V F
t = ũ(cFt ) + βEt[V F

t+1]. (30)

The social welfare functionWt aggregates the intertemporal utilities of all the households,

potentially assigning different welfare weights to households that are ex ante heterogenous

13I am focusing here on the unique equilibrium that is robust to the introduction of an arbitrarily small
amount of liquidity (e.g., through a marginal relaxation of the zero debt limit). See Werning (2015, Sec-
tion 3.1) for further discussion of equilibrium uniqueness and selection in zero-liquidity, incomplete-market
economies.
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(i.e., workers versus firm owners). Normalising the welfare weight of workers to 1 and letting

Λ ≥ 0 denote the relative welfare weight of firm owners, the social welfare function is:

Wt = ntV
e
t + (1− nt)V u

t + ΛνV F
t .

Using (17), (26) and (28)—(30) and rearranging, Wt can be written recursively as follows:

Wt = Ut + βEt[Wt+1], (31)

where the flow payoff Ut is given by:

Ut = ntu (wt) + (1− nt)u (δt)︸ ︷︷ ︸
workers

+ Λνũ ([$ + nt (zt/∆t − wt)− ηvt] /ν)︸ ︷︷ ︸
firm owners

. (32)

3.2. Constrained-effi cient allocation. The constrained-effi cient allocation is the se-

quence {∆t, wt, nt, vt}∞t=0 that maximises Wt in (31)—(32), given (i) the initial conditions

(n−1,∆−1), (ii) the law of motion for ∆t (equation (9)) and (iii) the economy-wide relation-

ship between employment and vacancies nt = (1− ρ)nt−1 + (1− (1− ρ)nt−1)γ v1−γ
t , which

can equivalently be written as follows:

vt =

[
nt − (1− ρ)nt−1

(1− (1− ρ)nt−1)γ

] 1
1−γ

, (33)

and then substituted into (32). Equation (33) makes clear that, at any level of employment

inherited from the previous period (i.e., (1− ρ)nt−1), raising current employment nt can

only be achieved by raising vacancies and hence the total hiring cost borne by firm owners.

On the other hand, inherited employment (1− ρ)nt−1 is a state variable, which affects the

amount of vacancies needed to reach a particular value of nt in two ways. First, high past

employment reduces the need for new vacancies (the numerator); and second, it reduces the

size of the unemployment pool, which makes hiring more diffi cult and raises the need for

new vacancies.
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Formally, the constrained-effi cient allocation is the solution to

Wt (nt−1,∆t−1, zt) = max
p̃t,wt,nt≥0

{Ut + βEt[Wt+1 (nt,∆t, zt+1)]} , (34)

subject to (8), (9) and (33). From equations (8)—(9), it is clear that p̃t = 1 for all t is

optimal: starting from ∆−1 = 1, this sequence ensures that (πt,∆t) = (0, 1) for all t, which

maximises Ut in (32) in every period. Hence the constrained-effi cient allocation has zero

inflation and symmetric wholesale prices at all times. Given this and (32), the value of wt

that maximises Wt satisfies:

u′ (w∗t ) = Λũ′
(
ν−1 [n∗t (zt − w∗t )− ηv∗t +$]

)
, (35)

where starred variables denote their values in the constrained-effi cient allocation.

The latter condition states that the effi cient wage is that which equates the (weighted)

marginal utilities of employed workers and firm owners. This condition determines how the

burden of aggregate shocks is effi ciently shared between workers and firm owners over the

business cycle. In the extreme case where firm owners are risk neutral, the condition results

in the constant wage w∗t = u′−1 (Λ) because firm owners are happy to fully insure risk-averse

workers against wage fluctuations. Away from this limiting case effi ciency requires employed

workers to bear some of the burden of aggregate fluctuations through time-variations in their

wage income.

Finally, the first-order and envelope conditions with respect to nt give, respectively:

u (w∗t )− u (δt) + Λũ′
(
cF∗t
) [
zt − w∗t −

η

(1− γ)λ∗t

]
+ βEt

[
∂Wt+1 (nt, 1, zt+1)

∂nt

]
= 0

and
∂Wt (nt−1, 1, zt)

∂nt−1

= Λũ′
(
cF∗t
)
η
∂vt
∂nt−1

=
Λũ′

(
cF∗t
)
η (1− ρ) (1− γf ∗t )

λ∗t (1− γ)
.

Combining those two expressions, and using equations (16)—(17) and the fact that λ∗−1
t =

f
∗ γ
1−γ

t /m
1

1−γ , gives the following forward recursion for the constrained-effi cient job-finding
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rate:

f
∗ γ
1−γ

t = (1− γ)
m

1
1−γ

η

[
zt − w∗t +

u (w∗t )− u (δt)

u′ (w∗t )

]
+ (1− ρ)Et[MF∗

t+1f
∗ γ
1−γ

t+1

(
1− γf ∗t+1

)
],

(36)

from which I recover the constrained-effi cient employment level n∗t using equations (16)—(17).

It is instructive to compare the dynamics of employment in the constrained-effi cient

allocation with that in decentralised equilibrium. Since equations (16)—(17) apply to both

dynamics, this amount to comparing the two recursions for the job-finding rate, namely (15)

and (36). First, in decentralised equilibrium the flow payoff to intermediate goods firms,

and hence the job-finding rate, are affected by variations in intermediate goods prices ϕt,

while they are not in the constrained-effi cient allocation (where the corresponding price is

equal to 1 at all times). Second, even without relative price distortions the decentralised

equilibrium is generically not constrained-effi cient in the absence of appropriate taxes and

transfers. On the one hand, imperfect insurance tends to make the decentralised job-finding

rate excessively low, since firm owners do not internalise the impact of their hiring intensity

on workers’ idiosyncratic income risk. Formally, this shows up in the fact that [u (w∗t ) −

u (δt)]/u
′ (w∗t ) > 0 in equation (36), which calls for a positive wage subsidy T in equation

(15). On the other hand, congestion externalities cause intermediate goods firms to crowd

out each other in the labour market, which tends to generate excessive hiring. There are

two sides to this crowding out: a static one operating in the current period, which shows up

in the fact that 1− γ < 1 in equation (36); and an intertemporal one coming from the fact

that current hiring persists over time (whenever ρ < 1) and hence crowds out hiring in the

next period —which shows up in the term 1−γf ∗t+1 in equation (36). Both types of crowding

out call for setting τ I > 0 in equation (15).

3.3. Constrained-effi cient steady state. The restriction that taxes and subsidies

(τW , τ I , T ) are constant implies that they cannot, in general, decentralise the constrained-

effi cient allocation in the presence of aggregate shocks.14 However, the government can

at least set the tax instruments, and the central bank trend inflation, in such a way that

14For example, equation (15) makes it clear that a suitably time-varying wage subsidy Tt would undo the
impact of ineffi cient cost-push shocks, while a constant subsidy cannot.
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(π, τW , τ I , T ) decentralise the constrained-effi cient allocation in steady state. First, as shown

above the constrained-effi cient allocation has (p̃t, πt,∆t) = (1, 0, 1) ∀t, while from equation

(7) we have ϕt = (θ − 1) /θ(1− τW ) ∀t in any zero-inflation steady state. Then, comparing

equations (15) and (36), we get that the steady state of the decentralised equilibrium is

constrained-effi cient provided that:

π = 0, τW =
1

θ
, T =

u (w∗)− u (δ)

u′ (w∗)
and τ I = 1− (1− γ) [1− β (1− ρ)]

1− β (1− ρ) (1− γf ∗) , (37)

where f ∗ satisfies

f ∗
γ

1−γ =
(1− τ I)m

1
1−γ

η [1− β (1− ρ)]

[
1− w∗ +

u (w∗)− u (δ)

u′ (w∗)

]
, (38)

and w∗ solves the steady state counterpart of equation (35). Intuitively, inflation creates

relative price dispersion in wholesale prices and having π = 0 eliminates this distortion; the

production subsidy τW corrects for monopolistic competition and is greater when wholesale

goods are less substitutable (i.e., when wholesale firms have more market power); the hiring

subsidy T corrects for the lack of insurance and is greater when the utility cost of falling into

unemployment (u (w∗)−u (δ)) is high; and the corporate tax rate τ I corrects for congestion

externalities in the labour market and is greater when the elasticity of total matches with

respect to vacancies (1− γ) is low. In what follows I assume that (37) always holds, except

in Section 5.2 where I investigate the robustness of my results to the introduction of steady-

state distortions.

4. Positive policy analysis

In this section I study two positive benchmarks that will shed light on the normative results

of the following sections: one in which prices are flexible, and another in which the nominal

interest rate is determined by a simple policy rule. These benchmarks will help understand

the extent to which the traditional conclusions derived in the RANK literature about the

transmission and ultimate goals of monetary policy carry over to my imperfect-insurance

model.



uninsured unemployment risk and optimal monetary policy 22

4.1. The flexible-price model and the policy-rule model. The first benchmark I

use is aflexible-price model, i.e., one in which the share of un-optimised prices ω is set to zero.

The reason for examining this benchmark is that in the RANK model the optimal monetary

policy typically consists in replicating the flexible-price allocation whenever the latter is

constrained-effi cient, which is implemented by tracking the natural interest rate.15 Deriving

the natural interest rate implied by my model will allow me to show that this principle does

extend to my imperfect-insurance model —although the natural interest rate, and implied

optimal policy rate, may behave quite differently than in perfect-insurance economies.

The flexible-price equilibrium is determined as follows. First, given the paths of the

exogenous state (zt, ζt) and the real wage wt, equations (3), (15), (16) and (26) (with∆t = 1)

determine the dynamics of the labour-market transition rates (ft, st). Then, equations (22)—

(23) can be used to recover the corresponding (gross) natural interest rate. Assuming that

a one-off aggregate shock occurs at time 0, the perfect-foresight path of the natural rate is

given by:

Rn
t+1 =

1

M e
t+1

=
β−1u′ (wt)

(1− st+1)u′ (wt+1) + st+1u′ (δt+1)
. (39)

The second benchmark I examine in this section is a version of the baseline model wherein

monetary policy is not optimized, but instead determined by an ad hoc policy rule for the

nominal interest rate. This benchmark is informative for two reasons. First, it clarifies the

monetary transmission mechanism at work in my imperfect-insurance model —an issue that

is distinct from that of the optimality of monetary policy. Second, it will serve to illustrate

the deflationary feedback loop that may arise when monetary policy is not set optimally.

The policy rule I consider has the following simple form:

1 + it = R1−µi (1 + it−1)µi (1 + πt)
3
2

(1−µi) ξt, (40)

where µi parameterises the degree of interest-rate inertia, 2/3 is the elasticity of the policy

15See Clarida et al. (1999), Woodford (2003) and Gali (2008) for the derivation of this principle in the
context of the basic RANK model, and Thomas (2008) and Blanchard and Gali (2010) for its extension to
New Keynesian models with labor-market frictions. When the flexible-price equilibrium is not constrained-
effi cient the optimal policy rate in general departs from the natural rate at least in the short run, and this
will also be true in my model.
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rate to inflation and ξt is an i.i.d. monetary policy shock with mean 1 and small bounded

support.16

4.2. Wage setting. In Section 2 I characterised the decentralised equilibrium under

the minimal requirement that all worker-firm matches be bilaterally effi cient. I now fur-

ther specify the wage-setting process, using the results of Section 3 to make sure that the

decentralised wage is effi cient in steady state.

I assume that the real wage is determined by (generalised) Nash bargaining, possibly

augmented with wage inertia.17 Under this wage-setting mechanism, the (notional) Nash

wage is given by wNt = arg max(SWt )1−αJαt , α ∈ (0, 1) ∀t, where SWt and Jt are the values of

the match to the worker and the firm. Jt is given by equation (13), while SWt = V e
t − V u

t ,

where V e
t and V

u
t are given by equations (28)—(29). Note that S

W
t can be written recursively

as:

SWt = u (wt)− u (δt) + βEt[(1− ft+1 − st+1)SWt+1], (41)

The first-order condition associated with the bargaining problem gives:

(1− α) Jt = αSWt /u
′ (wt) . (42)

The requirement that the steady state be undistorted (my maintained assumption)

uniquely pins down the bargaining weight α. First, observe that the steady state values

of Jt and SWt are given by

J =

[
1− τ I

1− (1− ρ) β

] [
1− w +

u (w)− u (δ)

u′ (w)

]
and SW =

u (w)− u (δ)

1− β (1− s− f)
.

Then, settingw = w∗ in those expressions gives the values of J and SW in the constrained-

effi cient allocation without aggregate shocks. It must thus be that α = [1 +SW/Ju′ (w∗)]−1

in equation (42) for the decentralised wage to be effi cient in steady state.

16For the reasons discussed by Acharya and Dogra (2018), Bilbiie (2019) and Ravn and Sterk (2018),
under countercyclical idiosyncratic risk a suffi cient condition tighter than the Taylor principle is required
for the policy rule to ensure the local determinacy of the equilibrium. This condition is satisfied under my
baseline calibration.
17See, e.g., Krause and Lubik (2007), or Leduc and Liu (2016), for similar specifications.
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As is well known at least since Shimer (2005), a typical feature of calibrated SaM models

with Nash bargaining is to generate too strong a response of the real wage —and thus too

small a response of unemployment—to labour productivity shocks. Moreover, in the present

model the joint cyclicality of wages and unemployment determines the relative strengths of

the two forces that ultimately drive fluctuations in desired savings: the cyclicality of wages

determines changes in desired savings due to aversion to intertemporal substitution, while

the implied cyclicality of unemployment determines changes in desired savings due to the

precautionary motive. To generate a plausible joint cyclicality of wages and employment I

assume that the notional Nash wage (wNt ) is weighted against the long-run wage (w
∗) in

determining the actual wage wt:

wt = (wNt )1−φ (w∗)φ , (43)

where φ ∈ [0, 1] is the degree of wage inertia.18

Discussion. Note that while the Nash-bargained wage wt in equation (43) and the

constrained-effi cient wage w∗t in equation (35) are the same in steady state (by construction),

they generically differ over the business cycle. The constrained-effi cient wage w∗t cannot be

decentralised through Nash bargaining here (whatever the values of α and φ) because the

real wage has a redistributive role —between employed workers and firm owners—, in addition

to determining firms’incentives to hire. As a consequence, the Hosios (1990) criterion that

allows decentralising the constrained-effi cient wage in Representative-Agent economies does

not apply here. However, I verify in Section 5.2 below that the Nash wage with inertia in

equation (43) and the constrained-effi cient wage in equation (35) are almost indistinguishable

in a calibrated version of the model where both wages are parameterised to generate the

18Formally, the assumption that aggregate shocks have small bounded support implies that the real wage
stays inside the bargaining set for any degree of wage inertia. Since this may not hold for large shocks, I
check this condition numerically when feeding the simulated model with actual aggregate shocks. For my
baseline specification (imperfect insurance and wage inertia), I find that it would take implausibly large
aggregate shocks —causing output to fall at least 25% below steady state after a productivity shock, and at
least 12% below steady state after a cost-push shock—for the real wage to exit the bargaining set. Relatedly,
simulated aggregate shocks may in principle cause inequality (25) to be transitorily violated. However,
under the baseline calibration this only occurs for productivity shock causing output to rise by at least 17%
on impact and for cost-push shocks causing output to rise by at least 8% on impact.
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same degree of flexibility.19 As a consequence, the ineffi ciency induced by the Nash wage

with inertia is small and has almost no impact either on the optimal policy or on the implied

aggregate dynamics.

4.3. Calibration. I solve the two benchmarks described above numerically and calibrate

the model as follows (see Table 2 for a summary). A time period is a quarter. The cross-

partial elasticity of substitution θ is set to 6, which generates a mean markup rate of 20%

for wholesale firms. The fraction of unchanged wholesale goods prices ω is set to 0.75, so

that the mean duration of wholesale prices is a year. Regarding labour market variables,

I first set γ to 2/3, very close to the values estimated by Shimer (2005) and Monacelli et

al. (2015). I then have four parameters (η, w, m and ρ) for four targets (f , s, λ and η/w).

Quarterly series for ft and st where computed in Challe et al. (2017) by time-aggregating

monthly series constructed as in Shimer (2005); their averages are very close to 80% and

5%, respectively. The targets for λ and η/w are, respectively, 70% (see, e.g., Den Haan et

al., 2000; Walsh, 2005; Monacelli et al. 2015) and 4.5% (Hagedorn and Manovskii, 2008).

A key parameter in the model is workers’home production δt, which determines the

extent of consumption insurance and hence the strength of the precautionary motive. There

are two important dimensions to take into account in the calibration of δt, namely its mean

(steady-state) level and its cyclicality. Regarding the first dimension, one possibility would

be to parameterise δ/w to match the UI replacement ratio. However, this would under-

estimate the amount of consumption insurance that households effectively enjoy, notably

by ignoring self-insurance as well as other forms of direct, but unobserved or mismeasured,

insurance. Following this concern I broadly interpret (w− δ)/w as the average proportional

consumption loss upon unemployment and give it the (conservative) value of 10% (see den

Haan et al., 2018, Appendix A, for an extensive discussion of this parameter).

Aside from its mean, the cyclicality of δt is also important, for the reason stressed by

Werning (2015) that under incomplete markets the shape of the relevant Euler condition

—and thus the impact of monetary policy—depends on the cyclicality of idiosyncratic income

19Under the Nash wage with inertia, wage flexibility is parameterised by φ, while under the constrained-
effi cient wage it is determined by the relative curvature of workers’and firm owners’utility functions (see
equation (35)).
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risk. In my model the relevant Euler condition is that of employed workers, and the income

risk they are facing may vary for two reasons, namely (i) the risk of falling into unemployment

(st+1) and (ii) the proportional income loss upon unemployment (determined by δt/wt). As

stressed earlier, I entirely focus on the first source of cyclicality in this paper; I thus assume

that δt varies in such a way that δt/wt stays constant over time, at the value δ/w = 0.9 (the

results are almost unchanged if I instead let δt/wt vary such that δt stay constant). Finally,

I interpret vcFt = Dt − τ t + $ as aggregate capital income and accordingly set $ to 1/2;

this generates a labour share of 65%.

Preferences are as follows. I restrict my attention to the following utility functions:

u (c) = ln c and ũ (c) = (c1−σ̃ − 1)/ (1− σ̃) , with σ̃ ≥ 0. (44)

As discussed above, I calibrate the model in such a way that the decentralised real

wage of the flexible-price model (given by equation (43) and parameterised by φ) and the

constrained-effi cient real wage (given by equation (35) and parameterised by σ̃) not only

share the same steady-state value (w∗) but also the same cyclicality.20 More specifically, I

parameterise φ and σ̃ so that both wages match the elasticity of the real wage to labour

productivity, i.e. dlnwt/dln zt. Setting φ = 0.948 generates an elasticity of 1/3 for the

decentralised wage of the flexible-price model, in the ballpark of available estimates —see

e.g. Blanchard and Galí (2010); Hagedorn and Manovskii (2008); Den Haan et al. (2017). I

reach the same elasticity of the constrained-effi cient wage to productivity shocks by setting

σ̃ = 0.283.

Given household preferences, the replacement ratio δ/w and the transition rates in the

labour market (f, s), equation (23) determines the value of the subjective discount factor β

consistent with a given interest rate. Following McKay et al. (2016), β is set such that the

annualised real interest rate (1 + i)4 − 1 ' 4i be equal to 2%.

The steady-state real wage w is determined as follows. Given (44) and targets for f , δ/w

20I explore several departures from this baseline specification in Section 5.2.



uninsured unemployment risk and optimal monetary policy 27

and η/w, the value of w is recovered as the unique solution to equation (38):

w = {1 + ln (δ/w) + (1− γ)−1m−
1

1−γ (η/w) [1− β (1− ρ) (1− γf)] f
γ

1−γ }−1. (45)

Then, given w, the steady-state value of n and v are computed using equations (17) and

(33)).

Table 1. Calibration.

Parameters Targets

Symb Description Value P.I.L. Symb Description Value

β Discount factor 0.989 0.995 4i Annual interest rate 2%

θ Elasticity of subst. 6.000 1
θ−1

Markup rate 20%

ω Share of constant prices 0.750 1
1−ω Mean price duration 1 y.

η Vacancy cost 0.044 0.040 η/w Vacancy cost (% of wage) 4.5%

w Real wage (Eq. (45)) 0.979 0.893 f Job-finding rate 80%

m matching effi ciency 0.765 λ Vacancy-filling rate 70%

ρ Job-destruction rate 0.250 s Job-loss rate 5%

δ Workers’home prod. 0.882 0.888 δ/w Cons. loss upon employment 90%

$ Firm owners’home prod. 1/2 nw
νcF+nw

Labour share 65%

φ Wage inertia 0.948 d lnw

d ln z
Wage cyclicality 1/3

σ̃ Firm owners’risk aversion 0.283 (same) (same) (same)

In what follows I often compare the baseline imperfect-insurance model to a counter-

factual perfect-insurance limit, wherein δ/w is close to 1. In constructing this benchmark

I adjust the deep parameters of the model to keep matching all the steady-state targets in

Table 1 (that is, I interpret the same observed steady-state moments in the right-hand side

of Table 1 as having been generated by the perfect-insurance limit of the model, rather than

by the imperfect-insurance baseline). This requires adjusting β (to keep matching the inter-

est rate, given no precautionary motive), w (since δ/w in equation (45) has changed), and

thereby η (to keep matching η/w, given the new value of w). Those changes are indicated
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in the fourth column of Table 1 (“P.I.L.”.) In theory, given small aggregate shocks (my

maintained assumption), any value of δ/w < 1 is consistent with inequality (25) holding at

all times. However, this inequality may not aways hold in the simulated model, which relies

on “large”shocks. It does hold, however, for all variants of the perfect-insurance limit when

δ/w = 0.993, which is the value I set (the implied dynamics are almost the same as with

values of δ/w much closer to 1.)

4.4. Impulse responses.

Flexible-price model. Figure 1 shows the responses of the natural rate, the real wage

and employment to aggregate shocks under flexible prices. The productivity shock is a 1%

proportional fall in zt while the cost push shock a level increase in ζt of size equal to 1%

of the baseline steady-state wage w, and both shocks have persistence 0.95. My baseline

specification is the imperfect-insurance model with an inertial Nash wage (see Table 1).

This baseline is compared to three benchmarks, namely (i) the perfect-insurance limit of the

imperfect-insurance model, (ii) the imperfect-insurance model with the basic (non-inertial)

Nash wage, and (iii) the imperfect-insurance model with a constant wage (i.e., φ = 1).

To understand those responses, recall the two determinants of employed workers’con-

sumption and saving decisions discussed in Section 2.5. The first determinant is aversion to

intertemporal substitution: an employed worker contemplating a rising wage profile (condi-

tional on remaining employed) is willing to save less in order to consume more in the present

—and the other way around for a worker contemplating a falling wage profile. The second

determinant of employed workers’consumption is the precautionary motive: an employed

worker who expects to lose his or her job with greater probability in the near future tends to

consume less in the present. The competition between the two motives for saving is reflected

in the natural interest rate. Linearising equation (23) (with u (c) = ln c and δt/wt = δ/w)

gives

R̂n
t+1 ' ŵt+1 − ŵt︸ ︷︷ ︸

aversion to intertemporal substitution

− Ψŝt+1︸ ︷︷ ︸,
precautionary motive

(46)

where ŝt is the level deviation of the job-loss rate from steady state, ŵt is the proportional
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Figure 1: Responses to aggregate shocks under flexible prices.

deviations of the real wage from steady state, and

Ψ =
[
s+ ((δ/w)−1 − 1)−1

]−1 ∈ (0, s) .

We observe that ∂Ψ/∂(δ/w) < 0 while limδ/w→1 Ψ = 0: as the mean level of consumption

insurance rises, desired precautionary savings become less and less responsive to changes in

unemployment risk, up to the point of becoming fully unresponsive in the perfect-insurance

limit. In the latter case the natural rate is entirely driven by aversion to intertemporal

substitution; as a consequence, the natural rate necessarily rises after any aggregate shock

that triggers a transitory recession, since the latter is associated with an expected wage

recovery. In contrast, in the constant-wage specification it is ŵt+1 − ŵt that vanishes (since

wt = w at all times). The natural rate is then entirely determined by the precautionary

motive and thus it necessarily falls after a contractionary aggregate supply shock. The

baseline imperfect-insurance model lies between these two extreme cases, because the two
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savings motive are operative and pull the natural rate in opposite directions. This rate falls

under my calibration, but less than in the constant-wage specification.

Figure 1 also shows the responses of the flexible-price economy to aggregate shocks

under imperfect insurance when there is no wage inertia (i.e., φ = 0). Unsurprisingly,

in this scenario the wages fall considerably (about three times more than targeted), and

employment barely falls as a result. It follows that ŵt+1 − ŵt is large and ŝt+1 is small:

aversion to intertemporal substitution largely dominates the precautionary motive in the

determination of desired savings, leading the natural interest rate to rises even more than

in the perfect-insurance limit with an inertial wage.

Last, one observes from Figure 1 that under flexible prices the dynamic responses to

contractionary productivity and cost-push shocks are similar. The reason for this is as

follows. First, under flexible prices job creation is governed by equation (13) with ϕt = 1

at all times; this implies that the direct effects (i.e., holding wt constant) of the two shocks

on job creation are the same (up to their magnitudes). Second, from equations (13) (with

ϕt = 1) and (41)—(42), the difference zt − ζt is also the only determinant of wt; this implies

that the indirect effect (i.e., taking into account the endogenous response of wt) of the two

aggregate shocks on job creation are also the same. By way of consequence, their impact

on employment and unemployment risk, and hence on employed workers’desired savings

and the equilibrium (natural) interest rate, are the same. This exact symmetry is specific

to the flexible-price model; it is broken under sticky prices because ϕt is no longer constant,

at least after a cost-push shock.21

Policy-rule model. Figure 2 shows the responses of the nominal interest rate, inflation

and employment in the sticky-price economy and under the interest-rate rule (40). The

interest-rate inertia parameter is set to µi = 0.85 (see, e.g., Challe and Giannitsarou, 2014,

for a discussion of this parameter), and the size of the shock is set so that the equilibrium

response of the policy rate be of 25 annualised basis points in the imperfect-insurance model.

In this economy, only employed workers respond to changes in the real interest rate (since

the other households face a binding borrowing limit), and the policy shock induces them

21The IRFs are different but close to each other in the policy-rule model, because the policy rule itself
induces correlated changes in ϕt across the two shocks.
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Figure 2: Responses to aggregate shocks under the simple policy rule.

to defer consumption. Interest-rate inertia implies that a contractionary monetary policy

shock (ξt > 0) persistently lowers their consumption demand, which ultimately pulls down

output, employment and inflation. Under imperfect insurance, the resulting increase in

unemployment risk also fosters employed workers’precautionary response, an effect that

tends to magnify the direct impact of the policy shock. The reason why the equilibrium

responses of inflation and employment in the imperfect- and perfect-insurance economies

are close to each other is that the policy rate contains both a direct, exogenous component

(the policy shock) and an indirect, endogenous component (the response to inflation). While
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imperfect insurance tends to magnify the direct effect of the policy shock on aggregates, the

endogenous component leans against the resulting deflationary pressures by providing more

accommodation. As a result, the policy rate rises less under imperfect insurance than under

perfect insurance, and this extra accommodation aligns the equilibrium responses of inflation

and employment under perfect and imperfect insurance.

The responses of the policy rate, inflation and employment to contractionary productivity

and cost-push shocks under the simple policy rule (bottom eight panels of Figure 2) also

inform us about the consequences of an ineffi cient monetary policy. Under perfect insurance,

we recover the usual result that after a contractionary aggregate supply shock of either type,

inflation transitorily rises while employment falls. Under imperfect insurance, however, the

deflationary spiral between uninsured unemployment risk and aggregate demand is set in

motion. As a result inflation falls instead of rising, while employment contracts substantially

more than in the flexible-price equilibrium —as can be verified by comparing the employment

responses to productivity and cost-push shocks in Figures 1 and 2.22

5. Optimal policy analysis

I now derive my main results about optimal monetary policy under uninsured unemploy-

ment risk. In so doing, I proceed in two steps. I first solve in Section 5.1 the optimal policy

problem under a set of parametric restrictions that delivers (i) a simple linear-quadratic ap-

proximation to the optimal policy problem and (ii) a closed-form expression for the optimal

policy rate. Both features help develop intuition about the role of imperfect insurance in af-

fecting optimal policy. In Section 5.2 I solve the full nonlinear Ramsey problem numerically,

away from the parametric restrictions of Section 5.1.

5.1. Optimal policy with full worker reallocation. When aggregate shocks have

small magnitude and the steady state is undistorted, the true optimal policy problem can

be approximated by a simple (and easily interpreted) linear-quadratic (LQ) problem (Wood-

ford, 2010). To arrive at an analytical formula for the optimal policy rate I also impose two

additional restrictions here. The first assumption is that ρ is equal to 1, so that all employed
22In contrast, under perfect insurance employment moves less under sticky prices than under flexible

prices. This is because, under the policy rule, the real interest rate responds less to aggregate shocks than
does the natural rate, leading to an (ineffi cient) buffering of aggregate supply shocks.
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workers are reallocated (either towards other firms or towards unemployment) in every pe-

riod; by way of consequence employment ceases to be a state variable, both in the social

welfare function and in the value function for intermediate goods firms. In Section 5.2 the

parameter ρ is instead calibrated to match the size and cyclicality of empirical worker flows

in the U.S. economy.

The second assumption made here is that the real wage is constant: the inertia para-

meter φ in equation (43) is set to 1, and firm owners are assumed to be risk neutral (i.e.,

ũ (c) = c) for this (a-)cyclicality of the wage to be effi cient (by equation (35)). A constant

wage implies that aversion to intertemporal substitution plays no role in driving employed

workers’desired savings: only the precautionary motive is at work (see equation (46)). In

Section 5.2 I instead calibrate φ and ũ (c) as in Table 1 and I examine how aversion to

intertemporal substitution and the precautionary motive jointly determine workers’savings.

For expositional clarity, but with no loss of generality, in this section I also normalise the

matching effi ciency parameter m to 1 and I set u (c) = ln c.

Constrained-effi cient, natural, and actual employment levels. With ũ (c) = c

and φ = ρ = m = 1, equations (12), (17), (35) and (37) imply that wt = w∗ = u′−1 (Λ) (i.e.,

the real wage is at its constrained-effi cient, constant level w∗ at all times), τ I = γ (i.e., the

corporate tax rate equals the elasticity of matches w.r.t. to the size of the unemployment

pool) and

ft = nt = λtvt = v1−γ
t . (47)

Equation (36) then gives the following expression for the constrained-effi cient level of

employment n∗t :

n∗t =
[
(1− γ) η−1 (zt − w∗ (1 + ln (δ/w)))

] 1−γ
γ , (48)

where as in Section 4 the replacement ratio δ/w is treated as a exogenous composite para-

meter. On the other hand, from equations (15) and (37) the actual level of employment nt

is given by:

nt =
[
(1− γ) η−1 (ϕtzt − ζt − w∗ (1 + ln (δ/w)))

] 1−γ
γ . (49)

Finally, the natural level of employment —i.e., that which would prevail under flexible
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prices—is the same as nt in equation (49) except ϕt = 1 ∀t —reflecting the fact that in this

scenario wholesale firms’real marginal cost is constant across firms and across time.

In the remainder of this section I will use the linearised versions of equations (48) and

(49). Using hatted variables to denote first-order level-deviations from the steady state, we

have:

n̂∗t = Φẑt and n̂t = n̂∗t + Φ(ϕ̂t − ζ̂t), (50)

where Φ = (1− γ)2 n∗
1−2γ
1−γ /γη. Looking at (50) makes it clear that the central bank cannot

replicate the constrained-effi cient allocation after a cost-push shock ζ̂t, because it cannot

simultaneously close the employment gap n̂t − n̂∗t = Φ(ϕ̂t − ζ̂t) and stabilise intermediate

goods prices ϕ̂t.

Linear-quadratic problem. One may now derive the linear-quadratic approximation

to the optimal policy problem. Appendix A shows that, to second order, maximising Wt in

equation (31) is equivalent to minimising

Lt =
1

2
Et

∞∑
k=0

βk(ñ2
t+k + Ωπ2

t+k), (51)

where ñt ≡ n̂t − n̂∗t denotes the employment gap and

Ω = θnΦ/κ and κ = (1− ω) (1− βω) /ω.

The constraints faced by the central bank are the bond Euler equation for employed work-

ers (equations (22)—(23)) and the optimality conditions for firms in the wholesale (equations

(7)—(9)) and intermediate goods (equation (15)) sectors. Linearising equation (16) with

ρ = 1 gives ŝt = −f̂t = −n̂t. Linearising equations (22)—(23) around the zero-inflation

steady state gives:

ΨEt[n̂t+1] = ı̂t − Et[πt+1], (52)

where we recall from equation (46) thatΨ ∈ (0, s) determines the strength of the precautionary-

saving response to changes in unemployment risk. In the perfect-insurance limit (δ/w → 1)

we have Ψ → 0, so the precautionary motive vanishes and labour-market risk no longer
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affects the equilibrium real interest rate. As δ/w falls and Ψ increases, the precautionary

motive gains strength and has a larger impact on the real interest rate.

Under the assumptions of this section, linearising equations (7)—(8) and rearranging gives

the following New Keynesian Phillips curve:

πt = βEt[πt+1] + κϕ̂t. (53)

Note that in the present framework there are two potential sources of procyclical vari-

ations in the real marginal cost faced by intermediate goods firms, which are then passed

through to ϕt (by intermediate goods firms) and ultimately to πt (by wholesale and final

goods firms): variations in the real wage wt as well as in the real marginal search cost η/λt

(this cost is procylical because aggregate hiring costs are convex, given the shape of the

matching function). In the present section the real wage is constant, so the cyclicality of ϕt

is entirely driven by the marginal search costs, but in Section 5.2 both sources of cyclicality

will be playing out.

One may now use equations (11) and (50) to express (52) and (53) in terms of the

employment gap ñt that enters the loss function (51). This gives the two constraints, imposed

by households’and firms’optimal behaviour, that the central bank faces when attempting

to minimise its loss:

ΨEt[ñt+1] = ı̂t − Et[πt+1]− r∗t , (54)

πt = βEt[πt+1] + (κ/Φ)ñt + κζ̂t, (55)

where r∗t is the effi cient real interest rate (in terms of level-deviation from steady state) that

would equate actual employment n̂t with its effi cient level n̂∗t :

r∗t = ΨΦµz ẑt. (56)

The effi cient interest rate covaries with productivity because of the precautionary motive:

a persistent productivity slump worsens future labour market conditions and urges workers
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to save more (and all the more so that Ψ is large). To close the employment gap the

central bank should close the interest-rate gap, i.e., the difference between the actual and

effi cient interest rates (the right hand-side of (54)). However, because the ineffi ciency of the

employment level due to cost-push shocks persists even under flexible prices, the effi cient

interest rate differs from the natural interest rate, which (from equations (14), (50) and

(52)) is given by:

rnt = r∗t −ΨΦµζ ζ̂t. (57)

Just like negative productivity shocks, persistent cost-push shocks reduce future hiring,

which raises unemployment risk and employed workers’precautionary response; thus the

impact of the cost-push shock (ζ̂t) on the natural interest rate (r
n
t ) adds up to the effect of

labour productivity (ẑt) working through the effi cient interest rate (r∗t ).

Optimal Ramsey policy. The optimal Ramsey policy is the sequence of policy rates

{it+k}∞k=0 that minimises Lt in equation (51) subject to (54)—(55). Formally, I first min-

imise (51) subject to (55) to solve for the optimal target sequences {ñt, πt}∞t=0 after one-off

productivity and cost push innovations ẑ0 and ζ̂0 occurring at t = 0. Under full worker

reallocation this problem turns out to be isomorphic to the optimal policy problem in the

textbook RANK model (see, e.g., Galí, 2008, Chap. 5): one minimises a quadratic loss

function featuring inflation and the employment gap (or equivalently the output gap, since

productivity is independent of policy), subject to a linear New Keynesian Phillips curve.

There are some differences in the underlying mechanisms —here the loss function (51) aggre-

gates the welfare of heterogenous households, rather than of symmetric households, and the

procyclicality of the real marginal cost in (53) or (55) comes from the convexity of aggregate

search costs, rather than of the disutility of labour supply—, but these differences do not

change the form of the optimal policy problem. Therefore, they do not change the tradeoffs

that the central bank faces.23

Table 2, derived in Appendix B, shows the optimal targeted paths of inflation and the

employment gap. Because of the isomorphy stressed above, they are the same as in the

23This isomorphy echoes that in Bilbiie (2008) between the RANK model and the Two-Agent New Key-
nesian (“TANK”) model with hand-to-mouth agents.



uninsured unemployment risk and optimal monetary policy 37

textbook RANK model. Following a cost-push shock the central bank promises, and then

implements, a durable recession so as to mitigate the impact of the shock on current inflation;

for example, when α+µζ > 1 the responses of inflation and the employment gap to the shock

are both U-shaped, hence the response of the output gap also is. In contrast, productivity

shocks do not generate a policy trade-off, thereby making it possible for the central bank to

simultaneously close both gaps; this implies that under the optimal policy neither inflation

nor the employment gap respond to ẑ0.24

Table 2. Optimal targets for inflation and the employment gap (see Appendix B).

ñt πt

t = 0 −Υθnζ̂0 Υζ̂0 > 0

t = 1 −Υθn(α + µζ)ζ̂0 Υ(α + µζ − 1)ζ̂0

t ≥ 2 −Υθn(
∑t

k=0 α
kµt−kζ )ζ0 Υ[µtζ − (1− α)

∑t−1
k=0 α

kµt−kζ ]ζ0

Note: Υ = ακ
1−αβµζ

> 0 and α = 1+β+κθn/Φ
2β

[1− (1− 4β(1 + β + κθn
Φ

)−2)1/2] ∈ (0, 1).

Next, one may use equation (54) to infer the sequence of policy rates {it}∞t=0 that im-

plements the target sequences {ñt, πt}∞t=0. First, from equations (54) and (56) we can write

the policy rate as follows:

ı̂t = ΨΦµz ẑt + Ψñt+1 + πt+1. (58)

Substituting the values of ñt+1 and πt+1 in Table 2 into (58) and rearraning gives the

following path of policy rates:

For t = 0: ı̂0(ẑ0, ζ̂0) = Υ(α + µζ − 1)ζ̂0︸ ︷︷ ︸
perfect-insurance response

− ΨΥθn(α + µζ)ζ̂0 + ΨΦµz ẑ0︸ ︷︷ ︸
imperfect-insurance correction

,

24The exact isomorphy between the two optimal policy problems is lost under partial worker reallocation
(studied in the next section), notably because employment becomes a state variable and hence the optimal
policy problem is no longer purely forward-looking. Nevertheless, the same logic applies and the paths of
inflation and employment gaps are very close to their full-reallocation counterparts.
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and, for t ≥ 1:

it(ẑ0, ζ̂0) = Υ[µtζ − (1− α)
∑t

k=0 α
kµt−kζ ]ζ̂0︸ ︷︷ ︸

perfect-insurance response

− ΨΥθn[
∑t

k=0 α
kµt−kζ ]ζ̂0 + ΨΦµt+1

z ẑ0︸ ︷︷ ︸
imperfect-insurance correction

.

Discussion. The optimal policy responses to productivity and cost-push shocks can

be explained as follows. First, after a productivity shocks the policy rate it should perfectly

track movements in the effi cient interest rate r∗t , which is itself equal (under this shock) to the

natural interest rate rnt (see equations (56)—(57)). Because a persistent productivity-driven

contraction (ẑ0 < 0) causes the natural interest rate to fall —due to the precautionary-saving

response to the rise in unemployment risk—, this leads to a persistent cut in the optimal

nominal interest rate and hence an equal fall in the real interest rate —since optimal inflation

stays at zero after a productivity shock, see Table 2. Without this policy accommodation

employment and inflation would deviate from target downwards, while a suitably sized cut

in the policy rate can simultaneously close the employment and inflation gaps. Crucially,

the size of the cut depends on the extent of imperfect insurance (as encoded in Ψ), because

the latter determines the strength of the precautionary motive and hence the size of the fall

in aggregate demand that would occur without the offsetting action of the central bank.

How does this optimal response to productivity shocks under imperfect insurance com-

pare to the optimal response under perfect insurance? Again, the optimal policy here is

to track the natural rate rnt and this remains true whatever the degree of insurance (i.e.,

whatever the value of Ψ). In other words, the general principle, traditionally derived un-

der perfect insurance, that the central bank should track the natural interest rate in order

to replicate the flexible-price allocation whenever that allocation is constrained-effi cient di-

rectly extends to my imperfect-insurance economy. What does differ between the baseline

imperfect-insurance economy and its perfect-insurance limit is the response of the natural

interest rate. We will see in Section 5.2 below that the same logic applies to the economy

with partial worker reallocation and a time-varying real wage, wherein both the precaution-

ary motive and aversion to intertemporal substitution compete in determining the response

of the natural interest rate to productivity shocks.
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Second, the strength of the precautionary motive affects both the size and sign of the

optimal interest-rate response to cost-push shocks. Just as in the textbook RANK model,

the optimal policy response is such that both inflation and the employment gap persistently

deviate from target (inflation upwards and the employment gap downwards). However, the

fall in employment triggered by the cost-push shock strengthens the precautionary motive

and generates deflationary pressures in the current period; this mutes down the optimal

response of the policy rate and even reverts it if the precautionary motive is suffi ciently

strong (i.e., if insurance is suffi ciently poor).

Importantly, unlike productivity shocks, cost-push shocks generate a persistent gap be-

tween the constrained-effi cient allocation and the flexible-price equilibrium —and hence be-

tween the effi cient interest rate and the natural interest rate. Therefore, merely tracking the

natural rate is not the optimal response to cost-push shocks; instead, the current value of the

policy rate as well as promises about its future values must be set in a way that best solves

the tradeoff between stabilising the two gaps in the loss function (51). Here again, one no-

tices that the same principle that governs optimal monetary policy under perfect insurance

directly extends to the imperfect-insurance economy. In fact, the problem of minimising

(51) subject to (55), which yields the optimal “targeting rule” for {ñt, πt}∞t=0 in Table 2,

is independent of the degree of insurance (Ψ). The extent of unemployment insurance only

appears in the second step, when it comes to policy implementation via the nominal interest

rate.

Finally, the fact that the optimal policy implements a targeting rule {ñt, πt}∞t=0 that is

independent of the degree of insurance (Ψ) means that the optimal policy effectively undoes

the effect of imperfect insurance on the propagation of aggregate shocks.

5.2. Optimal policy with partial worker reallocation. Having analytically identi-

fied how the precautionary motive affects optimal policy in the special case of full worker

reallocation —and a constant wage—, I now study the optimal interest-rate response to ag-

gregate shocks under partial worker reallocation (i.e., ρ < 1) and a time-varying wage (i.e.,

φ < 1). The first feature makes hiring decisions intertemporal: in decentralised equilibrium

firms take into account the future rents they will earn on newly hired employees (in addi-
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tion to the current rent), while the constrained-effi cient allocation incorporates the impact

of current employment on future aggregate hiring costs (in addition to the current aggre-

gate hiring costs). The second feature implies that employed workers’desired savings will

not only be governed by the precautionary motive but also by aversion to intertemporal

substitution.

Since those generalisations preclude the derivation of an analytical formula for the policy

rate, I solve numerically the Ramsey problem of finding the sequence {it}∞t=0 that maximises

Wt subject to (7)—(9), (15)—(17), (21), (22)—(23), and (37), after one-off productivity and

cost-push innovations occurring at t = 0. To be more specific, the numerical algorithm

involves three steps:

• First, the optimal policy is derived by computing the first-order conditions of the La-

grangian function involving the social welfare function W0 =
∑∞

t=0 β
tUt (see equation

(31)) as well as two sets of constraints, namely (i) the laws of motion of the endoge-

nous state variables (equations (9) and (17)) and (ii) the optimality conditions of the

private sector (equations (7), (15) and (22)—(23)). Under the functional forms in (44),

the flow payoff Ut in the social welfare function is given by:

Ut = lnwt + (1− nt) ln (δ/w) +
Λ̃

1− σ̃ ([$ + nt (zt/∆t − wt)− ηvt])1−σ̃ ,

where Λ̃ ≡ Λν σ̃ is recovered using the steady-state counterpart of the effi ciency con-

dition (35) (which gives Λ̃ = (n (1− w)− ηv +$)σ̃ /w);

• Second, the resulting nonlinear dynamic system, made of the optimal-policy conditions

and the constraints faced by the central bank, and having as unknowns the sequences of

endogenous variables including the policy instrument (it) and the Lagrange multipliers

on the constraints, is (i) linearised around the steady state (characterised by equations

(27), (37) and (45)), and (ii) stacked in state-space form;

• Third, the VAR representation of the model’s dynamics is recovered by generalised

Schur decomposition (Klein, 2000).25

25One advantage of solving the full nonlinear Ramsey problem is that the solution handles potential steady-



uninsured unemployment risk and optimal monetary policy 41

Figure 3: Responses to a contractionary productivity shock (imperfect versus perfect insur-
ance).

The calibration of the baseline model is in Table 1. While I mostly focus on optimal

monetary policy analysis around the undistorted steady state, later on I also evaluate the

robustness of my baseline results with respect to steady state distortions.

Baseline results. Figures 3 and 4 show the optimal responses of the policy rate, and

implied macroeconomic aggregates, after contractionary productivity and cost-push shocks.

To understand those responses, recall the two determinants of employed workers’consump-

tion demand, namely aversion to intertemporal substitution and the precautionary motive.

The competition between these two effects explains the optimal policy response to produc-

tivity shocks, displayed in Figure 1. The response of the policy rate and macroeconomic

aggregates in the perfect-insurance limit is essentially the same as that of the typical RANK

state distortions, unlike the (naive) LQ approach (see Woodford, 2010, for a discussion). The algorithm is
implemented using the Dynare toolbox (www.dynare.org).



uninsured unemployment risk and optimal monetary policy 42

Figure 4: Responses to a contractionary cost-push shock (imperfect versus perfect insur-
ance).

model: after a transitory fall in productivity the central bank should contract demand to

align it to supply, otherwise there would be excess (i.e., inflationary) consumption demand

(based on workers’high future wages relative to the current wage). At the other extreme, the

constant-wage response is obtained by setting φ = 1 (and also σ̃ = 0 to make this constant

wage effi cient, by equation (35)). In this case the central bank should aggressively support

aggregate demand, else workers’consumption would fall too much after a contractionary

productivity shock (due to their fear of unemployment), and this would be deflationary.

The optimal policy in the baseline imperfect-insurance model lies between these two ex-

tremes (the perfect-insurance limit and the constant-wage model), and under my baseline

calibration it implies a persistent cut in the policy rate. Put differently, without a suitable

monetary policy response the precautionary motive would dominate aversion to intertem-

poral substitution and aggregate demand would be too low, not too high. Quantitatively,



uninsured unemployment risk and optimal monetary policy 43

Figure 5: Nominal, real and natural interest rates compared.

beyond the sign reversal, imperfect insurance causes the impact response of the policy rate

to be 20 annual basis point lower than under perfect insurance (for a normalised 1% fall in

productivity), and this adjustment almost aligns the dynamics of inflation, employment and

output under imperfect insurance to those under perfect insurance. Of course, one should

keep in mind that the model is highly stylised and abstracts from many features that are

likely to matter in practice.26 Thus, while its qualitative predictions (i.e., the need for more

policy accommodation, and the relative effectiveness of the optimal policy) are likely robust,

its quantitative predictions (e.g., on the exact size of the required interest-rate cut) should

not be taken too literally.

Finally, we can see from Figure 5 that after a productivity shock the optimal (real) inter-

26For example, it abstracts from the redistributive effect of inflation on wealth, since all households have
zero wealth in equilibrium (see Bhandari et al., 2018, on how redistributive concerns affect the sign and size
of the optimal response of the policy rate, relative to the complete-market response)
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est rate closely tracks the natural interest rate, both under perfect and imperfect insurance.

Unlike in the case of full worker reallocation, optimal monetary policy cannot exactly repli-

cate the natural rate: it implies a very small departure of inflation from zero (Figure 3) and a

very small departure of the real rate from the natural rate (Figure 5). This is because, when

ρ < 1, constant taxes and subsidies no longer exactly decentralise the constrained-effi cient

outcome. As a consequence, the equilibrium under sticky prices and the optimal policy does

not exactly replicate the constrained-effi cient outcome. However, the gap between the two

(which was inexistent under full worker reallocation) remains very small here.27

A related pattern emerges from the optimal response to cost-push shocks, as can be

seen from Figure 4: more accommodation than under perfect insurance is required, and

the optimal policy almost aligns the dynamics of the imperfect-insurance baseline with that

of the perfect-insurance benchmark. Achieving this stabilisation under imperfect insurance

requires an impact response of the policy rate that is about 18 basis points lower under

imperfect insurance than under perfect insurance. This is again significant —though, as

already stressed, one should not overinterpret the quantitative predictions of the model,

given its stylised nature.

As already explained in Section 5.1, cost-push shocks take the natural interest rate away

from the effi cient interest rate, which in turn implies that the real rate interest rate under

the optimal policy departs from the natural interest rate (most notably in the first few

quarters, here). This is no different from what happens under perfect insurance —whether

one considers the perfect-insurance limit of my mode (see Figure 5) or more generally the

basic RANK model (see Galí, 2008, Chap. 5).

Effi cient and ineffi cient wage-setting mechanisms. In my baseline specification,

I assumed that the wage was generated by equation (43) and I calibrated the parameter

φ to match the targeted elasticity of the wage with respect to productivity. To minimise

the aggregate distortions generated by this decentralised wage, I also calibrated the relative

risk aversion of firm owners (σ̃) so that the constrained-effi cient wage matched the same

27See Correia et al. (2008) for a general discussion of the conditions under which monetary policy can
replicate the constrained-effi cient allocation. In general, time-varying taxes rate are required, and when they
are not available optimal monetary policy attempts to make up for them —though in a second-best manner.
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Figure 6: Responses to a contractionary productivity shock (inertial versus effi cient wage).

elasticity (see Section 4.3 for details).

I now consider two departures from the baseline wage-setting mechanism. First, I study

optimal policy when the real wage is the effi cient wage characterised in Section 3, rather

than the inertial Nash wage with the same elasticity with respect to productivity. By

construction the former is not a source of ineffi ciency that the central bank might want

to lean against, so any feature of optimal policy derived above that survives this scenario

cannot be due an ineffi cient wage-setting mechanism. Figure 6 shows that the response of

the policy rate to productivity shocks under the effi cient wage tracks very closely that under

the inertial wage, resulting in paths of inflation, the real wage, employment and output that

are indistinguishable from one another. The main difference that arises between the inertial

and the effi cient wage pertains to the policy and aggregate responses to cost-push shocks,

as shown in Figure 7. This is because the effi cient wage does not respond to such shocks
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Figure 7: Responses to a contractionary cost-push shock (inertial versus effi cient wage).

(see Section 3) while the Nash wage with inertia always does (provided that φ < 1). But

the constancy of the effi cient wage can only reinforce the need for policy accommodation,

since employment and output fall more than under a time-varying wage. To summarise: my

main results about the need for more policy accommodation under imperfect insurance are

not driven by my baseline (ineffi cient) wage-setting mechanism.

The second departure from the baseline wage-setting mechanism that I consider is when

the actual cyclicality of the wage is farther away, rather than closer to, that of the effi cient

wage. If the actual cyclicality does not satisfy condition (35), then the gains and losses

associated with productivity shocks are ineffi ciently shared between employed workers and

firm owners, and monetary policy may want to lean against this. Under the maintained

assumption that φ match the target dlnw0/dln z0 = 1/3 (see Table 1), one may evaluate the

effect of an ineffi cient wage cyclicality on optimal policy by varying firm owners’risk aversion
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σ̃. For example, if σ̃ is below its baseline value (0.283), then the actual wage is excessively

volatile, since firm owners would be willing to bear a larger fraction of aggregate fluctuations

than they actually do. On the contrary, values of σ̃ above the baseline imply that the wage

is too smooth —i.e., firm owners bear an excessive share of aggregate wage fluctuations. As

it turns out, simulations of the model (not represented here) show that the baseline results

are only marginally changed when σ̃ is moved within reasonable bounds. For example,

lowering σ̃ to 0 (so that a constant wage would be effi cient) changes the impact response of

the policy rate by less than 3 annual basis points relative to the baseline scenario, and has

no discernible effect on aggregates. Symmetrically, doubling σ̃ relative to its baseline value

changes the response of the policy rate by the same magnitude, with again almost no effect

on aggregates. To summarise: optimal policy is mostly governed by the actual cyclicality

of the real wage, and very little by the ineffi ciency in this cyclicality.

Steady state distortions. I have so far been working under the assumption that

taxes and subsidies were set in a way that aligned the steady state of the decentralised

equilibrium with that of the constrained-effi cient allocation. This is a natural assumption

to start with, for it ensures that observed differences in optimal policies according to the

degree of consumption insurance are not unduly driven by differences in steady-state dis-

tortions. However, this assumption is unrealistic in the sense that one does not observe, in

practice, significant wage or production subsidies (i.e., T and τW ) of the type that I consid-

ered. I therefore explore the optimal response of the policy rate to aggregate shocks under

alternative assumptions about those subsidies. In so doing I am still careful to adjust the

deep parameters of the model so as to keep matching all the steady state targets in Table

1 —so that the same observed steady state as in the baseline scenario is now considered as

distorted rather than undistorted. To operate the required adjustments in the model’s deep

parameters, write the steady state counterpart of equation (15) as follows:

f
γ

1−γ [1− β (1− ρ)] η = (1− τ I)m
1

1−γ [ϕ− w + T ] .

Recalling that η/w is among the targets while ϕ = (θ − 1) /θ(1− τW ), one can write the
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Figure 8: Responses to a contractionary productivity shock (distorted steady state)

steady-state real wage as follows:

w =

[
θ − 1

θ(1− τW )
+ T

]{
1 +

(η/w)× f ∗
γ

1−γ [1− β (1− ρ)]

(1− τ I)m
1

1−γ

}−1

. (59)

In short, removing the wage subsidy T requires lowering w, else job creation would fall

and the model would fail to match the labour-market targets. Similarly, the removal of the

production subsidy τW should be offset by an appropriate reduction in w.

Figures 8 and 9 show the optimal-policy responses to aggregate shocks when the subsidies

τW and T are alternatively, and then jointly, set to zero. The optimal responses to the shocks
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Figure 9: Responses to a contractionary cost-push shock (distorted steady state).

are affected by steady state distortions, a reflection of the fact that these distortions are

nonnegligible (see Woodford, 2010). However, the general lessons that imperfect insurance

calls for more policy accommodation following contractionary aggregate shocks, and that

such an accommodation almost eliminates the destabilising impact of imperfect insurance,

unambiguously survive.

6. Concluding remarks

In this paper, I have computed the optimal interest-rate response to aggregate shocks in a

model economy wherein workers have a precautionary motive against uninsured, endogenous

unemployment risk. In this economy aggregate “supply”shocks such as productivity or cost-
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push shocks may have powerful aggregate demand effects, due to the feedback loop between

unemployment risk, desired savings and aggregate demand, and this loop calls for a response

of the policy rate to aggregate shocks that is substantially more accommodative than under

perfect insurance. However, provided that the appropriate correction to the policy rate is

implemented, then the deflationary spiral is almost fully —if not completely—neutralised. In

this sense, conditional on the appropriate correction to the policy rate, “incomplete markets

do not matter”for the aggregate dynamics.

Of course, my results have been derived under a fairly restrictive set of assumptions. I

only considered unemployment risk and ignored other potentially important sources of idio-

syncratic income risk, such as wage risk. Crucially, my zero-liquidity analysis abstracts from

distributional considerations, which play an important role in the recent Heterogenous-Agent

New Keynesian literature reviewed in the introduction. My analysis of optimal monetary

policy is thus best interpreted as providing a simple benchmark against which richer and

more realistic imperfect-insurance models can be compared in the future.

Appendix to Section 5.1

A. Derivation of the quadratic loss function. With ρ = m = 1 and wt = w∗t we have:

Ut = u (δ) + nt [u (w∗t )− u (δ)] + Λ[$ + nt (zt/∆t − w∗t )− ηn
1

1−γ
t ].

I will use the facts that n̂∗t = Φẑt and that

∂Ut/∂nt = u (w∗)− u (δ) + Λ[zt/∆t − w∗ − ηn
γ

1−γ
t / (1− γ)] = 0.

This gives the following quadratic flow utility:

Ut = {u (w∗)− u (δ) + Λ[1− w∗ − ηn
γ

1−γ / (1− γ)]}n̂t −
Λγηn

2γ−1
1−γ

2(1− γ)2
n̂2
t

+Λẑtn̂t − Λn (∆t − 1) + terms independent of policy (t.i.p.)+O(||ζ||3)

' − (Λ/2Φ) n̂2
t + (Λ/Φ) n̂∗t n̂t − Λn (∆t − 1) + t.i.p.

= − (Λ/2Φ) ñ2
t − Λn (∆t − 1) + t.i.p., where ñt = n̂t − n̂∗t .
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Now use the facts (derived in Woodford, 2003, chapter 6) that ∆t ' 1 + (θ/2) Var(pt(i))

and
∑∞

t=0 β
t Var(pt(i)) = κ−1

∑∞
t=0 β

tπ2
t . This allows writing the social welfare function as

follows:

Wt = Et
∞∑
k=0

βkUt+k ' Et
∞∑
k=0

βk
[
− Λ

2Φ
ñ2
t+k −

Λnθ

2
Var(pt+k(i))

]
+ t.i.p.

= − Λ

2Φ
Et

∞∑
k=0

βkñ2
t+k −

Λnθ

2
Et

∞∑
k=0

βk Var(pt+k(i)) + t.i.p.

= − Λ

2Φ
Et

∞∑
k=0

βk
(
ñ2
t+k + Ωπ2

t+k

)
+ t.i.p., with Ω =

θΦn

κ
.

Maximising Wt is thus equivalent to minimising Lt in equation (51).

B. Optimal Ramsey policy. This adapts Galí (2008, Chap. 5) to the present model.

The Lagrangian function associated with the central bank’s problem is:

Lt = Et
∑∞

k=0
βk
[(
ñ2
t+k + Ωπ2

t+k

)
/2 + Γt+k (πt+k − βπt+1+k − (κ/Φ) ñt+k)

]
.

The first-order conditions with respect to the ñt+ks and πt+ks are:

Et[ñt+k]− (κ/Φ)Et[Γt+k] = 0 for all k ≥ 0, Ωπt + Γt = 0,

and − Et[Γt+k] + ΩEt[πt+1+k] + Et[Γt+k+1] = 0 for all k ≥ 1.

Dropping the Et-operator (since I am looking at the response to a one-time shock) and

using the expressions for Ω and κ in the loss function, I find that {ñt+k, πt+k}∞k=0 must

satisfy:

for k = 0 : ñt + (θn) πt = 0; (60)

for k ≥ 1 : ñt+k − ñt+k−1 + (θn) πt+k = 0. (61)

Equations (60) and (61) can be more compactly written as, for all k ≥ 0:

ñt+k = − (θn) p̂t+k, with p̂t+k ≡ pt+k − pt−1, (62)
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and where pt−1 was the price level before the shock hit. Substituting this expression into

(55) and rearranging, we obtain the following difference equation for p̂t:

(1 + β + κθn/Φ) p̂t+k = p̂t+k−1 + βp̂t+k+1 + κζt+k.

The stationary solution to this equation is p̂t+k = αp̂t+k−1 + Υζt+k, where Υ and α are

defined in Table 2. This solution can be used to recover {ñt+k, πt+k}∞k=0 using (60)—(62).

For k = 0 we get ñt = − (θn) p̂t = −Υθnζt, where I have used the fact that Ω = θΦn/κ.

For k ≥ 1 we have:

ñt+k = αñt+k−1 + Υθnζt+k = −Υθn(
∑k

ι=0 α
ιµk−ιζ )ζt.

Then, we recover the path of inflation using (60)—(61). We obtain:

for k = 0 : πt = − ñt
θn

= Υζt; for k = 1 : πt+1 =
ñt − ñt+1

θn
= Υ

(
α + µζ − 1

)
ζt;

and for k ≥ 2 : πt+k =
ñt+k−1 − ñt+k

θn
= Υ[µkζ − (1− α)

∑k−1
ι=0 α

ιµk−ιζ ]ζt.

Table 1 summarises the effect of a shock occurring at t = 0.
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