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Abstract—Lung cancer is the leading cause of cancer deaths
worldwide. A potential early indicator of lung cancer is the
presence of lung nodules that can be detected through screening.
Open thoracotomy, a surgical approach for nodule resection,
carries inherent risk which can be minimized with use of Video-
Assisted Thoracoscopic Surgery (VATS); a minimally invasive
alternative, reducing risks and recovery time. Precise nodule
localization is crucial for efficient navigation during VATS. The
utilization of intraoperative Cone-Beam Computed Tomography
(CBCT), an imaging modality, can improve localization of the
nodules. However, this poses a challenge when attempting to
accurately align the nodule position from the CBCT to the
surgical view. To address this, we propose a novel approach
that segments corresponding features visible in both modalities,
specifically the rib cages and Alexis O Wound Protector/Retractor
(Alexis). The segmentation of these features is performed using
YOLOVS allowing image registration and alignment of the CBCT
data with the surgical view. With the established correspondence,
we can gauge possible camera locations and create an augmented
reality overlay of the surgical site to provide real-time guidance
in VATS.

I. INTRODUCTION

According to the American Cancer Society, lung cancer
is the leading cause of cancer deaths in the United States
(US) [1]. Based on their predictions, the US is anticipated
to see over 230,000 new lung cancer diagnoses in 2024,
with a projected death toll exceeding 125,000. One early
indicator of lung cancer is the presence of lung nodules. Lung
nodule are small, abnormal growths typically identified with
lung Computed Tomography (CT). Routine lung CT screening
is highly recommended for high risk individuals as earlier
detection and treatment of lung cancer can lead to improved
outcomes. Surgical interventions such as nodule resection
procedures may be necessary. Video-Assisted Thoracoscopic
Surgery (VATS) offers a more minimally invasive approach
to traditional open thoracotomy for nodule resection reducing
potential risks and recovery time. However, the intraoperative
localization of pulmonary lung nodules during VATS can be
challenging. There are two main approaches to nodule lo-
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calization techniques: preoperative, performed before surgery,
and intraoperative, conducted during surgery. An example of
preoperative localization is the use of a hook wire placed
during pre-operative CT. While feasible, there are potential
complications including pneumothorax and localization fail-
ure. Hence, intraoperative approaches have been proposed
utilizing a Cone-Beam Computed Tomography (CBCT) gen-
erated by a C-Arm machine during surgery. Benefits include
the avoidance of preoperative procedures leading to reduced
radiation exposure and time efficiency.

The localization of the lung nodule in the surgical cam-
era view during VATS is problematic. Despite being clearly
visible in both the preoperative CT scans and intraoperative
CBCT scans, lung deformations can obscure the nodule during
surgery, making it difficult to visualize with the camera. Lung
deformations may arise from changes in patient position from
supine to lateral decubitus and the change in lung density due
to the induced lung deflation (pneumothorax). Since the nodule
can be difficult to locate, several registration methods have
been tested to map the nodule location from the CT scan to the
CBCT scan and ultimately to the operative field for surgeons.
In order to achieve this final registration between CBCT and
endoscopic view, this paper uses common features shared by
both modalities: the rib cages and Alexis O Wound-Retractors
(Alexis). By segmenting the ribs and Alexis in the camera
view, we can identify the surgical field of view in the CBCT
view by translating the features relative positions and possibly
determining the camera location in the CBCT.

Several prior efforts have been made into segmenting
anatomical regions of interests in surgical videos, but it still
remains challenging. While traditional methods such as thresh-
olding and colour segmentation are viable with individual
frames, they struggle with the dynamic nature of surgical
videos. The unpredictable changes in environment and im-
age quality during surgery limits their generalizability. Thus,
we focus on deep learning approaches that utilize Convolu-
tional Neural Networks (CNNs). CNNs excel at automatically



identifying and analyzing image features, enabling them to
effectively separate foreground objects from the background.
Kadomatsu et al. [2] developed a novel system that applies
Al to identify pulmonary air leak sites in thoracic surgeries.
Specifi cally, they perform intraopertaive leak site detection
using YOLO to identify these complications. Their model
was trained using still images of deflated lung tissue after
pulmonary resection obtained from a robotic or thoracoscopic
camera. A surgeon would identify and label the true leak
site to use as the ground truth images. Bilodeau et al. [3]
presented a graph-based segmentation method using multiple
criteria in successive stages to segment thoracoscopic images
acquired during a diskectomy procedure used for thoraco-
scopic anterior release and fusion for scoliosis treatment.
Before applying their coarse graph-based segmentation, they
performed pre-processing such as Gaussian smoothing, bright-
ness and contrast enhancement, and histogram thresholding
to enhance discriminating features. Lastly, post-processing is
used to remove regions considered as spurious areas. Then
regions are merged in a multistage graph-based process with
higher-level criteria such as grey-level similarity, region size,
and common edge length to generate a segmented region
map. Bamba et al. [4] leverages a CNN to perform object
and anatomical feature recognition in abdominal endoscopic
images from surgical videos. Their focus was to detect the
GI tract, blood, vessels, uterus, forceps, ports, gauze, and
clips in the images. Their model was trained and implemented
through IBM Visual Insights which contained multiple open-
source deep learning frame- works including GoogleNet,
Faster R-CNN, and YOLOV3. Ivantsites et al. [5] applied
deep learning to automatically segment relevant anatomical
structures and instruments in endoscopic images for mitral
valve repairs. They tested and cross-validated the performance
of three deep learning architectures: U-Net, DeepLabV3, and
Obelisk-Net. Overall, the DeepLab model achieved superior
results with respect to all the evaluation metrics they used.
Brizuela et al. [6] performed gauze detection and segmentation
in laparoscopic video images using two CNN-based models:
YOLOv3 and U-Net. They created a segmentation dataset
by hand-labelling 4003 frames from laparoscopic videos to
efficiently train the CNN models through supervised learn-
ing. Naturally, the U-Net baseline using the MobileNetV2
architecture resulted in ideal results with a good compromise
between inference speed and prediction quality. Tanzi et al.
[7] proposed a deep learning and augmented reality based
solution for an in-vivo robot-assisted radical prostatectomy. By
using an ensemble consisting of the MobileNet as the base
network and U-Net as the segmentation network, they were
able to effectively segment the catheter. Scheikl et al. [8] tested
numerous combinations of neural networks, loss functions, and
trainability in performing semantic segmentation of organs and
tissues in laparoscopic surgery. Ultimately, they executed the
task by using the TernausNet-11 trained on soft-Jaccard loss
with a pre-trained, trainable encoder.

The most notable work that is similar to the proposed
approach is the work presented by Noblet et al. [9]. They

proposed to register 2D monocular endoscopic views into the
3D CBCT space to create an augmented endoscopy guiding
system. Their approach was to segment both ribs and Alexis
in both imaging modalities, then perform registration using an
image-to-cloud Iterative Closest Point variant. They performed
rib and Alexis segmentation by using classical image process-
ing methods and morphological operations. Specifically, in 3D
segmentation, CBCT images are smoothed and operations are
applied to remove noise using a Gaussian kernel. The ribs are
then segmented using thresholding and closing morphological
operations, focusing on the part of the rib that is close to
the parietal pleurae. For 2D segmentation, the main difficulty
encountered during the feature segmentation process was the
disappearance of the rib outline under intercostal muscle
and adipose tissue (body fat) covering parts of the ribs. To
overcome this, manual segmentation of the ribs and Alexis
was performed using CVAT, an online open data annotation
platform. Overall, the general pattern seen in the reviewed
approaches is the utilization of manual annotations to generate
a training dataset with labelled data. Our proposed idea
is to utilize the YOLOvS8-seg model to perform automatic
instance segmentation on surgical videos. Here, the YOLOVS-
seg model will be custom trained using manually annotated
images highlighting the individual ribs and Alexis. Ultimately,
this paper presents:
Ultimately, this paper presents:

o Creation of a dataset of ribs and Alexis in surgical videos
by manually annotating the targets

o Automatically segment the ribs and Alexis using the
curated dataset and YOLOv8-seg

o Determine the possibility of registration and camera lo-
calization in the CBCT based on chosen results

II. METHODOLOGY
A. Data Collection

Sample surgical videos of a thoracoscopy were provided
by surgeons at the University of Rennes hospital situated in
France. Left lung images were extracted from these videos
frame by frame. Manual filtration was performed by removing
images that showed no target objects, immense occlusion of
the targets, or areas outside the surgical field. After filtering,
the dataset consisted of 222 images. Each image was manually
labeled using LabelMe, a Python-based image annotation tool.
The images were labeled with eight classes: Rib2 through
Rib8, and Alexis. In a thoracoscopy, Chang et al. [10] rec-
ommends entering the chest cavity through the fourth or fifth
intercostal space, after the division of intercostal muscles
above the rib to preserve the neurovascular bundle. Based
on this principle, we estimated that the ribs surrounding a
particular Alexis were likely to be Rib4 or Rib5. Resultant
annotated sample images are shown in Fig. 1 and labels are
shown in Fig. 2.

Given the nature of the task, the image quality and informa-
tion can be impacted significantly by subtle changes in camera
movement, focus, and orientation. This often results in poor



Fig. 1. Sample images of the left lung taken from the thoracoscopic camera
view showing ribs and Alexis

Fig. 2. Sample labeled image: Rib2 (Red), Rib3 (Pink), Rib4 (Orange), Rib5
(Mustard), Rib6 (Yellow), Rib7 (Green), Rib8 (Moss), Alexis (Emerald)

model training. Hence, data augmentation is used to introduce
these permutations to the model by artificially generating
more images with the flaws so that the model can be trained
accordingly. Numerous data augmentation techniques were
employed to address this. Firstly, rotation by 15 degrees was
used to help the model become more resilient to camera rolls.
Secondly, flip in both the horizontal and vertical direction was
used to help the model become more insensitive to different
camera orientations. Thirdly, a £20% brightness adjustment
was implemented to ensure that the model is more resilient to
different lighting situations caused by the camera or occluding
organs. Lastly, a Gaussian blur of 2.5 pixels was added to
improve the model’s resilience to camera focus. Additionally,
to address the limitations of the small dataset, employing data
augmentation effectively increased the dataset, tripling it from
222 images to 615 images. The final augmented dataset was
broken into training, validation, and testing datasets where the
percentage break down was 80%, 10%, and 10% respectively.
Sample augmented images are presented in Fig. 3.

Fig. 3. Data augmentation samples

B. Model Architecture

YOLOVS, released by Ultralytics, surpasses its predecessor
YOLOVS in object detection, instance segmentation, and clas-
sification [11]. YOLOvS8 [11] boasts significant architectural
and developer-focused improvements. These advancements
translate to enhanced segmentation and classification perfor-
mance, flexibility, and efficiency for the model. Fig. 4 provides
an overview of the YOLOv8-seg architecture.
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Fig. 4. YOLOv8-seg architecture visualization created based on diagram
drawn by GitHub user RangeKing [12] and YOLACT [13]

According to its documentation [14], YOLOvS8 builds on
a standard convolutional neural network architecture with
two main components: a feature extraction backbone and a
prediction head. The YOLOVS backbone is a modified version
of the CSP-Darknet53 [15] architecture used in YOLOvVS
where the cross stage partial (CSP) modules, referred to as C3,
are replaced with C2f modules. The C2f module utilizes the
number of features, a CBS (Conv, BatchNorm, SiLLU) block,
and concatenations to concatenate all the outputs from all bot-
tleneck layers. In contrast, the C3 block only uses the output
from the final bottleneck layer. In this instance, a bottleneck
module is a sequence of two 3 x 3 convolutions with residual
connections. YOLOvV8’s prediction head adopts a decoupled
head approach. By separating classification and bounding box
regression tasks, it allows for more focused optimization of
each task. This streamlined design simplifies the model ar-
chitecture, reducing computational complexity and improving
inference speed without compromising detection performance.
Additional improvements made include the use of anchor-
free detection to improve generalization, eliminating the need
for predefined anchor boxes. With anchor-free detection, the
model directly predicts an object’s center instead of the offset
from a known anchor box, ultimately reducing the number
of bounding box predictions. This makes the model more
robust and adaptable to various object sizes and shapes. This
also speeds up non-max suppression, a post processing step
that filters through potential predictions after inference. Other
notable improvements include YOLOVS’s easy implementation
through CLI (Command Line Interface) or Python IDEs, the



use of Yet Another Markup Language (YAML) files to define
the model configurations, and using mosaic data augmentation
that mixes four images to force the model to learn objects in
different locations, occlusions, and surrounding pixels.

This paper utilizes YOLOvS8-seg, a variant of the YOLOvVS8
model specifically designed for instance segmentation tasks
[14]. While its architectural foundation shares similarities with
the general YOLOvV8 model discussed previously, YOLOVS-
seg incorporates a couple key modifications. These include the
addition of an output module in the head for generating mask
coefficients and an additional ProtoNet module comprised of
Fully Connected Network (FCN) layers to output the masks.
These additions draw inspiration from principles established
in the YOLACT model [13] for instance segmentation. The
YOLACT influence is built in Fig. 4 by incorporating the
ProtoNet and modified output process.

The YOLACT [13] architecture performs instance segmen-
tation with a three-step approach. Firstly, it relies on a standard
pre-trained CNN backbone network like ResNet to extract
high-level features from the input image. A Feature Pyramid
Network (FPN) then processes the feature maps, combining
the features at different resolutions. This ensures that the
model captures both fine-grained details and broader semantic
information crucial for segmentation. The feature pyramid is
then used as the input for the ProtoNet module. The ProtoNet
module is implemented as a Fully Connected Network (FCN)
and conists of two main components: Prototype Masks and
Mask Coefficients Predictor. For the prototype masks, the
ProtoNet module learns a set of pre-defined prototype masks
which represent generic shapes. The Mask Coefficient Pre-
dictor then predicts a set of coefficients for each prototype
mask at each location in the feature pyramid. The coefficients
indicate how much each prototype mask contributes to the
final segmentation mask for that specific location. Finally, the
coefficients are multiplied element-wise with their correspond-
ing prototype masks and summed together to produce the final
instance segmentation mask.

C. Training

The YOLOvV8-seg model was trained on a Windows operat-
ing system using Python 3.10.0 and PyTorch 2.2.0 with CUDA
11.8. The hardware used to execute the training consisted of an
Intel(R) Core(TM) 17-8550U CPU @ 1.80 GHz and a NVIDIA
GeForce RTX 2070 Super GPU with 8GB VRAM. For best
performance, the model was trained for 200 epochs with a
batch size of 4 and default parameters. Specifically, to optimize
the learning process, Stochastic Gradient Descent (SGD) was
employed with a fixed learning rate of 0.01. Additionally, a
momentum factor of 0.937 was used to influence the direction
of weight updates, and a weight decay of 0.0005 was included
to prevent overfitting by penalizing large weights. The box
loss (’box’), classification loss (’cls’), and distribute focal loss
(’dfl”) were assigned weights of 7.5, 0.5, and 1.5 respectively.
Patience value of 50 was used to avoid early stopping. The
addition of close mosaic was set to 10 which disables mosaic
data augmentation in the last 10 epochs to stabilize training

before completion. Finally, an Intersection over Union (IoU)
threshold of 0.7 was used to determine if a prediction is
considered correct.

D. Loss Function

Machine learning models rely on loss functions to quantify
the discrepancy between their predictions and the actual targets
(labels). During training, the model minimizes these loss
functions by adjusting its internal parameters (weights and
biases), ultimately leading to improved prediction accuracy.
Developers of YOLOv8 employ multiple loss functions for
its various parts [16]. For example, the branch responsible
for classifying objects uses binary cross-entropy (BCE) loss
function, as shown in Eq. 1. Here, w represents the weight,
Yn 1s the label value, and x,, is the predicted value.

BCOE = —wlynlog(zn) + (1 = yn)log(l —zn)] (1)

For the regression branch, which is responsible for bounding
box predictions, a combination of two losses was used: dis-
tribute focal loss (DFL) and Complete Intersection over Union
(CIoU) loss. DFL is applied to improve the model’s ability to
assess less predictable objects by broadening the probability
distribution around the object’s position. Its equation is ex-
pressed in Eq. 2 where S,, and S,,4; are given in Eq. 3.

DFL(s, s, = —[(Ynt1—y) 10g(Sn) + (¥ —yn) log(Sni1)]

2)
SHZM,&LH:M 3)
Yn+1 — Yn Yn+1 — Yn

CloU is similar to the distance IoU loss but introduces

an influential factor which considers the aspect ratio of both

the prediction and ground truth bounding box. Its equation

is expressed in Eq. 4 where v represents the parameter that

measures the consistency of the aspect ratio. Lastly, the final

loss for YOLOVS is a weighted sum of the aforementioned
three individual losses.

Distance’ v?

IoU=1-1
cIoy oU+ (1 —1TIoU +v)

“4)

; 2
Distanceg,
E. Metrics

This paper evaluates the performance of the model in
segmenting ribs and Alexis using three metrics. The first
metric used was Precision. Precision is a statistic measuring
the proportion of true positive predictions among all positive
predictions. The formula for precision is shown in Eq. 5.

TP
Precision = ————— 5
recision TPLFP ®))
Here, TP refers to true positives, FP refers to false positives,
and FN refers to false negatives. The second metric used
was Recall, also known as sensitivity. Recall measures the

proportion of true positives that are correctly identified out of



all the actual positive predictions. The formula for recall is
shown in Eq. 6.

TP
Recall = m (6)

The last metric used was Mean Average Precision (mAP)
measured at two different IoU thresholds: 0.5 (mAP50) and a
range of 0.5 to 0.95 (mAP50-95). IoU reflects the overlap
between predicted and ground truth bounding boxes. By
considering both precision and recall, mAP provides a singular
score that evaluates the model’s ability to accurately find rele-
vant objects while minimizing false positives. It achieves this
by averaging the precision obtained at various IoU thresholds
across all object classes. The formula for mAP is shown in
Eq. 7.

N
1
mAP = ¥ ; AP, (7
III. EXPERIMENTS AND RESULTS

The YOLOv8-seg network has numerous pre-trained models
of varying sizes labelled as n, s, m, 1, and x. Each distinct
model varies based on size, primarily the channel depth and
filter numbers, resulting in trade-offs between accuracy and
processing speed. The YOLOv8-seg model that was tested
was the medium sized pre-trained model called YOLOv8m-seg
with 27.3M parameters and 110.2B floating-point operations
(FLOPs).

To assess the impact of data augmentation, we compared
the performance of two models: one trained on the original
dataset and another trained on the augmented dataset. Both
models were trained for 10 epochs. A comparison was made
in Table I between the two model’s performance.

TABLE I
RESULTS RECORDED FROM THE MODEL WITH DIFFERENT DATA
AUGMENTATION TECHNIQUES

Metrics
Augment. Object Precision Recall mAP50 mAP50-95
None Overall 87.4 82.8 88.7 59.1
Rib 2 91.6 84.1 92.7 53.8
Rib 3 70.0 71.4 80.2 45.3
Rib 4 80.5 65.9 75.6 34.8
Rib 5 84.9 70.4 78.4 53.6
Rib 6 84.8 78.3 84.9 57.6
Rib 7 92.8 94.7 98.8 66.7
Rib 8 95.2 100 99.5 68.2
Alexis 99.1 97.4 99.4 93.0
Flip Overall 87.8 87.2 91.7 60.6
Rotate Rib 2 94.6 97.3 99.2 55.4
Brightness Rib 3 86.4 78.6 91.4 60.2
Gaussian Blur Rib 4 86.0 84.0 91.6 59.6
Rib 5 83.3 71.3 81.6 52.5
Rib 6 77.9 76.5 80.6 42.4
Rib 7 87.8 100 99.5 58.4
Rib 8 88.1 90.0 89.9 60.6
Alexis 98.2 100 99.5 96.1

Data augmentation evidently benefits the model’s robustness
for surgical images and videos. As shown in Table I, the

vast majority of all metrics for each object class exhibited
improvements. This suggests that the broader range of data
provided by augmentation enhances the model’s ability to
handle the inherent variability seen within surgical images
and videos. Thus, the augmented dataset was used to train
the model. To illustrate the model’s performance qualitatively,
Fig. 5 showcases successful segmentation examples from the
test images.

Referring to Fig. 5, it can be seen that the predicted
labels accurately highlight the correct regions of interest,
indicating the model’s effectiveness for these specific cases.
In particular, the last two samples were segmented correctly
despite the surgical instrument occluding portions of the ribs.
However, Fig. 6 presents instances where predictions failed.
These failures can be attributed to factors like the presence of
large amounts of adipose tissue in patients with a higher body
mass index (BMI) or significant occlusions obscuring major
portions of the ribs. This is inevitable due to the abundant
variability observed in surgical scenarios. Therefore, accurate
and detailed annotations during dataset creation are crucial. By
highlighting extensive adipose tissue around the ribs and po-
tential occlusions in the images, we can substantially decrease
the failed predictions.

The final quantitative results are recorded and displayed in
Table II. After 200 epochs, the developed model was able to
achieve high scores across all object classes for all the metrics
used. Achieving an overall precision of 94.6%, a recall of
95.2%, a mAP50 of 95.0%, and a mAP50-95 of 71.5%. Alexis
segmentation achieved the best performance with a precision
of 98.7%, a perfect recall of 100%, a mAP50 or 99.5%, and a
mAP50-95 of 94.3%. This is likely attributed to the Alexis’s
unique shape and color, making them visually distinct from
all other elements in the scene. Rib6 segmentation yielded the
lowest performance metrics with a precision of 88.1%, a recall
of 94.1%, a mAP50 of 86.3%, and a mAP50-95 of 53.1%. This
may stem from the vast variations in Rib6’s shape and size
throughout the different surgical videos.

TABLE I
FINAL QUANTITATIVE RESULTS OBTAINED
Metrics
Object  Precision Recall mAP50 mAP50-95
Overall 94.6 95.2 95.0 71.5
Rib 2 98.7 100 99.5 72.8
Rib 3 95.6 92.9 93.3 69.3
Rib 4 95.9 94.7 96.0 75.5
Rib 5 100 96.2 99.5 72.7
Rib 6 88.1 94.1 86.3 53.1
Rib 7 91.8 93.8 91.7 62.3
Rib 8 88.2 90.0 94.0 722
Alexis 98.7 100 99.5 94.3

IV. CONCLUSION

In conclusion, this paper presents a novel rib and Alexis
dataset, enabling the utilization of YOLOv8-seg for auto-
matic segmentation of relevant anatomical structures in sur-
gical videos. By leveraging data augmentation techniques, the



Fig. 6. Sample failed predictions due to adipose tissue and occlusions

model achieved a substantial boost in all the performance
metrics. Specifically rotation, flip, brightness, and Gaussian
blur. Qualitative evaluation demonstrated promising results,
with occasional errors observed in a limited number of cases.
These errors primarily stemmed from the presence of adipose
tissue or vast occlusions, resulting in small portions of the
ribs being visible. Accurate and detailed annotations in the
data creation process can drastically reduce these errors.
Additional training samples with the aforementioned scenarios
can also be integrated to further improve the model’s robust-
ness. Quantitatively, the model achieved impressive results,
demonstrating high precision, recall, mAP50, and mAP50-
95 for rib segmentation (Rib2 through Rib8) and Alexis
segmentation. The low performance metrics recorded for ribs
like Rib6 likely stem from the variance in rib shape and
size caused by adipose tissue and occlusion. Hence, should
also be resolvable through enriching the training dataset and
improving annotations. Following the successful segmentation
of the relevant features, cross-modality translation can now be
performed through registration, enabling feature and camera
localization in the CBCT and potentially open doors for future
applications.
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