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Abstract 1

2

Behavioral ecology aims at characterizing animal behavior in relation to their physical and biological
environment. A key aspect of this field is assessing the causation and consequences of behaviors. Whenma-
nipulative experiments are technically challenging to implement, alternative approachesmust be developed
to investigate these aspects. In this study, we evaluate the effectiveness of mechanistic modelling, combined
with correlative approaches on empirical data, to determine behavior causation and consequences. Many
pelagic fish species, such as tropical tunas, display an associative behavior with floating objects. Although
several studies suggest that that tunas have a lower relative condition when associated with DFADs, the
causal link between the two remains undetermined. We develop a behavioral model to investigate the re-
lationship between the associative dynamics of tropical tunas with DFADs and their physiological condition.
We consider two hypotheses: H1 that tuna physiological condition decreases when they are associated with
DFADs (condition as a consequence of associative behavior), andH2 that tuna tend to associate more when
they are in lower condition (condition as a causation of associative behavior). Using bio-electrical impedance
analysis data of associated yellowfin tuna at different DFAD densities in the western Indian Ocean, we then
show that the lower condition observed for this species is a consequence of its associative behavior. This
study demonstrates the relevance of combining mechanistic modelling with correlative approaches when
studying behavior in cases where experiments are hard to implement. The use of such approaches rooted
in conceptual frameworks allows a better characterization of animal behavior causes and consequences at
the relevant time scales.
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1 Introduction 24

In defining a framework for ethology, the "biological study of animal behavior", Tinbergen outlined four key 25

questions (Tinbergen 1963). Although overlapping, the fields covered by these questions need to be studied 26

thoroughly to gain a coherent and comprehensive view of behavior. These questions are: the causation – what 27

is the physiological causation of the behavior; ontogeny – how does behavior develop in individuals; survival 28

value –what is the fitness of a particular behavior – and evolution – howdid this behavior evolved (Westneat and 29

Fox 2010). Later, Hogan 2015 reviewed this framework to create a new one that aligns with the field’s advance- 30

ments and with the various scale at which behavior is studied, ranging from behavioral genetics to behavioral 31

ecology. Hogan suggests that the study of behavior can be interpreted through Aristotelian terminology, con- 32

sidering the matter (neurons, muscles, etc.), the causation, the structure (the perceptual, central and motor 33

mechanisms) and the consequences of behavior. Focusing on causation and consequences, both can be of 34

several types, based on the time scale considered: motivational, ontogenetic and phylogenetic (as designated 35

in Hogan 2015). Differentiating causes from consequences can be challenging, leading to widespread confu- 36

sion in behavioral ecology between the function of a behavior – i.e. why it has been selected, the phylogenetic 37

consequences – and its causes (Sherry 2005; Hogan 2015). Despite this potential confusion, understanding 38

the function of a behavior can still help to understand its causation (Sherry 2005). However, in some cases, 39

determining the function of a behavior can be difficult and solutions might be needed to assess causation 40

without it. 41

When assessing the causation of a behavior, one can face the correlation vs causation dilemma, a classi- 42

cal dilemma in experimental science. For example, two species of honeyeaters, Phylidonyris novaehollandiae 43

and P. nigra, display less territorial behavior when the food is abundant, i.e. the number of territorial aggres- 44

sion is negatively correlated with available food quantity (Armstrong 1992). However, despite this correlation, 45

Armstrong 1992 demonstrated experimentally that the territorial behavior was seasonal and did not follow 46

artificial changes in nectar abundance, demonstrating that there was correlation but no causation. A lot of 47

ecological studies rely on correlative models, and these models are not able to determine causal effect (Addi- 48

cott et al. 2022). Causal effects in ecology can be determined through randomized experiments (Rutter 2007). 49

These experiments rely on several elements – controls, replication – which can be hard to implement, specif- 50

ically when focusing on marine ecosystems (Hilborn 2016). Hence, when focusing on a specific behavior, of 51

which the phylogenetic consequences are unknown and where experimental testing cannot be implemented, 52

how can one assess this behavior’s motivational and ontogenetic causation and consequences? 53

We assess that question focusing on a specific behavior displayed by pelagic fish species. Several pelagic 54

fish species associate with floating objects, such as logs or branches, which are natural components of their 55

habitat (referred to as NLOGs). Although this behavior is known and used by fishers for almost two millennia, 56

its phylogenetic consequences are still unknown (Fréon and Dagorn 2000; Oppian 200 AD). Since the early 57

1980s, industrial tropical tuna purse-seine fleets have been using radio and GPS buoys to follow NLOGs and 58

have also been constructing and deploying their own man-made floating objects, left adrift (called drifting 59

fish aggregating devices DFADs; Dagorn et al. 2013). The deployment of DFADs has increased significantly 60

over the past few decades, with the latest global estimate suggesting between 81,000 and 121,000 deploy- 61

ments per year (Gershman et al. 2015, with data from 2013). The large scale deployment and use of DFADs 62

throughout the world’s tropical oceans has led to several direct ecological impacts, including pollution, dam- 63

age to coastal habitats through stranding, increased bycatch, and ghost fishing (Imzilen et al. 2021; Tolotti 64

et al. 2022; Filmalter et al. 2013). Moreover, for tropical tunas (skipjack SKJ – Katsuwonus pelamis –, yellowfin 65

YFT – Thunnus albacares – and bigeye BET – Thunnus obsesus – tunas), the use of DFADs has increased purse 66

seine fleets efficiency and tuna availability to this fishery by increasing the time tuna spend associated with 67

floating objects (noted FOBs, Dupaix et al. 2024a). However, in the absence of knowledge on the causation of 68

tuna associative behavior, it is difficult to assess the impact such behavioral modification can have apart from 69

that directly stemming from fisheries. 70
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Fish physiological condition can be used as a proxy to assess their fitness (Barton et al. 2002; Lloret et al. 71

2014). Marsac et al. 2000 and Hallier and Gaertner 2008 compared the thorax girth (body width divided by 72

fork length) of tuna caught at DFADs to those caught in free-swimming schools (FSC) and showed that DFAD- 73

associated tuna were in lower condition than FSC tuna in the Indian and Atlantic Oceans. This evidence was 74

seen as suggesting that DFAD could have a negative impact on tuna condition. However, Robert et al. 2014 75

used Bioelectrical Impedance Analysis as a proxy of physiological condition to compare the condition of asso- 76

ciated and non-associated tunas in the Mozambique Channel, Western Indian Ocean, an area rich in NLOGs, 77

i.e. only marginally modified by the addition of DFADs at the time. They also found that FOB-associated tuna 78

condition was lower that FSC tuna condition. Hence, while tuna may be in a relatively lower condition when 79

associated with floating objects (Table 1), the causation of this relationship has not yet been determined, i.e. 80

we do not know if the lower condition is the causation of tuna associative behavior or if it is a consequence of 81

this behavior. Themeeting-point hypothesis (Fréon andDagorn 2000; Soria et al. 2009) suggests that tuna asso- 82

ciate with floating objects to find conspecifics and form bigger schools, which may improve foraging efficiency 83

(Ioannou 2017; Maury 2017; Rubenstein 1978). It is then possible that tuna associate with floating objects 84

when they are in a low condition to form schools and increase their condition recovery afterwards. Therefore, 85

the correlation between tuna association with floating objects and low individual condition could imply either 86

that the association with a floating object results in a poorer condition or that tuna tend to associate more 87

when they are in a lower condition. 88

The specific objective of this study is to investigate whether the low condition of tuna is the cause or the 89

consequence of their associative behavior with floating objects. Experimental study of tuna associative be- 90

havior are challenging technically, hence we design a mechanistic model accounting for both the associative 91

behavior of tuna with DFADs and their physiological condition. The model is used to test two different causa- 92

tion hypotheses to explain a lower condition of DFAD-associated tuna: either (H1) tuna association to DFADs 93

induces a decrease of condition (which would be in agreement with studies arguing that tuna are fasting when 94

associated with FOBs; Hallier and Gaertner 2008; Marsac et al. 2000; Ménard et al. 2000) or (H2) tuna with a 95

lower condition are more prone to associating with DFADs. Based on these two hypotheses, we determine 96

the influence of an increase of DFAD number on the mean condition of associated and non-associated tuna. 97

Then, using physiological condition data of associated yellowfin tuna in the western Indian Ocean and DFAD 98

density data, we determine if the low condition of associated tuna is the cause or the consequence of their 99

associative behavior with floating objects. 100

101

Table 1. Studies demonstrating that tuna are in lower physiological condition in associated schools
than in free-swimming schools. WIO, AO, WCPO: Western Indian, Atlantic and Western and Central Pacific
Oceans respectively
Species Ocean Indicator used Study

Skipjack tuna
WIO Phase angle (Bioelectrical Impedance

Analysis)
Robert et al. 2014

WIO & AO Thorax Girth (TG) Hallier and Gaertner 2008
AO Body width divided by fork length Marsac et al. 2000
WCPO Relative condition factor (Kn) Ashida et al. 2017
AO Stomach fullness Ménard et al. 2000

Yellowfin tuna
WIO Lipid content (in gonads) Zudaire et al. 2014
WIO & AO TG Hallier and Gaertner 2008
WIO Kn Dupaix et al. 2023 in Supplement
AO Stomach fullness Ménard et al. 2000

Bigeye tuna AO Stomach fulness Ménard et al. 2000
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Figure 1. Schematic of the models used in the study. (A) General model, (B) H1 model following the
hypothesis that tuna association with DFADs induces a reduction of their condition (µp = µm = µ; γp = γm =

γ and αA

εA
> αF

εF
), (C) H2 model following the hypothesis that tuna associate with DFADs is induced by their

low condition (αF = αA = α; εF = εA = ε and µm

γm
>

µp

γp
). F+ and F−: free-swimming state with high

condition and low condition respectively. A+ andA−: associated state with high condition and low condition
respectively.

2 Material and methods 102

2.1 General model formulation 103

Tuna individuals are considered in two states relative to their association with DFADs: they are either as- 104

sociated with DFADs (noted A) or free-swimming (noted F, Figure 1A). In each state A or F, individuals can be 105

in two discrete and binary physiological states: they are either in "good" (with a given physiological variable 106

equal to e+) or "bad" (e−) physiological condition. The physiological condition of individuals is a continuous 107

variable but fish individuals can be categorized into three different physiological states referred to as "phases" 108

during fasting (Bar and Volkoff 2012; Le Maho et al. 1981). During phase I, they mainly produce energy from 109

carbohydrates and lipids, and we can consider them in a "good" physiological state. Then, in phase II, they 110

mobilize stored lipids, and we consider them to be in a lower physiological state (designated as "bad" for 111

simplification in the rest of the text). If individuals experience starving for too long, they can enter a "critical" 112

phase III, where they have depleted their lipid reserves and start degrading proteins to produce energy. As 113

phase III is happening late in the fasting process, we did not consider it in our study, but it’s consideration 114

would not modify our conclusions. 115

116

The overall model describing the behavior and physiology of tuna corresponds to a 4-state model: A+
117

(associatedwith good condition),A− (associatedwith bad condition),F+ (free-swimmingwith good condition) 118

andF− (free-swimmingwith bad condition). The temporal evolution of the number of individuals in each state 119

(NA+ ,NA− ,NF+ andNF− ) can be written using the following equations: 120
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dNA+ (t)

dt = −(γp + αA)NA+(t) + εANA−(t) + µpnNF+(t)
dNA− (t)

dt = −(γm + εA)NA−(t) + αANA+(t) + µmnNF−(t)
dNF+ (t)

dt = −(µpn+ αF )NF+(t) + γpNA+(t) + εFNF−(t)
dNF− (t)

dt = −(µmn+ εF )NF− + γmNA−(t) + αFNF+(t)

(1)

where nµp, nµm, γp, γm, εF , εA, αF and αA are probabilities to change state per unit-time (∈ [0, 1]) and n is 121

the number of DFADs (∈ N+). The probabilities and n are independent of the time t. The model assumes that 122

the probability to associate with DFADs is directly proportional to n (Figure 1). A summary of the probabilities 123

is provided in Table 2. Also, we defineN , the total tuna population;N = NA+ +NA− +NF+ +NF− . 124

125

We introduce themean condition of the associated fraction (eA) and themean condition of the free-swimming 126

fraction of the population (eF ): 127

eA =
NA+

NA+ +NA−
e+ +

NA−

NA+ +NA−
e− (2)

eF =
NF+

NF+ +NF−
e+ +

NF−

NF+ +NF−
e− (3)

Table 2. Transition probabilities of the models. States at time t are indicated in lines and states at time
t+ 1 are in column. For example, the probability to transition from A+ to A− is αA.

Associated (A) Associated (A) Free-swimming (F) Free-swimming (F)
"Good" condition (+) "Bad" condition (-) "Good" condition (+) "Bad" condition (-)

A+ 1− (γp + αA) αA γp 0
A− εA 1− (γm + εA) 0 γm

F+ µp 0 1 −(αF + µp) αF

F− 0 µm εF 1 −(εF + µm)

2.2 Hypothesis 1: The association to DFADs induces a bad condition 128

To formulate the first hypothesis (H1: tuna are in bad condition at DFADs because their condition decreases 129

when they are associated, Figure 1B) using Eq. 1 we consider that (i) tuna associative behavior is independent 130

of their condition (µp = µm = µ and γp = γm = γ) and (ii) tuna condition increases slower or decreases 131

faster when they are associated with DFADs than when they are in free-swimming schools – i.e. αA

εA
> αF

εF
). 132

We obtain a model with the following equations: 133



dNA+ (t)

dt = −(γ + αA)NA+(t) + εANA−(t) + µnNF+(t)
dNA− (t)

dt = −(γ + εA)NA−(t) + αANA+(t) + µnNF−(t)
dNF+ (t)

dt = −(µn+ αF )NF+(t) + γNA+(t) + εFNF−(t)
dNF− (t)

dt = −(µn+ εF )NF−(t) + γNA−(t) + αFNF+(t)

(4)

2.3 Hypothesis 2: Individuals with a bad condition tend to associate 134

To formulate the second hypothesis (H2: tuna associate with DFADs because they have a low condition, 135

Figure 1C), using Eq. 1 we consider that (i) changes in tuna condition are independent of their association 136

(αF = αA = α and εF = εA = ε) and (ii) tuna tend to associate more with DFADs when they are in bad con- 137

dition than when they are in good condition – i.e. µm

γm
>

µp

γp
. We obtain a model with the following equations: 138
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dNA+ (t)

dt = −(γp + α)NA+(t) + εNA−(t) + µpnNF+(t)
dNA− (t)

dt = −(γm + ε)NA−(t) + αNA+(t) + µmnNF−(t)
dNF+ (t)

dt = −(µpn+ α)NF+(t) + γpNA+(t) + εNF−(t)
dNF− (t)

dt = −(µmn+ ε)NF−(t) + γmNA−(t) + αNF+(t)

(5)

2.4 Stationary model solution 139

We considered the stationary model solution (i.e. when dNA+

dt =
dNA−

dt =
dNF+

dt =
dNF−

dt = 0). For the two 140

hypotheses, first, we verified that the mean condition of the associated fraction was lower than themean con- 141

dition of the free-swimming fraction of the population for any number of DFADs (∀ n ∈ N+, eA(n) < eF (n)). 142

Then, because the aim was to determine the impact of DFADs on the condition of tuna, we determined the 143

trends of eA(n) and eF (n) for increasing number of DFADs (n). 144

145

2.5 Hypotheses testing with field data 146

Bio-electrical impedance analysis (BIA) and DFAD density data were used to determine which hypothesis 147

of the model was verified for yellowfin tuna (Thunnus albacares) in the western Indian Ocean. BIA data was 148

collected by observers onboard purse seine vessels from May 2021 to March 2023, along with individual fork 149

length. A total of 232 yellowfin tuna (34 to 79 cm FL) were sampled from 13 DFAD sets. BIA is primarily based 150

on the calculation of the phase angle (PA), derived from the measurements of resistance (R) and reactance 151

(Xc) of tissues subject to a given voltage: 152

PA = arctan
(Xc

R

) (6)
Phase angle is interpreted as an indicator of membrane integrity and water distribution between the intra- 153

cellular and extracellular spaces and has been used as a proxy of nutritional status of animals (Robert et al. 154

2014). For each DFAD set, the floating object density in the area was determined using data from the 3-BU 155

form of the IndianOcean Tuna Commission (IOTC 2023) and data fromobservers onboard purse seine vessels. 156

The IOTC dataset contains the monthly mean of the number of operational buoys, i.e., the echosounder buoys 157

whose GPS position is remotely transmitted to one or several fishing vessels, for each 1°×1° cell of the Indian 158

Ocean. This value was divided by the sea area of each cell, to obtain a mean monthly DFAD density (ρDFAD). 159

Total floating object (FOB) densities were calculated combining DFAD densities with data recorded by scien- 160

tific observers onboard purse seine vessels (2021-2023). Observers’ data include the date, time, and location 161

of the main activities of the fishing vessel (e.g. fishing sets, installation or modification of FOBs, searching for 162

FOBs). For every activity occurring on a FOB, the type of operation (e.g. deployment, removal, and observation 163

of a FOB) and the type of floating object (DFAD or LOG) are recorded. Using themethodology developed in Du- 164

paix et al. 2021 applied to these observations, we calculated a mean monthly ratiom = nLOG

nDFAD
(with nLOG 165

and nDFAD the number of LOG, i.e. floating objects other than DFADs, and DFAD observations respectively) 166

per 2° cell. This ratio was used to calculated the density of FOBs (ρFOB = (1 + m) ρDFAD). 167

Because the available dataset came from 13 fishing sets, fitting a model accounting for several other vari- 168

ables potentially impacting PA presented the risk of over-fitting the data. Hence, the correlation between 169

the phase angle and the density of FOBs (ρFOB ) was tested using a Spearman’s rank correlation test, with 170

a significance level of p = 0.05. To test the impact of extreme phase angle values, the correlation test was 171

also performed removing samples with PA > 40 °. The calculation of Spearman’s rank correlation coefficient 172

was complemented with the fitting of a non-linear regression model, presented in Supplementary S1. The 173

above-described statistical analysis was performed with the R statistical software (R Core Team 2021). 174

175
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3 Results 176

All the detailed calculation of the results presented in Sections 3.1 & 3.2 are available in Supplementary S2. 177

3.1 Comparisonof themean conditionof associatedand free-swimmingpopulations 178

In the general model (see Sections S2.3.1&S2.3.2), we can show that 179

eA =
1 + φR(n)

1 +R(n)
e+

with φ = e−

e+ and R(n) =
NA−
NA+

. And 180

eF =
1 + φT (n)

1 + T (n)
e+

with T (n) =
NF−
NF+

. Hence we can demonstrate that 181

eA < eF ⇔ NF−

NF+

<
NA−

NA+

From that, in the model formulated according toH1 (the association to DFADs induces a bad physiological 182

condition, see Section S2.3.5), we can demonstrate that 183

αF

εF
<

αA

εA
⇔ eA < eF

In the second model, formulated according toH2 (individuals tend to associate more with DFADs when in 184

a bad physiological condition, see Section S2.3.6), we can demonstrate that 185

NA+ +NF+ =
Nε

α+ ε

NA− +NF− =
Nα

α+ ε

eA < eF ⇔ NA+

NA−
<

ε

α

From these equations and using Eq. 5, we can demonstrate that, whenH2 is verified, 186

µp

γp
<

µm

γm
⇔ eA < eF

The models formulated according to both hypotheses (H1 and H2) verify that ∀n ∈ N+, eA(n) < eF (n). 187

Hence, the models do verify that the mean condition of associated tuna is lower than the mean condition of 188

free-swimming tuna. 189

3.2 Variations of the mean condition of the two populations for an increasing num- 190

ber of DFADs 191

In the general model (Sections S2.1.1-S2.1.4), we can demonstrate that the average condition of associated 192

tuna (eA) is a decreasing sequence of n if and only if 193

deA(n)

dn
< 0 ⇔ αAµpεF γm − αFµmεAγp > 0 (7)

Applying this relationship to the models formulated according to H1 and H2 hypotheses (see Sections 194

S2.1.5&S2.1.6), we can demonstrate that 195

H1 ⇒ deA(n)

dn
< 0 (8)
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Figure 2. Variations of eA and eF as a function of the number of DFADs (n). Left panel: Mean physiological
condition of the associated population (eA), based on the two hypotheses. Right panel: Mean physiological
condition of the free-swimming population (eF ), based on the two hypotheses. H1 (red line): tuna association
with DFADs induces a reduction of their condition. H2 (blue dotted line): associate with DFADs because they
are in low condition. Examples with all probabilities set to 10−2, except, forH1, αF = εA = 10−3 and forH2,
µP = γM = 10−3.

and 196

H2 ⇒ deA(n)

dn
> 0 (9)

Concerning the average condition of free-swimming tuna (eA, Section S2.2), in the general model we can 197

also demonstrate that eF is a decreasing sequence of n under the same conditions as eA (Eq. 7), i.e. if and 198

only if 199

deF (n)

dn
< 0 ⇔ αAµpεF γm − αFµmεAγp > 0 (10)

Hence, as for the condition of associated tuna, we have 200

H1 ⇒ deF (n)

dn
< 0 (11)

and 201

H2 ⇒ deF (n)

dn
> 0 (12)

To summarize, under the hypothesis that the association to DFADs induces a bad physiological condition 202

(H1), we can demonstrate that an increasing number of DFADs will reduce both the mean condition of associ- 203

ated tuna and that of free-swimming tuna (Eq. 8&11, Figure 2). When we hypothesize that individuals tend to 204

associate with DFADs when in bad condition (H2), an increasing number of DFADs will increase the average 205

condition of associated and free-swimming tuna (Eq. 9&12, Figure 2). 206

207
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3.3 Hypotheses testing with field data 208

Phase angle values ranged from 11.1 to 59.4 °, with a median value of 26.2 °. Within-set standard-deviation 209

was low for most of the sets: average within-set standard deviation of 3.1 ° (Figure 3). Phase angle values did 210

not display any clear trend as a function of FOB density (Figure 3). 211

However, PA displayed a significant decreasing trend for increasing ρFOB values (Spearman’s ρ = −0.24, 212

p = 1.9 × 10−4). Similar results were also observed when removing outliers (Spearman’s ρ = −0.22, p = 213

9.0× 10−4). These results were confirmed when performing a non-linear regression (see Supplementary S1). 214

Figure 3. Phase angle (PA) of associated tuna as a function of floating object (FOBs) density. PA was
measured on 232 yellowfin tuna (YFT) fished on DFAD-associated schools. Each boxplot corresponds to a
given set.

4 Discussion 215

Tuna associative behavior has unique characteristics, making it an important case study in behavioral ecol- 216

ogy. Despite being known for nearly two millennia, this behavior remains unexplained, with its phylogenetic 217

consequences (or function) still unknown. Additionaly, because tuna are highly migratory pelagic species, de- 218

signing manipulative experiments to study this behavior is technically challenging. Thus, determining the cau- 219

sation and consequences of this behavior – specifically if tuna lower condition is a cause or a consequence of 220

their associative behavior – poses a challenge. This study demonstrates that, when experimental approaches 221

are not feasible, mechanistic modelling combined with correlative approaches can determine the causation 222

and consequences of behavior. 223
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4.1 Lower condition of tuna when associated 224

In this study, we develop twomechanisticmodels to assess the causal link between tuna condition at DFADs 225

and their associative behavior. The first model (based onH1) posits that tuna condition decreases when they 226

are associated with DFADs. The second model (based on H2) assumes that tuna tend to associate more 227

with DFADs when they have a lower condition. Both theoretical models provide an average lower condition 228

for DFAD-associated tuna than tuna in free-swimming schools (FSC), in agreement with previous studies con- 229

ducted considering various condition indicators (Table 1, Dupaix et al. 2024b). As FSC tuna are caught while 230

actively feeding, caution must be taken when interpreting the conclusions drawn from indicators such as tho- 231

rax girth and stomach fullness (Hallier and Gaertner 2008; Marsac et al. 2000; Ménard et al. 2000), as these 232

indicators are probably responding to tuna feeding on a very short-term basis. In addition, Sardenne et al. 233

2016 compared morphometric indices such as thorax girth or relative condition factor (Kn, used in Ashida et 234

al. 2017; Dupaix et al. 2023) with energy contents in the tissues and showed that such indices should be used 235

carefully on tropical tunas as they do not always properly reflect individuals’ condition. Other evidence by Zu- 236

daire et al. 2014, which found a difference in total lipid content in female yellowfin tuna gonads, could also be 237

attributed to a different reproductive strategy rather than a difference in physiological condition. Therefore, 238

most studies that show a difference in condition between FSC and FOB-associated tuna relied on indicators 239

that require careful interpretation. Robert et al. 2014 relying on the phase angle measured by Bioelectrical 240

Impedance Analysis, as we did in this study, also found a lower condition of FOB-associated tuna compared 241

to FSC tuna. Because it represents an indicator of membrane integrity, BIA is considered a good indicator of 242

physiological condition. However, to date and like other condition indicators, it has not been validated yet. 243

To be able to rely with confidence on condition indicators, experimental validations are needed. These vali- 244

dations could be performed experimentally, by monitoring a set of condition indicators on captive tuna while 245

fasting. It would allow the confirmation of the fact that tuna are in lower condition when associated, but it 246

would also allow to determine the exact meaning of this difference of tuna’s condition and the temporal scale 247

of these indicators variations. 248

4.2 Causation or consequence of associative behavior 249

Before our study, the causation between the low condition at floating objects and the associative behavior 250

of tuna was yet to be determined (Robert et al. 2014). We develop a mathematical framework allowing to 251

determine if (H1) tuna condition decreases when they are associated or if (H2) tuna tend to associate more 252

when they are in a lower condition. We show that, as the number of DFADs increases, the mean condition 253

of the associated and free-swimming fractions of a tuna population will not vary identically depending on 254

the causation hypothesis made. Dupaix et al. 2023 found no decreasing nor increasing trend of the mean 255

condition of associated yellowfin tuna (assessed through the relative condition factorKn, see their Figure S3) 256

concurrently with the increasing use of DFADs from 1987 to 2019. However, in their study performed with 257

data from 1987 to 2019, the authors could not test the relationship between the average condition and the 258

density of FOB, as precise density data was not available. Here, thanks to a dataset made available recently 259

by the Indian Ocean Tuna Commission, we determine the DFAD densities corresponding to the measured 260

mean condition of associated yellowfin tuna. With this dataset we assess the causal link between tuna low 261

condition and association to DFADs for these two species. The BIA does not show clear trends as a function 262

of the FOB density, suggesting that, if an impact of FOB density exists, we are currently beyond the range of 263

densities where such impact is clearly visible. Such conclusion are strengthened by a complementary analysis 264

performed on skipjack tuna (Supplementary S3), calling for more data, especially for lower FOB densities. 265

However, the results of the correlation test (confirmed by the non-linear model presented in Supplementary 266

S1) suggest a significant negative effect of the FOB density for yellowfin tuna, which rejectH2 and implies that 267

yellowfin tuna associative behavior provokes a decrease of their average condition (H1). Hence, it shows that 268

the low condition of yellowfin tuna at FOBs is a consequence of their associative behavior, not a cause. 269
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4.3 Mechanistic models to assess behavior causation and consequences 270

This study relies on the formulation of a mechanistic model, based on two different causation hypothe- 271

ses, which can then be used to determine the right hypothesis through classical correlative methods. This 272

approach is conceptually similar to the one developed in ecosystem models, which posit mechanisms and 273

validate them using correlative approaches (Fulton et al. 2005; Dueri et al. 2014; Hilborn 2016). Craver 2006 274

argues that not all models are explanatory, some a merely phenomenal models which can predict the out- 275

comes of a mechanism, but can not explain this mechanism. For example, Ptolemy’s model of the solar 276

system predicted the location of the planets but did not explain why the planets moved. In our case, pre- 277

vious knowledge predicted that associated tuna were in lower condition than free-swimming ones, but the 278

causation of this relationship was unknown. This study highlights the importance of combining mechanistic 279

modeling with empirical data to disentangle complex ecological interactions and determine the causation and 280

consequences of specific behaviors. Furthermore, the findings underscore the potential of using mechanistic 281

models as valuable tools in ecological research, particularly when experimental manipulations are impractical 282

or impossible. 283

Craver 2006 also states that models lie somewhere between sketches and complete descriptions and that 284

the proper degree of abstraction has to be found depending on the model’s intended use. Here, some simpli- 285

fications were done, which could influence the obtained results: we considered a direct proportion between 286

the number of DFADs and the probability to associate. Capello et al. 2022, using a model with several social 287

scenarios, demonstrated that social behavior influences the way the fraction of schools which are associated 288

varies with DFAD density. This model could be calibrated using data from echo-sounder buoys associated 289

with DFADs, which can be used to determine the presence or absence of associated tuna aggregations under 290

DFADs (Baidai et al. 2020). Then, adding a physiological state variable would allow to determine the impact 291

of an increasing DFAD density on tuna condition, accounting for both their associative and social behavior. 292

Although the relationship between the number of FADs and tuna association changes quantitatively under 293

different social scenarios, it remains qualitatively consistent (Capello et al. 2022): an increase of the num- 294

ber of FADs always resulted in an increase of the proportion of tuna schools associated, strengthening our 295

findings. 296

4.4 Motivational, ontogenetic and phylogenetic causes and consequences of behav- 297

ior 298

It has been argued that determining a behavior’s function can inform on its causation and consequences 299

(Sherry 2005). The reverse is also possible. This study determines an ontogenetic consequence of yellowfin 300

tuna associative behavior. However, this result highlights the lack of knowledge on the phylogenetic conse- 301

quence of this behavior. If associating with floating objects has a direct negative consequence on tropical 302

tuna, there has to be an important phylogenetic consequence being able to compensate for that decrease in 303

condition. Two main hypotheses are formulated as phylogenetic consequences of tropical tuna associative 304

behavior of tropical tunas with floating objects: themeeting-point (explicited in Introduction) and the indicator- 305

log hypotheses (Hall 1992; Fréon and Dagorn 2000; Castro et al. 2002). The indicator-log hypothesis posits 306

that tunas and other associated species use natural floating objects as cues to select good-quality habitat 307

(Hall 1992; Hallier and Gaertner 2008). NLOGs would be located in productive areas because they originate 308

from rivers and tend to accumulate in rich frontal zones. 309

In a context of global change, determining this phylogenetic consequence is central as it can strongly in- 310

fluence the response to antropogenic human modification (Dupaix et al. 2024b). This could be done using a 311

similar approach as the one developed here and in Capello et al. 2022. The importance of determining phy- 312

logenetic consequences of behavior for species conservation are twofold. First, it will influence the impact of 313

human activities on species populations – e.g. if themeeting-point hypothesis is verified, i.e. tuna associate to 314

form larger schools, increasing the number of DFADs can disturb schooling behavior, impacting their fitness. 315
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Then, it can allow to predict the potential changes of these consequences induced by human activities. Again, 316

if we consider the meeting-point hypothesis in a context of an increase of DFAD density increase, we should 317

observe a reduction of the fitness associatedwith associative behavior. This reduction could result in a change 318

in that behavior, induced by human activities. 319

4.5 Conclusion 320

The model presented in this study, coupled with field data, allows to advance our understanding of tuna 321

associative behavior and of the processes underlying the association with floating objects. Based on this 322

framework one can now determine the causal link between tuna condition and their associative behavior to 323

DFADs. It also demonstrates the relevance of coupling mechanistic modelling with correlative approaches 324

when studying behavior in cases where experiments are hard to implement. The use of such approaches 325

rooted in conceptual frameworks such as the one developedbyHogan 2015will allow abetter characterization 326

of animal behavior causes and consequences at the relevant time scales. 327
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S1 Supplementary – Non-linear regressions 467

S1.1 Material and Methods 468

From the relationship obtained in Eq. S6, we know that the relationship between PA and ρFOB is not 469

linear. We can express eA as follow: 470

eA =
1 + φR(n)

1 +R(n)
e+

We introduce a, b, c, d ∈ (R+∗)4 such that 471

R(n) =
an+ b

cn+ d

Hence 472

eA =
1 + φan+b

cn+d

1 + an+b
cn+d

e+

=
cn+ d+ φ(an+ b)

cn+ d+ an+ b
e+

=
n(c+ φa) + d+ φb

n(a+ c) + d+ b
e+

=
n+ d+φb

c+φa

n a+c
d+φb +

d+b
c+φa

e+

So, PA can be expressed as a function of ρFOB with the following relationship: 473

PA =
ρFOB + β

δρFOB + ζ
(S1)

with β,δ,ζ ∈ (R+∗)3. 474

Based on Eq. S1, we fitted a non-linear model (noted NLM), using the Levenberg-Marquardt algorithm, with 475

the function nls.lm of the R package minpack.lm (Elzhov et al. 2023). To account for seasonal variations, for 476

variations due to the richness of the area and for variations due to the size of the individual, the quarter (Q), 477

the chlorophyll-a concentration (Chla), and individual fork length (FL) were included as explanatory variables. 478

Chlorophyll-a concentration (in mg.m-3) at the fishing set locations were obtained from Copernicus marine 479

service, giving access to daily concentrations at a spatial resolution of 4 km×4 km. The model can be written 480

as: 481

PA(i) =
ρFOB(i) + β

δρFOB(i) + ζ
+ η Chla(i) + θ FL(i) + ι Q(i) + ϵ(i)

where PA(i) is the phase angle of individual i, ρFOB(i) the FOB density at the fishing set, FL(i) the fork 482

length of the individual, Chla(i) the cholorphyll-a concentration and Q(i) the quarter. β, δ, ζ , η, θ and ι are 483

the parameters to estimate and ϵ(i) is the residual error term. The Aikake Information Criterionwas calculated 484

and the goodness-of-fit of the model was assessed calculating its R2. To test the robustness of the model a 485

Leave-One-Out Cross Validation was performed (LOOCV): non-linear models were built removing each data 486

points one by one and the obtained coefficients and model statistics were assessed. 487
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S1.2 Results 488

The results of the NLMs assessing the relationship between the phase angle of associated YFT and the den- 489

sity of FOBs and other explanatory variables are presented in Table S3. YFT displayed a decreasing condition 490

factor with increasing fork length (θ = -0.27; p-value: 1.5×10-10) and a lower condition factor in the first quarter 491

of the year (PA in Q2 and Q4 significantly greater than Q1 for YFT). 492

The coefficient δ was significantly different from 0 (δ = 0.03, p-value < 2× 10−16) and ζ was found to be equal 493

to 0. Therefore, we performed another non-linear model, removing ζ , noted YFT2 in Table S3. In that second 494

model, which had a smaller than the first model, both β and δ were found to be significant, suggesting the 495

following relationship between PA and ρFOB : 496

PA(YFT) = 1

δ
+

β

ρFOB

As the results from the Spearman’s correlation test presented in the main manuscript, these results reject 497

H2 hypothesis for YFT, suggesting that YFT follow theH1 hypothesis (the association to DFADs induces a bad 498

condition). 499

Table S3. Non-linearmodels performed on the condition (phase angle - PA) of yellowfin tuna associated
with DFADs. YFT: yellowfin tuna;; β,δ and ζ : coefficients used to fit the density of FOBs; FL: fork length (cm);
Chla: chlorophyll-a concentration (mg.m-3); Q: quarter; AIC: Aikake Information Criterion. LOOCV: Leave-One-
Out Cross Validation, the last column presents the minimum and maximum estimate obtained performing
the LOOCV.
Non-linear model Coefficient Estimate Significance (p-

value)
LOOCV
min max

YFT1 β 9.65 0.87 9.1 10.6

δ 0.03 < 2× 10−16 0.030 0.033

ζ 0.00 1.00 0 0

Chla 5.8 0.40 4.8 8.2

FL −0.27 1.5× 10−10 −0.28 −0.24

Q2 6.5 < 2× 10−16 6.2 6.9

Q3 1.1 0.40 0.9 1.3

Q4 7.2 2.67× 10−11 6.7 7.5

R2: 0.51 0.49 0.53

AIC: 1276 1217 1272

YFT2 β 10.2 1.18× 10−7 9.1 10.5

δ 0.03 < 2× 10−16 0.031 0.033

Chla 6.3 0.29 4.9 8.7

FL −0.26 2.9× 10−10 −0.27 −0.23

Q2 6.6 < 2× 10−16 6.2 6.9

Q3 1.1 0.32 0.9 1.3

Q4 7.0 2.08× 10−11 6.7 7.4

R2: 0.51 0.49 0.53

AIC: 1274 1215 1270

Despite the presence of outliers, the NLMs obtained through the Leave-One-Out Cross Validation (LOOCV) 500

confirmed the robustness of the relationship (or absence of relationship) between PA and ρFOB and between 501

PA and other variables for both species (Table S3). The values of the coefficients showed little variation and 502

no modification of their significance was observed. 503

504
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S2 Supplementary - Equilibriummodel solution 505

All the solutions are determined when the system is at equilibrium, i.e when 506

dNA+

dt
=

dNA−

dt
=

dNF+

dt
=

dNF−

dt
= 0

S2.1 Variations of the average condition of the associated fraction of the population 507

S2.1.1 NA− /NA+ ratio 508

From Eq. 1 we have 509

NF+ =
γp + αA

nµp
NA+ − εA

nµp
NA− (S2)

NF− =
γm + εA
nµm

NA− − αA

nµm
NA+ (S3)

and 510

NA+ =
nµp + αF

γp
NF+ − εF

γp
NF− (S4)

Hence, we have 511

NA+ =
nµp + αF

γp

[
γp + αA

nµp
NA+ − εA

nµp
NA−

]
− εF

γp

[
γm + εA
nµm

NA− − αA

nµm
NA+

]
⇔ NA+ =

nµp + αF

γp

γp + αA

nµp
NA+ − nµp + αF

γp

εA
nµp

NA− − εF
γp

γm + εA
nµm

NA− +
εF
γp

αA

nµm
NA+

⇔ NA+

[
1− nµp + αF

γp

γp + αA

nµp
− εF

γp

αA

nµm

]
= −

[
nµp + αF

γp

εA
nµp

+
εF
γp

γm + εA
nµm

]
NA−

We defineQ such that 512

Q = 1− nµp + αF

γp

γp + αA

nµp
− εF

γp

αA

nµm

=
γpnµpnµm − nµm(nµp + αF )(γp + αA)− nµpεFαA

γpnµpnµm

and 513

S = −

[
nµp + αF

γp

εA
nµp

+
εF
γp

γm + εA
nµm

]

= −nµm(nµp + αF )εA + nµpεF (γm + εA)

γpnµpnµm

Hence 514

NA− =
Q

S
NA+ = −γpnµpnµm − nµm(nµp + αF )(γp + αA)− nµpεFαA

nµm(nµp + αF )εA + nµpεF (γm + εA)
NA+

=
nµpnµmαA + nµmγpαF + nµmαFαA + nµpεFαA

nµpnµmεA + nµmαF εA + nµpεF γm + nµpεF εA
NA+

Hence 515
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NA− =
nµpµmαA + µmγpαF + µmαFαA + µpεFαA

nµpµmεA + µmαF εA + µpεF γm + µpεF εA
NA+

We define 516

R =
NA−

NA+

=
nµpµmαA + µmγpαF + µmαFαA + µpεFαA

nµpµmεA + µmαF εA + µpεF γm + µpεF εA
(S5)

eA(n) =
e+NA+ + e−NA−

NA+ +NA−
=

e+ + e−
NA−
NA+

1 +
NA−
NA+

=
1 + φR(n)

1 +R(n)
e+ (S6)

with φ = e−

e+ . 517

S2.1.2 Derivative of R 518

dR(n)

dn
=

[
(µpµmαA)(nµpµmεA + µmαF εA + µpεF γm + µpεF εA)−

(nµpµmαA + µmγpαF + µmαFαA + µpεFαA)(µpµmεA)

][
nµpµmεA + µmαF εA + µpεF γm + µpεF εA

]−2

dR(n)

dn
> 0

⇔ (µpµmαA)(nµpµmεA + µmαF εA + µpεF γm + µpεF εA)−

(nµpµmαA + µmγpαF + µmαFαA + µpεFαA)(µpµmεA) > 0

⇔ αAµmαF εA + αAµpεF γm + αAµpεF εA − εAµmγpαF − εAµmαFαA − εAµpεFαA > 0

⇔ αAµpεF γm − αFµmεAγp > 0

S2.1.3 Derivative of eA 519

deA(n)

dn
=

d
(
e+ 1+φR

1+R

)
dn

=
φdR(n)

dn

(
1 +R(n)

)
−
(
1 + φR(n)

)dR(n)
dn(

1 +R(n)
)2 e+

=
e+(φ− 1)(
1 +R(n)

)2 dR(n)

dn

S2.1.4 General model conclusion 520

eA is a decreasing sequence of n if and only if 521

deA(n)

dn
< 0 ⇔ dR(n)

dn
> 0 ⇔ αAµpεF γm − αFµmεAγp > 0 (S7)

S2.1.5 H1 hypothesis: FAD association induces tuna bad condition 522

We make the following hypotheses: αA

εA
> αF

εF
; µp = µm = µ and γp = γm = γ 523

Then 524

19



αA

εA
>

αF

εF

⇔ αAεF − αF εA > 0

⇔ αAµpεF γm − αFµmεAγp > 0

⇔ deA(n)

dn
< 0

So, under hypothesisH1, eA is a decreasing sequence of n. 525

S2.1.6 H2 hypothesis: the bad condition induces the associative behavior 526

We make the following hypotheses: µm

γm
>

µp

γp
; αA = αF = α and εA = εF = ε 527

Then 528

µm

γm
>

µp

γp

⇔ µpγm − µmγp < 0

⇔ αAµpεF γm − αFµmεAγp < 0

⇔ deA(n)

dn
> 0

So, under hypothesisH2, eA is an increasing sequence of n. 529

S2.2 Variations of the average condition of the free-swimming fraction of the popu- 530

lation 531

S2.2.1 NF− /NF+ ratio 532

At equilibrium, from Eq. 1, we have 533

NF+ =
γp + αA

nµp
NA+ − εA

nµp
NA−

NA+ =
nµp + αF

γp
NF+ − εF

γp
NF−

and 534

NA− =
nµm + εF

γm
NF− − αF

γm
NF+

Hence 535

NF+ =
γp + αA

nµp

[
nµp + αF

γp
NF+ − εF

γp
NF−

]
− εA

nµp

[
nµm + εF

γm
NF− − αF

γm
NF+

]
⇔ NF+ =

γp + αA

nµp

nµp + αF

γp
NF+ − γp + αA

nµp

εF
γp

NF− − εA
nµp

nµm + εF
γm

NF− +
εA
nµp

αF

γm
NF+

⇔ NF+

[
1− γp + αA

nµp

nµp + αF

γp
− εA

nµp

αF

γm

]
= −

[
γp + αA

nµp

εF
γp

+
εA
nµp

nµm + εF
γm

]
NF−

⇔ NF+

(
nµpγpγm − γpεAαF − γmγpnµp − αFαAγm − αF γpγm − αAnµpγm

)
=

−
(
εF γpγm + αAεF γm + εAγpnµm + εF εAγp

)
NF−

⇔ NF− =
γpεAαF + αFαAγm + αF γpγm + αAnµpγm
εF γpγm + αAεF γm + εAγpnµm + εF εAγp

NF+
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We define 536

T =
NF−

NF+

=
nαAµpγm + γpεAαF + αFαAγm + αF γpγm
nεAγpµm + εF γpγm + αAεF γm + εF εAγp

(S8)
Then 537

eF (n) =
e+NF+ + e−NF−

NF+ +NF−
=

e+ + e−
NF−
NF+

1 +
NF−
NF+

=
1 + φT (n)

1 + T (n)
e+

S2.2.2 Derivative of T 538

dT (n)

dn
=

[
αAµpγm

(
nεAγpµm + εF γpγm + αAεF γm + εF εAγp

)
−

(
nαAµpγm + γpεAαF + αFαAγm + αF γpγm

)
εAγpµm

][
nεAγpµm + εF γpγm + αAεF γm + εF εAγp

]−2

dT (n)

dn
> 0

⇔ αAµpγm
(
nεAγpµm + εF γpγm + αAεF γm + εF εAγp

)
−(

nαAµpγm + γpεAαF + αFαAγm + αF γpγm
)
εAγpµm > 0

⇔ αAµpγmεF γpγm + αAµpγmαAεF γm + αAµpγmεF εAγp−

εAγpµmγpεAαF − εAγpµmαFαAγm − εAγpµmαF γpγm > 0

⇔ µpγmεF γpγm + µpγmαAεF γm + µpγmεF εAγp −
εA
αA

γpµmγpεAαF − εA
αA

γpµmαAαF γm − εA
αA

γpµmαF γpγm > 0

⇔ εF
αF

µpγmγpγm +
εF
αF

µpγmαAγm +
εF
αF

µpγmεAγp −
εA
αA

γpµmγpεA − εA
αA

γpµmαAγm − εA
αA

γpµmγpγm > 0

⇔ εF
αF

γmγpγm +
εF
αF

γmαAγm +
εF
αF

γmεAγp −
εAγp
αAµp

µmγpεA − εAγp
αAµp

µmαAγm − εAγp
αAµp

µmγpγm > 0

⇔ εF γm
αFµm

γpγm +
εF γm
αFµm

αAγm +
εF γm
αFµm

εAγp −
εAγp
αAµp

γpεA − εAγp
αAµp

αAγm − εAγp
αAµp

γpγm > 0

⇔ εF γm
αFµm

(
γpγm + αAγm + εAγp

)
− εAγp

αAµp

(
γpεA + αAγm + γpγm

)
> 0

⇔ εF γm
αFµm

− εAγp
αAµp

> 0

⇔ εF γmαAµp − εAγpαFµm > 0

S2.2.3 Derivative of eF 539

deF (n)

dn
=

d
(
e+ 1+φT

1+T

)
dn

=
φdT (n)

dn

(
1 + T (n)

)
−
(
1 + φT (n)

)dT (n)
dn(

1 + T (n)
)2 e+

=
e+(φ− 1)(
1 + T (n)

)2 dT (n)dn

S2.2.4 General model conclusion 540

eF is a decreasing sequence of n if and only if 541
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deF (n)

dn
< 0 ⇔ dT (n)

dn
> 0 ⇔ εF γmαAµp − εAγpαFµm > 0 (S9)

S2.2.5 H1 hypothesis: FAD association induces tuna bad condition 542

We make the following hypotheses: αA

εA
> αF

εF
; µp = µm = µ and γp = γm = γ 543

Then 544

αA

εA
>

αF

εF

⇔ αAεF − αF εA > 0

⇔ αAµpεF γm − αFµmεAγp > 0

⇔ deF (n)

dn
< 0

So, under hypothesisH1, eF is a decreasing sequence of n. 545

S2.2.6 H2 hypothesis: the bad condition induces the associative behavior 546

We make the following hypotheses: µm

γm
>

µp

γp
; αA = αF = α and εA = εF = ε 547

Then 548

µm

γm
>

µp

γp

⇔ µpγm − µmγp < 0

⇔ αAµpεF γm − αFµmεAγp < 0

⇔ deF (n)

dn
> 0

So, under hypothesisH2, eF is an increasing sequence of n. 549

S2.3 Comparison of the average condition of the two fractions of the population 550

We want to verify that, under both hypotheses (H1 and H2), the average condition of the free-swimming 551

fraction of the population is greater than that of the associated fraction of the population – i.e. we want to 552

verify that ∀n ∈ N+∗, eF (n) > eA(n). 553

S2.3.1 Expression of T (n) as a function of R(n) 554

From Eq. S5&S8: R(n) =
NA−
NA+

et T (n) = NF−
NF+

555

T (n) =
NF−

NF+

=

[
γm + εA

µm
NA− − αA

µm
NA+

][
γp + αA

µp
NA− − εA

µp
NA+

]−1

=

[
γm + εA

µm

NA−

NA+

− αA

µm

][
γp + αA

µp
− εA

µp

NA−

NA+

]−1

=
µp

µm

(γm + εA)R(n)− αA

γp + αA − εAR(n)
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S2.3.2 General model - sign of eF (n)− eA(n) 556

eF (n)− eA(n) = e+

[
1 + φT (n)

1 + T (n)
− 1 + φR(n)

1 +R(n)

]

= e+

[(
1 + φT (n)

)(
1 +R(n)

)
−

(
1 + φR(n)

)(
1 + T (n)

)(
1 + T (n)

)(
1 +R(n)

) ]

=
1 +R(n) + φT (n) + φT (n)R(n)− 1− φR(n)− T (n)− φT (n)R(n)(

1 + T (n)
)(
1 +R(n)

) e+

=
φT (n)− φR(n) +R(n) + T (n)(

1 + T (n)
)(
1 +R(n)

) e+

=

(
φ− 1

)(
T (n)−R(n)

)(
1 + T (n)

)(
1 +R(n)

) e+
And φ− 1 < 0, T (n) > 0 and R(n) > 0. So 557

eF (n)− eA(n) > 0 ⇔ T (n)−R(n) < 0

⇔ µp

µm

(γm + εA)R(n)− αA

γp + αA − εAR(n)
−R(n) < 0

⇔ µp[(γm + εA)R(n)− αA]− µmR(n)[γp + αA − εAR(n)]

[γp + αA − εAR(n)]µm
< 0

⇔ µp(γm + εA)R(n)− αAµp − (γp + αA)R(n)µm + µmεAR(n)2

γp + αA − εAR(n)
< 0

⇔
µmεAR(n)2 +

[
µp(γm + εA)− µm(γp + αA)

]
R(n)− αAµp

γp + αA − εAR(n)
< 0

We define: 558

a = µmεA

b = µp(γm + εA)− µm(γp + αA)

c = −αAµp

S2.3.3 General model - Case n°1: γp + αA − εAR(n) > 0 559

Then, because R(n) > 0 and µmεA > 0 and b2 − 4ac > 0, 560

eF (n)− eA(n) > 0 ⇔ T (n)−R(n) < 0

⇔ µmεAR(n)2 +
[
µp(γm + εA)− µm(γp + αA)

]
R(n)− αAµm < 0

⇔ R(n) < − b

2a
+

√
b2 − 4ac

2a

S2.3.4 General model - Case n°2: γp + αA − εAR(n) < 0 561

Then 562
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eF (n)− eA(n) > 0 ⇔ T (n)−R(n) < 0

⇔ µmεAR(n)2 +
[
µp(γm + εA)− µm(γp + αA)

]
R(n)− αAµm > 0

⇔ R(n) > − b

2a
+

√
b2 − 4ac

2a

S2.3.5 H1 hypothesis: FAD association induces tuna bad condition 563

We make the following hypotheses: αA

εA
> αF

εF
; µp = µm = µ and γp = γm = γ 564

Then 565

R(n) =
nµpµmαA + µmγpαF + µmαFαA + µpεFαA

nµpµmεA + µmαF εA + µpεF γm + µpεF εA

=
nµ2αA + µγαF + µαFαA + µεFαA

nµ2εA + µαF εA + µεF γ + µεF εA

=
nµαA + γαF + αFαA + εFαA

nµεA + αF εA + εF γ + εF εA

a = µεA

b = µ(γ + εA)− µ(γ + αA) = µ(εA − αA)

c = −µαA

We are in case n°1 because: 566

γ + αA − εAR(n) > 0

⇔
(
γ + αA

)(
nµεA + αF εA + εF γ + εF εA

)
− εA

(
nµαA + γαF + αFαA + εFαA

)
> 0

⇔ nµεAγ + αF εAγ + εF γ
2 + εF εAγ + nµεAαA + αF εAαA + εF γαA + εF εAαA−

εA
(
nµαA + γαF + αFαA + εFαA

)
> 0

⇔ εA
(
nµαA + γαF + αFαA + εFαA

)
+ αAεF γ + εF γ

2 + γεAεF−

εA
(
nµαA + γαF + αFαA + εFαA

)
> 0

⇔ αAεF γ + εF γ
2 + γεAεF > 0 which is always true

Hence 567
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eF (n)− eA(n) > 0 ⇔ R(n) < − b

2a
+

√
b2 − 4ac

2a

⇔ R(n) < −εA − αA

2εA
+

√
µ2(εA − αA)2 + 4µ2εAαA

2µεA

⇔ R(n) < −εA − αA

2εA
+

√
(εA + αA)2

2εA

⇔ R(n) <
1

2εA

[
− εA + αA + εA + αA

]
⇔ R(n) <

αA

εA

⇔ nµαA + γαF + αFαA + εFαA

nµεA + αF εA + εF γ + εF εA
<

αA

εA

⇔ εA

[
nµαA + γαF + αFαA + εFαA

]
− αA

[
nµεA + αF εA + εF γ + εF εA

]
< 0

⇔ αF εA − αAεF < 0

⇔ αF εA < αAεF

⇔ αF

εF
<

αA

εA

So, under hypothesisH1, we do verify that ∀n ∈ N+∗, eF (n) > eA(n) 568

S2.3.6 H2 hypothesis: the bad condition induces the associative behavior 569

We make the following hypotheses: µm

γm
>

µp

γp
; αA = αF = α and εA = εF = ε 570

Going back to Eq. 5: 571

dNA+

dt = −(γp + α)NA+ + εNA− + nµpNF+

dNA−
dt = −(γm + ε)NA− + αNA+ + µmnNF−

dNF+

dt = −(nµp + α)NF+ + γpNA+ + εNF−

dNF−
dt = −(nµm + ε)NF− + γmNA− + αNF+

At equilibrium, we have 572

−αNA+ + εNA− − αNF+ + εNF− = 0 ⇔ ε(NA− +NF−) = α(NA+ +NF+)

⇔ NA− +NF− =
α

ε
(NA+ +NF+)

Let us considerN , the total tuna population. Then: 573

NA+ +NA− +NF+ +NF− = N ⇔ NA− +NF− = N − (NA+ +NF+)

⇔ α

ε
(NA+ +NF+) = N − (NA+ +NF+)

⇔ NA+ +NF+ =
ε

α
N − ε

α
(NA+ +NF+)

⇔ (NA+ +NF+)(1 +
ε

α
) =

ε

α
N

⇔ NA+ +NF+ =
Nε

α+ ε
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Hence 574

NA+ +NF+ =
Nε

α+ ε
(S10)

Also, we can demonstrate that 575

NA− +NF− =
Nα

α+ ε
(S11)

Moreover 576

eF (n) > eA(n) ⇔
NF+ + φNF−

NF+ +NF−
>

NA+ + φNA−

NA+ +NA−
with φ =

e−

e+

⇔ NF+NA+ + φNA+NF− +NA−NF+ + φNA−NF− >

NF+NA+ + φNF+NA− +NF−NA+ + φNF−NA−

⇔ φNA+NF− +NA−NF+ > φNF+NA− +NF−NA+

From Eq. S10&S11 577

eF (n) > eA(n)

⇔ φNA+

( Nα

α+ ε
−NA−

)
+NA−

( Nε

α+ ε
−NA+

)
> φNA−

( Nε

α+ ε
−NA+

)
+NA+

( Nα

α+ ε
−NA−

)
⇔ φNA+

Nα

α+ ε
+NA−

Nε

α+ ε
> φNA−

Nε

α+ ε
+NA+

Nα

α+ ε

⇔ NA+

Nα

α+ ε
(φ− 1) > NA−

Nε

α+ ε
(φ− 1)

⇔ NA+

NA−
<

α+ ε

Nα

Nε

α+ ε
(as φ < 1)

Hence 578

eF (n) > eA(n) ⇔
NA+

NA−
<

ε

α
(S12)

From Eq. 5,S10&S11 579

−(γp + α)NA+ + εNA− + nµp

(
Nε
ε+α −NA+

)
= 0

−(γm + ε)NA− + αNA+ + nµm

(
Nα
ε+α −NA−

)
= 0

⇔

−(γp + α+ nµp)NA+ + εNA− + nµp
Nε
ε+α = 0

−(γm + ε+ nµm)NA− + αNA+ + nµm
Nα
ε+α = 0

Applying Cramer’s rule, we have 580

NA+ =

∣∣∣∣∣−nµp
Nε
ε+α ε

−nµm
Nα
ε+α −(γm + ε+ nµm)

∣∣∣∣∣∣∣∣∣∣−(γp + α+ nµp) ε

α −(γm + ε+ nµm)

∣∣∣∣∣
and 581

NA− =

∣∣∣∣∣−(γp + α+ nµp) −nµp
Nε
ε+α

α −nµm
Nα
ε+α

∣∣∣∣∣∣∣∣∣∣−(γp + α+ nµp) ε

α −(γm + ε+ nµm)

∣∣∣∣∣
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So 582

NA+

NA−
=

∣∣∣∣∣−nµp
Nε
ε+α ε

−nµm
Nα
ε+α −(γm + ε+ nµm)

∣∣∣∣∣∣∣∣∣∣−(γp + α+ nµp) −nµp
Nε
ε+α

α −nµm
Nα
ε+α

∣∣∣∣∣
=

nµp
Nε
ε+α (γm + ε+ nµm) + nεµm

Nα
ε+α

nµm
Nα
ε+α (γp + α+ nµp) + αnµp

Nε
ε+α

=
εµp(γm + ε+ nµm) + αεµm

αµm(γp + α+ nµp) + αεµp

Hence, from Equation S12 583

eF (n) > eA(n) ⇔
NA+

NA−
<

ε

α

⇔ εµp(γm + ε+ nµm) + αεµm

αµm(γp + α+ nµp) + αεµp
<

ε

α

⇔ µp(γm + ε+ nµm) + αµm

µm(γp + α+ nµp) + εµp
< 1

⇔ µpγm + εµp + nµpµm + αµm < µmγp + αµm + nµpµm + εµp

⇔ µpγm < µmγp

⇔ µp

γp
<

µm

γm

So, under hypothesisH2, we do verify that ∀n ∈ N+∗, eF (n) > eA(n) 584
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S3 Supplementary – Statistical analysis on skipjack tuna (SKJ) 585

We applied the methodology presented in the main manuscript to skipjack tuna in the WIO. A total of 323 586

skipjack (41 to 68 cm FL) were sampled, from 16 DFAD sets. 587

Phase angle values ranged from 6.5 to 48.9 °, with a median value of 24.6 °. Within-set standard-deviation 588

was low for most of the sets: average within-set standard deviation of 2.9 ° (Figure S4). Phase angle values 589

did not display any clear trend as a function of FOB density (Figure S4). However, SKJ displayed a significant 590

decreasing trend of PA for increasing ρFOB values (Spearman’s ρ = −0.23, p = 3.5× 10−5). 591

Figure S4. Phase angle (PA) of associated tuna as a function of floating object (FOBs) density. PA
was measured on 323 skipjack (SKJ, upper panel) and 232 yellowfin tuna (YFT, lower panel) fished on DFAD-
associated schools. Each boxplot corresponds to a given set. Note the higher range of FOB densities at which
skipjack PA was measured.

The results of the non-linear model assessing the relationship between the phase angle of associated SKJ 592
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and the density of FOBs and other explanatory variables are presented in Table S4 (Methods detailed in Sup- 593

plementary S1). SKJ displayed a decreasing condition factor with increasing fork length (θ = −0.12; p-value: 594

2.4×10-3) and a lower condition factor in the first quarter of the year (PA in Q2, Q3 and Q4 significantly greater 595

than Q1 for SKJ). SKJ condition decreased with increasing concentration of chlorophyll-a (η = −12.1; p-value: 596

8.5×10-10). No coefficient related to ρNFOB were found significant. Hence, the available BIA data does not 597

allow to conclude with certainty for SKJ, as the non-linear regressions do not confirm the results obtained with 598

Spearman’s correlation test. 599

600

Table S4. Non-linear models performed on the condition (phase angle - PA) of skipjack tuna associated
with DFADs. SKJ: skipjack tuna; β,δ and ζ : coefficients used to fit the density of FOBs; FL: fork length (cm);
Chla: chlorophyll-a concentration (mg.m-3); Q: quarter; AIC: Aikake Information Criterion. LOOCV: Leave-One-
Out Cross Validation, the last column presents the minimum and maximum estimate obtained performing
the LOOCV.
Non-linear model Coefficient Estimate Significance (p-

value)
LOOCV
min max

SKJ β 159 0.97 0.3 655

δ 0.03 5.6× 10−2 0.030 0.034

ζ 5.5 0.97 0.00 21.7

Chla −12.1 8.5× 10−10 −12.5 −11.8

FL −0.12 2.4× 10−3 −0.13 −0.10

Q2 9.0 < 2× 10−16 8.6 9.4

Q3 8.0 < 2× 10−16 7.9 8.1

Q4 4.4 1.1× 10−10 4.2 4.7

R2: 0.52 0.52 0.54

AIC: 1797 1769 1792

Despite the presence of outliers, the NLMs obtained through the Leave-One-Out Cross Validation (LOOCV) 601

confirmed the robustness of the relationship (or absence of relationship) between PA and ρFOB and between 602

PA and other variables for both species (Table S4). The values of the coefficients showed little variation and 603

no modification of their significance was observed. 604

605
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S4 Supplementary – eA and eF as a function of n for different 606

parameter values 607

Figure S5. Variations of eA and eF as a function of the number of DFADs (n). H1 model following the
hypothesis that tuna condition tend to decrease when they are associated with DFADs. All the results are
obtained with αA = εF = 10−2 and αF = εA = 10−3. The color scale represent the results considering
different values of µM = µP = γM = γP (noted µ on the color scale).
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