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Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo
Zili HE,Paule LAPEYRE,Stephane BLANCO,Eugene d’EON,Simon EIBNER,Mouna EL HAFI,Richard FOURNIER,Maxime
ROGER

• Introduces a classification of sensitivity estimation techniques into three distinct approaches, bridging concepts
from statistical physics and computer graphics.

• Employs intuitivly an one-dimensional radiative transfer case study to compare these sensitivity estimation
methods, demonstrating their practical and theoretical applications.
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A B S T R A C T
The Monte Carlo method, renowned for its ability to handle the spectral and geometric
complexities of 3D radiative transfer, is extensively utilized across various fields, including
concentrated solar power design, atmospheric science, and computer graphics. The success
of this method also extends to the estimation of sensitivity—the derivative of an observable
with respect to a given system parameter, which is, however, particularly challenging when
these parameters involve geometric deformation. Bridging statistical physics and computer
graphics, distinct methodologies have emerged within these fields for estimating geometric
sensitivity, each employing unique terminologies and mathematical frameworks, leading to
seemingly disparate approaches. In this paper, we review the three main approaches to sensitivity
estimation: 1) Expectation Differentiation, which employs a vectorized Monte Carlo algorithm
to simultaneously estimate the intensity and its sensitivity; 2) Differentiable Rendering, pre-
dominantly used in computer graphics and applied in numerous contexts; 3) Transport Model
for Sensitivity, which conceptualizes sensitivity as a physical quantity with its own transport
equations and boundary conditions, thereby facilitating engineering and physics analyses. We
aim to enhance readers’ ability to tackle sensitivity-related challenges by providing a comparative
understanding of these three perspectives. We achieve this through a simplified one-dimensional
radiative transfer case study, offering an accessible platform for comparing and classifying these
approaches based on their theoretical underpinnings and practical application in Monte Carlo
algorithms.

1. Introduction
For numerical simulation of radiative transfer, the Monte Carlo method is one of the leading practical ways

to simultaneously handle all the spectral and geometric complexity of radiation in 3D realistic systems, involving
significant differences in geometric scales (Howell et al., 2020). Ongoing research enormously benefits from an active
interface between statistical physics and computer graphics, which was mainly initiated with physically based rendering
(Pharr et al., 2016), expanding to light interaction at different scales for materials with micro-geometries (Jakob et al.,
2014; Heitz et al., 2016; Guo et al., 2018), and then to highly non-homogeneous or fast-variating semi-transparent media
(Galtier et al., 2016; Villefranque et al., 2019; Tregan et al., 2020), displaying computation times that are insensitive
to the geometric complexity of surface and volume descriptions. The resulting algorithms are now being used on
a common basis in numerous application contexts, typically in the cinema and game industries, e.g., for rendering
clouds (Kutz et al., 2017; Novák et al., 2018; Misso et al., 2023), but also for designing concentrated solar power (CSP)
systems involving complex geometric scenes of mirrors, solar concentrators, and receivers, where again it is observed
that computation times are insensitive to geometric complexity (e.g., the number of mirrors and triangles used for shape
description) Delatorre et al. (2014); Farges et al. (2015); Wang et al. (2020). Similar benefits could also be extended to
coupled conduction-convection-radiation heat transfer (Villefranque et al., 2022; Tregan et al., 2023; Bati et al., 2023;
Sawhney et al., 2023). We here discuss some of the efforts made at this physics/computer-graphics interface toward
designing estimators for sensitivities, ensuring that these estimates enter the same Monte Carlo framework and benefit
from the same scalability features.
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Motivated by sensitivity analysis, optimization, and inverse problem issues, attention has always been paid to
computational methods that allow the estimation of differential sensitivities, which are the derivatives of the outputs
with respect to the input parameters. As a starting point, let us recall that the statistical nature of Monte Carlo forbids the
use of finite difference approaches (difference of two Monte Carlo runs with small parameter changes) that lead to very
poor convergences (Gobet, 2016). So, in the Monte Carlo context, sensitivity can only be addressed and statistically
estimated as a formal object in itself and not via simple differences. As far as sensitivity to non-geometric parameters is
concerned, successes have been reported since the early age of Monte Carlo practice (Mikhailov, 1966, 1967; Brainina
et al., 1967; Sidorenko and Khisamutdinov, 1981). For instance, it can be simply observed that starting from the integral
formulation of the expectation of the initial estimate, it is possible to differentiate both the sampling probabilities and the
Monte Carlo weight to get a Monte Carlo algorithm directly addressing the sensitivity in an unbiased manner, without
the use of any finite difference (De Lataillade et al., 2002). The sensitivity-analysis requirements of radiation physics
closely matched those of other linear-transport physics, especially neutronics under the denomination "perturbation
source methods," to give very abundant literature (Hoffman et al., 1978; Iván Lux, 1991; De Lataillade et al., 2002;
Sakamoto and Yamamoto, 2017; Yamamoto and Sakamoto, 2022; Nimier-David et al., 2022). There are still open
questions, such as convergence problems when estimating sensitivities to scattering coefficients in optically thick
media (Tregan et al., 2020; Nimier-David et al., 2022). However, the resulting solutions are practical, preserving all
the scalability features gained in the recent decades of computer-graphics/physics interactions.

However, great difficulties arise when moving to geometric parameters because the integration domain changes
with the parameter, and the literature is less mature. Authors adopt approaches that may look quite distinct and are
difficult to classify. They all aim to estimate the same sensitivities without bias, and it is often unclear how closely
related the underlying statistical estimators are. Additionally, it is difficult to determine whether the differences in the
resulting algorithms are due to fundamental aspects of each approach or because of less important tuning choices, such
as those aimed at reducing variance. Their differences have computational implications (code structures, data access,
sampling requirements, etc.) that are still to be clarified.

In this work, we attempt to classify these approaches by identifying three main categories, naming and illustrating
their advantages and disadvantages. Of course, beyond their differences, they share the same photon transport physics
and the same background as far as solving transport problems with Monte Carlo is concerned:

• Whatever the addressed quantity (e.g., a radiative flux), this quantity is first defined as an integral of specific
intensity, e.g., over surfaces and solid angles, the specific intensity being defined as the solution of the standard
radiative transfer equation.

• This solution is expressed as an integral by translating the radiative transfer equation into its Fredholm equation
counterpart, leading to the integral solution of the radiative transfer equation.

• To get the Monte Carlo estimate, the Fredholm equation is reformulated and given a probabilistic form, i.e.,
random variables are introduced that translate each integral into an expectation.

All the reported works we studied refer to these three standard steps when defining their starting point: a Monte
Carlo algorithm that estimates the intensity 𝐼 for a given value of a geometric parameter 𝜋̈. Their contributions start,
therefore, with an already available Monte Carlo algorithm for estimation of 𝐼(𝜋̈), and they work at designing an
unbiased Monte Carlo algorithm estimating 𝑠 ≡ 𝜕𝜋̈𝐼 . The three approaches that we identify correspond to different
ways of achieving the differentiation process:

• Differentiating the expectation consists of getting 𝑠 by differentiating 𝐼 under the expectation form of the initial
Monte Carlo estimate (the integral formulation of the initial Monte Carlo algorithm). As mentioned, this is not
straightforward because the integration domain changes with the parameter. But a solution was proposed in Roger
et al. (2005) (after De Lataillade et al. (2002)), introducing a field of domain deformation velocity and writing
the geometric differentiation using the divergence of this velocity field. The leading idea is that this allows using
the same sampling sequence to estimate both 𝐼 and 𝑠. Therefore, They can be estimated simultaneously in a
vectorized form, which is a significant advantage of this approach. However, at present, each new case requires
great formal development efforts before implementation (constructing and handling the domain deformation
velocity field), making it almost impracticable in application contexts.

• Differentiable rendering is the leading approach in computer graphics. Although it is more general, we keep the
denomination “rendering” in reference to the “rendering equation” used in computer graphics for the Fredholm

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 2 of 100



Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

counterpart to the radiative transfer equation (Kajiya, 1986). The approach consists of differentiating this
Fredholm equation (Li et al., 2018; Zhang et al., 2019a). Its level of maturity is strongly increasing, and numerous
successful applications have been reported. Typically, coupled with optimization algorithms and neural network
(Kato et al., 2020), the corresponding sensitivity estimates could be used for the reconstruction of 3D objects
(Yan et al., 2016; Tulsiani et al., 2017; Kato et al., 2018; Kato and Harada, 2019), body shapes (Bogo et al.,
2016; Pavlakos et al., 2018), hand shapes (Baek et al., 2019; Zhang et al., 2019b), face shapes (Genova et al.,
2018), etc.

• Transport model for sensitivity consists of differentiating the differential-integral transport model of the intensity,
i.e., the linear Boltzmann equation, and building a similar transport model for the sensitivity. Lapeyre et al. (2022)
studied the similitude between transport of sensitivity and transport of intensity. Sensitivity is then considered
a physical quantity with its own transport model, propagating throughout the domain and interacting with the
boundaries. There are emissions of sensitivity (sources of sensitivity), absorption, scattering in the medium, and
reflection at the boundaries. One benefit of this approach is that years of research on the transport of intensity
can serve to study and solve this new transport problem for sensitivity. For example, He et al. (2023) follow this
approach to separately interpret each of the physical sources of sensitivity in a Concentrated Solar Power system,
explicitly with the objective of better understanding the geometric design potentials.

In section 2, in a unified manner, we recall the common general theoretical framework and point out where the
three approaches depart. After that, in order to intuitively compare them and illustrate their algorithmic consequences,
an academic one-dimensional radiative transfer problem is considered in section 3 for which all derivations can
be exhaustively provided and commented in terms of both physics and computational implications. Analytical
solutions are fully available (Bellman and Wing, 1992), which allows rigorous validation and quantitative convergence
analysis. The last section (Sec. 4) is a discussion. It essentially concentrates on the features that the one-dimensional
configuration is meant to illustrate exhaustively. But some of the analyses also depart from this restriction to one
dimension only, typically attempting to picture the reasons why, for some sensitivity-estimation algorithms, angular
integration translates into Dirac emissions at triangle edges, with associated convergence difficulties. In contrast, it
translates into heavy formal derivations for other approaches.

2. Theoretical framework
In this section, we first answer the question of designing Monte Carlo estimators of other physical observables than

specific intensity: All approaches come down to estimating intensity. Then, we closely enunciate the standard steps
from the linear Boltzmann equation (and its boundary condition) to a statistical estimate of intensity. This enunciation
is essential because the available approaches depart in the steps at which they decide to make the differentiation. We
then describe the three approaches as three different ways of performing this differentiation.
2.1. Estimation of the observable and its sensitivity

The addressed quantity, the observable 𝐴 (e.g., a radiative power or any measured radiative quantity), is defined as
an integral of the field descriptor, the specific intensity 𝐼 :

𝐴(𝜋̈) = ∫𝒱 (𝜋̈)
𝑑𝑦 𝐼(𝑥⃗, 𝜔⃗, 𝜋̈)𝛼(𝑦, 𝜋̈) (1)

where the position 𝑥⃗ in geometrical space and the direction 𝜔⃗ are functions of 𝑦: 𝑥⃗ = 𝑓𝑥⃗(𝑦), 𝜔⃗ = 𝑓𝜔⃗(𝑦). The geometric
parameter 𝜋̈ defines the geometry of the scene.𝒱 is the integration domain for 𝑦 and 𝛼 a known function of 𝑦. Typically,
if 𝐴 is the radiative flux outgoing a surface  ≡ (𝜋̈),

𝐴(𝜋̈) = ∫(𝜋̈)
𝑑𝑥⃗∫(𝑥⃗)

𝑑𝜔⃗ 𝐼(𝑥⃗, 𝜔⃗, 𝜋̈)𝜔⃗ ⋅ 𝑛(𝑥⃗) (2)

and 𝑦 = (𝑥⃗, 𝜔⃗), 𝒱 =  ×, 𝛼 = 𝜔⃗ ⋅ 𝑛, where 𝑛 is the unit normal to the surface at 𝑥⃗ and  the hemisphere around
this normal. Building a Monte Carlo estimator for 𝐴(𝜋̈) requires the choice of a probability density function (pdf) for
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𝑦, 𝑝𝑌 (𝑦; 𝜋̈) that may depend on 𝜋̈ and defines a random variable 𝑌 that leads to the rewriting of Eq.1 in an expectation
form:

𝐴(𝜋̈) = ∫𝒱 (𝜋̈)
𝑝𝑌 (𝑦; 𝜋̈)𝑑𝑦

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈)𝛼(𝑦, 𝜋̈)
𝑝𝑌 (𝑦; 𝜋̈)

= 𝔼

(

𝐼(𝑋⃗, Ω⃗, 𝜋̈)𝛼(𝑌 , 𝜋̈)

𝑝𝑌 (𝑌 ; 𝜋̈)

)

(3)

with 𝑋⃗ = 𝑓𝑥⃗(𝑌 ) and Ω⃗ = 𝑓𝜔⃗(𝑌 ). For a given value of 𝜋̈, the Monte Carlo algorithm samples 𝑌 , therefore samples 𝑋⃗
and Ω⃗, and the Monte Carlo weight is 𝐼𝛼

𝑝𝑌
for these sampled values.

The main point here is that addressing the derivative of 𝐴 with respect to 𝜋̈ requires building the derivative of an
integral of 𝐼 . Although both the integration domain and the pdf may depend on 𝜋̈, the definition of the observable is
usually quite simple, and the only difficulty is the construction of an estimator for 𝑠 = 𝜕𝜋̈𝐼 . For instance, we may write:

𝜕𝜋̈𝐴 = ∫𝒱
𝑠𝛼𝑑𝑦 + ∫𝒱

𝜕𝜋̈𝛼𝐼𝑑𝑦 + ∫𝜕𝒱
𝐼𝛼𝑉𝜋̈ ⋅ 𝑛𝜕𝒱 (𝑧)𝑑𝑧 (4)

where 𝜕𝒱 is the boundary of 𝒱 , 𝑛𝜕𝒱 is the normal to 𝜕𝒱 and 𝑉 is the domain deformation velocity (e.g. see Roger
et al. (2005)).

Provided that 𝐼 and 𝑠 = 𝜕𝜋̈𝐼 are known, these three integrals can easily be handled with Monte Carlo: if we know
𝐼 and 𝑠, we have the estimator of 𝜕𝜋̈𝐴. As 𝐼 and 𝑠 appear linearly inside the integrals of Eq. 4, as soon as statistical
estimators are available for 𝐼 and 𝑠, they can be reported inside the 𝐴 estimator thanks to double randomization. So
the step from (𝐼, 𝑠) to 𝜕𝜋̈𝐴 is quite trivial. The remaining of the present article, therefore, focuses on the statistical
estimation of intensity and the derivative of intensity with respect to the parameter changing the geometry (the
geometric sensitivity).
2.2. Estimation of intensity

Numerous statistical estimators of specific intensity (or, more generally, the distribution function for linear
Boltzmann equations, e.g., in neutron transport) have been reported since the origin of the Monte Carlo literature.
The only meaning of this section is to name the common methodological steps that we will need when discussing the
act of designing an estimator for sensitivity.
Step 1: linear Boltzmann equation + boundary condition Implicitly or not, all propositions start with the
integrodifferential equation for the distribution function, or more commonly, the specific intensity in radiative transfer.
This models the field physics of volume sources and volume collisions. At the boundary of the system, another model
is required for surface sources and surface reflections. Typically, in the field,

𝜔⃗ ⋅
𝜕𝐼
𝜕𝑥⃗

= −𝜅𝑎𝐼 − 𝜅𝑠𝐼 + ∫4𝜋
𝜅𝑠𝐼

′Φ(𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′ + S (5)

where 𝜅𝑎 and 𝜅𝑠 are the extinction coefficients for absorption and scattering, Φ is the single scattering phase function,
S is the volume source and 𝐼 ′ ≡ 𝐼(𝑥⃗, 𝜔⃗′, 𝜋̈). When the volume source is due to thermal emission, under the assumption
that the matter is in a state of local thermodynamic equilibrium, then S = 𝜅𝑎𝐼𝑒𝑞(𝑇 ) (isotropic) where 𝑇 is the local
temperature and 𝐼𝑒𝑞 is the specific intensity at equilibrium (following Planck function). At the boundary, noting  the
reflection operator,

𝐼 = [𝐼] + 𝐼 (6)
with

[𝐼] = ∫2𝜋
𝑓𝑏(𝑥⃗,−𝜔⃗′, 𝜔⃗, 𝜋̈)𝐼(𝑥⃗, 𝜔⃗′, 𝜋̈)𝑑𝜔⃗′ (7)

and
𝐼 ≡ 𝐼(𝑥⃗, 𝜔⃗, 𝜋̈), (8)
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where 𝑓𝑏 is the cosine-weighted Bidirectional reflectance distribution function (cosine-weighted BRDF) (Pharr et al.,
2016). 𝐼 is the surface source. For an opaque surface, under the assumption that the matter at this surface is in a
state of local thermodynamic equilibrium, then 𝐼 = (1 − 𝜌)𝐼𝑒𝑞(𝑇𝑏) where 𝑇𝑏 is the local surface temperature and
𝜌 = ∫2𝜋 𝑓𝑏(𝑥⃗,−𝜔⃗

′, 𝜔⃗, 𝜋̈)𝑑𝜔⃗′. In the computer graphics literature, Eq. 6 (with Eqs. 7 and 8) is the rendering equation,
referring to early stage of rendering scenes that were transparent, Eq. 5 reducing to straight line propagation.
Step 2: linear Fredholm transport equation + boundary condition The linear Boltzmann equation is
commonly presented under its integrated form (backward integration along the line of sight) to get a Fredholm equation
where, because of scattering, 𝐼 is expressed as a function of all 𝐼’s in all directions at all locations along the line of
sight:

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈) = ∫𝐿(𝑥⃗,−𝜔⃗,𝜋̈)
𝑇 (𝑥⃗′, 𝑥⃗)

(

∫4𝜋
𝜅𝑠𝐼(𝑥⃗′, 𝜔⃗′, 𝜋̈)Φ(𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′ + S(𝑥⃗′, 𝜔⃗)

)

𝑑𝑥⃗′ + 𝐼(𝑥⃗𝑏, 𝜔⃗, 𝜋̈)𝑇 (𝑥⃗𝑏, 𝑥⃗) (9)

with

𝑇 (𝑥⃗′, 𝑥⃗) = 𝑒− ∫ |𝑥⃗′−𝑥⃗|
0 𝜅𝑒(𝑥⃗−𝜏𝜔⃗)𝑑𝜏 , (10)

i.e. Beer extinction with extinction coeffcient 𝜅𝑒 = 𝜅𝑎 + 𝜅𝑠. 𝐿(𝑥⃗,−𝜔⃗, 𝜋̈) is the line of sight from 𝑥⃗ to the boundary 𝑥⃗𝑏in direction −𝜔⃗. This field equation still requires a boundary condition, and Eq.9 is therefore to be thought together
with Eq.6 for the definition of 𝐼(𝑥⃗𝑏, 𝜔⃗, 𝜋̈). Eq.9 is commonly named the volume rendering equation in the computer
graphics literature.
Step 3: the rendering equation reported into the volume rendering equation (a stand-alone Fredholm
equation) This step is trivial, but we need to make it explicit because the difference between Step 2 and Step 3 will
be essential when discussing the available strategies for deriving the sensitivity estimator. This is only the reporting of
Eq.6 into Eq.9:

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈) =∫𝐿(𝑥⃗,−𝜔⃗,𝜋̈)
𝑇 (𝑥⃗′, 𝑥⃗)

(

∫4𝜋
𝜅𝑠𝐼(𝑥⃗′, 𝜔⃗′, 𝜋̈)Φ(𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′ + S(𝑥⃗′, 𝜔⃗)

)

𝑑𝑥⃗′

+ 𝑇 (𝑥⃗𝑏, 𝑥⃗)
{

∫2𝜋
𝑓𝑏(𝑥⃗𝑏,−𝜔⃗′, 𝜔⃗, 𝜋̈)𝐼(𝑥⃗𝑏, 𝜔⃗′, 𝜋̈)𝑑𝜔⃗′ + 𝐼(𝑥⃗𝑏, 𝜔⃗, 𝜋̈)

} (11)

The resulting equation is again a Fredholm equation, but there are now two reasons for its Fredholm nature: because
of scattering integration over the sphere of all incoming directions along the line of sight and because of reflection
integration over the hemisphere of all incoming directions at the boundary. The main point is that this Fredholm
equation stands alone (by comparison with the Fredholm equation of step 2 that requires boundary conditions).
Step 4: the solution as a path integral (Neuman expansion) Because Eq.11 stands alone, Neumann expansion
can be applied to get the solution of the complete transport problem as a path integral (recursively reporting Eq.11 in
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itself to replace the two intensities in the right part of the equation):

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫𝐿(𝑥⃗,−𝜔⃗,𝜋̈)
𝑇 (𝑥⃗, 𝑥⃗1)𝑑𝑥⃗1

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(𝑥⃗1, 𝜔⃗)

+ ∫4𝜋
𝜅𝑠Φ(𝜔⃗1, 𝜔⃗)𝑑𝜔⃗1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫𝐿(𝑥⃗1,−𝜔⃗1,𝜋̈)
𝑇 (𝑥⃗1, 𝑥⃗2)𝑑𝑥⃗2

⎧

⎪

⎨

⎪

⎩

S(𝑥⃗2, 𝜔⃗1)

+ ∫4𝜋
𝜅𝑠Φ(𝜔⃗2, 𝜔⃗1)𝑑𝜔⃗2…

+ 𝑇 (𝑥⃗1, 𝑥⃗𝑏2)

⎧

⎪

⎨

⎪

⎩

𝐼(𝑥⃗𝑏2, 𝜔⃗1, 𝜋̈)

+ ∫2𝜋
𝑓𝑏(𝑥⃗𝑏2,−𝜔⃗𝑏2, 𝜔⃗1, 𝜋̈)𝑑𝜔⃗𝑏2…

+ 𝑇 (𝑥⃗, 𝑥⃗𝑏1)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐼(𝑥⃗𝑏1, 𝜔⃗, 𝜋̈)

+ ∫2𝜋
𝑓𝑏(𝑥⃗𝑏1,−𝜔⃗𝑏1, 𝜔⃗, 𝜋̈)𝑑𝜔⃗𝑏1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫𝐿(𝑥⃗𝑏1,−𝜔⃗𝑏1,𝜋̈)
𝑇 (𝑥⃗𝑏1, 𝑥⃗2)𝑑𝑥⃗2

⎧

⎪

⎨

⎪

⎩

S(𝑥⃗2, 𝜔⃗𝑏1)

+ ∫4𝜋
𝜅𝑠Φ(𝜔⃗2, 𝜔⃗𝑏1)𝑑𝜔⃗2…

+ 𝑇 (𝑥⃗𝑏1, 𝑥⃗𝑏2)

⎧

⎪

⎨

⎪

⎩

𝐼(𝑥⃗𝑏2, 𝜔⃗𝑏1, 𝜋̈)

+ ∫2𝜋
𝑓𝑏(𝑥⃗𝑏2,−𝜔⃗𝑏2, 𝜔⃗𝑏1, 𝜋̈)𝑑𝜔⃗𝑏2…

(12)
In this equation, in a backward reading of the path (see Fig. 1), 𝑥⃗𝑖 is the 𝑖-th collision location when this collision is a
scattering event and 𝜔⃗𝑖 is the corresponding scattering direction. 𝑥⃗𝑏𝑖 is the 𝑖-th collision location when this collision is
a boundary-reflection event and 𝜔⃗𝑏𝑖 is the corresponding reflection direction (see Fig. 1). The path space is of infinite
dimension with paths ending in the volume at 𝑥⃗𝑖 with the source S(𝑥⃗𝑖) or at the boundary at 𝑥⃗𝑏𝑖 with the source 𝐼(𝑥⃗𝑏𝑖)for all 𝑖 ∈ ℕ∗.
Step 5: path statistics Starting from Eq.12 and introducing a probabilistic measure leads to path statistics, in the
sense that the addressed solution becomes the expectation of a random variable, the Monte Carlo estimator 𝑊 , defined
as a function of the random path Γ ≡ Γ(𝑥⃗, 𝜔⃗, 𝜋̈). We note 𝑊 = 𝑤̂𝐼 (Γ). There are numerous alternatives to the way the
path space is probabilized. The most straightforward approach consists, step by step, of the standard model of photon
statistics (Beer extinction, scattering according to the exact phase function, etc.), but this is never the adequate choice
as far as the variance is concerned, and each new configuration requires a specific choice(Kajiya, 1986; Howell and
Daun, 2021; Howell et al., 2020). For the present discussion, we admit that this choice is made, and we note

𝐼(𝜋̈) = ∫𝒟Γ(𝜋̈)
𝑝Γ(𝛾, 𝜋̈)𝑤̂𝐼 (𝛾, 𝜋̈)𝑑𝛾 = 𝔼[𝑤̂𝐼 (Γ(𝜋̈), 𝜋̈)] (13)

highlighting the fact that the random path Γ (its universe 𝒟Γ and its probability density 𝑝Γ) as well as the Monte Carlo
weigth function 𝑤̂𝐼 may depend on the parameter 𝜋̈ defining the geometry of the system.
2.3. Estimation of geometric sensitivity

We argue that the literature essentially reports three approaches as far as estimating geometric sensitivities with
Monte Carlo is concerned. They depart in the step at which differentiation is made.
2.3.1. Differentiating the expectation (at Step 5)

When differentiating Eq.13 with respect to 𝜋̈, there is a severe difficulty associated with the fact that the integration
domain (the path space of infinite dimension) depends on 𝜋̈. To the best of our knowledge, the only reported successful
attempt is (Roger et al., 2005). The main ideas are the following:

• Starting from the expectation of the intensity estimator and differentiating it leads to an integral over the domain
boundary. This integral involves the domain deformation velocity 𝑉𝜋̈ . This domain deformation velocity is only
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−𝜔⃗

−𝜔⃗1

𝑥⃗

𝑥⃗1

𝑥⃗2

(a) Two scattering events

−𝜔⃗

−𝜔⃗1

𝑥⃗

𝑥⃗1

𝑥⃗𝑏2

(b) A scattering event and a reflection

−𝜔⃗

−𝜔⃗𝑏1

𝑥⃗

𝑥⃗𝑏1
𝑥⃗2

(c) A reflection and a scattering event

−𝜔⃗

−𝜔⃗𝑏1

𝑥⃗

𝑥⃗𝑏1

𝑥⃗𝑏2

(d) Tow reflections
Figure 1: Four optical path examples

defined at the boundary, but it can be arbitrarily extended inside the field so that the Gauss theorem can be
used. This allows us to replace the boundary integral with an integral over the path-space domain, i.e., over the
universe of the random path used for the intensity estimator.

• After differentiation, we, therefore, get the sensitivity 𝑠 expressed as an integral over the same domain as that of
Eq.13. The very same probabilisation can then be used for 𝑠 as for 𝐼 , leading to a sensitivity estimator that uses
the same random path Γ as that of 𝐼 .

𝑠(𝑥⃗, 𝜔⃗, 𝜋̈) = ∫𝒟Γ(𝑥⃗,𝜔⃗,𝜋̈)
𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)𝑤̂𝑠(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)𝑑𝛾 = 𝔼[𝑤̂𝑠(Γ, 𝑥⃗, 𝜔⃗, 𝜋̈)] (14)

where

𝑤̂𝑠(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈) =
𝜕𝜋̈𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)𝑤̂𝐼 (𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)

𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)
+𝜕𝜋̈𝑤̂𝐼 (𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)+

∇⃗ ⋅ (𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)𝑤̂𝐼 (𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)𝑉𝜋̈|𝛾)
𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)

(15)

• Because of infinite dimension, implementation would be unpractical if 𝒟Γ had no specific structure. But 𝒟Γis the union of an infinite number of finite dimension subspaces: paths involving no collision, one collision,
two collisions, etc (see Eq. 12). When sampling the intensity estimator, these subspaces are algorithmically
constructed in a recursive manner. The domain deformation velocity can, therefore, be constructed using the
same algorithmic structure. Its explicit formulation is reported to Appendix (C).

The main benefit of choosing this approach is that the intensity estimator and the sensitivity estimator share the same
random path (the expectations of Eq. 13 and Eq. 14 share the same integral structure and the same pdf). Therefore, the
two estimators can be vectorized,

[

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈)
𝑠(𝑥⃗, 𝜔⃗, 𝜋̈)

]

= ∫𝒟Γ(𝑥⃗,𝜔⃗,𝜋̈)
𝑝Γ(𝛾, 𝑥⃗, 𝜔⃗, 𝜋̈)

[

𝑤̂𝐼 (𝑥⃗, 𝜔⃗, 𝜋̈)
𝑤̂𝑠(𝑥⃗, 𝜔⃗, 𝜋̈)

]

𝑑𝛾 (16)

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 7 of 100



Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

meaning the corresponding Monte Carlo algorithm uses the same series of sampled paths 𝛾𝑖 for both 𝐼 and 𝑠:
[

𝐼(𝑥⃗, 𝜔⃗, 𝜋̈)
𝑠(𝑥⃗, 𝜔⃗, 𝜋̈)

]

= 𝔼
[

𝑤̂𝐼 (Γ, 𝑥⃗, 𝜔⃗, 𝜋̈)
𝑤̂𝑠(Γ, 𝑥⃗, 𝜔⃗, 𝜋̈)

]

≈ 1
𝑁

𝑁
∑

𝑖=1

[

𝑤̂𝐼 (𝛾𝑖, 𝑥⃗, 𝜔⃗, 𝜋̈)
𝑤̂𝑠(𝛾𝑖, 𝑥⃗, 𝜔⃗, 𝜋̈)

]

(17)

The drawback of this approach at the present stage is that the formal development of 𝑉𝜋̈ can be very challenging, and
we are not aware of a generic implementation allowing its use on a common basis for applications involving complex
geometries (Roger et al., 2005).
2.3.2. Differentiable rendering (differentiating at Step 3)

This approach was adopted by most computer graphics researchers, with already quite numerous reported
applications. The name "differentiable rendering" is now a fully established convention in this community. It consists
in differentiating the stand-alone Fredholm equation for intensity (Eq.11). The full differentiation is provided in Zhang
et al. (2019a). Here, for illustration, we only differentiate the first term in the right-hand side of Eq.9 (the scattering
term):

𝜕𝜋̈

[

∫𝐿(𝑥⃗,−𝜔⃗,𝜋̈)
𝑇 (𝑥⃗′, 𝑥⃗)∫4𝜋

𝜅𝑠(𝑥⃗′)𝐼(𝑥⃗′, 𝜔⃗′, 𝜋̈)Φ(𝑥⃗′, 𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′𝑑𝑥⃗′
]

= ∫𝐿(𝑥⃗,−𝜔⃗,𝜋̈)
𝑇 (𝑥⃗′, 𝑥⃗)∫4𝜋

𝜅𝑠(𝑥⃗′)𝑠(𝑥⃗′, 𝜔⃗′, 𝜋̈)Φ(𝑥⃗′, 𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′𝑑𝑥⃗′

+ 𝜕𝜋̈||𝐿(𝑥⃗,−𝜔⃗, 𝜋̈)||𝑇 (𝑥⃗𝑏, 𝑥⃗)∫4𝜋
𝜅𝑠(𝑥⃗𝑏)𝐼(𝑥⃗𝑏, 𝜔⃗′, 𝜋̈)Φ(𝑥⃗𝑏, 𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′

(18)

The first term of the right-hand side of this equation is the strict copy of the original term (before differentiation). Only
𝐼 is replaced with 𝑠. So, this will be handled as a scattering term for sensitivity: when performing Neumann expansion,
this will lead to a scattering event in the sensitivity path. If the same conclusion could be reached for all terms, then
we could construct a stand-alone sensitivity estimator and even make use of vectorization as in the first approach (only
one random path for both 𝐼 and 𝑠). But as we see with the second term of the right-hand side of Eq. 18, this is not the
case: we need to deal with intensity. So when starting from Eq. 18 and applying the two remaining steps (Step 4 and
Step 5, i.e., Neumann expansion and path probabilization), it is concluded that the 𝑠 estimator needs to be coupled with
the 𝐼 estimator using double randomization. This induces no specific implementation difficulty, but the resulting path
space of the sensitivity estimator includes intensity branches at each location and direction for which 𝐼 is required.
This has obvious consequences in terms of computation times and forbids fully vectorized approaches: unlike with the
previous approache, the paths sampled for estimation of intensity cannot also be used for estimation of sensitivities
because each sensitivity estimator uses its own specific paths. Although partial vectorization is still possible, this is a
significant drawback when very numerous sensitivities are required.
2.3.3. A transport model for sensitivity (differentiating at Step 1)

This approach aims to establish a transport model for sensitivity by differentiating the transport model of intensity.
This implies differentiating both the Boltzmann equation (the RTE) and its boundary condition. Differentiating the RTE
(Eq.5) is straightforward (Lapeyre et al., 2020) since 𝜋̈ is one of the three independent variables of 𝐼 (remembering
that we here assume that the radiative properties do not depend on 𝜋̈):

𝜔⃗ ⋅
𝜕𝑠
𝜕𝑥⃗

= −𝜅𝑎𝑠 − 𝜅𝑠𝑠 + ∫4𝜋
𝜅𝑠𝑠

′Φ(𝜔⃗′, 𝜔⃗)𝑑𝜔⃗′ (19)

where 𝑠 ≡ 𝜕𝜋̈𝐼 and 𝑠′ ≡ 𝑠(𝑥⃗, 𝜔⃗′, 𝜋̈). The point to be highlighted is that this transport equation for 𝑠 is strictly identical to
the transport equation for 𝐼 : the same RTE is valid for both I and all its geometrical sensitivities. Again, this is only true
because we here concentrate on geometry (field properties do not depend on 𝜋̈). We indeed assume that sensitivities to
the field properties are addressed separately, typically using De Lataillade et al. (2002) (i.e., using the first approach in a
straightforward manner with none of the domain deformation difficulties). This separation is made, and 𝑠 is transported
the same way 𝐼 is transported. All the geometrical subtleties are reported in the boundary condition.
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The boundary condition for the sensitivity transport model is built by differentiating Eq. 6 (differentiating the
rendering equation). This leads to the following form (involving the same surface-collision operator as for intensity):

𝑠 = [𝑠] + 𝑠̊ (20)
As for the preceding approache, we do not provide here the general development of this boundary model. We will
only provide it for the simple case of Section 3. The essential point at this stage is that the surface collision operator
is identical to that of intensity. Surface translation and surface rotation effects only influence the source term 𝑠̊. Its
complete expression is available in Lapeyre et al. (2022).

Starting from this sensitivity transport model, Steps 2 to 5 can be applied exactly as for intensity to get a sensitivity
estimator. As Step 2 and Step 3 are systematic, the result of Step 3 is exactly the same as that of differentiable rendering.
The two approaches, therefore, merge at step 3. But here, the boundary conditions are made explicit, and the transport
nature of sensitivity analysis is highlighted.

3. Practical significance
Let us now successively examine the practical significance of adopting each of these three approaches. For a sake

of clarity, we illustrate this on a pure one-dimensional transport problem. By "pure one-dimensional," we mean that
not only space is one dimensional along a 𝑥 axis, but also the particles may only travel parallel to this axis, 𝜔 = 1 for
increasing 𝑥 values and 𝜔 = −1 for decreasing ones (by contrast with standard 1D slab configurations where angular
space is 2D, see Fig. 2). Incoming intensity is fixed at the two extremities, and the geometrical parameter is the length
of the rod. Analytical solutions are available in (Bellman and Wing, 1992) (see Appendix (A)).

𝑒𝑥0 𝜋̈

𝐼(𝜔)|𝜔=1 = 𝐼0 𝐼(𝜔)|𝜔=−1 = 0

𝐼(𝑥, 𝜔, 𝜋̈)

Figure 2: One-dimensional particle transport is considered within a rod, which extends from 0 to 𝜋̈, ∀𝜋̈ ∈ ℝ+. There is no
source within the rod. Absorption and scattering are uniform and isotropic. Location is 𝑥 ∈ [0, 𝜋̈] and direction 𝜔 ∈ {−1, 1}.
An intensity source is located on the left side, and no source on the right side.

Boltzmann equation and its boundary conditions (Step 1) reduce to
𝜔𝜕𝐼
𝜕𝑥

= −𝜅𝑎𝐼 − 𝜅𝑠𝐼 + 1
2
𝜅𝑠𝐼 + 1

2
𝜅𝑠𝐼

′ (21)
with 𝐼 ≡ 𝐼(𝑥, 𝜔, 𝜋̈), 𝐼 ′ ≡ 𝐼(𝑥,−𝜔, 𝜋̈), and

{

𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=0,𝜔=1 ≡ 𝐼(𝜔)|𝜔=1 = 𝐼0
𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=0,𝜔=−1 ≡ 𝐼(𝜔)|𝜔=−1 = 0

(22)

The corresponding Fredholm equation is (Step 3)

𝐼(𝑥, 𝜔, 𝜋̈) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼(𝜔)𝑒−𝜅𝑒𝑥 + ∫

𝑥

0
𝑒−𝜅𝑒|𝑥

′−𝑥| 𝜅𝑠
2
[

𝐼(𝑥′, 𝜔, 𝜋̈) + 𝐼(𝑥′,−𝜔, 𝜋̈)
]

𝑑𝑥′,when 𝜔 = 1

𝐼(𝜔)𝑒−𝜅𝑒(𝜋̈−𝑥) + ∫

𝜋̈

𝑥
𝑒−𝜅𝑒|𝑥

′−𝑥| 𝜅𝑠
2
[

𝐼(𝑥′, 𝜔, 𝜋̈) + 𝐼(𝑥′,−𝜔, 𝜋̈)
]

𝑑𝑥′,when 𝜔 = −1
(23)

where 𝜅𝑒 = 𝜅𝑎 + 𝜅𝑠, is the extinction coefficient. Finally, a typical translation in terms of path-statistics is (Neumann
expansion and introduction of a probabilistic measure, Step 5)

𝐼(𝑥, 𝜔, 𝜋̈) = ∫

∞

0
𝑝Ξ(𝜉0)𝑑𝜉0

{

(𝜉0 − 𝑑0)𝐼(−𝜔0)𝑒−𝜅𝑎𝑑0 +(𝑑0 − 𝜉0)∫ 𝑃Ω(𝜔1)𝑑𝜔1 ∫

∞

0
𝑝Ξ(𝜉1)𝑑𝜉1
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𝑒𝑥0 𝜋̈𝐼(𝑥, 𝜔, 𝜋̈)

𝑑0 𝜉0 𝜔0 = −𝜔 𝑥

𝑑1𝜉1𝜔1

Input: 𝑥, 𝜔
1: 𝐿 = 0
2: while (1) do
3: Calculate 𝑑 ⊳ Distance to boundary Eq.27
4: Sample 𝜉 ⊳ Exponential law Eq.25
5: if 𝜉 > 𝑑 then
6: 𝐿 ← 𝐿 + 𝑑
7: 𝐼 ← 𝐼(−𝜔)
8: Break
9: else

10: 𝐿 ← 𝐿 + 𝜉
11: Sample 𝜔 ⊳ Isotropic scattering Eq.26
12: end if
13: end while
Output: 𝑤 ← 𝐼𝑒−𝜅𝑎𝐿

Figure 3: The backward multiple scattering path-tracing algorithm. The first scattering event is displayed. 𝜉0 and 𝜉1
represent, respectively, the path lengths before and after scattering; 𝜔0 = −𝜔 and 𝜔1 are the propagation directions; 𝑑0
and 𝑑1 are the distances that the photon needs to go through to escape the rod without scattering.

{

(𝜉1 − 𝑑1)𝐼(−𝜔1)𝑒−𝜅𝑎(𝜉0+𝑑1) +(𝑑1 − 𝜉1)∫ 𝑃Ω(𝜔2)𝑑𝜔2…
}

}

(24)

where  is the Heaviside function. The random variable Ξ (the free path) is exponentially distributed,
{

Ξ ∈ [0,+∞)

𝑝Ξ(𝜉) = 𝜅𝑠𝑒
−𝜅𝑠𝜉

(25)

and Ω is the random scattering direction (we use the 𝛿 function in order to preserve the notations of continuous random
variables in this 1D case with Ω ∈ {−1, 1}),

⎧

⎪

⎨

⎪

⎩

Ω ∈ ℝ

𝑝Ω(𝜔) =
1
2
𝛿(𝜔 + 1) + 1

2
𝛿(𝜔 − 1)

(26)

The reading of Eq. 24 defines path-statistics in terms of successions of traveling distances 𝜉0, 𝜉1 ... that are
independent Ξ-samples and directions 𝜔1, 𝜔2 ... that are independent Ω-samples, until one of the rod extremities
is encountered at a distance 𝑑𝑗 (see Fig. 3) with

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜔0 = −𝜔

𝑑𝑗 ≡ 𝑑𝑗(𝜉0, 𝜉1...𝜉𝑗−1, 𝜔0, 𝜔1, 𝜔2...𝜔𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝜔0𝑥 +
𝜋̈(𝜔0 + 1)

2
,when j = 0

− (𝑥 +
𝑗−1
∑

𝑘=0
𝜔𝑘𝜉𝑘)𝜔𝑗 +

𝜋̈(𝜔𝑗 + 1)
2

,when j > 0

(27)

Formally, the random path Γ ≡ Γ(𝑥⃗, 𝜔⃗, 𝜋̈) is therefore Γ ≡ {𝐽 ,Ξ0,Ξ1...Ξ𝐽 ,Ω1,Ω2...Ω𝐽} where all Ξ𝑘 and Ξ are IID
(independant and identically distributed) and all Ω𝑘 and Ω are IID. We note 𝐷 the random variable corresponding
to the length of the last jump that reaches the rod extremity, i.e. 𝐷 = 𝑑𝐽 (Ξ0,Ξ1...Ξ𝐽−1, 𝜔0,Ω1,Ω2...Ω𝐽 ), and 𝐿 the
total path-length, i.e. 𝐿 =

(

∑𝐽−1
𝑘=0 Ξ𝑘

)

+𝐷. Then, as far as intensity estimation is concerned, the Monte Carlo weight
associated with Γ writes

𝑊 = 𝑤̂𝐼 (Γ) = 𝑒−𝜅𝑎𝐿𝐼(Ω𝐽 ) (28)
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Before addressing sensitivity estimation, we may essentially keep in mind that reading this Monte Carlo weight in
terms of backward path-tracing is quite trivial: the value of the incoming intensity at the end of a multiple-scattering
path, attenuated by absorption along the path (Beer extinction restricted to absorption only). The resulting Monte Carlo
algorithm is sketched in Fig.3 and detailed in Appendix (F).
3.1. Differentiating the expectation (at Step 5)

Starting from Eq.24, in the present one-dimensional case Eq.16 becomes (see details in Appendix (B))
[

𝐼(𝑥, 𝜔, 𝜋̈)
𝑠(𝑥, 𝜔, 𝜋̈)

]

= ∫

∞

0
𝑝Ξ(𝜉0)𝑑𝜉0

{

(𝜉0 − 𝑑0)
⎡

⎢

⎢

⎣

𝐼(−𝜔0)𝑒−𝜅𝑎𝑑0
𝜕𝜋̈𝑔0+∇⃗⋅

(

𝑔0𝑉𝜋̈0
)

𝜅𝑠𝑒−𝜅𝑠𝜉0

⎤

⎥

⎥

⎦

+

(𝑑0 − 𝜉0)∫ 𝑝Ω(𝜔1)𝑑𝜔1 ∫

∞

0
𝑝Ξ(𝜉1)𝑑𝜉1

{

(𝜉1 − 𝑑1)
⎡

⎢

⎢

⎣

𝐼(−𝜔1)𝑒−𝜅𝑎(𝜉0+𝑑1)
𝜕𝜋̈𝑔1+∇⃗⋅

(

𝑔1𝑉𝜋̈1
)

(𝜅𝑠)2𝑒−𝜅𝑠(𝜉0+𝜉1)𝑝Ω(𝜔1)

⎤

⎥

⎥

⎦

+

(𝑑1 − 𝜉1)∫ 𝑝Ω(𝜔2)𝑑𝜔2…
}

}

(29)

The same backward multiple scattering paths are used to estimate both 𝐼 and 𝑠. The algorithm of Fig.3 is only completed
with the computation of a Monte Carlo weight for the estimation of sensitivity:

[

𝐼
𝑠

]

= 𝔼
[

𝑤̂𝐼 (Γ)
𝑤̂𝑠(Γ)

]

(30)
with, for each realisation 𝛾 ≡ {𝑗, 𝜉0, 𝜉1...𝜉𝑗 , 𝜔1, 𝜔2...𝜔𝑗} of Γ,

𝑤̂𝑠(𝛾) =
𝜕𝜋̈𝑔𝑗 + ∇⃗ ⋅

(

𝑔𝑗𝑉𝜋̈𝑗
)

(𝜅𝑠)𝑗+1𝑒−𝜅𝑠𝐿𝑝Ω(𝜔𝑗)
(31)

where
{

𝑔0(𝑥, 𝜔0, 𝜉0, 𝜋̈) = 𝜅𝑠𝑒
−𝜅𝑠𝜉0𝐼(−𝜔0)𝑒−𝜅𝑎𝑑0

𝑔𝑗(𝑥, 𝜔0, 𝜉0, 𝜔1,… , 𝜉𝑗 , 𝜋̈) = 𝜅𝑠𝑒
−𝜅𝑑𝜉0𝑝Ω(𝜔1)𝜅𝑠𝑒−𝜅𝑑𝜉1 … 𝐼(−𝜔𝑗)𝑒

−𝜅𝑎(𝜉0+𝜉1…+𝜉𝑗−1+𝑑𝑗 ) for 𝑗 > 0
(32)

and 𝑉𝜋̈0 ≡ [𝜔0+1
2 ], 𝑉𝜋̈𝑗 = (𝑉𝜋̈𝑗,𝜉0 , 𝑉𝜋̈𝑗,𝜔1

, 𝑉𝜋̈𝑗,𝜉1 , 𝑉𝜋̈𝑗,𝜔2
,… , 𝑉𝜋̈𝑗,𝜉𝑗 ) for 𝑗 > 0, are the domain deformation velocity. Its

derivation is reported in Appendix (C). In algorithmic terms, the main point is that it is constructed recursively along
the multiple scattering paths, the vector dimension increasing with the number of scattering events, each component
corresponding to one of the successively sampled path lengths and directions:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑉𝜋̈𝑗,𝜉0 =
(𝜔0 + 1)𝜉0

2𝑑0

𝑉𝜋̈𝑗,𝜉𝑗′ =
⎡

⎢

⎢

⎣

𝜔𝑗′ + 1
2

−
𝑗′−1
∑

𝑘=0
𝑉𝜋̈𝑗,𝜉𝑘 (𝜉0, 𝜉1,… , 𝜉𝑘; 𝜋̈)(𝜔𝑘𝜔𝑗′ )

⎤

⎥

⎥

⎦

𝜉𝑗′

𝑑𝑗′
, 0 < 𝑗′ < 𝑗

𝑉𝜋̈𝑗,𝜉𝑗 =
𝜔𝑗 + 1

2
−

𝑗−1
∑

𝑘=0
𝑉𝜋̈𝑗,𝜉𝑘 (𝜉0, 𝜉1,… , 𝜉𝑘; 𝜋̈)(𝜔𝑘𝜔𝑗)

𝑉𝜋̈𝑗,𝜔0
= 𝑉𝜋̈𝑗,𝜔𝑗′

= 𝑉𝜋̈𝑗,𝜔𝑗
= 0

(33)

The velocity components associated with directions are null because the change in the geometry introduces no angular
change in the path structures (no angular dependences inside the Heaviside functions). This is because, here, the angular
space is restricted to only two directions. The velocity components associated with angular sampling would, of course,
be non-zero for three-dimensional radiative transfer in non-convex geometries where a change in 𝜋̈ may change the
space of accessible paths.

This algorithm is detailed in Appendix (G).
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3.2. Differentiable rendering (differentiating at Step 3)
Differentiating Eq.23 with respect to 𝜋̈ gives:

𝑠(𝑥, 𝜔, 𝜋̈) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

𝑥

0
𝑒−𝜅𝑒|𝑥

′−𝑥| 𝜅𝑠
2
[

𝑠(𝑥′, 𝜔, 𝜋̈) + 𝑠(𝑥′,−𝜔, 𝜋̈)
]

𝑑𝑥′,when 𝜔 = 1

∫

𝜋̈

𝑥
𝑒−𝜅𝑒|𝑥

′−𝑥| 𝜅𝑠
2
[

𝑠(𝑥′, 𝜔, 𝜋̈) + 𝑠(𝑥′,−𝜔, 𝜋̈)
]

𝑑𝑥′ + 𝑒−𝜅𝑒|𝑥
′−𝑥| 𝜅𝑠

2
𝐼(𝑥′,−𝜔, 𝜋̈)

|

|

|

|𝑥′=𝜋̈
,when 𝜔 = −1

(34)

After Neumann expansion (Step 4) and using the same probabilistic measure as for Eq.24,

𝑠(𝑥, 𝜔, 𝜋̈) = ∫

∞

0
𝑝Ξ(𝜉0)𝑑𝜉0

{

(𝜉0 − 𝑑0)(𝜔0)
𝜅𝑠
2
𝐼(𝑥, 𝜔0, 𝜋̈)|𝑥=𝜋̈𝑒−𝜅𝑎𝑑0+

(𝑑0 − 𝜉0)∫ 𝑝Ω(𝜔1)𝑑𝜔1 ∫

∞

0
𝑝Ξ(𝜉1)𝑑𝜉1

{

(𝜉1 − 𝑑1)(𝜔1)
𝜅𝑠
2
𝐼(𝑥, 𝜔1, 𝜋̈)|𝑥=𝜋̈𝑒−𝜅𝑎(𝜉0+𝑑1)+

(𝑑1 − 𝜉1)∫ 𝑝Ω(𝜔2)𝑑𝜔2…
}

}

(35)

Naively comparing Eq.35 with Eq.24 or Eq.29 would lead to defining the Monte Carlo weight of the sensitivity
estimator as 𝑤̂𝑠(𝛾) = (𝜔𝑗)

𝜅𝑠
2 𝐼(𝑥, 𝜔𝑗 , 𝜋̈)|𝑥=𝜋̈𝑒−𝜅𝑎𝑙 and translate this expectation into a Monte Carlo algorithm that

could be strictly vectorized with that of intensity estimation. We would then reach the same conclusion as when
differentiating the expectation in Section 3.1. But this makes no sense because this Monte Carlo weight would include
the intensity, which is itself an unknown quantity.

However we may still define 𝑤̂𝑠 as a function of both the path and a scalar 𝑢

𝑤̂𝑠

⎧

⎪

⎨

⎪

⎩

𝒟Γ ×ℝ → ℝ

(𝛾, 𝑢) → 𝑤̂𝑠(𝛾, 𝑢) = (𝜔𝑗)
𝜅𝑠
2
𝑢

(36)

and then
• first write 𝑠 as an expectation using the same random path Γ ≡ Γ(𝑥, 𝜔, 𝜋̈) as for estimation of intensity at 𝑥 in

direction 𝜔:
𝑠(𝑥, 𝜔, 𝜋̈) = 𝔼

[

𝑤̂𝑠

(

Γ(𝑥, 𝜔, 𝜋̈), 𝐼(𝑌 ,−Ω𝐽 , 𝜋̈)
)]

(37)
where 𝑌 is the random variable indicating the location at the end of the path.

• then write the intensity at the end of the path as an expectation, using the Monte Carlo weight function of intensity
𝑤̂ and another independent random path Γ̃(𝑌 ,−Ω𝐽 , 𝜋̈) that starts at the end of the previous path, i.e.

𝐼(𝑌 ,−Ω𝐽 , 𝜋̈) = 𝔼[𝑤̂(Γ̃(𝑌 ,Ω𝐽 , 𝜋̈)] (38)

• report Eq. 38 into 37 and finally, as 𝑤̂𝑠 is linear in 𝑢, make use of the law of expectation (see double randomization
in Appendix (D)) to get a single expectation:

𝑠(𝑥, 𝜔, 𝜋̈) = 𝔼
[

𝑤̂𝑠

(

Γ(𝑥, 𝜔, 𝜋̈),𝔼[𝑤̂(Γ̃(𝑌 ,Ω𝐽 , 𝜋̈))
)]

= 𝔼
[

𝑤̂𝑠

(

Γ(𝑥, 𝜔, 𝜋̈), 𝑤̂(Γ̃(𝑌 ,Ω𝐽 , 𝜋̈))
)]

(39)

In short, 𝑠 = 𝔼[𝑊𝑠] where the sensitivity estimator is

𝑊𝑠 = 𝑤̂𝑠

(

Γ, 𝑤̂(Γ̃)
)

(40)
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with Γ ≡ Γ(𝑥, 𝜔, 𝜋̈) and Γ̃ ≡ Γ̃(𝑌 ,Ω𝐽 , 𝜋̈).Eq 40 involves two random paths and leads to the following Monte Carlo algorithm: The path lengths 𝜉, and
the directions of scattering 𝜔 are sampled recursively, as for intensity (this part can be vectorized with the intensity
estimation). When the path ends at the right side (𝜔𝑗 = 1), the Monte Carlo weight requires the knowledge of 𝐼 in
direction 𝜔𝑗 . Instead of sampling a large number of paths and estimating 𝐼 with a full Monte Carlo algorithm, only one
path is sampled, restarting the recursive process of sampling 𝜉 and 𝜔 from the end of the first path up to the location
where this second path exists the rod. This algorithm is sketched in Fig 4 and detailed in Appendix (H).

𝑒𝑥0 𝜋̈𝑠(𝑥, 𝜔, 𝜋̈)

𝜉0 𝜔0 = −𝜔 𝑥

𝜉1𝜔1

𝜔𝐼0
𝜉𝐼0

Input: 𝑥, 𝜔
1: 𝐿 = 0
2: while (1) do
3: Calculate 𝑑 ⊳ Distance to boundary Eq.27
4: Sample 𝜉 ⊳ Exponential law Eq.25
5: if 𝜉 > 𝑑 then
6: if reach right boundary then
7: 𝐿 ← 𝐿 + 𝑑
8: 𝐼 ← 𝑤̂𝐼 |𝑥=𝜋̈,𝜔=1 ⊳ Retrieve 𝑤̂𝐼 Fig.3
9: 𝑠̊ = 𝜅𝑠

2
𝐼

10: Break
11: else
12: 𝑠̊ = 0
13: Break
14: end if
15: else
16: 𝐿 ← 𝐿 + 𝜉
17: Sample 𝜔 ⊳ Isotropic scattering Eq.26
18: end if
19: end while
Output: 𝑤 ← 𝑠̊𝑒−𝜅𝑎𝐿

Figure 4: The backward multiple scattering path-tracing algorithm of sensitivity using the technique of double
randomization. The initial path Γ is sampled, from 𝑥 in direction −𝜔 (in red), built by sampling Ξ and Ω recursively.
When this path ends at the left boundary (in 𝑦 = 0), a new path Γ̃ is sampled (in orange), with again a recursive sampling
of Ξ and Ω, starting from 𝑦 = 𝜋̈ in direction 𝜔 = −1.

3.3. A transport model for sensitivity (differentiating at Step 1)
Differentiating the RTE (Eq.21) and its boundary conditions (Eq.22) with respect to 𝜋̈ gives:
⎧

⎪

⎨

⎪

⎩

𝜔 𝜕𝑠
𝜕𝑥

= −𝜅𝑎𝑠 − 𝜅𝑠𝑠 +
1
2
𝜅𝑠𝑠 +

1
2
𝜅𝑠𝑠

𝑠(𝑥, 𝜔, 𝜋̈)|𝑥=0,𝜔=1 ≡ 𝑠̊(𝜔)|𝜔=1 = 0
𝑠(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1 ≡ 𝑠̊(𝜔)|𝜔=−1 = 𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1

(41)

This is still a transport model, the observable being now 𝑠 instead of 𝐼 . The first line of Eq.41 is strictly identical to
the RTE. This is because the properties of the medium (𝜅𝑒 and 𝜅𝑠) are not dependent on the geometric parameter 𝜋̈.
So, this is a general observation: for geometric sensitivities, 𝑠 is always ruled by the exact same transport equation as
𝐼 , and sensitivity modeling reduces to the modeling of boundary conditions. This point has been detailed in Lapeyre
et al. (2020).

In the present simple example, in 𝑥 = 0 for the entering direction (𝜔 = 1), 𝑠 is null because the boundary in 𝑥 = 0
does not depend on 𝜋̈. The only source of sensitivity (that we note 𝑠̊ in reference to the intensity source 𝐼) is at the other
extremity of the rod, in 𝑥 = 𝜋̈, and it involves the gradient of intensity 𝜕𝑥𝐼 (third line of Eq.41, see Appendix (E)).
So we reach a first stage where the transport model for 𝑠 is coupled to 𝜕𝑥𝐼 , for which a transport model can also be
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constructed (similarly differentiating Eq.21 and Eq.22 with respect to 𝑥 instead of 𝜋̈):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔
𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈)

𝜕𝑥
= −𝜅𝑒𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈) +

1
2
𝜅𝑠𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈) +

1
2
𝜅𝑠𝜕𝑥𝐼(𝑥,−𝜔, 𝜋̈)

𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=0,𝜔=1 = +
(

−𝜅𝑒𝐼(0,+1, 𝜋̈) +
1
2
𝜅𝑠𝐼(0,+1, 𝜋̈) +

1
2
𝜅𝑠𝐼(0,−1, 𝜋̈)

)

= (−𝜅𝑒 +
1
2
𝜅𝑠)𝐼0 +

1
2
𝜅𝑠𝐼(0,−1, 𝜋̈)

𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1 = −
(

−𝜅𝑒𝐼(𝜋̈,−1, 𝜋̈) +
1
2
𝜅𝑠𝐼(𝜋̈,−1, 𝜋̈) +

1
2
𝜅𝑠𝐼(𝜋̈,+1, 𝜋̈)

)

= −1
2
𝜅𝑠𝐼(𝜋̈,+1, 𝜋̈)

(42)
Again, the gradient of intensity follows the same transport model as the intensity itself, and the only subtleties are in the
boundary conditions. These boundary conditions can easily be read as the ETR itself, expressed at the boundary, only
isolating the gradient appearing in the transport term of Eq. 21. Of course, this boundary condition for 𝜕𝑥𝐼 involves
𝐼 , and we can state that the transport model of the gradient of intensity is coupled, via its boundary conditions, to the
transport model of intensity. In summary, we deal with three coupled transport models, {𝑠, 𝜕𝑥𝐼, 𝐼} (Eq. 41, Eq. 42,
Eqs. 21,22). In the general three-dimensional case, there are four coupled transport models: sensitivity, gradient of
intensity, angular gradient of intensity, and intensity Lapeyre et al. (2022).

Back to the present rod configuration, there is no angular gradient, and the gradient of intensity has only one
component, which allows to directly report the third line of Eq. 42 into the third line of Eq. 41. This gives

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔 𝜕𝑠
𝜕𝑥

= −𝜅𝑎𝑠 − 𝜅𝑠𝑠 +
1
2
𝜅𝑠𝑠 +

1
2
𝜅𝑠𝑠

𝑠(𝑥, 𝜔, 𝜋̈)|𝑥=0,𝜔=1 ≡ 𝑠̊(𝜔)|𝜔=1 = 0

𝑠(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1 ≡ 𝑠̊(𝜔)|𝜔=−1 = −1
2
𝜅𝑠𝐼(𝜋̈,+1, 𝜋̈)

(43)

This brings us back to differentiable rendering with the central observation that solving 𝑠 requires the knowledge of 𝐼 .
Indeed, a straightforward application of Step 2 and Step 3 to Eq. 43 leads to Eq. 34 and all the derivations of Sec. 2.3.2
can then be made in a strictly identical manner. So the starting point is here three coupled transport models for 𝑠, 𝜕𝑥𝐼 ,
and 𝐼 , but as announced in Sec. 2.3.3, we reach the same algorithmic conclusions as from the differentiable rendering
approache.

4. Discussion
We separate the discussion into two parts:

1. the algorithms themselves and their computational features, in Sec. 4.1;
2. the associated physical pictures, in Sec 4.2.

Practice mixes both considerations. Typically, in engineering, accurately and rapidly computing the Jacobian matrix,
e.g., for use in inversion or optimization algorithms, is only one part of the question. Designers also seek insight into
the mechanisms of sensitivity, i.e., look at the sensitivity as a physical quantity in itself. Such a sensitivity modeling
perspective can even be essential in numerous contexts where the model cannot be fully adjusted to observations but is
still assumed to hold enough information about internal mechanisms for sensitivities to be usefully interpretable. Also,
in strict Monte Carlo terms, explaining the sensitivities helps reduce the variance of the sensitivity estimator (which
may be very distinct from reducing the variance of the intensity estimator). We, therefore, start with pure algorithmic
considerations and then switch to physical pictures, knowing that they also support the fine-tuning of algorithms.
4.1. Algorithms

Although up to now we insisted on three bibliographic entries, we only listed two algorithm classes: those corre-
sponding to the first approach, which we will name expectation-differentiation algorithms, and those corresponding
to the second and third approaches (the two approaches lead to the same algorithms) that we will name differentiable-
rendering algorithms.

Let us start with the simple statement that both approaches lead to practical, unbiased estimates in the sense that
all the standard features of Monte Carlo simulation are preserved. Essentially, exactly as would be stated for intensity,
but here for the sensitivity of this intensity to a given geometrical parameter:
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• the standard deviation of the sensitivity estimator reduces proportionally to 1
√

𝑁
when increasing the number 𝑁

of sampled paths;
• this standard deviation is faithfully estimated using the statistics of the Monte Carlo weight, each computed value

of the sensitivity being complemented with a statistical error bar that represents this standard deviation estimate;
• The central limit theorem guarantees the Gaussian nature of the sensitivity estimate, typically meaning that there

is a very low probability (𝑃 = 0.995) that the computed sensitivity is three times this error bar away from the
exact sensitivity.

For our example-configuration, this is illustrated in Fig. 5 and Fig. 6, where simulation results are compared with the
analytical solution (available in Appendix (A)).

Further algorithmic considerations will all start from the following distinction:
• differentiable-rendering algorithms requires the sampling of additional paths Γ̃;
• expectation-differentiation algorithms use only the intensity paths Γ (perfect vectorization), but a domain

deformation velocity is required.
This distinction may be puzzling as it sounds contradictory when considering the denomination "differentiable
rendering." This denomination was historically motivated by the objective of automatic code differentiation. Starting
at Step 3 and differentiating the stand-alone Fredholm equation leads, indeed, for most non-geometric parameters, to
a Fredholm equation with exactly the same structure. The resulting algorithm for estimating the sensitivity preserves
the structure of the code (De Lataillade et al., 2002; Hoffman et al., 1978; Sakamoto and Yamamoto, 2017; Yamamoto
and Sakamoto, 2022; Nimier-David et al., 2022; Iván Lux, 1991): only the Monte Carlo weight and the sampling
probabilities are differentiated and automatic code differentiation is easy to conceive. However, when considering
geometric parameters, this description does not strictly hold when starting at Step 3 because new paths are required. On
the contrary, the description would hold, still with geometric parameters, when starting at Step 5, i.e., for expectation-
differentiation algorithms where the code structure seems to be preserved (the sampled paths are exactly those
of the initial algorithm). In short, expectation-differentiation algorithms would preserve the initial objective of a
differentiable-rendering approach, whereas differentiable-rendering algorithms would depart from it.

Entering a further detailed description of the reported practice changes this appreciation. At the present stage,
starting from an existing code for intensity estimation, both strategies still require heavy and particular coding before
geometric sensitivities can be practically estimated.
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(a) Optically thin case (𝜅𝑠 = 0.07𝑚−1, 𝜅𝑒 = 0.1𝑚−1, 𝜋̈ = 2𝑚)
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(b) Optically thick case (𝜅𝑠 = 2.1𝑚−1, 𝜅𝑒 = 3𝑚−1, 𝜋̈ = 2𝑚)
Figure 5: Right going (in blue) and left going (in red) intensity estimations along the rod, by Algo.3. Each point is dedicated
to a Monte Carlo estimation with its error bar of 𝜎 and the solid lines represent the analytical solutions. 𝑁 is the number
of sampled paths for each estimation.
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(b) Optically thick case, differentiable-rendering (Alg.5)

0 0.5 1 1.5 2

0

1

2

3

⋅10−2

𝑥[𝑚]

𝑠(
𝑥,
𝜔
,𝜋

)∕
𝐼 0

[𝑚
−
1 ]

MC 𝑠|𝜔=1 𝑁 = 105
MC 𝑠|𝜔=−1 𝑁 = 105
MC 𝑠|𝜔=−1 𝑁 = 106

0 0.5 1 1.5 2

0

1

2

3

⋅10−2

𝑥[𝑚]

𝑠(
𝑥,
𝜔
,𝜋

)∕
𝐼 0

[𝑚
−
1 ]

MC 𝑠|𝜔=1 𝑁 = 105
MC 𝑠|𝜔=−1 𝑁 = 105
MC 𝑠|𝜔=−1 𝑁 = 106

(c) Optically thin case, expectation differentiation (Alg.4)
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Figure 6: Sensitivity estimations of the right going (in blue) and the left going (in red) intensity along the rod with
respect to the rod length 𝜋̈ with error bars of 𝜎. (a), (b) show the results of differentiable-rendering algorithm and (c),
(d) of expectation-diff algorithm. Few points have convergence issues in (c) and (d) but their standard deviations reduce
proportionally to 1

√

𝑁
as it is zoomed in (c), (d) and illustrated in (e).

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 16 of 100



Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

We may even start by saying that implementing expectation-differentiation algorithms has never succeeded in any
geometrically advanced scene description. Outside the proof of concept of Roger et al. (2005), which uses simple
geometric configurations, no further research effort was reported in which benefits could be made from the exact
proposition of Sec. 2.3.1. The main reason is that building the domain deformation velocity introduced in Roger
et al. (2005) can be impracticable with advanced geometry scenes. It requires the explicit expressions of all integral
borders that are dependent on the parameter with respect to which the intensity estimate is differentiated (as shown
in Appendix (B), and the Heaviside functions are applied to the integral domains. The domain deformation velocity
is built component by component from each integral domain that depends on the considered parameter). In our one-
dimensional example, in Eq. 50, only the scattering free-path integrals depend on the considered parameter 𝜋̈, i.e., the
length of the rod. Therefore, the components of the domain deformation velocity related to angular integrals are zeros.
Even in this simple example, the dimension of the domain deformation velocity vector is infinite, but the velocity
expressions of Eq. 33 are easy to write and easy to translate into code. However, in a general three-dimensional case,
the borders of the angular integrals (which are equivalent to the borders of triangles for a triangularly discretized
scene, see Fig. 7) need to be explicitly formulated to build the domain deformation velocity for each of scattering
events. Detecting triangle borders and constructing the corresponding components of the domain deformation velocity
remains difficult.

𝑥⃗
Figure 7: Detection of the triangle borders viewed from 𝑥⃗. Two triangles are in the scene, but only three borders of
one of them are seen from 𝑥⃗. The detected borders are in red, from which the domain deformation velocity is built for
expectation-differentiation algorithms, and the new paths depart for differentiable-rendering algorithms.

Differentiable rendering algorithms do not require the domain deformation velocity. However, the sampling of
additional paths Γ̃ is needed, which can also be challenging to implement practically. As shown in Sec. 2.3.2, the
new paths originated from differentiating the integrals in which intensity appears as multiplied with a test function
that depends on the parameter, i.e., differentiating a discontinuity at the displaced boundary. In our one-dimensional
example, the discontinuity is inside the free-path integrals, and no angular integral appears (e.g., from Eq. 23 to Eq .34).
However, in a three-dimensional case, the angular integrals in the Fredholm intensity equation (e.g., the integrals over
incoming directions at scattering locations) are discontinuous. Following Zhang et al. (2019a), these discontinuities
on angular integrals originate from the discontinuities of the intensity field on the geometric edges (e.g., the edges
of triangles in a complex scene). Consequently, the sampling of additional paths requires identifying and sampling
these edges (see Fig. 7). This looks similar to the difficulties faced when implementing the expectation-differentiation
algorithms, but they are not strictly similar. Expectation-differentiation algorithms formally build domain deformation
velocity from the full explicit mathematical expression of these borders, while differentiable-rendering algorithms
only sample the borders on which new optical paths depart; however, this additional sampling quickly causes variance
difficulties (Li et al., 2018). However, the research field in computer graphics on reducing this variance is active, and
algorithms of efficient edge identification and techniques of variance control are proposed (Zhang et al., 2020; Wu et al.,
2021; Yan et al., 2022). Some other studies try to avoid edge samplings by using biased re-parametrization technique
(Loubet et al., 2019) and unbiased wrap-area sampling (Bangaru et al., 2020; Xu et al., 2023). These efforts make the
differentiable-rendering algorithms implementable operationally for numerous applications (Kato et al., 2020).

Whereas the expectation-differentiation approach uses the same sampled paths for both the sensitivity and intensity
estimates (a completed vectorized estimation as shown in Eq. 17), the differentiable-rendering approach completely
abandons this focus. Nevertheless, implementation strategy perspectives that aim to partially recover this idea by
vectorizing the common parts of the intensity and sensitivity paths with the differentiable-rendering approach are
reported. Trivially, in our one-dimensional case, when a Γ sample is used to estimate intensity, it can also be used
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thick medium thin medium
Initial algorithm for estimation of intensity 142 ms 72 ms

differentiable-rendering / transport model for sensitivities 287 ms 126 ms
expectation-differentiation 297 ms 136 ms

Table 1
CPU times of the three algorithms for 𝑁 = 106 in optically thin case (𝜅𝑠 = 0.07𝑚−1, 𝜅𝑒 = 0.1𝑚−1, 𝜋̈ = 2𝑚) and
optically thick case (𝜅𝑠 = 2.1𝑚−1, 𝜅𝑒 = 3𝑚−1, 𝜋̈ = 2𝑚). Initial algorithm for estimation of intensity (Algo.3) estimates
𝐼|𝜔=0,𝑥=1. Differentiable-rendering / transport model for sensitivities algorithm (Algo.5) estimates 𝑠|𝜔=0,𝑥=1 and expectation-
differentiation algorithm (Alg.4) estimates 𝐼|𝜔=0,𝑥=1 and 𝑠|𝜔=0,𝑥=1 simultaneously.

for estimating the sensitivity. Then, using the formulation of Sec. 3.2, this Γ sample has to be completed with an
additional Γ̃ sample. However, this additional path is nothing but an intensity path, only starting at the boundary. It can
then be used for intensity estimation, etc. The first reported vectorized algorithm, in this sense, strictly starting from
a differentiable-rendering algorithm, was designed for the engineering analysis of a concentrated solar power plant
(He et al., 2023; He, 2022). A large number of sensitivities are simultaneously estimated (translations and rotations of
every heliostat, 36540 parameters). The common parts of all the required intensity and sensitivity paths are identified,
grouped, and then vectorized to reduce the computation time and organize the code structure.

Finally, it is hard to compare the algorithmic performances of the two kinds of algorithms based on this one-
dimensional example. A first guess would be that the expectation-differentiation algorithms should be faster since
the same sampled paths are used for simultaneously estimating intensity and sensitivities. Indeed, as listed in Table
1, taking similar CPU time than the differentiable-rendering algorithm, the expectation-differentiation algorithm
estimates not only the sensitivity but also the intensity. However, as shown in Fig. 5 and Fig. 6, its convergence is
not as good as that of the differentiable-rendering algorithm. Moreover, although using the same sampled paths for
estimating the intensity and the sensitivity, the expectation-differentiation algorithm takes almost twice the CPU time
than the initial algorithm for estimation of intensity. We believe that it is because the domain deformation velocity
is built component by component at each scattering event, and building these components is time-consuming. Such
computation-time analyses are only meaningful when considering practical configurations, and distinct conclusions
may be reached depending on the configuration. However, at the present stage, we may still retain that although both
algorithm types are not easy to implement, thanks to the advanced research on operational implementation in computer
graphics, the differentiable-rendering approach is undoubtedly a more recommended choice for advanced geometric
descriptions.
4.2. Physical pictures

When physically picturing the sensitivity estimators, although two estimators out of three are identical, there are
indeed three quite distinct interpretations: starting at Step 1, Step 3, or Step 5 invites different readings of why and how
a radiative observable changes when changing the geometry.

Starting at step 5 with the expectation-differentiation approach invites a path-statistics interpretation that starts
exactly like the path-statistics interpretation of intensity. The same paths are used indeed. For intensity, the physical
picture is typically a multiple-scattering multiple-reflection path that visits the system and gathers all the energy sources
it encounters (incoming intensity at the boundaries, volume emissions, and surface emissions; in our simple example,
only the intensity incoming at the left boundary). For sensitivity to any type of parameter, Eq. 15 says that what is
gathered in terms of sensitivity contributions along the path is

• 𝜕𝜋̈𝑝Γ
𝑝Γ

𝑤̂𝐼 , representing the way the parameter changes the probability density function of each sampling along the
path (sampling of free paths, scattering directions, and reflection directions);

• 𝜕𝜋̈𝑤̂𝐼 , representing the way the energy sources along the path evolve when changing the parameter;
• ∇⃗⋅(𝑝Γ𝑤̂𝐼𝑉𝜋̈ )

𝑝Γ
representing how the parameter changes the path-space.

For purely geometric parameters (in the sense we defined in the introduction), 𝜕𝜋̈𝑝Γ
𝑝Γ

𝑤̂𝐼 is null because only the shape
of the boundary changes: even for the sampling of reflection directions, the probability density function (the BRDF)
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is defined in the local angular basis. Therefore, the reflection direction may change with the parameter but not the
sampling probability itself. The second contribution, 𝜕𝜋̈𝑤̂𝐼 reduces to the derivative of the intensity-weight 𝑤𝐼 with
respect to the lengths of the intensity-path. In our example, the distances to the right boundary depend on 𝜋̈; therefore,
the total path length changes with 𝜋̈. Consequently, the part of the intensity weight representing Beer-extinction by
absorption is a function of 𝜋̈. This first contribution to the geometric sensitivity is quite straightforward. So, the whole
difficulty of physically picturing the sensitivity is associated with the last contribution: the divergence of the domain
deformation velocity. Of course, such a picture is far from intuitive. The divergence is to be thought of in a space of
infinite dimension. Of course, as illustrated with Eq. 33, the whole dimension is only encountered recursively with
velocity components that are each constructed in a finite dimension subspace, and linear-transport physicists are used
to picturing such recursivities. However, here at each recursion, e.g., at each location of a scattering event, the local
value of the domain deformation velocity is meant to represent the impact, in terms of path space, of the deformation of
the system as a whole, concerning a change of the boundary-shape even far from the considered location. In our simple
test case, Fig. 8 illustrates this idea of transforming the system as a whole, and it can easily be foreseen that similar
interpretations are challenging for three-dimensional realistic geometries. So, physically interpreting the path-integral
formulation of sensitivity starts with perfectly familiar paths (the same as for standard linear-transport physics), but for
the weight function associated with each sampled path, the integrand, very little representation is available (this might
very well be the main reason why no coding has yet been attempted for complex geometries).

𝑒𝑥0 𝜋̈𝐼(𝑥, 𝜔, 𝜋̈)|𝜔=−1

𝑑0(𝑥, 𝜔, 𝜋̈)𝜉0𝑥

𝑑1(𝑥, 𝜔, 𝜉0, 𝜋̈) 𝜉1

(a) The original intensity paths.

0 𝜋̈ 𝜋̈+𝛿𝜋̈𝐼(𝑥, 𝜔, 𝜋̈)|𝜔=−1

𝑑0(𝑥, 𝜔, 𝜋̈ + 𝛿𝜋̈)𝜉0𝑥

𝑑1(𝑥, 𝜔, 𝜉0, 𝜋̈ + 𝛿𝜋̈) 𝜉1

(b) The perturbation 𝛿𝜋̈ perturbs the paths.
Figure 8: Physical picture of expectation-differentiation approach: perturbed optical paths. In (a), 𝜉0 and 𝜉1 are the 1𝑠𝑡 and
2𝑛𝑑 free-paths sampled within [0, 𝑑0] and [0, 𝑑1],the distance between collision points and the borders. The perturbation
𝛿𝜋̈ perturbs 𝑑0, and the sampling of 𝜉0, then 𝑑1 is pertubed and so does the sampling of 𝜉1, etc.

Starting at Step 3 with the differentiable-rendering approach, the physical interpretation of geometric sensitivity
always starts at the boundary, and there is no more representation of a system that is transformed as a whole using a
domain deformation velocity field defined everywhere inside the system. On the contrary, nothing changes except in
the vicinity of the boundary. When perturbating the parameter, the boundary is displaced and rotated. However, we
need only to think of the local changes along the intensity path each time the path encounters one of the parts of the
boundary that are geometrically affected by the considered parameter. In the present example, we only need to think
of the displacement of the right side of the rod when the intensity path reaches this extremity. As it is purely local,
the picture is quite simple. When the right extremity of the rod moves to the right, semi-transparent material is added,
and intensity is increased of the amount of radiation that is scattered by this new material (Fig. 9). As we here think
of an elementary layer, this contribution is simply proportional to intensity. This is the meaning of intensity at the
displaced boundary in the last line of Eq. 18, translated into the end of the second line of Eq. 34 as far as the rod is
concerned. This first contribution is quite straightforward: its full representation requires that of intensity at the rod
extremity, but here we are back to standard radiative transfer physics, and a solid background is available for picturing
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the intensity value at this location as a function of radiative properties and system configuration. This gets significantly
more difficult with three-dimensional configurations because adding or suppressing semi-transparent material when
displacing and rotating the boundary is insufficient. Even when translating a plane boundary, when looking at the
intensity in a direction that is not normal to the surface, an elementary displacement of the boundary, even along the
normal, implies an elementary shift along the surface (see Fig. 10). This is translated into a new sensitivity contribution
that quantifies the gradient of intensity projected on the surface. This contribution takes various forms depending on
how the authors organize their formal differentiation. However, in all cases, it adds physical pictures that are not familiar
to transport physicists, typically involving, as already mentioned in the previous section, Dirac distributions along the
triangle edges when surfaces are triangularly discretized (see the caption of Fig. 10). As most of today’s literature
concentrates on this question, even when the motivation of the authors is strictly numerical (with variance reduction
objectives and coding issues), the literature reports physical pictures that are continuously and significantly refined.
Nevertheless, we can still state that such spatial-gradient representations remain subtle.

𝑒𝑥0 𝜋̈𝐼(𝑥, 𝜔, 𝜋̈)|𝜔=−1

𝑑0𝜉0𝑥

𝑑1 𝜉1

𝑑2
𝜉2

(a) The original intensity path space.
0 𝜋̈ 𝜋̈ + 𝛿𝜋̈𝐼(𝑥, 𝜔, 𝜋̈)|𝜔=−1

𝑑0𝜉0𝑥

𝑑1 𝜉1

𝑑2
𝜉2

𝐼dif f

(b) The perturbation 𝛿𝜋̈ adds scattering medium.
Figure 9: Physical picture of differentiable-rendering approach: additional optical paths. The perturbation 𝛿𝜋̈ does not
perturb 𝑑0, 𝑑1 and 𝑑2 but the scattering medium is added. Only when the sampled free-path arrives to this additional
medium, e.g., 𝜉2 > 𝑑2, the contribution of incoming intensity 𝐼dif f is encountered, where a new optical path departs.

𝜋̈ 𝜋̈ + 𝛿𝜋̈

𝑥⃗𝑏(𝜋̈)

𝐼(𝑥⃗𝑏, 𝜔⃗, 𝜋̈)

𝑥⃗b−shif ted

𝑥⃗𝑏(𝜋̈ + 𝛿𝜋̈)

Figure 10: The perturbation 𝛿𝜋̈ has two contributions to the sensitivity: 1) additional medium, 2) shifted intersection
point. When 𝑥⃗𝑏 is on the geometry boundary (e.g. a discretised triangle border), 𝑥⃗b−shif ted will be out of the border and the
2nd contribution is a Dirac distribution.

Starting at Step 1 with the sensitivity modeling approach, the spatial (and angular) gradients of intensity play an
equally essential role, raising the same interpretation difficulties. However, the fact that these gradients have already
appeared since Step 1 invites complementary pictures. For Step 3, we highlighted the fact that reasoning was restricted
to the moving boundaries encountered by an intensity path. It is here translated by the idea that inside the field,
geometric sensitivities are driven by the exact same transport equation as intensity: before they reach the boundary,
sensitivity paths are identical to intensity paths because both quantities have the same field-physics (e.g., multiple
scattering and Beer extinction for absorption). When the absorption and scattering coefficients are uniform, spatial
gradients (derivative of intensity with respect to position) also have the same field physics. Therefore, as we already
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mentioned, differentiating at Step 1 leads to a model where three transport equations are coupled (those of intensity,
geometric sensitivity, and spatial gradient) that have the exact same field physics. This is already fully illustrated with
our simple configuration (see Eq. 41, Eq. 42 and Eq. 43). For complete three-dimensional configurations and general
boundary-shape transformations (translations and rotations), the only additional idea is that there is also the angular
gradient. However, the field physics of angular gradients is quite simple, and the first observation is the same: we
need to couple several transport physics of which field representations are very familiar. As far as physical pictures are
concerned, the only authentic difficulty is the coupling. The very same interpretation efforts are required for Step 3,
but the naming is different, reflecting quite distinct conceptual guidance. For instance, Diracs along the edges of the
triangles are now seen as boundary conditions for the spatial-gradient transport equation; their role in the physics of
geometric sensitivities is seen as the consequence of the spatial-gradient being required for the boundary condition of
geometric sensitivity (because of the physical picture of Fig. 9), etc.

In short, physicists and engineers who, beyond pure simulation, need to understand geometric sensitivities in some
depth will conclude that at the present stage, none of the three approaches define an easy and self-consistent practice.
Nevertheless, when considering all the reported approaches the way we tried to classify them, physical pictures start
to be quite numerous, and we may also conclude that it is not overly optimistic to consider a pretty intuitive physics of
geometric sensitivities in the short or medium term.

5. Conclusion
This work focused on the three approaches of estimating the geometric sensitivities, bridging statistical physics

and computer graphics. In Section 2, we first recalled the general theoretical framework of building a Monte Carlo
estimator for the intensity and pointed out where the differentiation process starts for each of the three approaches:

(I) Differentiating the expectation approach starts from the linear Boltzmann equation + boundary condition (step
1 in Section 2.2)

(II) Differentiable rendering approach starts from the rendering equation reported into the volume rendering
equation (step 3 in Section 2.2)

(III) Transport model for sensitivities approach starts from the path statistics (step 5 in Section 2.2)
(II) and (III) lead to the same Monte Carlo algorithm, the differentiable-rendering algorithm, while (I) leads to a
different algorithm: the expectation-differentiation algorithm. After that, in Section 3, the three approaches (two kinds
of algorithms) were applied in an academic one-dimensional example to illustrate their algorithmic consequences and
applicability, which was the object of Section 4. Here, we conclude by further summarizing their differences in term
of physical interpretation and computational perspectives. Moreover, two applications are demonstrated to show the
applicability of differentiable-rendering algorithms for complex geometries.
Physical interpretation

Physically, the two kinds of algorithms diverge in interpreting the intensity perturbation (i.e., the sensitivity). The
expectation-differentiation algorithms allow the system-wide understanding of how geometric changes influence the
intensity through a domain deformation velocity, which presents the impacts on the whole path space. In contrast,
the differentiable-rendering algorithms offer a local view of perturbation, focusing on changes at boundaries and their
immediate effects.
Computational perspective

From a computational perspective, both expectation-differentiation and differentiable-rendering algorithms offer
distinct advantages and challenges. The former utilises the same paths for both intensity and sensitivity estimations,
potentially simplifying the computational process in theory. However, practical implementation, especially in geomet-
rically complex scenarios, remains challenging due to the intricacies of domain deformation velocities. On the other
hand, while necessitating the sampling of additional paths, differentiable-rendering algorithms benefit from ongoing
advancements in computer graphics that enhance their practical applicability. We show two applications where the
differentiable-rendering algorithms are used in complex geometries. The scene shown in Fig.11 features multiple
branches illuminated by a compact area light source. This creates complex visibility variations, which can be observed
from the shadows cast on the ground. The sensitivity with respect to the rotational angle of the branches around
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Figure 11: In this example, the sensitivity is computed with respect to the rotation angle of the branches around the
vertical axis by Zhang et al. (2020). (Original) The intensity image. (Our deriv) Sensitivity image rendered following
differentiable-rendering algorithm. (Finite difference) Sensitivities are approximated by the finite difference method. (Abs
diff) the differences between the two images. Tis image is reproduced from Zhang et al. (2020) with permission from
"ACM".

expectation-differentiation algorithms differentiable-rendering / transport model for sensitivities
Advantages

The same paths are used for intensity and all sensitivities,
which simplifies the computational process

1. Advancements in computer graphics enhance the
practical applicability
2. Applications with complex geometries are already
available

Challenges/future improvements:
1. Formulating the deformation velocity for complex
geometry configurations requires heavy effort
2. Only academic examples exist at this stage

Sensitivity estimations require new path samplings,
leading to longer computation time and potential
convergence issues

Table 2
Summary of the advantages and challenges/future improvements of the algorithms resulting of each of the three approaches.

their vertical axis is estimated. As another example, He et al. (2023) studies the complex geometry of a functioning
Concentrated Solar Power station, where 6090 flat mirrors (heliostats) are installed to reflect solar radiation to the
central receiver (see Fig.12). The sensitivities with respect to x/y/z translation, the elevation/azimuth rotation and the

Figure 12: The study case is the eSolar’s modular CSP plant in Lancaster. Lines of heliostats are installed to reflect solar
irradiance to the central receiver, which is brightened in the figure. Each mirror corresponds to a point in each sub-figure
of Fig.13. Tis image is reproduced from Zavodny et al. (2015) with permission from "Elsevier".

size of each heliostat are estimated (see Fig.13). By contrast with Zhang et al. (2020), He et al. (2023) followed the (I)
approach rather than (II) approach, whcih means that the transport models of sensitivity are explicitely available. By
analysing these models, contributions of optical phenomena (blocking, shadowing, spillage) to the sensitivities could
be separated and pictured. Such successfull implementation for complex geometry of the expectation-differentiation
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algorithm has not succeeded yet. Finally, Table 2 summarises the advantages and the challenges/future improvements
of the two kinds of algorithms.
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(a) Sensitivity of position-x for each heliostat.
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(b) Sensitivity of position-y for each heliostat.
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(c) Sensitivity of position-z for each heliostat.
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(d) Sensitivity of the length of borders for each heliostat.
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(e) Sensitivity of elevation angle for each heliostat.
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(f) Sensitivity of azimuth angle for each heliostat.
Figure 13: Sensitivity of the total impacting power 𝑃 [W] for each heliostat in the field, calculated by He et al. (2023). Each
point is dedicated to a heliostat, pointing to the centre of the receiver located at (0,0) of 50m height at the moment of
solar noon at the summer solstice. The layout corresponds to an actual heliostat field: Sierra SunTower (Schell, 2011). The
corresponding colour indicates its sensitivity with respect to its positions, rotations, and lengths. Tis image is reproduced
from He et al. (2023) with permission from "Elsevier".
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A. Analytical solutions
The analytical solution of this example is available (Bellman and Wing, 1992):

𝐼(𝑥, 𝜔, 𝜋̈|𝜆, 𝜅𝑒)|𝜔=1 =

2(−1 + 𝜆) cosh
(

(𝜋̈ − 𝑥)
√

1 − 𝜆𝜅𝑒
)

+
√

1 − 𝜆(−2 + 𝜆) sinh
(

(𝜋̈ − 𝑥)
√

1 − 𝜆𝜅𝑒
)

2(−1 + 𝜆) cosh
(

𝜋̈
√

1 − 𝜆𝜅𝑒
)

+
√

1 − 𝜆(−2 + 𝜆) sinh
(

𝜋̈
√

1 − 𝜆𝜅𝑒
)

(44)

and

𝐼(𝑥, 𝜔, 𝜋̈|𝜆, 𝜅𝑒)|𝜔=−1 =

−𝜆
√

1 − 𝜆 sinh
(

(𝜋̈ − 𝑥)
√

1 − 𝜆𝜅𝑒
)

2(−1 + 𝜆) cosh
(

𝜋̈
√

1 − 𝜆𝜅𝑒
)

+
√

1 − 𝜆(−2 + 𝜆) sinh
(

𝜋̈
√

1 − 𝜆𝜅𝑒
)

(45)

with 𝜆 = 𝜅𝑠
𝜅𝑒

the scattering albedo

B. Formal development of the expectation differentiation approache
Four steps are needed in order to apply this method in our case:

B.1. Formulate the integral formulation of intensity in an expectation form for Monte Carlo
algorithm.

This step is already achieved by Eq.24 and Eq.27.
B.2. Apply the Heaviside function to the integral domain to avoid differentiating the Heaviside

function.
The targeting parameter 𝜋̈ is in the expression of 𝑑 (see Eq.27), which is in the Heaviside function in Eq.24. We

make efforts to apply the Heaviside function to the integral domain, then the 𝜋̈ will appear in the integral domain.
Consequently, we can avoid differentiating the Heaviside function and differentiate the integral domain:

𝐼(𝑥, 𝜔, 𝜋̈) = ∫

∞

𝑑0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0𝐼(𝜔0)𝑒−𝜅𝑎𝑑0+

∫

𝑑0

0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0 ∫ 𝑝Ω(𝜔1)𝑑𝜔1 ∫

∞

𝑑1
𝜅𝑠𝑒

−𝜅𝑠𝜉1𝑑𝜉1𝐼(𝜔1)𝑒−𝑘𝑎(𝜉0+𝑑1)+

∫

𝑑0

0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0 ∫ 𝑝Ω(𝜔1)𝑑𝜔1 ∫

𝑑1

0
𝜅𝑠𝑒

−𝜅𝑠𝜉1𝑑𝜉1 ∫ 𝑝Ω(𝜔2)𝑑𝜔2… (46)

At this stage, 𝜋̈ exists only in the integral domain, and we can now differentiate Eq.46.
B.3. Differentiate the intensity and formulate the integral formulation for the sensitivity

In order to differentiate Eq.46 with respect to 𝜋̈, we separate the components of 𝐼(𝑥, 𝜔, 𝜋̈):

𝐼(𝑥, 𝜔, 𝜋̈) =
+∞
∑

𝑗=0
𝐼𝑗(𝑥, 𝜔, 𝜋̈) (47)

then

𝑠(𝑥, 𝜔, 𝜋̈) =
+∞
∑

𝑗=0
𝑠𝑗(𝑥, 𝜔, 𝜋̈) (48)
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A physical interpretation exists for this decomposition of 𝐼(𝑥, 𝜔, 𝜋̈). 𝐼(𝑥, 𝜔, 𝜋̈) is the intensity arriving at 𝑥,
following the direction 𝜔. It is then composed of all intensity coming from the boundary, without scattering, with
once scattering, twice scatterings, etc. The index 𝑗 indicates the number of scattering events before arriving at 𝑥,
following the direction 𝜔.

When 𝑗 = 0,
𝐼0(𝑥, 𝜔, 𝜋̈) = ∫

∞

𝑑0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0
{

𝐼(−𝜔0)𝑒−𝜅𝑎𝑑0
}

(49)

When 𝑗 > 0,

𝐼𝑗(𝑥, 𝜔, 𝜋̈) =∫

𝑑0

0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0 ∫ 𝑝Ω(𝜔1)𝑑𝜔1 ∫

𝑑1

0
𝜅𝑠𝑒

−𝜅𝑠𝜉1𝑑𝜉1 ∫ 𝑝Ω(𝜔2)𝑑𝜔2

…∫ 𝑝Ω(𝜔𝑗)𝑑𝜔𝑗 ∫

∞

𝑑𝑗
𝜅𝑠𝑒

−𝜅𝑠𝜉𝑗𝑑𝜉𝑗
{

𝐼(−𝜔𝑗)𝑒
−𝜅𝑎(𝜉0+𝜉1…+𝜉𝑖−1+𝑑𝑗 )

}

=∫

𝑑0

0
𝑑𝜉0 ∫ 𝑑𝜔1 ∫

𝑑1

0
𝑑𝜉1 ∫ 𝑑𝜔2…∫

∞

𝑑𝑗
𝑑𝜉𝑗𝑔𝑗(𝑥, 𝜔0, 𝜉0, 𝜔1,… , 𝜉𝑗)

(50)

with
𝑔𝑗(𝑥, 𝜔0, 𝜉0, 𝜔1,… , 𝜉𝑗 , 𝜋̈) = 𝜅𝑠𝑒

−𝑘𝑑𝜉0𝑝Ω(𝜔1)𝜅𝑠𝑒−𝑘𝑑𝜉1 … 𝐼(−𝜔𝑗)𝑒
−𝑘𝑎(𝜉0+𝜉1…+𝜉𝑖−1+𝑑𝑗 ). (51)

We then differentiate Eq.50 and Eq.49 with respect to 𝜋̈:

𝑠𝑗(𝑥, 𝜔, 𝜋̈) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

𝑑0

0
𝑑𝜉0 ∫

1

−1
𝑑𝑢1…∫

∞

𝑑𝑗
𝑑𝜉𝑗

{

𝜕𝜋̈𝑔𝑗 + ∇⃗ ⋅
(

𝑔𝑗𝑉𝜋̈𝑖
)

}

, when 𝑖 > 0

∫

∞

𝑑0
𝑑𝜉0

{

𝜕𝜋̈𝑔0 + ∇⃗ ⋅
(

𝑔0𝑉𝜋̈0
)

}

,when 𝑖 = 0

(52)

where
𝑉𝜋̈0 = [

𝜔0 + 1
2

] (53)
and

𝑉𝜋̈𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉𝜋̈𝑗,𝜉0
𝑉𝜋̈𝑗,𝑢1
𝑉𝜋̈𝑗,𝜉1
𝑉𝜋̈𝑗,𝑢2
…

𝑉𝜋̈𝑗,𝜉𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, for j > 0 (54)

are the domain deformation velocity, which is studied in (Roger et al., 2005). The complete mathematical development
of 𝑉𝜋̈𝑗 can be found in Appendix (C). Herein, 𝑉𝜋̈𝑗 has the same dimension of the integral domain of Eq.50:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑉𝜋̈𝑗,𝜉0 =
(𝜔0 + 1)𝜉0

2𝑑0

𝑉𝜋̈𝑗,𝜉𝑗′ =
⎡

⎢

⎢

⎣

𝜔𝑗′ + 1
2

−
𝑗′−1
∑

𝑘=0
𝑉𝜋̈𝑗,𝜉𝑘 (𝜉0, 𝜉1,… , 𝜉𝑘; 𝜋̈)(𝜔𝑘𝜔𝑗′ )

⎤

⎥

⎥

⎦

𝜉𝑗′

𝑑𝑗′
, 0 < 𝑗′ < 𝑗

𝑉𝜋̈𝑗,𝜉𝑗 =
𝜔𝑗 + 1

2
−

𝑗−1
∑

𝑘=0
𝑉𝜋̈𝑗,𝜉𝑘 (𝜉0, 𝜉1,… , 𝜉𝑘; 𝜋̈)(𝜔𝑘𝜔𝑗)

𝑉𝜋̈𝑗,𝜔0
= 𝑉𝜋̈𝑗,𝜔𝑗′

= 𝑉𝜋̈𝑗,𝜔𝑗
= 0

(55)

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 25 of 100



Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

𝑠(𝑥, 𝜔, 𝜋̈) is the sum of all components 𝑠𝑗(𝑥, 𝜔, 𝜋̈) (see Eq.48) and we generate the same pdfs that are used in Eq.24:

𝑠(𝑥, 𝜔, 𝜋̈) = ∫

∞

𝑑0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0

⎡

⎢

⎢

⎢

⎣

𝜕𝜋̈𝑔0 + ∇⃗ ⋅
(

𝑔0𝑉𝜋̈0
)

𝜅𝑠𝑒−𝜅𝑠𝜉0

⎤

⎥

⎥

⎥

⎦

+

∫

𝑑0

0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0 ∫

1

−1
𝑝𝑈 (𝑢1)𝑑𝑢1 ∫

∞

𝑑1
𝜅𝑠𝑒

−𝜅𝑠𝜉1𝑑𝜉1

⎡

⎢

⎢

⎢

⎣

𝜕𝜋̈𝑔1 + ∇⃗ ⋅
(

𝑔1𝑉𝜋̈1
)

𝜅𝑠2𝑒−𝜅𝑠(𝜉0+𝜉1)

⎤

⎥

⎥

⎥

⎦

+

∫

𝑑0

0
𝜅𝑠𝑒

−𝜅𝑠𝜉0𝑑𝜉0 ∫

1

−1
𝑝𝑈 (𝑢1)𝑑𝑢1 ∫

𝑑1

0
𝜅𝑠𝑒

−𝜅𝑠𝜉1𝑑𝜉1 ∫

1

−1
𝑝𝑈 (𝑢2)𝑑𝑢2… (56)

B.4. Formulate the sensitivity in an expectation form, using the same pdfs of the intensity.
Eq.56 is reformulated into an expectation form by adding the Heaviside functions of Eq.24. The resulting equation

shares the same integral domains and the pdfs with the expectation form of intensity (Eq. 24) and finally they can be
formulated in a completely vectorised form (Eq.29).

C. Formulation of domain deformation velocity (Roger et al., 2005)
We consider the following integral with an expectation form:

< 𝑂 >= ∫1

𝑝𝜙1
(𝑥1)𝑑𝑥1 ∫2

𝑝𝜙2
(𝑥2)𝑑𝑥2⋯∫𝑛

𝑝𝜙𝑛
(𝑥𝑛)𝑑𝑥𝑛𝑂(𝑥1, 𝑥2,… , 𝑥𝑛) (57)

where 𝑝𝜙1
, 𝑝𝜙2

,… are the pdfs of a random variables 𝑋1, 𝑋2,… and 1,2… are the definition domains of
𝑋1, 𝑋2,….

If < 𝑂 > is a function of a parameter 𝜋̈:

< 𝑂 >≡< 𝑂 > (𝜋̈), (58)
the derivative of < 𝑂 > with respect to 𝜋̈ is formulated as follows:

𝜕𝜋̈ < 𝑂 >= ∫1(𝜋̈)
𝑑𝑥1 ∫2(𝜋̈)

𝑑𝑥2⋯∫𝑛(𝜋̈)
𝑑𝑥𝑛

𝒑𝜙(𝒙)

(

𝜕𝜋̈𝑂(𝒙) + 𝑂(𝒙)
𝜕𝜋̈𝒑𝜙(𝒙)
𝒑𝝓(𝒙)

+
∇⃗ ⋅ (𝒑𝜙(𝒙)𝑂(𝒙)𝑉𝜋̈(𝒙))

𝒑𝜙(𝒙)

)

(59)

with

𝒑𝜙(𝒙) =
𝑛
∏

𝑘=1
𝑝𝜙𝑘

(𝑥𝑘), (60)

𝑂(𝒙) = 𝑂(𝑥1, 𝑥2,… , 𝑥𝑛) (61)
Also, 𝑉𝜋̈(𝒙) is called the domain deformation velocity. It is built component by component, starting with 𝑉𝜋̈,1 which

is a function of 𝑦1 only. For 𝑦𝑖 ∈ 𝑖, where 𝑖 ≡ [𝑎𝑖, 𝑏𝑖]:
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𝑉𝜋̈,1(𝑦1; 𝜋̈) = 𝜕𝜋̈𝑎1 +
𝜕𝜋̈𝑏1 − 𝜕𝜋̈𝑎1
𝑏1 − 𝑎1

(𝑦1 − 𝑎1) (62)

𝑉𝜋̈,𝑖(𝑦1, 𝑦2,… , 𝑦𝑖; 𝜋̈) = 𝑉𝜋̈,𝑖|𝑦𝑖=𝑎𝑖 +
𝑉𝜋̈,𝑖|𝑦𝑖=𝑏𝑖 − 𝑉𝜋̈,𝑖|𝑦𝑖=𝑎𝑖

𝑏𝑖 − 𝑎𝑖
(𝑦𝑖 − 𝑎𝑖) (63)

with

𝑉𝜋̈,𝑖|𝑦𝑖=𝑎𝑖 ≡ 𝑉𝜋̈,𝑖(𝑦1, 𝑦2,… , 𝑦𝑖−1, 𝑦𝑖 = 𝑎𝑖; 𝜋̈)

= 𝜕𝜋̈𝑎𝑖 +
𝑖−1
∑

𝑘=1
𝑉𝜋̈,𝑘(𝑦1, 𝑦2,… , 𝑦𝑘; 𝜋̈)𝜕𝑦𝑘𝑎𝑖.

(64)

D. Double Randomization
Generally, we consider here an integral with a form of expectation:

∫

𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛
𝑝𝐵1

(𝑏1)𝑓
(

𝑏1,𝔼𝐵2|𝐵1
[𝐵2|𝐵1]

)

𝑑𝑏1 ≡ 𝔼𝐵1

[

𝑓 (𝐵1,𝔼𝐵2|𝐵1
[𝐵2|𝐵1])

]

(65)

reminding 𝐵1 and 𝐵2|𝐵1 are the random variables. The notation 𝐵2|𝐵1 signifies that the random number 𝐵2 depends
on 𝐵1, read as 𝐵2 knowing 𝐵1. 𝑝𝐵1

is the pdf of 𝐵1 and 𝑝𝐵2|𝐵1
is the pdf of 𝐵2|𝐵1. In order to distinguish the two

expectation, 𝔼𝐵1
[𝐵1] is the expectation of 𝐵1 and 𝔼𝐵1|𝐵2

[𝐵1|𝐵2] is the expectation of 𝐵2|𝐵1. 𝔼𝐵2|𝐵1
[𝐵2|𝐵1] in Eq.65

can be written as:

𝔼[𝐵2|𝐵1] = ∫

𝑏2𝑚𝑎𝑥

𝑏2𝑚𝑖𝑛
𝑝𝐵2|𝐵1

(𝑏2)𝑏2𝑑𝑏2 (66)

In order to estimate the value of integral in Eq.65, the first strategy consists of (for each realization):
• sampling 𝑏1 following the pdf 𝑝𝐵1

;
• estimate the expectation of 𝔼𝐵2|𝐵1

[𝐵2|𝐵1 = 𝑏1] by Monte Carlo method;
• use the result of estimation of 𝔼𝐵2|𝐵1

[𝐵2|𝐵1 = 𝑏1] (noted 𝑒) as the second input of the function 𝑓 and 𝑏1 as the
first input of the function 𝑓 . 𝑓 (𝑏1, 𝑒) is then the result of one realization.

However, this strategy is not practicable. If the number of sampling for 𝐵1 is 𝑛1 and that for 𝐵2|𝐵1 is 𝑛2, the total
number of sampling following this strategy will be 𝑛1𝑛2. The calculating time will be huge if more expectation appear
in the function 𝑓 in Eq.65.

It is then necessary to introduce the strategy of Double randomization here. The idea of double randomization is
that: The expectation of an expectation is also an expectation:

𝔼𝐵1

[

𝑓 (𝐵1,𝔼𝐵2|𝐵1
[𝐵2|𝐵1])

]

=𝔼𝐵1,𝐵2|𝐵1

[

𝑓 (𝐵1, 𝐵2)
]

=∫

𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛
𝑝𝐵1

(𝑏1)∫

𝑏2𝑚𝑎𝑥

𝑏2𝑚𝑖𝑛
𝑝𝐵2|𝐵1=𝑏1 (𝑏2)𝑓

(

𝑏1, 𝑏2
)

𝑑𝑏1𝑑𝑏2

. (67)

However, the function 𝑓 needs to be linear to apply this strategy. More details can be found in the Ph.D. work of
Jean-Marc Tregan (Tregan et al., 2023)
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E. Development of the boundary condition for the sensitivity (Lapeyre et al., 2022)
Eq.41 can be derived by the following development:
In order to obtain the boundary condition for the sensitivity in this example, we need to define a material space 

and a geometrical space  for the point of moving boundary (where 𝑥 = 𝜋̈).
Generally, the material space keeps the material’s properties and is independent of the deformation (independent of

𝜋̈ in this case). In the material space, we note this point as 𝑦 ∈ , which is independent of 𝜋̈. While in the geometric
space, we note this point as ⃗̌𝑦 ∈  which depends on 𝜋̈: ⃗̌𝑦 ≡ ⃗̌𝑦(𝜋̈).

The two spaces are then linked by a function 𝑍:
⃗̌𝑦 = 𝑍(𝑦, 𝜋̈) = 𝜋̈ (68)

We keep the notation 𝑍(𝑦, 𝜋̈), because in a 3-dimensional case, the function 𝑍 is a function of 𝑦.
Also, we denote the radiative intensity in geometric space as 𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) and in material space as 𝐿(𝑦, 𝜔, 𝜋̈).
Therefore, we have:
𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) = 𝐿(𝑦, 𝜔, 𝜋̈) (69)

We take the derivative of Eq 69 with respect to 𝜋̈:
𝜕𝜋̈𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) = 𝜕𝜋̈𝐿(𝑦, 𝜔, 𝜋̈) (70)

The following equations are then yielded:
𝜕1𝐼( ⃗̌𝑦, 𝜔, 𝜋̈)𝜕𝜋̈ ⃗̌𝑦 + 𝜕3𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) = 𝜕𝜋̈𝐿(𝑦, 𝜔, 𝜋̈) (71)

𝜕1𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) is the spatial gradient of 𝐼 . 𝜕𝜋̈ ⃗̌𝑦 is the derivative of function 𝑍: 𝜕𝜋̈ ⃗̌𝑦 = 𝜕𝜋̈𝑍 = 1 and the source of intensity
on the boundary is independent to 𝜋̈, therefore 𝜕𝜋̈𝐿 = 0. Therefore, now we have the following:

𝜕3𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) = −𝜕1𝐼( ⃗̌𝑦, 𝜔, 𝜋̈) (72)
with ⃗̌𝑦 = 𝜋̈ and 𝜔 = −1:

𝑠(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1 = 𝜕𝑥𝐼(𝑥, 𝜔, 𝜋̈)|𝑥=𝜋̈,𝜔=−1 (73)

F. Monte Carlo algorithm to estimate the intensity
Algorithm 3 Estimation of 𝐼(𝑥, 𝜔, 𝜋̈)
Input: 𝑥, 𝜔, 𝜅𝑎, 𝜅𝑠, 𝑛𝑀𝐶 , 𝜋̈

1: Initialize the sum 𝑊 ← 0 and the sum of square 𝑉 ← 0
2: for 𝑖 = 1 → 𝑛𝑀𝐶 do
3: Initialize the Monte Carlo weight 𝑤 ← 0
4: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
5: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
6: while keeprunning do
7: if 𝜔 = 1 then
8: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
9: if 𝜉 >= 𝑥 then

10: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝑥
11: 𝑤 ← 𝐼0𝑒−𝜅𝑎𝑙𝑡𝑜𝑡
12: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
13: else
14: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
15: 𝑥 ← 𝑥 − 𝜉
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16: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
17: if 𝑟 < 1

2 then
18: 𝜔 ← 1
19: else
20: 𝜔 ← −1
21: end if
22: end if
23: end if
24: if 𝜔 = −1 then
25: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
26: if 𝜉 >= (𝜋̈ − 𝑥) then
27: 𝑤 ← 0
28: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
29: else
30: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
31: 𝑥 ← 𝑥 + 𝜉
32: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
33: if 𝑟 < 1

2 then
34: 𝜔 ← 1
35: else
36: 𝜔 ← −1
37: end if
38: end if
39: end if
40: end while
41: 𝑊 ← 𝑊 +𝑤
42: 𝑉 ← 𝑉 +𝑤2

43: end for

Output: 𝐼(𝑥, 𝜔) ← 𝑊
𝑛𝑀𝐶

, 𝜎[𝐼(𝑥, 𝜔)] ←
√

𝑉
𝑛𝑀𝐶

−( 𝑊
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

G. Monte Carlo algorithm to estimate the sensitivity following the expectation
differentiation approach

Algorithm 4 Evaluation of 𝐼(𝑥, 𝜔, 𝜋̈) and 𝑠(𝑥, 𝜔, 𝜋̈)
Input: 𝑥, 𝜔, 𝜅𝑎, 𝜅𝑠, 𝑛𝑀𝐶 , 𝜋̈

1: Initialize the sum of 𝑤𝐼 : 𝑊𝐼 ← 0 and the sum of 𝑤𝐼
2: 𝑉𝐼 ← 0

2: Initialize the sum of 𝑤𝑠: 𝑊𝑠 ← 0 and the sum of 𝑤𝑠
2: 𝑉𝑠 ← 0

3: for 𝑖 = 1 → 𝑛𝑀𝐶 do
4: Initialize the intensity Monte Carlo weight 𝑤𝐼 ← 0
5: Initialize the sensitivity Monte Carlo weight 𝑤𝑠 ← 0
6: Initialize the scattering counter 𝑖 ← 0
7: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
8: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
9: Initialize the tables 𝜉, 𝜔, 𝑥

10: Initialize the position 𝑥[0] ← 𝑥
11: Initialize the position 𝜔[0] ← 𝜔
12: while keeprunning do
13: if 𝜔[𝑖] = 1 then
14: Sample a path length 𝜉′ following pdf: 𝑝Ξ(𝜉′) = 𝜅𝑠𝑒−𝜅𝑠𝜉

′

15: 𝜉[𝑖] ← 𝜉′
16: if 𝜉[𝑖] >= 𝑥[𝑖] then
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17: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝑥[𝑖]
18: 𝑤𝐼 ← 𝐼(𝜔[𝑖])𝑒−𝜅𝑎𝑙𝑡𝑜𝑡

19: 𝑤𝑠 ←
𝜕𝜋̈𝑔𝑖+∇⃗⋅

(

𝑔𝑖𝑉𝜋̈𝑖
)

(𝜅𝑠)𝑖+1𝑒−𝜅𝑠(𝜉0+𝜉1+…+𝜉𝑖) ∏𝑖
𝑘=1 𝑃Ω(𝜔𝑘)

20: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
21: else
22: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉[𝑖]
23: 𝑥[𝑖 + 1] ← 𝑥[𝑖] − 𝜉[𝑖]
24: 𝑖 ← 𝑖 + 1
25: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
26: if 𝑟 < 1

2 then
27: 𝜔[𝑖] ← 1
28: else
29: 𝜔[𝑖] ← −1
30: end if
31: end if
32: end if
33: if 𝜔[𝑖] = −1 then
34: Sample a path length 𝜉′ following pdf: 𝑝Ξ(𝜉′) = 𝜅𝑠𝑒−𝜅𝑠𝜉

′

35: 𝜉[𝑖] ← 𝜉′
36: if 𝜉[𝑖] >= (𝜋̈ − 𝑥[𝑖]) then
37: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + (𝜋̈ − 𝑥[𝑖])
38: 𝑤𝐼 ← 𝐼(𝜔[𝑖])𝑒−𝜅𝑎𝑙𝑡𝑜𝑡

39: 𝑤𝑠 ←
𝜕𝜋̈𝑔𝑖+∇⃗⋅

(

𝑔𝑖𝑉𝜋̈𝑖
)

(𝜅𝑠)𝑖+1𝑒−𝜅𝑠(𝜉0+𝜉1+…+𝜉𝑖) ∏𝑖
𝑘=1 𝑃Ω(𝜔𝑘)

40: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
41: else
42: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉[𝑖]
43: 𝑥[𝑖 + 1] ← 𝑥[𝑖] + 𝜉[𝑖]
44: 𝑖 ← 𝑖 + 1
45: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
46: if 𝑟 < 1

2 then
47: 𝜔[𝑖] ← 1
48: else
49: 𝜔[𝑖] ← −1
50: end if
51: end if
52: end if
53: end while
54: 𝑊𝐼 ← 𝑊𝐼 +𝑤𝐼
55: 𝑉𝐼 ← 𝑉𝐼 +𝑤2

𝐼
56: 𝑊𝑠 ← 𝑊𝑠 +𝑤𝑠
57: 𝑉𝑠 ← 𝑉𝑠 +𝑤2

𝑠
58: end for
Output:

59: 𝐼(𝑥, 𝜔) ← 𝑊𝐼
𝑛𝑀𝐶

, 𝜎[𝐼(𝑥, 𝜔)] ←
√

𝑉𝐼
𝑛𝑀𝐶

−( 𝑊𝐼
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

60: 𝜕𝜋̈𝐼(𝑥, 𝜔) ←
𝑊𝑠
𝑛𝑀𝐶

, 𝜎[𝜕𝜋̈𝐼(𝑥, 𝜔)] ←
√

𝑉𝑠
𝑛𝑀𝐶

−( 𝑊𝑠
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
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H. Monte Carlo algorithm to estimate the sensitivity following the differentiable rendering
or the sensitivity transport model approach

Algorithm 5 Estimation of 𝑠(𝑥, 𝜔, 𝜋̈)
Input: 𝑥, 𝜔, 𝜅𝑎, 𝜅𝑠, 𝑛𝑀𝐶 , 𝜋̈

1: if 𝜔 = 1 then
2: 𝑓𝑙𝑎𝑔 ← 𝑆+

3: else
4: 𝑓𝑙𝑎𝑔 ← 𝑆−

5: end if
6: Initialize the sum of Monte Carlo weight 𝑊𝑠 ← 0
7: Initialize the sum of Monte Carlo weight square 𝑉𝑆 ← 0
8: for 𝑖 = 0 → 𝑛𝑀𝐶 do
9: Initialize the weight of Monte Carlo 𝑤 ← 0

10: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
11: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
12: while keeprunning do
13: if 𝑓𝑙𝑎𝑔 = 𝑆+ then
14: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
15: if 𝜉 >= 𝑥 then
16: 𝑤 ← 0
17: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
18: else
19: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
20: 𝑥 ← 𝑥 − 𝜉
21: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
22: if 𝑟 < 1

2 then
23: 𝑓𝑙𝑎𝑔 ← 𝑆+

24: else
25: 𝑓𝑙𝑎𝑔 ← 𝑆−

26: end if
27: end if
28: end if
29: if 𝑓𝑙𝑎𝑔 = 𝑆− then
30: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
31: if 𝜉 >= (𝜋̈ − 𝑥) then
32: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + (𝜋̈ − 𝑥)
33: 𝑓𝑙𝑎𝑔 ← 𝐼+
34: 𝑥 ← 𝜋̈
35: else
36: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
37: 𝑥 ← 𝑥 + 𝜉
38: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
39: if 𝑟 < 1

2 then
40: 𝑓𝑙𝑎𝑔 ← 𝑆+

41: else
42: 𝑓𝑙𝑎𝑔 ← 𝑆−

43: end if
44: end if
45: end if
46: if 𝑓𝑙𝑎𝑔 = 𝐼+ then
47: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
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48: if 𝜉 >= 𝑥 then
49: 𝑤 ←

𝜅𝑠
2 𝐼

+(0)𝑒−𝜅𝑎𝑙𝑡𝑜𝑡
50: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
51: else
52: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
53: 𝑥 ← 𝑥 − 𝜉
54: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
55: if 𝑟 < 1

2 then
56: 𝑓𝑙𝑎𝑔 ← 𝐼+
57: else
58: 𝑓𝑙𝑎𝑔 ← 𝐼−
59: end if
60: end if
61: end if
62: if 𝑓𝑙𝑎𝑔 = 𝐼− then
63: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝜅𝑠𝑒−𝜅𝑠𝜉
64: if 𝜉 >= (𝜋̈ − 𝑥) then
65: 𝑤 ← 0
66: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
67: else
68: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
69: 𝑥 ← 𝑥 + 𝜉
70: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
71: if 𝑟 < 1

2 then
72: 𝑓𝑙𝑎𝑔 ← 𝐼+
73: else
74: 𝑓𝑙𝑎𝑔 ← 𝐼−
75: end if
76: end if
77: end if
78: end while
79: 𝑊𝑆 ← 𝑊𝑆 +𝑤
80: 𝑉𝑆 ← 𝑉𝑆 +𝑤2

81: end for

Output: 𝑠(𝑥, 𝜔, 𝜋̈) ← 𝑊𝑆
𝑛𝑀𝐶

, 𝜎[𝑠(𝑥, 𝜔, 𝜋̈)] ←
√

𝑉𝑆
𝑛𝑀𝐶

−( 𝑊𝑆
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 32 of 100



Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

References
Baek, S., Kim, K.I., Kim, T.K., 2019. Pushing the envelope for rgb-based dense 3d hand pose estimation via neural rendering, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1067–1076.
Bangaru, S.P., Li, T.M., Durand, F., 2020. Unbiased warped-area sampling for differentiable rendering. ACM Transactions on Graphics (TOG) 39,

1–18.
Bati, M., Blanco, S., Coustet, C., Eymet, V., Forest, V., Fournier, R., Gautrais, J., Mellado, N., Paulin, M., Piaud, B., 2023. Coupling conduction,

convection and radiative transfer in a single path-space: Application to infrared rendering. ACM Transactions on Graphics 42, 1–20.
Bellman, R., Wing, G.M., 1992. An introduction to invariant imbedding. SIAM.
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J., 2016. Keep it smpl: Automatic estimation of 3d human pose and shape from

a single image, in: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part V 14, Springer. pp. 561–578.

Brainina, M., Generozov, V.L., Kuznetsov, V., Sakovich, V., 1967. Evaluation of dose derivatives by the monte carlo method for optimizing protective
screen shape and composition. USSR Computational Mathematics and Mathematical Physics 7, 335–340.

De Lataillade, A., Blanco, S., Clergent, Y., Dufresne, J.L., El Hafi, M., Fournier, R., 2002. Monte carlo method and sensitivity estimations. Journal
of Quantitative Spectroscopy and Radiative Transfer 75, 529–538.

Delatorre, J., Baud, G., Bézian, J.J., Blanco, S., Caliot, C., Cornet, J.F., Coustet, C., Dauchet, J., El Hafi, M., Eymet, V., et al., 2014. Monte carlo
advances and concentrated solar applications. Solar Energy 103, 653–681.

Farges, O., Bézian, J.J., Bru, H., El Hafi, M., Fournier, R., Spiesser, C., 2015. Life-time integration using monte carlo methods when optimizing
the design of concentrated solar power plants. Solar Energy 113, 57–62.

Galtier, M., Blanco, S., Dauchet, J., El Hafi, M., Eymet, V., Fournier, R., Roger, M., Spiesser, C., Terrée, G., 2016. Radiative transfer and
spectroscopic databases: A line-sampling monte carlo approach. Journal of Quantitative Spectroscopy and Radiative Transfer 172, 83–97.

Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T., 2018. Unsupervised training for 3d morphable model regression, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8377–8386.

Gobet, E., 2016. Stochastic differential equations and Feynman-Kac formulas, in: Monte-Carlo Methods and Stochastic Processes. Chapman and
Hall/CRC, p. 46.

Guo, Y., Hašan, M., Zhao, S., 2018. Position-free monte carlo simulation for arbitrary layered bsdfs. ACM Transactions on Graphics (ToG) 37,
1–14.

He, Z., 2022. Vectorized Monte-Carlo method for sensitivity models in radiative transfer: Application to Concentrated Solar Power. Ph.D. thesis.
Ecole des Mines d’Albi-Carmaux.

He, Z., Lapeyre, P., Blanco, S., Eibner, S., El Hafi, M., Fournier, R., 2023. Monte-carlo estimation of geometric sensitivities in solar power tower
systems of flat mirrors. Solar Energy 253, 9–29.

Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C., 2016. Multiple-scattering microfacet bsdfs with the smith model. ACM Transactions on Graphics
(TOG) 35, 1–14.

Hoffman, T., Petrie, L., Landers, N., 1978. A monte carlo perturbation source method for reactivity calculations. Nuclear Science and Engineering
66, 60–66.

Howell, J.R., Daun, K.J., 2021. The past and future of the monte carlo method in thermal radiation transfer. Journal of Heat Transfer 143, 100801.
Howell, J.R., Mengüç, M.P., Daun, K., Siegel, R., 2020. The monte carlo method, in: Knuth, D.E. (Ed.), Thermal Radiation Heat Transfer. CRC

press. chapter 14.
Iván Lux, L.K., 1991. Special games, in: Monte Carlo Particle Transport Methods. CRC Press. chapter 6.
Jakob, W., D’Eon, E., Jakob, O., Marschner, S., 2014. A comprehensive framework for rendering layered materials. ACM Transactions on Graphics

(Proceedings of SIGGRAPH) 33, 118:1–118:14. doi:10.1145/2601097.2601139.
Kajiya, J.T., 1986. The rendering equation, in: Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp.

143–150.
Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl, W., Gaidon, A., 2020. Differentiable rendering: A survey. arXiv preprint

arXiv:2006.12057 .
Kato, H., Harada, T., 2019. Learning view priors for single-view 3d reconstruction, in: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 9778–9787.
Kato, H., Ushiku, Y., Harada, T., 2018. Neural 3d mesh renderer, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3907–3916.
Kutz, P., Habel, R., Li, Y.K., Novák, J., 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on

Graphics (TOG) 36, 1–16.
Lapeyre, P., Blanco, S., Caliot, C., Dauchet, J., El Hafi, M., Fournier, R., Farges, O., Gautrais, J., Roger, M., 2020. Monte-carlo and sensitivity

transport models for domain deformation. Journal of Quantitative Spectroscopy and Radiative Transfer 251, 107022.
Lapeyre, P., He, Z., Blanco, S., Caliot, C., Coustet, C., Dauchet, J., Hafi, M.E., Eibner, S., d’Eon, E., Farges, O., Fournier, R., Gautrais, J., Mourtaday,

N.C., Roger, M., 2022. A physical model and a monte carlo estimate for the specific intensity spatial derivative, angular derivative and geometric
sensitivity. URL: https://arxiv.org/abs/2206.05167, doi:10.48550/ARXIV.2206.05167.

Li, T.M., Aittala, M., Durand, F., Lehtinen, J., 2018. Differentiable monte carlo ray tracing through edge sampling. ACM Transactions on Graphics
(TOG) 37, 1–11.

Loubet, G., Holzschuch, N., Jakob, W., 2019. Reparameterizing discontinuous integrands for differentiable rendering. ACM Transactions on
Graphics (TOG) 38, 1–14.

Mikhailov, G., 1966. On the calculation of nuclear reactor disturbances by the monte carlo method. USSR Computational Mathematics and
Mathematical Physics 6, 268–273.

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 33 of 100

http://dx.doi.org/10.1145/2601097.2601139
https://arxiv.org/abs/2206.05167
http://dx.doi.org/10.48550/ARXIV.2206.05167


Three approaches on estimating geometric sensitivities in radiative transfer with Monte Carlo

Mikhailov, G.A., 1967. Monte-carlo calculation of derivatives of functionals from the solution of the transfer equation according to the parameters
of the system. USSR Computational Mathematics and Mathematical Physics 7, 274–281.

Misso, Z., Li, Y.K., Burley, B., Teece, D., Jarosz, W., 2023. Progressive null-tracking for volumetric rendering, in: ACM SIGGRAPH 2023
Conference Proceedings, pp. 1–10.

Nimier-David, M., Müller, T., Keller, A., Jakob, W., 2022. Unbiased inverse volume rendering with differential trackers. ACM Transactions on
Graphics (TOG) 41, 1–20.

Novák, J., Georgiev, I., Hanika, J., Jarosz, W., 2018. Monte carlo methods for volumetric light transport simulation, in: Computer graphics forum,
Wiley Online Library. pp. 551–576.

Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K., 2018. Learning to estimate 3d human pose and shape from a single color image, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 459–468.

Pharr, M., Jakob, W., Humphreys, G., 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann. URL: https:
//www.pbr-book.org/.

Roger, M., Blanco, S., El Hafi, M., Fournier, R., 2005. Monte carlo estimates of domain-deformation sensitivities. Physical review letters 95,
180601.

Sakamoto, H., Yamamoto, T., 2017. Improvement and performance evaluation of the perturbation source method for an exact monte carlo
perturbation calculation in fixed source problems. Journal of Computational Physics 345, 245–259.

Sawhney, R., Miller, B., Gkioulekas, I., Crane, K., 2023. Walk on stars: A grid-free monte carlo method for pdes with neumann boundary conditions.
ACM Trans. Graph. 42. URL: https://doi.org/10.1145/3592398, doi:10.1145/3592398.

Schell, S., 2011. Design and evaluation of esolar’s heliostat fields. Solar Energy 85, 614–619.
Sidorenko, L., Khisamutdinov, A., 1981. Evaluation by monte carlo methods of the derivatives of linear functionals of the flow with respect to the

parameters of surfaces. USSR Computational Mathematics and Mathematical Physics 21, 264–268.
Tregan, J.M., Amestoy, J.L., Bati, M., Bézian, J.J., Blanco, S., Brunel, L., Caliot, C., Charon, J., Cornet, J.F., Coustet, C., et al., 2023. Coupling

radiative, conductive and convective heat-transfers in a single monte carlo algorithm: A general theoretical framework for linear situations. Plos
one 18, e0283681.

Tregan, J.M., Blanco, S., Dauchet, J., El Hafi, M., Fournier, R., Ibarrart, L., Lapeyre, P., Villefranque, N., 2020. Convergence issues in derivatives
of monte carlo null-collision integral formulations: a solution. Journal of Computational Physics 413, 109463.

Tulsiani, S., Zhou, T., Efros, A.A., Malik, J., 2017. Multi-view supervision for single-view reconstruction via differentiable ray consistency, in:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2626–2634.

Villefranque, N., Fournier, R., Couvreux, F., Blanco, S., Cornet, C., Eymet, V., Forest, V., Tregan, J.M., 2019. A path-tracing monte carlo library
for 3-d radiative transfer in highly resolved cloudy atmospheres. Journal of Advances in Modeling Earth Systems 11, 2449–2473.

Villefranque, N., Hourdin, F., d’Alençon, L., Blanco, S., Boucher, O., Caliot, C., Coustet, C., Dauchet, J., El Hafi, M., Eymet, V., et al., 2022. The
“teapot in a city”: A paradigm shift in urban climate modeling. Science Advances 8, eabp8934.

Wang, Y., Potter, D., Asselineau, C.A., Corsi, C., Wagner, M., Caliot, C., Piaud, B., Blanco, M., Kim, J.S., Pye, J., 2020. Verification of optical
modelling of sunshape and surface slope error for concentrating solar power systems. Solar Energy 195, 461–474.

Wu, L., Cai, G., Ramamoorthi, R., Zhao, S., 2021. Differentiable time-gated rendering. ACM Transactions on Graphics (TOG) 40, 1–16.
Xu, P., Bangaru, S., Li, T.M., Zhao, S., 2023. Warped-area reparameterization of differential path integrals. ACM Trans. Graph. 42.
Yamamoto, T., Sakamoto, H., 2022. Monte carlo sensitivity calculation in fixed source problems with the derivative source method. Journal of

Computational Physics 460, 111155.
Yan, K., Lassner, C., Budge, B., Dong, Z., Zhao, S., 2022. Efficient estimation of boundary integrals for path-space differentiable rendering. ACM

Transactions on Graphics (TOG) 41, 1–13.
Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H., 2016. Perspective transformer nets: Learning single-view 3d object reconstruction without 3d

supervision. Advances in neural information processing systems 29.
Zavodny, M., Slack, M., Huibregtse, R., Sonn, A., 2015. Tower-based csp artificial light calibration system. Energy Procedia 69, 1488–1497.
Zhang, C., Miller, B., Yan, K., Gkioulekas, I., Zhao, S., 2020. Path-space differentiable rendering. ACM Trans. Graph. 39. URL: https:

//doi.org/10.1145/3386569.3392383, doi:10.1145/3386569.3392383.
Zhang, C., Wu, L., Zheng, C., Gkioulekas, I., Ramamoorthi, R., Zhao, S., 2019a. A differential theory of radiative transfer. ACM Transactions on

Graphics (TOG) 38, 1–16.
Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W., 2019b. End-to-end hand mesh recovery from a monocular rgb image, in: Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 2354–2364.

Z.HE, P.LAPEYRE, S.BLANCO, E.d’EON, S.EIBNER, M.EL HAFI, R.FOURNIER, M.ROGER: Preprint submitted to
Elsevier Page 34 of 100

https://www.pbr-book.org/
https://www.pbr-book.org/
https://doi.org/10.1145/3592398
http://dx.doi.org/10.1145/3592398
https://doi.org/10.1145/3386569.3392383
https://doi.org/10.1145/3386569.3392383
http://dx.doi.org/10.1145/3386569.3392383

