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Abstract: 15 

The relationship between climate and human evolution is complex and the causal mechanisms 16 

remain unknown. Here, we review and synthesize what is currently known about climate 17 

forcings on African landscapes, focusing mainly on the last 4Myr. We use information 18 

derived from marine sediment archives and data-numerical climate model comparisons and 19 

integration. There exists a heterogeneity in pan-African hydroclimate changes, forced by a 20 

combination of orbitally-paced low-latitude fluctuations in insolation, polar ice volume 21 

changes, tropical Sea Surface Temperature (SST) gradients, the Walker circulation and maybe 22 

greenhouse gases (GHGs). Pan-African vegetation changes do not follow the same pattern, 23 

suggestive of additional influences, such as CO2 and temperature. We caution against reliance 24 

on temporal correlations between global or regional climate, environmental changes and 25 

human evolution and briefly proffer some ideas how pan-African climate trends could help 26 

create novel conceptual frameworks to determine the causal mechanisms between 27 

climate/habitat change and hominin evolution. 28 

 29 
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Introduction 39 

The notion that climate influenced the course of human evolution has deep roots (Darwin 40 

1871) and has been entertained in earnest since the 1920s after the discovery of the first 41 

australopiths in southern Africa; occasional wooded belts and a relative scarcity of water were 42 

suggested to have shaped human evolution (Dart 1925).  43 

Over the last few decades evolutionary hypotheses have become more formalised. For 44 

example, Vrba (1985 and subsequent publications, see 1995 for review) proposed the 45 

turnover-pulse hypothesis, which postulates pulses of speciation/extinctions across clades as a 46 

consequence of prolonged climatic changes, primarily at the transitions of major astronomical 47 

cycles from 19-23kyr to 41kyr, 100kyr and 400kyr respectively. Although originally 48 

conceived to explain the turnover of bovids, for which the fossil record is relatively extensive, 49 

the hypothesis was soon extended to explain major transitions in hominin evolution 50 

(deMenocal 2004). However, doubts were raised whether the hypothesis is applicable to other 51 

clades and/or across Africa (e.g., Behrensmeyer 2006). Indeed, all species are habitat-specific 52 

and although large-scale changes in habitat structure may affect a number of clades 53 

simultaneously, they will do so in different ways; this concept is encapsulated in Vrba’s 54 

‘habitat theory’. She argued that, exposed to the same environmental and climatic changes, 55 

warm-adapted and cold-adapted clades will display different rates and timings of species-56 

turnover. Ecological studies have since explored the eco-evolutionary processes underlying 57 

species diversity in greater detail and have shown that, in addition to thermoregulatory 58 

constraints, a taxon’s dispersal potential, dietary adaptation, body mass, life history strategy, 59 

as well as competition among species, will profoundly influence a species’ response to 60 

climate change and its susceptibility to speciation/extinction (Price et al. 2012, Pires et al. 61 

2017). Hence, the association between climate change, speciation, extinction, dispersal and 62 

morphological adaptation is not straightforward and would require a multi-pronged approach 63 

for its resolution (Hagen 2023). Given the limitations of the fossil record (Behrensmeyer et al. 64 

2000), including sampling biases (Maxwell et al. 2018, Faith et al. 2021), discerning the 65 

mechanism underlying evolutionary processes in an extinct taxon is thus challenging, if not 66 

impossible. Consequently, whilst mapping hominin diversification and innovations onto 67 

global climate trends is appealing (e.g., deMenocal 2004, Figure 1) and may highlight specific 68 

time periods of interest, the explanatory power of such correlations is limited. Interpreting the 69 

effects of climate on later stages of hominin evolution is even more problematic.            70 

Specifically, Potts (1995, 1996, 1998) formulated the variability selection hypothesis. This 71 

hypothesis is grounded in Sewall Wright’s (1932, 1968) shifting balance theory, which 72 

mathematically explores changes in allele frequencies and genotypes in response to drift, 73 

natural selection, mutation and migration. Owing to random drift and local selection pressures 74 

some populations/species are predicted to go extinct, whilst others will traverse valleys of 75 

lower fitness to ascend to a new adaptive peak; successful species/populations are postulated 76 

to accrue certain alleles and gene configurations. Contrary to Wright however, who 77 

emphasized random shifts in gene frequencies, Potts drew attention to the role of increased 78 

climatic variability during the Pleistocene as a driver for genetic change. He suggested that 79 

habitat instability would not only have led to changes to allele frequencies, but to 80 

polymorphisms, thus making species/populations well-equipped to deal with novel situations 81 

without the need for further genetic modifications. Phrased differently, species/population 82 

would have become increasingly buffered against environmental stochasticity; increased 83 



 

3 

 

behavioural flexibility and innovations in material culture (Potts et al. 2018, 2020) would 84 

have added further advantages to the survival of hominin populations/species.  85 

Evidently thus, whilst there is little doubt that hominin evolution was driven, or at least 86 

influenced, by climate change, the identification of causal mechanisms has remained elusive. 87 

In order to advance our understanding of the possible causal relationships, we need to 88 

primarily improve on two lines of enquiry: (a) obtain better (i.e. high-resolution) climate and 89 

habitat reconstructions through time and (b) develop theoretical frameworks for an 90 

interpretation of the climatic and ecological drivers for evolutionary change in a large-bodied, 91 

eurybiomic and polymorphic taxon, that has no living analog. To contribute to these aims here 92 

we will review and synthesize what is currently known about climate forcings on African 93 

landscapes, using information derived from marine sediment archives (restricted to the period 94 

from the Neogene to present day with a primary focus on the last 4Myr), data-numerical 95 

climate model comparisons and integration. The reconstruction of local environments from 96 

the terrestrial (e.g. faunal records) (e.g., Andrews & Hixson 2014) and lacustrine sedimentary 97 

archives (e.g., Campisano et al. 2017), does not form part of this review. We will then briefly 98 

proffer some ideas as to how these African climate trends could help create novel conceptual 99 

frameworks for an interpretation of hominin evolutionary processes.   100 

 101 

1. Climate forcings on African landscapes 102 

1.1 Natural forcings/causes of climate changes 103 

Climate varies at different time scales, from years to billions of years (Figure 2). Climate 104 

variability depends on interactions between the different components of the climate system 105 

(atmosphere, ocean, cryosphere, biosphere and lithosphere) and on external forcings that 106 

affect the earth’s radiative balance. External forcings are mainly related to astronomical 107 

forcings or are associated to internal Earth dynamic (Figure 2), which affect the radiative 108 

balance of the Earth and processes such as atmospheric and oceanic circulation that re-109 

equilibrate the system by transporting excess energy from the equatorial to polar regions. 110 

Processes internal of the climate system imply different retroactions inside the system. 111 

Over the last 4Myr the effects of tectonics on climate systems reduced and the main natural 112 

forcings of climate change have been related to the earth’s orbital variations (eccentricity, 113 

obliquity and precession with periodicities of 100 and 400kyr, 41kyr and 21kyr, respectively) 114 

and atmosphere-ocean-cryosphere dynamics (Figure 2). Africa is centered on the equator and 115 

therefore most of its landmass is located at low latitudes where Intertropical Convergence 116 

Zone (ITCZ) variability, monsoons and Walker Circulation control the hydrological cycle. 117 

1.2 The ITCZ, Monsoons and Walker Circulation 118 

The ITCZ is a tropical belt of maximum precipitation that results from deep convection 119 

migrating seasonally towards the warming hemisphere (Nicholson et al. 2013, Schneider et al. 120 

2014). ITCZ zonal-mean position is associated with the rising branch of the global Hadley 121 

cell (Figure 3). Because of the complexity of African climate, the Congo Air Boundary 122 

(CAB), a convergence zone that marks the confluence of Indian Ocean air with unstable air 123 

from the Congo Basin, indicates the location of the southern edge of the African rain belt and 124 
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plays a fundamental role in controlling hydroclimate in the African tropics, especially in 125 

Africa’s interior (Tierney et al. 2011, Howard & Washington 2019). 126 

Monsoons are the dominant seasonal mode of climate variability in the tropics (Mohtadi et al. 127 

2016). They can be viewed as localized seasonal migrations of the tropical convergence zone: 128 

the band of converging air and rainfall in the tropics embedded within the tropical 129 

atmospheric overturning circulation. This allows to distinguish the dynamics of low‐latitude 130 

(∼0–10° poleward) ITCZ from that of monsoons (∼10–25° poleward) (Geen et al. 2020) 131 

(Figure 3). 132 

In addition to tropical convergence zone migrations, a thermally direct, equatorial, zonal 133 

overturning circulation exists that converts available potential energy to kinetic energy of 134 

atmospheric motion: the Walker Circulation. The Walker Circulation is intrinsically 135 

connected to the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), 136 

which are forms of interannual climate variability in the tropical Pacific and Indian Ocean, 137 

respectively (Abram et al. 2020) (Figure 3). The results are increased/decreased atmospheric 138 

convection and associated precipitation over the western or eastern tropical Pacific and Indian 139 

Oceans. 140 

1.3 Relationships between precipitation and vegetation changes 141 

Today, the distribution of vegetation and animals in Africa is related to the amount, intensity 142 

and seasonal distribution of precipitation (e.g., White 1983, Guan et al. 2014). This 143 

connection between hydroclimate and vegetation also existed in the past and likely affected 144 

evolutionary processes. To illustrate, the vegetation and precipitation records show a marked 145 

seasonal shift across the Sahel with plant growth moving north as rain falls over the region in 146 

boreal summer (Figure 4). Conversely, plant growth moves south as rain falls over southern 147 

Africa in austral summer, although the correlation is less significant for some areas.  Such 148 

heterogeneity in vegetation response is noteworthy and cautions against generalizations when 149 

reconstructing past environments. It is therefore crucial to reconstruct both past hydroclimate 150 

and vegetation changes and their potential relation in order to explore potential links with 151 

human evolution.  152 

 153 

2. Interests of marine sediment records 154 

deMenocal (1995) first linked early hominin evolution in Africa to global climate change, 155 

using data from marine sediment cores. Although African terrestrial records provide crucial 156 

information about land climate variability and about the specific habitats/niches occupied by 157 

extinct taxa (e.g., refugia), marine records offer a more robust chronology, a long stratigraphic 158 

continuity and higher temporal resolution (Cohen et al., 2022). A wide range of proxies can 159 

be used in marine sediment cores for terrestrial climate and environmental reconstructions 160 

(Table 1) with the advantage of direct ocean-continental comparison. For example, proxies 161 

associated with marine biogenic sedimentation can be directly compared to proxies derived 162 

from continental source that are transported, mainly by wind or rivers, to the oceans (Figure 163 

5).  164 

Because marine sediments integrate the signal of entire catchments areas, reconstructing a 165 

larger picture of oceanic and atmospheric dynamics is possible. Using volcanic sediments in 166 
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marine sediment cores, it also becomes possible to assess more precisely the synchronicity 167 

and potential causal links between climate/environmental changes and human evolution (see 168 

Appendices: Tectonic, volcanism and tephrochronology). 169 

With these benefits in mind, an important caveat of marine core archives is that there is a 170 

spatiotemporal scale mismatch between broad, regional marine core records and the highly 171 

localized terrestrial fossil records that inform about primate evolution (Faith et al. 2021).  For 172 

example, recent biomarker isotope records from terrestrial sediments (Peppe et al. 2023, Uno 173 

et al. 2016b) and lacustrine sediments (e.g., Lupien et al. 2022, Mitsunaga et al. 2023) 174 

indicate higher ecosystem and hydroclimate variability at smaller spatial scales. In one case, 175 

carbon isotope biomarker records suggest C4 vegetation at local scales that is absent in 176 

regional records (Peppe et al. 2023). Careful consideration of how marine, lacustrine, and 177 

terrestrial archives integrate vegetation and hydroclimate signals is necessary for relating 178 

proxy vegetation and climate records to hominin evolution.     179 

 180 

3. Climate and environments of Africa 181 

Given the impact of tectonics and volcanism on landscapes, building the tectonic histories of 182 

each basin should be a requisite step before linking continental records of environmental 183 

change to regional or global climate phenomena (see review in Levin 2015); most tectonic 184 

activity in Africa in the last 10Myr has centered on the East African Rift System (EARS; see 185 

Appendices: Tectonic, volcanism and tephrochronology). Whilst we acknowledge the 186 

importance of tectonics and volcanism for the reconstruction of local habitats, our main focus 187 

here is on pan-African climate over the last 4Myr, based on marine sediment cores, as this 188 

may have impacted the overall course of hominin evolution; to provide a broader context, we 189 

only briefly summarize marine core records that capture important climate and environmental 190 

change during the Neogene. 191 

3.1 Climate and environments of the Neogene 192 

The Neogene period, which includes the Miocene (23.03 to 5.33Ma) and Pliocene (5.33 to 193 

2.58Ma) epochs, was characterized by major environmental change that influenced primate 194 

evolution in Africa. Fossils from the early and middle Miocene demonstrate a dynamic period 195 

of catarrhine evolution in Africa that includes the first Afropithecus and victoriapithecines and 196 

the diversification of proconsulids (Leakey & Leakey 1986, McNulty et al. 2015, Nengo et al. 197 

2017). This was followed by the origin of the hominin lineage in the late Miocene around 198 

7Ma (Brunet et al. 2002). But there is a dearth of long, continuous Neogene terrestrial 199 

archives. Most are temporally limited and associated with fossil localities in eastern Africa. 200 

As a result, marine core records have played an important role in reconstructing regional scale 201 

climate and environmental change in Africa. This includes Neogene biomarker records (Uno 202 

et al. 2016a, Polissar et al. 2019; see Appendices: Water and Carbon isotopes) and plant 203 

microfossil records (Morley & Richards 1993) as well as late Miocene biomarker (Feakins et 204 

al. 2013, Hoetzel et al. 2013) and pollen records (Bonnefille 2010) that span the last ~10Myr. 205 

Carbon isotope records from n-alkanes at DSDP sites 235 and 241in the Somali Basin were 206 

the first to demonstrate C3 vegetation was predominant at the regional scale from the early 207 

Neogene until 10Ma, when C4 grasses began to spread in eastern Africa (Uno et al. 2016a).  208 

Subsequent n-alkane carbon isotope records from the tropical Atlantic (ODP sites 659 and 209 
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959) show a similar pattern of regional C4 expansion in northwest Africa at 10Ma; additional 210 

hydrogen isotope records show no clear indication of hydroclimate change associated with 211 

spread of C4 grasslands in Africa (Polissar et al. 2019).  In southern Africa, combined 212 

biomarker, pollen, and charcoal records from ODP sites 1081 and 1085 show that grasses 213 

were present regionally by ~11Ma, with the spread of C4 vegetation beginning around 7.5Ma 214 

(Hoetzel et al. 2013, Dupont et al. 2013).  The Neogene marine core records from 215 

northwestern, eastern, and southern Africa demonstrate that C4 grasses began to spread 216 

regionally in the northern part of the continent at 10Ma and in the southern part by 7.5Ma. 217 

Available biomarker data suggest that hydroclimate change played a minor or insignificant 218 

role and, therefore, CO2 may have instead acted as the ecological driver (Polissar et al. 2019). 219 

An outstanding question that cannot be addressed by carbon isotopes is the role of C3 grasses 220 

in early Neogene ecosystems, which were no doubt present based on plant microfossil 221 

evidence (Peppe et al. 2023, Morley & Richards 1993).   222 

     223 

3.2 Climate and environments of the last 4Myr 224 

3.2.1 New 4Myr-southeastern African (Limpopo) hydroclimate stack  225 

Records of hydroclimate in southeastern Africa are rare over the last 4Myr, yet this is a 226 

crucial region regarding hominin evolution (Figure 1). Here we combine published 227 

hydroclimate records over the last 2Myr (Caley et al. 2018) with those between ~4 to 2Ma 228 

(Koutsodendris et al. 2021, Taylor et al., 2021) in order to generate a new Limpopo catchment 229 

hydroclimate stack over the last 4Myr (see Figure 6). We performed a principal component 230 

analysis (PCA) on the δ13Cwax and ln(Fe/Ca) hydroclimate records of site MD96-2048 (Caley 231 

et al. 2018) (Table 1). The first principal component (PC1) accounts, on average, for 71% of 232 

the variance. Similarly, the δDwax and ln(Ti/Ca) hydroclimate records (Table 1) of site IODP 233 

U1478 (Koutsodendris et al. 2021, Taylor et al. 2021) accounts, on average, for 53% of the 234 

variance observed for PC1. When both PC1 are combined in a new 4Myr-southeastern 235 

African (Limpopo) hydroclimate stack (Figure 6e), significant changes with alternation 236 

between more humid and more arid conditions are evident over the last 4Myr. This finding 237 

prompted us to investigate whether the trends observed for southeastern Africa can be 238 

replicated across Africa. 239 

3.2.2 Pan-African hydroclimate. 240 

We compiled the existing continuous hydroclimate records to cover the last 4Myr. Data are 241 

limited to five records that are distributed across the whole of Africa and over several Myrs 242 

(Figure 6). Most of these records are derived from δDwax proxy, or a combination with fluvial 243 

runoff proxies (Figure 6 and Table 1) (Appendices: Water and Carbon isotopes). One 244 

exception is the Dust record from site ODP659. African dust records largely reflect increased 245 

wind strength and transport (Zabel et al. 1999) however, and are not necessarily a reliable 246 

indicator for aridity (Skonieczny et al. 2019). Nonetheless, the correspondence between δDwax 247 

for specific time intervals over the last 5Myr and the dust record of ODP Site 659 apparently 248 

support conclusions concerning the generation of dust during arid periods (Tiedemann et al. 249 

1994) and the use of δDwax as a humidity proxy (Kuechler et al. 2018). 250 

To parametrize pan-African climate variability, PCA (see Figure 6 for details) of the selected 251 

datasets were performed. PC1 captures the maximum variance of the data (approximately 36 252 
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% across all datasets), and depicts heterogeneity across the studied sites. Hydroclimate 253 

records from the Oman region and from western Africa share a common pattern, whereas 254 

records from eastern Africa (north and more particularly south) have a different pattern.  255 

To investigate the forcings that control this heterogeneity at the pan-African scale, we 256 

conducted spectral analyses. Because some of the records have a low resolution, we 257 

resampled all the datasets with a mean and regular interval of 20kyr, thereby limiting our 258 

analyses to long term orbital forcing (eccentricity scale). Spectral analyses with REDFIT 259 

(Schulz & Mudelsee 2002) and wavelet analyses (Torrence & Compo 1998) display strong 260 

spectral power at around the 185, 400 and 600kyr bands on PC1 (Figure 6). This corresponds 261 

to eccentricity forcing at 400kyr and, potentially, to weak but real eccentricity variations at 262 

around 200 and 600kyr (Kashiwaya et al. 2001, Laskar et al. 2004, Hilgen et al. 2020). 263 

Alternatively, harmonic of the 400-kyr cycle or “double” ~100-kyr cycle that result from non-264 

linear responses of the climate system to the main eccentricity components can also explain 265 

these cycles (Hilgen et al. 2015). 266 

The 400kyr and 600kyr band comprises 11 % of the variance of the PC1. Part of the variance 267 

related to orbital forcing is missing due to sampling resolution: for example, the precession 268 

forcing in south-east Africa over the last 2.15Myr accounts for 25 % of the variance in the 269 

lnFe/Ca record, a high-resolution proxy of fluvial runoff (Caley et al. 2018). Nevertheless, the 270 

results indicate that part of the variance in pan-African hydroclimate records is not controlled 271 

by orbital forcings. These other forcings have been highlighted in various studies and may 272 

relate to ice volume changes, SST gradients and the Walker circulation (Maslin et al. 2014, 273 

Caley et al. 2018, Kaboth-Bahr et al. 2021, Trauth et al. 2021, Lupien et al. 2023, Rubbelke et 274 

al. 2023), or perhaps greenhouse gases (GHGs). Although not yet fully explored, GHGs 275 

forcing could affect the hydroclimate through vegetation changes (Dupont et al. 2019) or 276 

through thermodynamic impacts, as well as consequent changes in atmospheric moisture 277 

content, resulting in summer monsoon precipitation change overall. 278 

 279 

When the dominant 400kyr and 600kyr cycles are removed from PC1, the residual trend 280 

correlates with gradual Walker circulation changes, ice volume changes and, to a lesser 281 

degree, CO2 concentration changes (Figure 7), confirming that all of these internal forcings 282 

(Figure 2 and 7) probably affect pan-African hydroclimate variability.  283 

The reconstructed pan-African climate variability, represented by PC1, clearly depicts four 284 

phases during the last 4Myr that have been constrained by change point analysis (Figure 6). 285 

The first phase characterizes a pan-African climate that is rather humid between 4 and 286 

2.51Ma. Only eastern African records indicate successions of arid and humid periods inside 287 

this first phase (see Figures 6 and 8). A second phase from 2.51 to 0.95Ma shows a gradual 288 

drying trend, except for eastern Africa, where a humid trend is observed. This period can be 289 

subdivided into two intervals (before and after 1.57Ma) where various hydroclimate trends are 290 

observed, in particular in eastern Africa. A third phase of global African aridity between 950 291 

ka to present day is characterized by a tendency toward slightly more humid conditions from 292 

around 400 ka to the present. 293 

The major and gradual drying trend, together with the different patterns observed between 294 

eastern Africa and western Africa and Oman during phase 2, has been suggested to be the results 295 

of the synchronous development of the Indo-Pacific Walker cells at around 2.2-2Ma (Figure 7, 296 

Van der Lubbe et al. 2021). The long-term enhancement of the Walker circulation would have 297 
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suppressed (convective) rainfall in eastern Africa (Van der Lubbe et al. 2021) and would have 298 

extended well beyond eastern Africa. Indeed, recent synthesis of terrestrial and marine proxy 299 

records over the last 620kyr found a tight correlation between moisture availability across 300 

Africa and the manifestation of the Walker Circulation driving opposing wet–dry states in 301 

eastern and western Africa with influence on early modern humans by increasing resource-rich 302 

and stable ecotonal settings (Kaboth-Bahr et al. 2021). In addition, we observe a significant 303 

correlation between northern hemisphere ice-sheets expansion, decrease in CO2 concentration 304 

and pan-African hydroclimate change.  305 

Changes in CO2 levels are important, as they will mediate vegetation changes (Dupont et al. 306 

2019). This makes the use of vegetation proxies in marine sediment cores as hydroclimate 307 

proxies more complicated. Indeed, Dupont et al. (2019) found the vegetation of the Limpopo 308 

River catchment and the coastal region of southern Mozambique not only influenced by 309 

hydroclimate but also by temperature and atmospheric CO2. In northwestern Africa, increases 310 

in precipitation were shown to be associated with an expansion of grasslands into desert 311 

landscapes, whereas changes in CO2 predominantly drove the C3/C4 composition of savanna 312 

ecosystems over the last ~500kyr (O’Mara et al. 2022). On longer time scales, although 313 

debated (Schefuß & Dupont 2020), Polissar et al. (2019) suggested that C4-dominated 314 

ecosystems expanded synchronously across northwestern and eastern Africa after 10Ma 315 

without substantial changes in palaeohydrology but coincident with latitudinal temperature 316 

changes and declining atmospheric CO2. Taken together therefore, the interactions between 317 

hydrology and CO2 concentration in deep time are not entirely clear and require further 318 

investigation. This lack of understanding also impacts our reconstruction of past vegetation, 319 

although this can be partly overcome by analyses of marine cores.   320 

3.2.3 Pan-African vegetation. 321 

Our compilation of vegetation data over the last 4 Myr support a synchronous expansion of 322 

C4-dominated ecosystems across northern, southwestern, and eastern Africa after 4 Ma, with 323 

more stable conditions at around 1Ma (Figure 9) (Appendices: Water and Carbon 324 

isotopes). This synchronicity of pan-African vegetation changes seems to contrast with what 325 

is observed in terms of pan-African hydroclimate changes (Figures 6 and 8), although 326 

vegetation records over the last 4Myr in southeastern Africa are missing to conclusively 327 

establish this difference. 328 

To further test the relationship between hydroclimate and vegetation, we explored the 329 

correlations between these two measures at site ODP1081 (southwestern Africa) and 966-967 330 

(northeastern Africa). For vegetation, we used the biomass proxy (δ13Cwax) and plant 331 

reproduction proxy (desert pollen) in comparison to δDp, a hydroclimate proxy. Analyses 332 

reveal a statistically significant, but weak, linear correlation (R = -0.54, -0.4 or 0.27) between 333 

vegetation and hydroclimate changes, suggesting additional controls on vegetation other than 334 

hydroclimate, although some biases in proxies are also possible (Table 1).  335 

 336 

4. Data comparison and integration with numerical climate models  337 

4.1 Piecing together the puzzle: extrapolating from incomplete records to a more complete 338 

picture 339 
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Owing to the limited data available relating to the environment and climate of the regions of 340 

palaeoanthropological interest, and because of the limitations of the fossil record (e.g., 341 

Maxwell et al. 2018, Faith et al. 2021), it has remained challenging to establish links between 342 

climate shifts and human evolution and alternative approaches have been sought: modeling.   343 

For example, Eriksson et al. (2012) used numerical climate simulations to estimate 344 

temperature, precipitation and primary productivity over the past 120kyr to model 345 

demographic changes and dispersals of human populations. Although they did not use any 346 

archaeological and anthropological data to validate the model, the estimated arrival times of 347 

humans on different continents predicted by the model are broadly consistent with the fossil 348 

and archaeological record. Similarly, spatiotemporal estimates of climate and sea level 349 

changes were calculated from orbital-scale global climate swings to infer human dispersals 350 

and late Pleistocene global population distributions (Timmermann & Friedrich 2016). Indeed, 351 

modeling approaches have become increasingly popular over the last few years. By using 352 

numerical climate models and their equilibrium or transient simulations, and by drawing on 353 

the paleontological/archaeological record, researchers have attempted to identify the 354 

spatiotemporal habitat suitability of hominin species (d’Errico et al. 2017, Gibert et al. 2022, 355 

Timmermann et al. 2022, Ruan et al. 2023, Zeller et al. 2023, Ao et al. 2024). To capture 356 

important topographic barriers, which may have affected the dispersal and distribution of 357 

archaic humans, topographic downscaling is realized in some studies. When determining the 358 

spatiotemporal habitat suitability of a hominin taxon, a set of climatic variables (precipitation, 359 

temperature and net primary productivity) is simulated with numerical climate models and a 360 

climatic envelope is created for specific taxa, based on the known distribution of hominin 361 

occurrences (Timmermann et al. 2022, Gibert et al. 2022) (Figure 10); these geographic areas 362 

are then assumed to represent the fundamental niche of that hominin (Soberón & Nakamura 363 

2009).  364 

4.2 How trustworthy are these models? 365 

To support numerical climate transient simulations, evaluations of the ability of these models 366 

to reproduce key paleoclimate records are required. For example, Timmermann et al. (2022) 367 

conducted a global data-model comparison and found “close agreement”. Our new 368 

hydroclimate compilation (Figure 6) allows further testing of that model. We focus on 369 

precipitation, because, of the four climatic variables used to produce a climatic envelope 370 

model by Timmermann et al. (2022), three are related to precipitation. Data-model 371 

comparisons highlight some disagreements between the reconstructed and the modeled 372 

precipitation for some regions of Africa in terms of general trends and variability (the 373 

correlations are weak, but statistically significant nonetheless, Figure 11). Better concordance 374 

is found for the last 1Myr compared to the entire 3Myr record, but these correlations remain 375 

weak. These discrepancies could be the result of inherent uncertainties associated with the 376 

proxies to reconstruct the precipitation changes (Table 1) (Appendices: Water and Carbon 377 

isotopes), biases in model simulation, such as inappropriate insolation forcing, constant last 378 

glacial maximum ocean bathymetry and land-sea mask (Yun et al. 2023), and/or potential 379 

biases in the applied ice-sheets and GHGs forcings. Either way, any conclusions drawn from 380 

these models for evolutionary purposes are thus rendered speculative. Higher resolution data, 381 

more simulations with various models and better constraints and downscaling approaches are 382 

therefore necessary.   383 
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In addition, to bridge paleoclimate data and models, different innovations and improvements 384 

should be considered. For example, chemical tracers (e.g., water or carbon isotopes, 385 

Appendices: Water and Carbon isotopes), which are relevant climate proxies, should be 386 

input directly into Earth system models. Paleoclimate information could thus be used to 387 

directly constrain model performance (“apples-to-apples” comparison). Furthermore, 388 

simulations of climate and its associated isotopic signal into models provide a “transfer 389 

function” between isotopic signal and the considered climate variables (Sturm et al. 2010, 390 

Caley et al. 2014, Collins et al. 2017). 391 

A further improvement on existing models would be to combine proxy data and climate 392 

model simulations in a mathematical framework to improve insights derived from either 393 

resource independently. Data assimilation techniques have recently been adapted for 394 

paleoclimate applications (Hakim et al. 2013, Tierney et al. 2020a), resulting in spatially 395 

complete reconstructions of multiple climate variables. A balance between proxy information 396 

and the physics and covariance structure of the climate model can thus be achieved (Tierney 397 

et al. 2020b). As more high resolution and well-dated paleoclimatic records become available, 398 

and as computing power increases, data assimilation techniques could be realized over periods 399 

spanning millions of years and the outcomes could be used to force different models. Only 400 

then will we possibly be able to demonstrate an unequivocal link between climate change and 401 

human evolution from modelling approaches. Until then, we need to draw on established 402 

biological and ecological principles to discern patterns in human evolution that could perhaps 403 

be linked to global climatic and environmental changes.  404 

 405 

5. Hominin evolutionary processes and climate 406 

Over the past several decades researchers have expanded the hominin fossil record and have 407 

assembled more detailed late Cenozoic paleoclimatic, paleoenvironmental and 408 

paleoecological archives, both at the global (this contribution) and the local scale (e.g., 409 

Campisano et al. 2017, Potts et al. 2018.). Moreover, much effort has been expended to 410 

document changes in mammalian community structure through time (e.g., Bobe et al. 2002, 411 

Werdelin & Lewis 2005) with the aim to identify turnover pulses (Vrba 1995, but see Bibi & 412 

Kiessling 2015) and/or changes in the functional composition of communities as a proxy of 413 

past climates and vegetation structures (e.g., Reed 1997, Andrews & O’Brien 2000, Hempson 414 

et al. 2015, Rowan et al. 2016, Robinson et al. 2017). Yet, the climatic and environmental 415 

drivers underpinning hominin diversity, extinction/speciation, morphological adaptations and 416 

dispersals remain elusive. In part, this may be due to the limitations of the hominin fossil 417 

record (Faith et al. 2021), taphonomic bias (e.g., Behrensmeyer et al. 2000) and differential 418 

research efforts across the continent (e.g., Maxwell et al. 2018).  Perhaps the biggest obstacle 419 

of relating climate to specific processes in hominin evolution however is our unique 420 

evolutionary path towards becoming increasingly eurybiomic.  421 

As early as 3.4-2.9Ma Australopithecus afarensis was apparently able to cope with substantial 422 

environmental variability, both with regard to biome structure and temperature (Bonnefille et 423 

al. 2004). In fact, an increase in the prevalence of C4 biomass on the landscape (Figures 9 and 424 

10) is accompanied by an increase in C4-based food consumption across all hominin taxa, 425 

except in A. sediba (Figure 12). (Appendices: Water and Carbon isotopes). This is 426 

particularly evident in hominins from South Africa, a region that exhibited higher 427 
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hydroclimate variability over the last 4 Myr than northeastern Africa (Figures 6 and 11). 428 

However, the supposed ‘broadened dietary niche’ of South African hominins (like in A. 429 

afarensis) may simply reflect the species’ dietary flexibility through precession-led biome 430 

changes, i.e. their ability to adapt to local conditions (Hopley & Maslin 2010). Even where 431 

hominins are apparently specialized in their dietary adaptations, as in the case of 432 

Paranthropus boisei, detailed analyses of the nutritional components of the possible diet 433 

implies that they were nonetheless eclectic feeders (Macho 2014a) as well as habitat 434 

generalists (Patterson et al. 2022, Wood & Strait 2004, but see O’Brien et al. 2023). 435 

Paranthropus boisei demise may thus not be directly related to climate and vegetation 436 

change, but to other factors which may, of course, be indirectly related to climate and habitat 437 

changes, e.g. increased competition and predation risk due to habitat fragmentation. Only for 438 

A. bahrelghazali exists a possible link between morphological constraints on masticatory 439 

capabilities and the deterioration in palaeoenvironmental conditions, which may have 440 

triggered demographic changes and, ultimately, species’ extinction (Macho 2015); due to 441 

limited sample sizes this suggestion is likely to remain theoretical however. In southeastern 442 

Africa, local terrestrial ecosystems were impacted by long-term aridification and extreme 443 

precessional hydroclimate variability between around 1 and 0.6 Ma (Caley et al. 2018). It is 444 

intriguing (and perhaps no coincidence) that the new Limpopo hydroclimate stack matches 445 

the presence of P. robustus with the more humid climate trend observed over the last 4Myr 446 

(Figures 1 and 6) and may point towards a particular niche adaptation in P. robustus (Caley et 447 

al. 2018), a suggestion which needs to be explored further in the future.  448 

With the emergence of Homo, habitat tolerances increased even further, aided by material 449 

culture (Potts et al. 2018, 2020). This makes it impossible to define Homo’s fundamental (as 450 

opposed to the realized) niche, unless it can be unequivocally demonstrated that there exists 451 

(or existed) a narrow constraint on the genus’ physiology with regard to thermoregulation, 452 

diet, photoperiodicity (i.e. life history) etc. (Soberón & Nakamura 2009). It seems 453 

improbable, however, that these traits are/were narrowly defined within any of the Homo 454 

species. Hence, we remain cautious about overinterpreting the outcomes of modeling studies 455 

that apply ecological niche modeling to the distribution of Homo (Timmermann et al. 2022, 456 

Ruan et al. 2023, Zeller et al. 2023). Homo species may have had habitat preferences, but it is 457 

unclear whether they were confined to these habitats (sampling biases aside). Regardless, 458 

these models are useful for a number of purposes: (a) to identify potential dispersal corridors, 459 

e.g. from the coastal regions to the African interior during the Plio-Pleistocene (Joordens et al. 460 

2019) or from Africa to Eurasia (Ao et al. 2024) or/and (b) to document how, when and where 461 

habitats became fragmented, particularly within Africa during the Plio-Pleistocene; this will 462 

aide our understanding of hominin dispersals within Africa, e.g. between western and eastern 463 

Africa (Kaboth-Bahr et al. 2021) and when local populations may have become fragmented 464 

and isolated (i.e. vicariance).  465 

 466 

For example, model results suggest that, during the mid-to-late Pliocene (4–3Ma), southern 467 

and eastern African hominins were separated by an environmental barrier which could only be 468 

crossed during particular periods, such as northern hemisphere summer at perihelion (Gibert 469 

et al. 2022). Arguably, this would have influenced the evolutionary pathways -and/or 470 

divergence?- of hominins. On a more local scale, Maslin et al. (2014) formulated the pulsed 471 

climate variability hypothesis, which considers inter-basin connections to be periodically 472 

disrupted by extreme wet–dry cycles. These disruptions, in turn, could have led to hominin 473 

isolation, speciation/extinctions and dispersal. A similar mechanism was invoked to explain 474 
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the high morphological variability in South African Australopithecus africanus: as the habitat 475 

periodically expanded and contracted (e.g., orbital forcing), peripheral populations may have 476 

become isolated only to fuse again when environmental conditions permitted (Brain 1985). 477 

The biological implications of such dynamic changes in habitat structure (and size) are three-478 

fold: (i.) small populations/species with restricted habitat sizes are faced with high extinction 479 

risks as they become demographically unviable (Macho 2014b); (ii.) inevitably, genetic drift 480 

will occur (chance) and selective pressures acting on these sub-populations will either 481 

eliminate (extinction) or speed up evolutionary changes; and (iii.) the subsequent merging of 482 

temporarily separated populations may lead to the mixing of genes and the emergence of 483 

novelty (Scerri et al. 2019, van Holstein & Foley 2022), as demonstrated for baboons, for 484 

example (Sithaldeen et al. 2015, Sørensen et al. 2023).   485 

In summary therefore, insights obtained from proxy, model, and combined proxy-model 486 

climate reconstructions are crucial for an understanding of hominin evolutionary processes, 487 

but to draw conclusions is complex. Early humans have no living analog for comparison and 488 

they are unique amongst primates in the way in which they have expanded their ecological 489 

niche over the last 4Myr. Whilst it is tempting to look for commonalities in species turnover 490 

across clades, we believe that clade-specific traits need to be considered in any such 491 

comparison (sensu Vrba, 1995). This is important if we wish to identify the causal 492 

mechanisms between climate/habitat change and hominin evolution. Correlation does not 493 

mean causation.  494 

 495 

Appendices: 496 

1. Tectonic, volcanism and tephrochronology: 497 

The African plate is fragmenting in its eastern part, along an axis that forms the East African 498 

rift (East African Rift System: EARS). Most tectonic activity in Africa in the last 10Myr has 499 

centered on the EARS. Paleo-modeling studies have shown that uplift of the African plateau 500 

led to a drastic reorganization of atmospheric circulation, engendering strong aridification and 501 

paleoenvironmental changes, in part reflecting the setting of present-day vegetation patch 502 

work in Africa (e.g., Sepulchre et al. 2006, Munday et al. 2023). 503 

Southern Africa was subject to some moderate uplift (Dirks & Berger 2013) that resulted in 504 

dynamic, high-relief landscapes (e.g., Moore et al. 2009, Bailey et al. 2011). The main uplift 505 

occurred during Oligocene (30Ma, Burke & Gunnell 2008), early-mid Miocene (15Ma), and 506 

Pliocene-Early Pleistocene (5–2Ma; Partridge, 1998), the latter probably reflecting the 507 

southward propagation of the EARS (Hartnady & Partridge 1995).  508 

Rifting on the EARS started at the end of the Oligocene (WoldeGabriel et al. 1990), with 509 

clear indications of rifting by 15–10Ma (McDougall & Brown 2009, Roberts et al. 2012). 510 

During the Quaternary, this rifting would have been facilitated by the propagation of faults 511 

linked to the presence of large felsic volcanic centers (Abebe et al. 2007). This coincides with 512 

the surface manifestation of a hot spot, responsible for the emission of Ethiopian trapps 513 

around 30Ma, a considerable volume (at least 1.2 x 106 km3, Rochette et al. 1998) of basalt 514 

effusions (Courtillot et al. 2003) distributed today between Yemen and Ethiopia.  515 
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Volcanism in the central sector of the Ethiopian rift also began in the Oligocene and can be 516 

grouped into six episodes (WoldeGabriel et al. 1990). In the Pliocene, voluminous ignimbrites 517 

(e.g. Butajira ignimbrite, > 250 m thick) were described and correlated with tephras from the 518 

Gulf of Aden (WoldeGabriel et al. 1992). Abebe et al. (2007) recognized two episodes of 519 

activity in the Quaternary: between 2 and 1 Ma and since 650 ka. This last volcanic episode is 520 

associated with large calderas (e.g. Corbetti: 20 x 15 km; Shala: 20 x 18 km; Hutchison et al. 521 

2016). 522 

The fill of the Ethiopian rift is dominated by volcano-clastic and fluvio-lacustrine sediments 523 

drained by the Awash and Omo rivers. These are mostly fluvio-deltaic deposits, within which 524 

numerous volcanic tuffs are interspersed (at least 130 recorded around Lake Turkana, Brown 525 

et al. 1992). Within these sedimentary formations, numerous hominin fossils and stone tools 526 

were found (e.g. White et al. 2003, Niespolo et al. 2021, Delagnes et al., 2023). 527 

Given the presence of numerous volcanic tuffs in the region, most fossils and artifacts are 528 

dated based on their stratigraphic position relative to these tuffs. The latter can be dated if 529 

they contain sanidine crystals using potassium-argon (K-Ar) method or argon-argon (Ar-Ar) 530 

methods. However, some tuffs are impossible to date. For most of the others, the stratigraphic 531 

position and the correlations together with ages, uncertainties of the tuffs dating are a matter 532 

of debate (Brown et al. 2012, Sahle et al. 2019, Vidal et al., 2022). These led some authors to 533 

look for volcanic layers, tephras or cryptoptephras in the oceanic domain (Gulf of Aden, 534 

Arabian sea), where it is then possible to apply other dating methods (e. g. Brown et al. 1992, 535 

deMenocal & Brown 1999). 536 

 537 

By transferring the marine chronology to continental tuffs, uncertainties in dating can be 538 

reduced. Uncertainties with benthic isotope stratigraphy of the LR04 age model (Lisieski & 539 

Raymo 2005) are 30kyr from 5–4 Ma, 15kyr from 4–3Ma, 6kyr from 3–1Ma, and 4kyr from 540 

1–0Ma; they are lower than most of the continental tuffs ages, in particular for the last 3Myr 541 

(Roberts et al. 2021, Vidal et al., 2022). The majority of tephras and cryptotephras in marine 542 

sediment cores have been found between ca. 4Ma and 0.75Ma (Sarna-Wojcicki et al. 1985, 543 

Brown et al. 1992, deMenocal & Brown 1999, Feakins et al. 2007) but more could be 544 

discovered in the future to improve chronologies (Albaredes et al. 2023).  545 

 546 

2. Water and Carbon isotopes 547 

Water isotopes 548 

Water isotopes are excellent tracers of the hydrological cycle (e.g., Craig & Gordon 1965, Gat 549 

1996). Because of small chemical and physical differences between the main isotopic forms 550 

of the water molecule (H216O, HDO, H2
18O), an isotopic fractionation occurs, principally 551 

during phase transitions of water (evaporation and condensation processes). Stable water 552 

isotopes have therefore been measured in a large variety of archives to reconstruct regional 553 

climate variations.  554 

Water isotopes are expressed in per mil (‰) using δ notation: δD or δ18O = (Rsample – Rstandard)/ 555 

Rstandard*1000 and represent the relative deviation of R (the isotope ratio, D/H or 18O/16O) in 556 

the sample from a standard, usually Vienna Standard Mean Ocean Water (VSMOW) with δD 557 

or δ18O = 0 ‰.  558 
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The cuticular wax layers of higher terrestrial plant leaves contain large amounts of long-chain 559 

n-alkanes, n-alcohols, n-alkanoic acids, which are well preserved in the sedimentary record 560 

over geological timescales (Sachse et al. 2012). As water is the primary hydrogen source of 561 

photosynthesizing organisms and their biosynthetic products organic hydrogen preserved in 562 

sediments may record the isotopic composition of water used during photosynthesis and could 563 

be used as a paleohydrological proxy (Sternberg 1988). The δDwax proxy has been 564 

increasingly used over the past decades in paleoclimate studies of marine sediment cores (e.g. 565 

Schefuß et al. 2005, Collins et al. 2017, Kuechler et al. 2013, Tierney et al. 2017, Caley et al. 566 

2018) to infer indirect changes in the regional hydrological cycle across Africa. Although the 567 

δDwax is commonly interpreted as a proxy for the amount of regional rainfall, interpretation 568 

can be more complex, because the δDp value depends on other climate influences 569 

(precipitation, temperature, source effect, circulation regime) and on additional environmental 570 

and physiological processes related to the climate and the vegetation (relative humidity, 571 

vegetation changes, biosynthesis of the lipids) (Sachse et al. 2012). 572 

In marine sediment cores, the seawater oxygen isotope composition (δ18Osw) is preserved in 573 

carbonates from various organisms such as foraminifers. The carbonate isotopic concentration 574 

(δ18Oc) is mainly controlled by the temperature dependence of the equilibrium fractionation of 575 

calcite precipitation and by the isotopic composition of seawater in which the shell grew 576 

(Urey 1947, Shackleton 1974). For benthic foraminifera, it has long been assumed that the 577 

deep temperature effect on δ
18Oc is negligible. Therefore, benthic δ18Oc records and stack 578 

(LR04, Lisieski & Raymo 2005) have been used to document polar ice volume changes and 579 

associated glacial/interglacial periods given that the waning and waxing of ice-sheets control 580 

the global δ18Osw changes. Recent studies indicate that significant changes in deep ocean 581 

temperature exist (Elderfield et al. 2012, Sosdian & Rosenthal 2009) and that this can create 582 

large temporal offset during the onset of the Plio-Pleistocene ice ages (Rohling et al. 2014), 583 

for example between a marked cooling step at 2.73Ma and the first major glaciation at 2.15 584 

Ma. Hence, δ18Osw is better suited as a proxy for polar ice volume changes rather than the 585 

benthic δ18Oc signal (Figure 7) (Rohling et al. 2021). In addition, a vast majority of marine 586 

sediment cores have age models based on stratigraphic alignment of the δ18Oc of benthic 587 

foraminifera, which measures changes in ice volume and deep ocean temperature. The use of 588 

a single global alignment target (LR04 δ
18Oc global stack) neglects regional differences of 589 

several thousand years in the timing of benthic δ
18O change during glacial terminations. 590 

Regional δ18Oc stacks have therefore been proposed and offer better stratigraphic alignment 591 

targets although they are currently limited to the last 150kyr (Lisieski & Stern 2016). 592 

Carbon isotopes 593 

Carbon isotopes are expressed in per mil (‰) using δ notation: δ13C = (Rsample – Rstandard)/ 594 

Rstandard*1000 and represents the relative deviation of R (the isotope ratio, 13C/12C) in the 595 

sample from a standard (usually Vienna Pee Dee Belemnite (VPDB), a marine carbonate). 596 

δ
13C is used as a proxy for the proportion of C3 and C4 vegetation preserved in soil 597 

carbonates, fossil teeth, and leaf waxes. For reviews of how carbon stable isotopes are used to 598 

reconstruct hominin paleoenvironments see Cerling (2014) and Levin (2015). Some recent 599 

studies (e.g., Blondel et al. 2018, Souron 2018 and references herein) point out that 600 

interpretations of carbon isotopes as paleodiets are not that straightforward and should also 601 

consider independent proxies (e.g., morphology, dental microwear and mesowear) that are 602 

more directly linked to mechanical properties of diet items. 603 
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Summary points: 604 

- Although African terrestrial records provide crucial information on land climate variability, 605 

marine records offer the possibility of more robust chronology, a stratigraphic continuity with 606 

a high temporal resolution and the advantage of direct ocean-continental comparison. By 607 

transferring the marine chronology to continental tuffs, a global coherent framework with 608 

hominin fossils, artefacts, climate and environmental changes can be established. 609 

- A heterogeneity for pan-African hydroclimate changes is observed over the last 4Myr. The 610 

forcings that control this heterogeneity of variability are a combination of orbitally paced low-611 

latitude fluctuations in insolation, polar ice volume changes, tropical SST gradients and the 612 

walker circulation and maybe GHGs changes. 613 

- Our compilation of vegetation data over the last 4Myr show an expansion of the C4-614 

dominated ecosystems across northern, southwestern, and eastern Africa over the last 4Myr 615 

with more stable conditions at around 1Ma, but this is not mirrored by the observed pan-616 

African hydroclimate changes. This may indicate that the feed-back loops between climate 617 

and vegetation are more complex, whereby vegetation changes likely reflect a combination of 618 

factors including atmospheric CO2 concentrations and temperature. 619 

- Although temporal correlations between global or regional climate, environmental changes 620 

and human evolution can be observed over the last 4Myr, we raise some concerns as to 621 

whether these correlations reflect causal processes. We highlight a few areas where we 622 

believe that focused research effort would be warranted.  623 

- We advocate that more numerical transient simulations with various climate models and 624 

better constraints and downscaling approaches should be conducted in order to assess the 625 

range of model responses and the robustness of the mechanisms leading to the simulated 626 

climate changes. To bridge paleoclimate data and models, the inclusion of chemical tracers 627 

(for example water and carbon isotopes, forward proxy modelling) relevant to proxies directly 628 

in Earth system models should be considered. Data assimilation techniques adapted for 629 

paleoclimate applications may further improve reconstructions of past climates.  630 
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OPTIONAL ELEMENTS 1215 

Reference Annotations:  1216 

Vrba (1995): the turnover-pulse hypothesis: pulses of speciation/extinctions, and dispersals 1217 

across clades due to prolonged climatic changes. 1218 

de Menocal (1995): Pioneering work based on marine cores that linked human evolution to 1219 

global climate change. 1220 

Potts (1998): variability selection hypothesis: increased climatic variability as a driver for 1221 

genetic change (human’s unique adaptability). 1222 

Cerling (2014): summary of the use of stable isotopes to reconstruct hominin environments.  1223 

Uno et al. (2016a): first Neogene biomarker records in marine cores. 1224 

Faith et al. (2021): sampling biases affect our interpretation of the hominin fossil record, i.e., 1225 

gaps in spatiotemporal sampling.  1226 

Timmermann et al. (2022): first long transient climate simulation to identify the 1227 

spatiotemporal habitat suitability of hominin species. 1228 

Ao et al. (2024): an example of data-model integrative approach that identify potential 1229 

dispersal corridors from Africa to Asia. 1230 
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Proxies Climate/environmental 
variables 

Potential biases/complexity 

δD plant waxes Hydrological cycle (precipitation 
amount, circulation regime) 

Source effect, seasonality, 
temperature effect, relative 
humidity, vegetation changes 

δ13C plant waxes Vegetation (biomass, C3 vs C4 
plants) 

Source effect, plant physiological 
versus climatic parameters, 
seasonal timing of leaf wax 
formation, effect of vegetation 

Pollen Vegetation Actualism, Plant physiological 
versus climatic parameters, 
seasonal timing of pollen 
formation, transport effect and 
mode of transport (river vs wind) 

XRF ratio Wet-dry index; wet: high 
terrestrial input via river; dry: low 
terrestrial input via river 

Source in the catchment and 
vegetation role on sediment 

load, sea level effect 

Terrestrial organic carbon (Corg ; 
BIT) 

Wet: increased terrigenous organic 
matter supply by river; dry: 
decreased terrigenous organic 
matter supply by river 

Diagenesis, source in the 
catchment 

Dust Wet: less dust input into the 
Ocean; dry: more dust input into 
the Ocean 

Source effect, wind strength and 
transport effect, calculation of 
fluxes  

Radiogenic isotope signatures of 
detrital material (εnd) 

Provenance, dispersal, and 
climate-driven supply of 
sediments 

Source. Grain size effects. 

Ba/Ca and δ18Osea water in 
planktonic foraminifera 

Riverine freshwater input Source effect, changes in 
atmospheric circulation, 
advection, sea level effect 

Table 1: Main proxies for terrestrial climate and environmental reconstructions in marine 1247 

sediment cores. 1248 
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 1260 

Figure 1: Stratigraphic ranges of African hominin taxa and associated lithic industries. 1261 

Modified after Sahle et al. (2013), Beyene et al. (2013), Wood & Boyle (2016), Plummer et 1262 

al. (2023) and references herein. Hominin taxinomy is debated and actual paleobiodiversity 1263 

may be partly overestimated by taxinomic practices or underestimated due to taphonomic 1264 

issues, making it extremely difficult to have a clear understanding of the real 1265 

paleobiodiversity. 1266 
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 1289 

 1290 

 1291 

 1292 
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 1294 

Figure 2: Schematic of main natural forcings/causes of climate changes (adapted from Bard 1295 

2002). 1296 
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 1321 

 1322 

 1323 

 1324 

 1325 

Figure 3: Main modern hydroclimate processes and changes at low latitudes and their impact 1326 

on Africa. A. Averaged precipitation rates for August and B. January (Chen et al. 2002). 1327 

Tropical inter-annual climate variabilities (ENSO: El Niño Southern Oscillation and IOD: 1328 

Indian Ocean Dipole) are illustrated as examples of configuration but not necessary entirely 1329 

dependent and are not necessarily linked with latitudinal variability (ITCZ: InterTropical 1330 

Convergence Zone migration, size and strength and regional monsoon systems). 1331 
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 1354 

Figure 4: Anomaly (August-January) for precipitation (Chen et al. 2002) and vegetation 1355 

(NDVI: Normalized Difference Vegetation Index) in Africa (Vermote et al. 2014). NDVI 1356 

quantifies vegetation by measuring the difference between near-infrared (which vegetation 1357 

strongly reflects) and red light (which vegetation absorbs). 1358 
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 1380 

 1381 

Figure 5: Scheme of sediment transport from the continent (source) to the ocean (sink) and 1382 

main sediments in marine environment. SEM images from marine sediments (left to right) of 1383 

the planktonic foraminifera G. ruber, and volcanic glass shard from the East African Rift 1384 

System (indicated scale is 100µm). 1385 
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 1404 
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 1408 

 1409 
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 1412 
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 1415 

 1416 

 1417 

Figure 6: Pan-African hydroclimate variability over the last 4 Myr based on marine sediment 1418 

cores. A. a) δD of the n-C31 alkane of plant waxes at site ODP722 (Huang et al. 2007). b)Blue 1419 

line shows δD of precipitation (δDp) at ODP966& 967 (Lupien et al. 2023). Standard error 1420 

means was 4.3 ‰ for δDp. Green line shows the Wet-Dry index from ODP967 (Grant et al. 1421 

2017). c) Dust percentage at ODP659 (Tiedemann 1994). d) δD of precipitation derived from 1422 

the vegetation correction of δDwax at site ODP1081 (Rubbelke et al. 2023). The average 1423 

standard deviation was 1.81 ‰ for δDwax and mean error for δD of precipitation was 3.7 ‰. e) 1424 

PC1 of hydroclimate records from the Limpopo region, sites MD96-2048 and IODP U1478 1425 

(Caley et al. 2018, Koutsodendris et al. 2021, Taylor et al. 2021). f) PC1 of pan-African 1426 

hydroclimate. Polynomial fit (8th degree) documented in red to demonstrate long-term trends 1427 

and fluctuations. Grey shading and dash line depict the four phases that have been constrained 1428 

by change point analysis based on records in a) to e). B. Average PC1 loadings derived from 1429 

the PCA with bootstrapped confidence intervals (Past software, Hammer et al. 2001). C. 1430 

Wavelet transform on the PC1 based on Torrence & Compo (1998). The significance level 1431 

corresponding to p = 0.05 is plotted as a contour (chi-squared test). D. Spectral analyses on 1432 

the PC1 with REDFIT (Schulz & Mudelsee 2002, the red and orange lines show the false-1433 

alarm level at the 95 % and 80 % confidence interval).  1434 
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 1464 

 1465 

Figure 7: Forcings on pan-African hydroclimate. a) Eccentricity variations that modulate 1466 

precession (Laskar et al. 2004). b) PC1 of pan-African hydroclimate original (dash line) and 1467 

residue (solid line) after removal of orbital forcings variance. c) Pacific sea surface 1468 

temperature (SST) gradients (sites ODP 806 and 847 (Wara et al. 2005), site ODP 846 1469 

(Lawrence et al. 2006)). d) Component of sea-level-based ocean δ18Ow variations (Rohling et 1470 

al. 2014). e) Deep-sea δ18Oc LR04 stack (Lisiecki & Raymo 2005) (see Appendices Water 1471 

and Carbon isotopes). f) Atmospheric CO2 reconstructions (The CenCO2PIP Consortium 1472 

2023). The correlation coefficient (R) and corresponding significance (P) between residual 1473 

PC1 pan-African hydroclimate and SST gradients (c), ice volume changes (d and e) and 1474 

atmospheric CO2 changes (f) are shown. 1475 
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 1503 

 1504 

Figure 8: Major phases of pan-African hydroclimate variability. Main fluvial catchments that 1505 

transport material to marine sediment cores are indicated together with the main source of 1506 

material transported by winds to marine sites (see also Figure 11). Core locations with red/blue 1507 

colors indicate more arid/humid hydroclimate. Core locations of vegetation records of Figure 9 1508 

are also indicated.  1509 
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 1538 

Figure 9: Pan-African vegetation variability over the last 4Myr based mainly on ocean cores. 1539 

a)  δ13Cleaf wax from sites ODP722 (Huang et al. 2007), DSDP231 (Feakins et al. 2013, Liddy 1540 

et al. 2016) and ODP966-967 (Rose et al. 2016, Lupien et al. 2023). b) Desert pollen at site 1541 

DSDP231 (Bonnefille 2010). c) δ13Cleaf wax at sites ODP659 and MD03-2705 (Kuechler et al. 1542 

2013, 2018, O’Mara et al. 2022). δ13Csoil carbonate from continental eastern Africa (Levin 2015 1543 

and references therein). e)  δ
13Cleaf wax at site ODP1081 (Rubbelke et al. 2023). f)  Desert 1544 

pollen at site ODP1081 and 1082 (Dupont et al. 2005, Hoetzel et al. 2015). Locations of 1545 

marine sediment cores are visible on Figure 8. 1546 
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 1571 

 1572 

 1573 

Figure 10: African hominin species habitat suitability (results based on Timmermann et al. 1574 

2022). Species distribution calculated from a Mahalanobis distance model with coloured 1575 

circles represent the locations of fossils and/or archaeological artefacts associated with the 1576 

hominin groups. The time-averaged habitat suitability covering the period of respective 1577 

hominin presence can be interpreted in terms of probability, with values ranging from 0 1578 

(habitat unsuitable) to 1 (habitat extremely suitable) (Timmermann et al. 2022).  1579 
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 1601 

Figure 11: Data-model comparison for African hydroclimate over the last 3Myr.  A. Data in a) 1602 

to e) are similar to Figure 6 a) to e), except the ln(Fe/Ca) hydroclimate record in e) (Caley et 1603 

al. 2018). CESM1.2 annual simulated precipitation in a) to e) extracted from regions indicated 1604 

by black frames in B. Polynomial fit (8th degree) documented in orange and red to 1605 

demonstrate long-term trends and fluctuations in data and model respectively. The correlation 1606 

coefficient (R) and corresponding significance (p) between data and model for specific time 1607 

periods and resolution are shown. B. Wind speed at 10m and vectors of zonal and meridional 1608 

surface wind stress averaged over the last 3Myr in the CESM1.2 simulation (Timmermann et 1609 

al. 2022, Yun et al. 2023) for August (top) and January (down). Black frames denote the 1610 

regions used for model results extraction and comparison in A.a) to e). These regions were 1611 

defined as source regions of sedimentary materials transported to the studied marine cores by 1612 

winds and river on the basis of present day river catchments and simulated mean wind speed 1613 

and patterns over the last 3Myr in B. 1614 

 1615 

 1616 

 1617 

 1618 

 1619 

 1620 

 1621 

 1622 

 1623 



 

41 

 

 1624 

 1625 

 1626 

 1627 

 1628 

 1629 

 1630 

 1631 

 1632 

 1633 

 1634 

Figure 12: Enamel δ13C (representative of diets) of early hominin taxa from southern Africa 1635 

(blue), central Africa (green) and eastern Africa (orange) arranged from oldest to youngest 1636 

temporal periods/fossils for each regional group of African hominins (data from Sponheimer et 1637 

al. 2013). Violin plots with the median values (red dots) are indicated. 1638 
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