

Unraveling the Impact of Surprise in Humor-Enhanced Learning in infants

UNIVERSITÉ PARIS LUMIÈRES institut universitaire de France Presented by Romain di Stasi

Under the supervision of Lauriane Rat-Fischer

Rana Esseily

June 7, 2024

Understand the role of surprise on the influence of humor on learning in infant.

Implied two steps, thus two studies:

Behavior

Study 2 Aim: assess the <u>role of surprise</u> on learning

What are the indicators of the emotion of surprise in our social context?

Aims

Intro

Study 1

Identify markers of surprise by using a multidimensional approach.

Four principal markers of surprise:

→ Fixation Time LIMITED

In infant: Baillargeon, 1993; Baillargeon et al., 1985; Baillargeon & Graber, 1987; Horstmann, 2015; Ramsay & Campos, 1975; Spelke et al., 1992

→ Pupil dilation LIMITED

In adult: Antony et al., 2021; Nassar et al., 2012; Preuschoff et al., 2011

In infant: Camras et al. 2002; Scherer et al. 2004

Facial expression of Surprise

In adult: Reisenzein, 2000; Reisenzein et al., 2006 In infant: Camras et al. 2002; Scherer et al. 2004

Perspective Dynamical Theory **ATTENTION**

Camras et al. 1996

Neutral

Humorous demonstration

incongruous

Demonstrations

Humorous demonstration

Neutral or Humorous demonstration

Behavioral Analyses

Hand coded

Intro

- **Social gazes**
- **Positive emotional** reaction (e.g., smile, laugh)

Study 1 Method Automatized leutral Upper Lid Raiser Neutral

Izard Surprise Score Algorithm

Accelerometry

Electrodermal Conductance

Heart Rate

9

Gaze at experimenter Intro

Study 1

Method Results

After each demonstrationFrequency \bigcirc > in HumorDuration \bigcirc > in Humor

10

<u>Δ mean Heart rate</u>

What are the indicators of the emotion of surprise in our social context?

 Heart Rate (HR) could be interesting as Surprise Indicator
Other physiological signals need time ----- 3s epoch is too short (not interesting for surprise)

Can surprise alone explain the positive influence of humor on learning?

Tool Use Score

No effect of infant's smiles or laughs on learning

*Results based on cumulative link model (clm) of the package 'ordinal' (Christensen 2023)
Checked with bayesian model function (brm) of the package 'brms' (Burkner 2017; 2018; 2021)
Post-hoc realized with emmeans function of the package 'emmeans' (Lenth 2024)

Gaze at experimenter

Heart rate variation

Heart rate variation

* * ns (+) > of their Heart Rate Variation (HRV) Humor Delta HRV demonstration epoch 0.25 **Hypothesis!** Since **Frequency** (1)> in **Humor** 0.00 0000 **Attention** ₿ 000 (+) Learning HRV צ 000 0.25 ↗ arousa -0.50 Neutral Surprise Humour

Condition

*Results based on Permutation Test with a Monte Carlo sampling of 1000 permutations - PermTest function of the package 'pgirmess'

(Giraudoux, 2024)

Conclusion

An effect of the humorous demonstration on learning

But is it linked to humor understanding ?

- → Attentional effect (Z gazes at experimenter; \HRV)
- → Arousal effect (\HRV) → Emotional processes?

→ **↗** infants' learning performances

Surprise is not sufficient to explain the association between Humor and Learning in infant.

Distinguish Surprise and Attention is not easy

Acknowledgements

Lauriane Rat-Fischer

Rana Esseily

FINANCÉ PAR

NUNDED BY TY

PRO

Fabien Cerrotti

Ines Cathala

Chloé O'Neill

Justine Giraud

Jasmine Spenher

Fundings

institut universitaire de France

Thank you for your attention

For any further information, please send me an e-mail at the following address: **romain.di-stasi@outlook.com**

Or scan the **QR code**!

Study 1: Results and discussion

Sup

Physiological method HRV

Sup

Physiological method HRV

Root Mean Sum of Squared Distance

$$RMSSD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (RR_{i+1} - RR_i)^2}$$

Standard Deviation of RR-Intervals

$$SDNN = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (RR_{i+1} + RR_i)^2}$$

Mean of the interval RR

- 1) A good indicator of the **parasympathetic nervous system**, not so good for the sympathetic one.
- 2) Minimum of **10 seconds epochs** are enough
- 3) Based on time T to T+1

1) A good indicator of the **parasympathetic and sympathetic** (*i.e.*, autonomic) nervous system.

2) Minimum of 60 seconds epochs are enough

3) Based on RR mean

Sup

