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Abstract

Modelling the galaxy distribution in our Universe is with no doubt a very important statisti-
cal challenge since the Universe contains around 200 billion galaxies. Among the typical available
characteristics for the galaxies one must consider their position, mass, luminosity, and shape. Due
to this, marked point processes appear as a natural modelling tool. There exists statistical method-
ology able to extract relevant information from marked point configurations. In this paper, we
take the first step and propose to use non-parametric exploratory analysis and Bayesian posterior
based inference in order to explore the first characteristic, namely the positions of more than 30000
galaxies. This is done in three steps. First, several windows of interest are selected. Then for each
such window, a local exploratory analysis based on summary statistics is carried out. Finally, based
on all the information gained in the previous steps, an appropriate model is fitted and posterior
sampling is performed. Within this workflow, a new parametric multi-interaction point process
model is introduced and fitted to the selected galaxy patterns. The quality of the estimation proce-
dure and the significance of the estimated parameters is also assessed. Analysing several patterns
allows us to have more insight into the stationary character of the entire observed data set and to
depict perspectives with respect to the possible strategies for the general model fitting challenge.

1 Introduction

The galaxy catalogue in Figure 1 represents a two-dimensional pattern made of 36047 galaxy positions
extracted from a three dimensional catalogue Stoica et al. (2017, 2015). The modelling of this type
of data has already been tackled by Hurtado Gil et al. (2021) by considering Gibbs point process
models. The proposed models were made of a component controlling the distance of the galaxies to the
pre-detected filament pattern and an interaction term allowing attraction or repulsion between points.
Here, we test new possible developments of the interaction term by allowing multiple interactions.

Figure 1: Galaxy catalogue



A first attempt to introduce multiple interactions for modelling galaxy distributions was done inGillot,
Stoica, and Gemmerlé (2023). The interaction component of this model was made of an area-
interaction process and a Strauss process exhibiting the same interaction range. The idea was to
have the area-interaction process to form clusters, while the Strauss process controls the sparsity
within each cluster. The drawback is though that two opposite interactions have an influence on the
same “territory” and the model was able to capture only the clustering. Keeping in mind the work
of Tempel et al. (2014) that provides statistical evidence that galaxies are spread out as pearls on a
necklace along the cosmic filaments, we here introduce a multiple interaction model that uses different
interaction ranges. This new model was built based on the results of a local exploratory analysis of
several extracted patterns. To fit the model to data, simulation and inference for Gibbs point pro-
cesses models are needed. For the former, among all the possible choices, we will use the Metropolis
Hastings algorithm. For the latter, we will consider Bayesian posterior sampling with the ABC shadow
algorithm. The simulation and the posterior sampling of the considered models were performed using
the DRLib C++ library, which is a software package designed for performing statistical inference for
point processes with interactions.

In section 2, a general background for point process modelling and the tools to conduct exploratory
analysis and simulation are recalled. The choice of the inference method is discussed by comparing
different approaches. In Section 3, the new model is introduced and some examples of simulated
patterns given. Results from the exploratory analysis and model fitting for the extracted galaxy
patterns are shown in Section 4. Finally, in Section 5, we give some perspectives and conclusions.

2 Materials and methods

The galaxy distribution in our Universe can be seen as a realization of a spatial point process, where
galaxies are randomly located points in space with distinct locations.

Let X be a point process. If the process is translation invariant then the process is stationary. If
the process is rotation invariant then the process is said to be isotropic. Assume now, a finite point
configuration x = {x1, ..., xn} is observed through a compact window W ⊂ R2 and its distribution is
given by an exponential family probability density

f(x|θ) = exp (⟨t(x), θ⟩)
c(θ)

, (1)

where t is the vector of sufficient statistics, θ ∈ Θ the model parameters and c(θ) the partition function.

In this section, we first give some examples of point processes and how we can easily create new models
characterized by some un-normalised densities and recall two summary statistics, the pair correlation
function and the nearest neighbour distribution function, that allow us to study the characteristics
of these models. Second, we present the Metropolis-Hastings algorithm that can be used to perform
simulations of these models. Finally, we discuss parameter estimation and posterior sampling in the
Bayesian framework.

2.1 Some examples of points processes

2.1.1 Poisson point process

This point process exhibits no interactions among points. It is used in practice as a reference point
process to build probability densities with respect to the standard (unit intensity) Poisson point process
( Møller and Waagepetersen (2004), Stoica (2014)). For an intensity function ρ :W → [0,+∞[,
the Poisson point process density can be written as :

f(x|ρ) ∝ exp

n(x)∑
i=1

log(ρ(xi))

 , (2)
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where n(x) is the number of points in x. If ρ is a constant, the point process will be called homogeneous.

2.1.2 Strauss point process

The Strauss point process is a model with interaction that penalises the probability of having two
points at a distance closer than a fixed radius, r. With respect to the standard Poisson point process,
its probability density is given by

f(x|ρ, γs) ∝ exp(n(x) log(ρ) + sr(x) log(γs)) (3)

where sr(x) represents the number of pairs of points closer than the distance r, and γs ∈]0, 1] is the
strength of interaction. In this model, n(x) and sr(x) are the sufficient statistics. Note that if γs = 1,
the model boils down to the Poisson process of intensity ρ.

2.1.3 Area Interaction process

The area interaction point process is a model with interaction that takes into account the area of
balls of a fixed radius R around the points. This is also a good example to show how to create new
probability densities with respect to the standard Poisson point process by introducing a new sufficient
statistic of interest. In the homogeneous case, its density is given by

f(x|ρ, γa) ∝ exp(n(x) log(ρ) + aR(x) log(γa)) (4)

where aR(x) = −| ∪ξ∈x b(ξ,R)| represents the d-volume of the union of balls of radius R attached to
the points, γa ≥ 0 is the model parameter. In this model, n(x) and aR(x) are the sufficient statistics.
Once more, if γa = 1, the model becomes the Poisson process of intensity ρ. Values of γa smaller than
one indicate regularity and values larger than one clustering.

2.1.4 Superposition of two models : Area Interaction and Strauss point process

Another way to create new probability densities is to combine two existing point processes. Here, we
combine the area interaction process and the Strauss process resulting in a process with the density

f(x|ρ, γs, γa) ∝ exp(n(x) log(ρ) + sr(x) log(γs) + aR(x) log(γa)) (5)

with the same parameters as in the previous examples. A combination of Strauss and Area-Interaction
processes was previously used for cluster detection in animal epidemiology and in cosmology Stoica,
Gay, and Kretzschmar (2007); Tempel et al. (2018). This way of combining attractive and repul-
sive interactions was also used in a previous model fitted to the galaxy position distributions Gillot,
Stoica, and Gemmerlé (2023).

2.2 Summary statistics

As summary statistics functions, we will use the pair correlation function and the nearest neighbour
distance function. The former provides information about the behaviour of the pattern at large and the
latter at small interpoint distances. Although in general, these functions are not known in analytical
form, they can be estimated ( Baddeley, Rubak, and Turner (2015)). Theoretical values are
known for the Poisson process and allow us to compare the characteristics of a realization of a process
to the homogeneous Poisson process, also known as complete spatial randomness (CSR).

2.2.1 Nearest neighbour distance function

Let X be a stationary and isotropic point process and d(ξ,X) = min{||ξ − xi||, xi ∈ X} denote the
distance from a point ξ in R2 to the point process X.
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The nearest neighbour distance function G is defined by

G(r) = P(d(ξ,X \ ξ) ≤ r|X has a point at ξ) for r > 0.

This is the cumulative distribution function of the distance to the nearest neighbour of a point in X.

For a homogeneous Poisson process on R2 with intensity ρ, we have

Gpois(r) = 1− exp(−ρr2π) for r > 0.

Having G(r) < Gpois(r) indicates possible regularity in the pattern. The opposite case, when G(r) >
Gpois(r), is consistent with clustering.

2.2.2 Pair correlation function

As above, let X be a stationary and isotropic point process. Before introducing the g function, we
need to introduce another summary statistic function, the K-function. We define

K(r) =
1

ρ
E[number of r-close neighbours of ξ|X has a point at location ξ]

for r ≥ 0 and any location ξ. Given this function, we define the pair correlation function by

g(r) =
K ′(r)

2πr
for r > 0.

where K ′(r) is the derivative of the K-function with respect to r. The value g(r) = 1 indicates that
the pattern is close to a Poisson process. A value g(r) < 1 indicates that distances between points
equal to r are less frequent than would be expected for a completely random process. We can then
assume regularity in the pattern. On the other hand, having g(r) > 1 will then suggest clustering.
The pair correlation function gives information about the most and least common distances between
two points of the process ( Stoyan and Stoyan (1994)).

2.3 Simulation

Various options can be explored for simulating the models shown in the previous section, such as
spatial birth-and-death processes ( Preston (1975)), reversible jumps dynamics ( GREEN (1995) or
perfect simulation methods ( Kendall and Møller (2000) ; van Lieshout and Stoica (2006)).
Here, we will use the Metropolis-Hastings algorithm. Its core procedure has the following pseudo-code:

1) Set pb, pd with pb + pd = 1 and let x be the initial configuration of points.

2) With probability pb choose to add a point (birth) and with probability pd choose to delete a
point (death) as follows

– birth

a) generate a random point ξ on W and set x′ = x ∪ ξ
b) compute rb = min{1, pdpb

f(x∪ξ|θ)
f(x|θ)

|W |
n(x)+1}

– death

a) choose a random point ξ of x and set x′ = x \ ξ
b) compute rd = min{1, pbpd

f(x\ξ|θ)
f(x|θ)

n(x)
|W | }

3) Accept the new configuration x′ with probability rb or rd (depending on the choice of birth or
death). Otherwise, remain in the same state x.

The previous procedure should be iterated in order to obtain the desired number of samples.

This algorithm generates a Markov chain that is Φ−irreducible, Harris recurrent and geometric ergodic.
Thus, the algorithm converges toward the distribution of interest given by the density f(x|θ) (Møller
and Waagepetersen (2004) ; Stoica (2014) ; van Lieshout (2019)).

Spatial point process modelling for large data sets
N. Gillot et al.



2.4 Statistical inference for parameter estimation

Now that we can simulate the models, we turn to parameter inference, we still consider densities given
the exponential form. In the Bayesian framework, this will mean sampling from the following posterior
law of the parameter given some observed pattern x.

f(θ|x) = exp (⟨t(x), θ⟩) p(θ)
c(θ)c(x)

(6)

where p(·) is the prior distribution of the parameters, both c(θ) and c(x) are partition functions.
Performing such inference from the posterior distribution is a challenging problem. Indeed, the parti-
tion function c(θ) isn’t available in analytic closed form for the model class we are considering in this
article. Here, we summarize various approaches that tackle the sampling of this law, more of them
can be found e.g. in Lu and Friel (2024).

2.4.1 Auxiliary variable Metropolis-Hastings algorithm

This approach by Moller et al. (2006) was made by using an auxiliary variable with probability

density a(y|θ,x). The purpose of this algorithm is to sample from f(θ,y|x) = a(y|θ,x)f(x|θ)p(θ)c(θ)c(x) so

that the calculation of the partition function can be avoided in the acceptance ratio. The following
pseudocode explains the idea behind the algorithm:

1) Assume that a pattern x is observed and set initial values for (y, θ)

2) Generate a new parameter value θ′ from? the proposal density q1(θ
′|θ) = q1(|θ′ − θ|)

3) Generate a new pattern y′ from the proposal density q2(y
′|θ′) = exp(⟨t(y′),θ′⟩)

c(θ′)

4) Compute the ratio RD((θ,y) → (θ′,y′)) = a(y′|θ′,x)p(θ′) exp(⟨t(x),θ′⟩) exp(⟨t(y),θ⟩)
a(y|θ′,x)p(θ) exp(⟨t(x),θ⟩) exp(⟨t(y′),θ′⟩)

5) The new state (θ′,y′) is then accepted with probability α = min{1, RD((θ,y) → (θ′,y′))},
otherwise (θ′,y′)(θ,y)

6) Return (θ′,y′).

To ensure the convergence of this Markov chain toward the invariant distribution f(θ,y|x), the samples
drawn from the proposal q2(y

′|θ′) need exact simulation. In addition, the simulated chain may have
poor mixing properties due to the freedom of choice of the auxiliary variable density.

2.4.2 Exchange Algorithm

This method, involving auxiliary variables as well, is described in Murray, Ghahramani, and
MacKay (2006). The purpose is to sample from the probability density f(θ,y, ψ|x) ∝ f(θ|x)q(ψ|θ)f(y|ψ)
where f(θ|x) is the posterior we want to sample from, q(ψ|θ) the proposal over the parameter and
f(y|ψ) is the probability density over the auxiliary variable. The exchange algorithm uses an additional
auxiliary variable and a procedure based on a swap of parameter:

1) Assume that a pattern x is observed and set initial values for (θ,y, ψ) .

2) Generate a new parameter ψ given by the proposal density q(ψ|θ).

3) Generate a new pattern y′ given by the density f(y′|ψ) = exp(⟨t(y′),ψ⟩)
c(ψ)

4) Compute the exchange ratio

RE((θ
′,y′, ψ′) → (ψ,y′, θ)) =

f (θ′,y′, ψ′|x)
f (θ,y′, ψ|x)

= exp
〈
t(x)− t

(
y′) , ψ − θ

〉
× p(ψ)q(θ|ψ)
p(θ)q(ψ|θ)
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5) The new state (θ′,y′, ψ′) = (ψ,y′, θ) is then accepted with probability α = min{1, RE}, otherwise
(θ′,y′, ψ′) = (θ,y′, ψ)

6) Return (θ′,y′, ψ′)

Once more, the convergence toward the posterior is guaranteed by the exact simulation of the auxiliary
pattern y′. However, the exchange mechanism prevents the possible poor mixing property described
above to happen.

2.4.3 Approximate Bayesian computation (ABC) algorithms

The ABC algorithms are approximate sampling methods initially built to sample posterior distri-
butions of highly complex models originating in agricultural and environmental sciences. Among the
existing ABC strategies Atchadé, Lartillot, and Robert (2013); Beaumont et al. (2009); Marin
et al. (2011); Raynal et al. (2018), we start by presenting the classical principle. Then we introduce
a more recent algorithm called the ABC Shadow algorithm that is inspired by the auxiliary variable
methods while providing a theoretical control of the method with no requirement of exact simula-
tion Stoica et al. (2017).

General rejection ABC Algorithm

The principle of this algorithm is to first generate a sample of parameters according to the prior law
and, in a second step, to check whether the generated parameters fulfil a criterion and to reject those
that do not. For instance, for the exponential family models shown above, a common criterion would
be to control the distance between the observed pattern sufficient statistics and the one simulated
with the parameters generated.

1) Assume that a pattern x is observed, set a rejection threshold ϵ and a number of iterations N .

2) For k = 1 to N :

a) Generate θi according to p(θ).

b) Generate a pattern yi according to f(y|θi) = exp(⟨t(y|θi⟩)
c(θi)

3) Keep all the θi such that d(t(x), t(yi)) ≤ ϵ

The sample kept as the output of this algorithm is distributed according to f(θ|d(t(x), t(y) ≤ ϵ). The
choice of the threshold has to be done with care so that the sample is close enough to the posterior
and that the amount of discarded parameters isn’t too high.

ABC Shadow Algorithm

This ABC algorithm combines two idea :

• The auxiliary variable method displayed previously

• Construction of two Markov chains, one based on the MH dynamics, which will allow the posterior
distribution as an invariant distribution, but which will be impossible to simulate in practice.
The other will follow this first chain dynamic as closely as desired and will be computationally
feasible.

The pseudocode for the algorithm is the following:

1) Set δ a perturbation parameter, θ0 an initial parameter value and N number of iterations.
Assume that a pattern x is observed.

2) With the Metropolis Hastings algorithm, generate y according to f(y|θ0)
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3) For k = 1 to N :

a) Generate a new parameter ψ according to the density Uδ(θk−1 → ψ) defined by Uδ(θ →
ψ) = 1

|b(θ,δ/2)|1b(θ,δ/2{ψ}.

b) The new state θk = ψ is accepted with probability αs(θk−1 → ψ) = min{1, f(x|θk)p(θk)
f(x|θk−1)p(θk−1)

×
f(y|θk−1)
f(y|θk) }

4) Return θN .

5) If more samples are needed, go to step 1 and set θ0 = θN

The theoretical description and convergence control can be found in Stoica et al. (2017).

2.5 Asymptotic errors

The asymptotic normality of the maximum likelihood estimators allows us to compute two types of
estimation errors. The first one is an approximation of the difference between the unknown exact
maximum likelihood estimator (MLE) and the true parameter value: θ̂ − θ0. The other one is the
difference between the Monte Carlo maximum likelihood estimator and the unknown exact MLE:
θ̂n − θ̂. We can compute an estimation of these errors in order to control the parameter estimation as
done as in Geyer (1994, 1999); van Lieshout and Stoica (2003).

3 Strauss Crown Area Interaction point process

Combining the idea of superposition and the Strauss repulsion behaviour, we introduce a new model
allowing clustering at short scale and large scale repulsion. The un-normalized density function of the
model is given by

f(x|ρ, γSC1, γSC2, γA) ∝ exp(n(x) log(ρ) + sr1r2(x) log(γSC1) + sr2r3(x) log(γSC2) + ar1(x) log(γA))

where n(x) and ar1(x) are the same as in (2) and (4). The statistics sr1r2 (resp.sr2r3) represent the
amount of pairs of points in a crown of radii r1 and r2 (resp. r2 and r3) around the points.
The following sketch illustrates the pattern behaviour around a fixed point with respect to the radius
evolution.

Figure 2: Neighbourhood of a point

Between distances 0 and r1, the model behaves as an area interaction model, allowing repulsion or
clustering. Then, between distances r1 and r3 the model will act like the Strauss model, allowing
repulsion between points. However, repulsion can have two different scales, small scale repulsion in
]r1, r2] and large scale repulsion in ]r2, r3]. Note also that there might not be interaction between the
points at all after r1, i.e. the parameters connected to the Strauss components would be 0. Below in
Figure 3, we display some simulated Strauss Crown Area Interaction patterns for different parameter
values. As one can see, a large variety of different patterns can be constructed by changing the values
of the parameters. The parameters γSC1 and γSC2 penalise configurations of points with pairs of
points located within the crowns given by (r1, r2) and (r2, r3), respectively. The parameter ρ controls
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the number of points of the pattern. The parameter γA manages the territory occupied by the point
pattern when a disc of radius r1 is centred around each point. The different range parameters play also
a very important role, since they influence the size of the formed clusters, their local concentrations
and their repulsive character.

  Pattern

(a) Simulated pattern for r1 = 0.01 ; r2 =
0.10 ; r3 = 0.15 ; ρ = 300 ; γSC1 = 1 ;

γSC2 = 0.05 ; γA = 0.005

  Pattern

(b) Simulated pattern for r1 = 0.01 ; r2 =
0.10 ; r3 = 0.15 ; ρ = 300 ; γSC1 = 1 ;

γSC2 = 0.2 ; γA = 0.4
  Pattern

(c) Simulated pattern for r1 = 0.05 ; r2 =
0.05 ; r3 = 0.08 ; ρ = 300 : γSC1 =

γSC2 = 0.05 ; γA = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PatternRadiusArea_0.05_Radius1_0.05_Radius2_0.1_Radius3_0.15
LogBeta_5.7LogGammaSC1_−1LogGammaSC2_−3LogGammaA_−2.3

(d) Simulated pattern for r1 = 0.05 ; r2 =
0.10 ; r3 = 0.15 ; ρ = 300 : γSC1 = 0.37

; γSC2 = 0.05 ; γA = 0.1

Figure 3: Simulated patterns
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4 Application

The present data set is a 2D galaxy catalogue involving 36047 galaxies. Since such large amount of
data is very difficult to tackle, we focus on the analysis of 9 extracted patterns shown in Figure 1 from
this data set. These patterns were selected so that both short scale clustering and large scale repulsion
are present making the Strauss crown area interaction process as an interesting model candidate. First,
an exploratory analysis of the point pattern is carried out in order to get information about the range
parameters of the models to be fitted. Then, the new Strauss crown area interaction process is fitted
to each of the selected patterns. In the following, only the results obtained for pattern 6f are presented
in detail. A general comparison and discussion related to the results obtained for the other patterns
are also provided.

Figure 4: Galaxy catalogue and extracted patterns

4.1 Exploratory analysis

We will first compare the sufficient statistics of the model described in 3 to the corresponding statistics
of a Poisson process with the same number of points. Then, the two summary statistics described in
2.2.1 and 2.2.2 for the same pattern.

(a) (b) (c)
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(a) (b) (c)

(d) (e) (f)

Figure 6: Extracted patterns

4.1.1 Comparison of the sufficient statistics

Here, the summary statistics of the Strauss crown area interaction model for the pattern 6f above are
compared with the corresponding summary statistics computed for several Poisson pattern with the
same number of points. Different values of r1 are considered for a better understanding of the short
scale behaviour of the pattern. The choice for r2 and r3 are explained in the next section 4.1.2
In Table 1, we see that the sufficient statistics for the selected pattern are always lower than the ones
for the Poisson pattern. Around a random chosen point, this indicates a repulsion trend between r2
and r3. For each chosen r1, the area interaction statistic is always larger for the selected pattern than
for the Poisson pattern, which is consistent with clustering. However, when r1 = r2, the difference
between the two statistics is very low, suggesting a choice for r1 different from r2 so the statistics won’t
be too close to a Poisson process. The points tend to occupy a larger area in the Poisson pattern than
in the selected pattern.
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Table 1: Comparison of sufficient statistics between realisations of Poisson processes and the
pattern 6f

Sufficient statistic Selected pattern in 6f Poisson pattern means
n(x) 127 127

sr2r3(x) for (r2, r3) = (0.13, 0.15) 90 117.9
sr1r2(x) for (r1, r2) = (0.01, 0.13) 457 383.6
sr1r2(x) for (r1, r2) = (0.02, 0.13) 422 376.1
sr1r2(x) for (r1, r2) = (0.03, 0.13) 390 363.3
sr1r2(x) for (r1, r2) = (0.05, 0.13) 331 324.65
sr1r2(x) for (r1, r2) = (0.065, 0.13) 278 281.6

ar1(x) for r1 = 0.01 -106.47 -122.88
ar1(x) for r1 = 0.02 -93.34 -115.30
ar1(x) for r1 = 0.03 -82.25 -104.41
ar1(x) for r1 = 0.05 -60.46 -78.60
ar1(x) for r1 = r2/2 -46.76 -60.06
ar1(x) for r1 = r2 -17.26 -18.69

4.1.2 Summary statistics

0.00 0.05 0.10 0.15 0.20 0.25

−
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5

Pair correlation function estimate
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g
(r

)

ĝTrans(r)
gPois(r)

(a) Pair correlation function of pat-
tern 6f)
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0.
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0.
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0.
8

Nearest neighbor function estimate

r

G
(r

)

Ĝbord(r)
Gpois(r)

(b) Nearest neighbour function of
pattern 6f

Figure 7: Summary statistics of pattern 6f

We can see in Figure 7a, that the pattern is clustered up to r = 0.10 since the pair correlation function
for the data (black solid) is above the theoretical curve under complete spatial randomness (red). Fur-
thermore, there is repulsion behaviour between r = 0.13 and r = 0.15 (the estimated curve is below
the theoretical one). The nearest neighbour distance curve of the data in Figure 7b also shows short
range clustering for short range radii.

The pair correlation can be used to find appropriate values for r2 and r3 : those two radii represent
the values where the g function stops decreasing (r2) and start to increase (r3). However, the choice
for r1 is more difficult as the size of the clusters and their amount of points inside of them aren’t the
same for all clusters. For this reason, we’ll consider different choices for r1 for the inference.
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4.2 Results

For each extracted pattern and for each r1 in {0.01, 0.02, 0.03, 0.05, r2/2}, the ABC Shadow algorithm
was initialised with the sufficient statistics computed from the observed pattern. This procedure leads
to 5 different sets of radii (r1, r2, r3) for each pattern, resulting in 45 parameter estimates. The prior
density p(θ) was chosen to be the uniform distribution on the interval [0, 50] × [−50, 0] × [−50, 0] ×
[−50, 50]. At every step, the auxiliary pattern was generated with 500 iterations of the Metropolis-
Hastings algorithm. The perturbation parameter δ was set to (0.01, 0.0025, 0.0025, 0.01) for the four
parameters ρ, γSC1, γSC2 and γA. The choice of 0.0025 for both Strauss crown components was made
to avoid some estimation errors when the parameter estimates of γSC1 and γSC2 are too close to 0.
In 27 of the 45 cases, the second Strauss crown component was estimated to be non-zero. First, we
summarize the results using the five different values of r1 together with the asymptotic standard errors
in Table 2 for the pattern in Figure 6f. Second, we show the histograms and the box-plots for the
estimated parameters, together with a simulated pattern with the estimated parameters. Finally, we
discuss the goodness of fit for the model, relying on envelope tests made with both G and g functions.

4.2.1 Inference and asymptotics standard error

The table below shows the results for all 5 choice of r1. Figure 8a ; 8b and 8c ; 8d shows the
histograms for the 4 component parameters estimations and their associated boxplots for the radii
(r1, r2, r3) = (0.02, 0.13, 0.15).

Table 2: Estimated parameters and asymptotics standard errors

Radius Estimates of log(ρ), log(γSC1), log(γSC2) and log(γA)
(r1, r2, r3) log(ρ) log(γSC1) log(γSC2) log(γA)

(0.01, 0.13, 0.15) 48± 1.26 −0.05± 0.33 −0.05± 0.75 44± 1.28
(0.02, 0.13, 0.15) 8.8± 0.20 −0.02± 0.014 −0.15± 0.04 4.5± 0.25
(0.03, 0.13, 0.15) 7.4± 0.19 −0.02± 0.017 −0.1± 0.05 3.5± 0.27
(0.05, 0.13, 0.15) 6.6± 0.20 −0.02± 0.02 −0.15± 0.05 3± 0.40
(0.065, 0.13, 0.15) 6.4± 0.21 −0.12± 0.05 −0.15± 0.09 4± 0.48

Apart from the r1 = 0.01 case, the asymptotic errors are rather small, indicating a quite good esti-
mation. For r1 in {0.02, 0.03, 0.05}, the first Strauss crown component is very close to zero, which
is consistent with the pair correlation function for this pattern. On the other hand, for r1 larger
than 0.02, there is some repulsive behaviour around the points in a crown of radii r2 = 0.13 and
r3 = 0.15. Excluding the case r1 = 0.01, the estimated values of γA seem to be quite close to each
other, indicating a quite similar behaviour for each considered r1. The histograms (8a and 8b) and
boxplots (8c and 8c) below describe the sample of parameters obtained by the ABC Shadow algorithm.
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Figure 8: Histograms and Boxplots for the estimation made with (r1, r2, r3) = (0.02, 0.13, 0.15)
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The figure below shows a simulated pattern with (log(ρ), log(γSC1), log(γSC2), log(γA)) = (8.8,−0.02,−0.15, 4.5)
(right) and the extracted pattern 6f. (left)

Figure 9: Observed pattern 6f (left) and simulated pattern (right)

At first sight, the size of the clusters and the void zones seem to be quite similar in the simulated and
real patterns. In the next section, we give a more detailed comparison between 200 simulated patterns
and the extracted pattern above, thanks to the envelope tests for the g and G functions.

4.2.2 Envelope tests

The following envelopes (gray) were obtained by plotting the G (10a) and g (10b) functions for 200
simulated patterns with parameters (log(ρ), log(γSC1), log(γSC2), log(γA)) = (8.8,−0.02,−0.15, 4.5).
The red curve always represents the G or g functions estimated from the observed pattern 6f. Finally,
the green curve represents the theoretical Poisson G or g functions.
On the left in Figure 10a, we observe that the simulated patterns are clustered up to r = 0.05.
However, the G function of the observed pattern is outside the envelope made by the simulation for
small values of r, even if it remains very close to it. This indicates a possible mismatch between
the model and the pattern at very short scale. In Figure 10b, we observe that the g function of the
pattern is always inside the simulation envelopes. This indicates that our model is matching the pair
correlation function characteristics of the pattern.
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5 Conclusions and perspectives

We introduced an exploratory analysis and inference framework for a local study of large galaxy data.
This work continues and was motivated by the work by Hurtado Gil et al. (2021) and Gillot,
Stoica, and Gemmerlé (2023), where they introduced the superposition of the Strauss and area-
interaction models. In the cited work, there was interaction only at one range while we introduced
a new multi-interaction point process model with short range attraction and long range repulsion.
The model fits rather well to the data according to a simple envelope test and the results indicate
that it is important to allow different type of interaction at different ranges. The goodness-of-fit of
the model could be further validated by residual analysis and global envelope tests. The model we
introduced describes only the locations of the points (galaxies) and does not take into account the
filamentary pattern and other information related to the galaxies. Therefore, the model can be further
extended and include such characteristics as marks associated to the points of the point process. Also,
the model and the inference framework can be extended to 3D. From the methodological perspective,
we are interested in extending the ABC Shadow algorithm framework to an incomplete data setting,
where some parts of the data are missing. Such a set-up would be relevant e.g. for galaxy data.
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