
HAL Id: hal-04645164
https://hal.science/hal-04645164

Submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What Is Decidable in Separation Logic Beyond
Progress, Connectivity and Establishment?

Tanguy Bozec, Nicolas Peltier, Quentin Petitjean, Mihaela Sighireanu

To cite this version:
Tanguy Bozec, Nicolas Peltier, Quentin Petitjean, Mihaela Sighireanu. What Is Decidable
in Separation Logic Beyond Progress, Connectivity and Establishment?. IJCAR 2024 - 12th Interna-
tional Joint Conference on Automated Reasoning, Jul 2024, Nancy, France. pp.157-175, �10.1007/978-
3-031-63501-4_9�. �hal-04645164�

https://hal.science/hal-04645164
https://hal.archives-ouvertes.fr

What is Decidable in Separation Logic Beyond Progress,
Connectivity and Establishment? ⋆

Tanguy Bozec1, Nicolas Peltier1[0000−0002−8943−7000], Quentin

Petitjean2�[0009−0004−6504−8336], and Mihaela Sighireanu2[0000−0002−1925−089X]

1 Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble France
2 Univ. Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190

Gif-sur-Yvette, France

Abstract. The predicate definitions in Separation Logic (SL) play an important
role: they capture a large spectrum of unbounded heap shapes due to their in-
ductiveness. This expressiveness power comes with a limitation: the entailment
problem is undecidable if predicates have general inductive definitions (ID). Iosif
et al. [10] proposed syntactic and semantic conditions, called PCE, on the ID
of predicates to ensure the decidability of the entailment problem. We provide
a (possibly nonterminating) algorithm to transform arbitrary ID into equivalent
PCE definitions when possible. We show that the existence of an equivalent PCE
definition for a given ID is undecidable, but we identify necessary conditions that
are decidable. The algorithm has been implemented, and experimental results are
reported on a benchmark, including significant examples from SL-COMP.

Keywords: Separation logic · Inductive definitions · Bounded treewidth frag-
ment · PCE fragment · Symbolic heaps · Decision procedures

1 Introduction

Separation logic (SL) [11,13] is widely used in verification to reason about programs
manipulating dynamically allocated memory. Formulas in SL are defined from atoms
of the form x → (y1, . . . , yk), stating that at location (i.e., a memory address), x is
allocated a memory block containing the tuple built from values of y1, . . . , yk, and emp,
stating that the heap is empty, i.e., that there are no allocated locations. SL includes the
standard logical connectives and quantifiers, together with a special connective φ1⋆φ2,
called separating conjunction, asserting that formulas φ1 and φ2 are satisfied on disjoint
parts of the heap. This particular feature of the logic ensures the scalability of program
analyses by enabling local reasoning: the properties of a program may be asserted and
established by referring only to the part of the heap that is affected by the program. To
specify recursive data structures, the SL formulas include predicate atoms defined by
inductive rules with a fixpoint semantics. For instance, list segments from x to y may be
defined by the following rules:

ls(x, y)⇐ emp ⋆ x ≈ y , ls(x, y)⇐ ∃z.
(
x→ (z) ⋆ ls(z, y)

)
. (1)

⋆ This work has been partially funded by the French National Research Agency project
ANR-21-CE48-0011.

Many problems in verification boil down to checking the validity of entailments
between formulas in SL. In general, unsurprisingly, entailment is undecidable. How-
ever, several fragments have been identified for which the entailment problem is decid-
able. Among these fragments, the so-called PCE fragment is one of the most expressive
ones [10]. Decidability was initially established by reduction to monadic second-order
logic on graphs with bounded treewidth. Later, more efficient algorithms were proposed
[12,4], and the problem turned out to be 2-Exptime-complete [3]. The PCE fragment is
defined by restricting the syntax and the semantics of the inductive rules defining the
predicates. Each rule is required to satisfy three properties (formally defined later):
(P)rogress, (C)onnectivity and (E)stablishment. Informally, the conditions respectively
assert that: (P) every rule allocates exactly one location; (C) the allocated locations have
a tree-shaped structure which mimics the call tree of the predicates, and (E) every lo-
cation not associated with a free variable is (eventually) allocated. A PCE formula is
a formula in which all predicates are defined by PCE rules. Most usual data structures
in programming can be defined using PCE rules. However, the PCE conditions impose
rigid constraints on the rules’ syntax, which are not necessarily satisfied in practice by
user-provided rules. For instance, the above rules of ls (Eq. (1)) are not PCE (because
the first rule of ls allocates no location), while the following ones, although specifying
non-empty list segments, are PCE:

ls+(x, y)⇐ x→ (y) , ls+(x, y)⇐ ∃z. (x→ (z) ⋆ ls+(z, y)) . (2)

The non-PCE formula ls(x, y) can then be written as a PCE formula (emp ⋆ x ≈
y) ∨ ls+(x, y). Other, rather natural, definitions of ls+ can be given, which are not
PCE (the second rule of lsm allocates no location, and the second rule of lse is not
connected):

lsm(x, y)⇐ x→ (y) , lsm(x, y)⇐ ∃z. (lsm(x, z) ⋆ lsm(z, y)) , (3)
lse(x, y)⇐ x→ (y) , lse(x, y)⇐ ∃z. (lse(x, z) ⋆ z→ (y)) . (4)

Similarly, the following definition of lists of odd length is not PCE:

ls1(x, y)⇐ x→ (y) , ls1(x, y)⇐ ∃z1, z2.
(
x→ (z1)⋆z1 → (z2)⋆ls1(z2, y)

)
, (5)

but it is clear that it can be transformed into a PCE definition by replacing the inductive
rule (at right) with the following ones:

ls1(x, y)⇐ ∃z1.
(
x→ (z1)⋆ls2(z1, y)

)
, ls2(z1, y)⇐ ∃z2.

(
z1 → (z2)⋆ls1(z2, y)

)
.

(6)
A natural question thus arises, which has not been investigated so far: can algorithms

be provided to identify whether a formula can be rewritten into an equivalent PCE
formula and to effectively compute such a formula (and the associated inductive rules)
if possible? The present paper aims to address these issues.
Contributions. We first observe that the PCE problem — i.e., the problem of testing
whether a given formula admits an equivalent PCE formula — is undecidable. The re-
sult follows from the undecidability of testing whether context-free grammar is regular.
Then, we provide a procedure for transforming some formulas that do not satisfy the

2

PCE conditions into equivalent PCE formulas. Equivalence is guaranteed in all cases,
but the procedure does not always terminate. We also identify cases for which the for-
mulas cannot possibly admit any equivalent PCE formula. More precisely, we identify
a property called PCE-compatibility, which is strictly weaker than PCE, in the sense
that any formula that is equivalent to a PCE formula is PCE-compatible, but the con-
verse does not hold, and we prove that this property is decidable. To sum up, given
a formula φ, the procedure may either terminate with a negative answer (if φ is not
PCE-compatible) or may terminate with a positive answer and output a PCE formula
equivalent to φ or may diverge (if φ is PCE-compatible, but no equivalent PCE formula
can be obtained).

To our knowledge, there is no published work on this topic. In [9], the authors pro-
posed inductive definitions (ID, termed “recursive definitions” in [10]) with syntactic
restrictions incomparable to PCE since they require linearity and compositionality of
the ID to obtain decidability of the entailment problem. This class of ID (disregarding
data constraints) may be translated by our procedure into PCE form, i.e., they are PCE-
compatible. In [5], other decidable fragments of entailment problems are considered,
which do not fulfil the PCE conditions but can be reduced to PCE entailment. Unlike
the present approach, the reduction proposed in [5] does not preserve the equivalence of
formulas. In [4], the establishment condition is replaced by a condition on the equalities
occurring in the problem.

Due to the lack of space and readability, some basic notations, detailed proofs of our
results, and additional information about the implementation and experimental results
are included in the appendix.

2 Separation Logic with Inductive Definitions

We recall the definition of the syntax and semantics of SL with inductive definitions.
Missing definitions, further explanations and examples can be found in [10]. We briefly
review standard notations: card(A) denotes the cardinality of set A, and A ⊎ B denotes
the disjoint union of sets A and B. The set {x ∈ Z | i ≤ x ≤ j} is denoted by Ji, jK.
The domain of a function f is written dom(f). The equivalence class of an element x
w.r.t. some equivalence relation 1 is written [x]1, and the set {[x]1 | x ∈ S } is written
S 1. The relation 1 will sometimes be omitted if it is clear from the context. We often
identify an equivalence relation 1 with the set of its equivalence classes. For any binary
relation→, we denote by→∗ its reflexive and transitive closure. A set R is a set of roots
for → if for all elements x, y such that x → y, there exists r ∈ R such that r →∗ x. It
is minimal if, moreover, there is no set of roots R′ such that R′ ⊂ R (where ⊂ denotes
strict inclusion).

Definition 1 (SL formulas). Let V be a countably infinite set of variables, and let P
be a set of spatial predicate symbols, where each symbol p ∈ P is associated with a
unique arity #(p) (with countably infinite sets of predicate symbols of each arity). The
set of SL-formulas (or simply formulas) φ is inductively defined as follows:

φ := emp | x→ (y1, . . . , yk) | x ≈ y | x ̸≈ y | φ1∨φ2 | φ1⋆φ2 | p(x1, . . . , x#(p)) | ∃x. φ1

where φ1, φ2 are formulas, p ∈ P, k ∈ N and x, y, x1, . . . , x#(p), y1, . . . , yk ∈ V.

3

Note that negations are not supported. The considered fragment is similar to that
of [4] (with disjunctions added), with the slight difference that points-to atoms x →
(y1, . . . , yk) contain tuples of arbitrary length k ≥ 0. Let fv(φ) be the set of free variables
in φ. A substitution σ is a function from variables to variables; its domain dom(σ) is
the set of variables x such that σ(x) , x, and its image img(σ) = σ(dom(σ)). For
any expression (variable, tuple or set of variables, or formula) e, we denote by eσ the
expression obtained from e by replacing every free occurrence of a variable x by σ(x).
A symbolic heap is a formula containing no occurrence of ∨. By distributivity of ⋆ and
∃ over ∨, any formula φ can be reduced to an equivalent disjunction of symbolic heaps,
denoted by dnf (φ). An inductive rule associated with the predicate p has the form
p(x1, . . . , xn) ⇐ φ, where x1, . . . , xn are pairwise distinct variables, n = #(p), and φ is
a formula with fv(φ) ⊆ {x1, . . . , xn}. If φ is not a symbolic heap, then p(x1, . . . , xn) ⇐
φ may be replaced by the rules {p(x1, . . . , xn) ⇐ φi | i ∈ J1,mK}, where φ1, . . . , φm

are symbolic heaps such that
∨m

i=1 φi is dnf (φ). We assume in the following that this
transformation is applied eagerly to every rule. A set of inductive definitions (SID) R
is a set of inductive rules such that, for all predicates p, R contains finitely many rules
associated with p. We write p(y1, . . . , yn) ⇐R ψ if R contains a rule p(x1, . . . , xn) ⇐ φ,
with ψ = φ{xi 7→ yi | i ∈ J1, nK}.

Definition 2 (SL structure). Let L be a countably infinite set of so-called locations.
An SL-structure is a pair (s, h) where s is a store, i.e., a partial function from V to L,
and h is a heap, i.e., a partial finite function from L to L∗, which can be written as a
relation: h(ℓ) = (ℓ1, . . . , ℓk) iff (ℓ, ℓ1, . . . , ℓk) ∈ h, k ∈ N.

For any heap h, we let ref (h) = {ℓ | ℓ0 ∈ dom(h), ℓ occurs in h(ℓ0)}, loc(h) = ref (h)∪
dom(h) and dgl(h) = loc(h)∖dom(h) (for “dangling pointers”). Locations in dom(h) and
variables x such that s(x) ∈ dom(h) are allocated. We write ℓ →h ℓ′ iff ℓ ∈ dom(h), and
ℓ′ occurs in h(ℓ).

Definition 3 (SL semantics). Given a formula φ, a SID R and a structure (s, h) with
fv(φ) ⊆ dom(s), the satisfaction relation |=R is inductively defined as the least relation
such that (s, h) |=R φ iff one of the following conditions holds:

– φ = emp and h = ∅; or φ = (x→ (y1, . . . , yk)) and h = {(s(x), s(y1), . . . , s(yk))};
– φ = (x ≈ y), s(x) = s(y) and h = ∅; or φ = (x ̸≈ y), s(x) , s(y) and h = ∅;
– φ = φ1 ∨ φ2 and (s, h) |=R φi, for some i ∈ {1, 2}; or φ = φ1 ⋆ φ2 and there exist

disjoint domain heaps h1, h2 such that h = h1⊎h2 and (s, hi) |=R φi, for all i ∈ {1, 2};
– φ = ∃x. ψ and (s′, h) |=R ψ, for some s′ matching s on all variables distinct from x;
– φ = p(x1, . . . , x#(p)), p ∈ P and (s, h) |=R ψ for some ψ such that φ⇐R ψ.

We write φ |=R ψ if for every structure (s, h) we have (s, h) |=R φ =⇒ (s, h) |=R ψ. If
both φ |=R ψ and ψ |=R φ hold, then we write φ ≡R ψ.

Definition 4 (SL model). An R-model of φ is a structure (s, h) such that (s, h) |=R φ.
Given two pairs (φ,R) and (φ′,R′), where φ, φ′ are formulas and R,R′ are SID, we
write (φ,R) ≡ (φ′,R′) iff (s, h) |=R φ ⇐⇒ (s, h) |=R′ φ′ holds for all structures (s, h).

4

We emphasize that the atoms x ≈ y or x ̸≈ y only hold for empty heaps (this con-
vention simplifies notations as it avoids the use of standard conjunction). Formulas are
taken modulo the usual properties of SL connectives: associativity and commutativity
of ⋆ and ∨, neutrality of emp for ⋆, commutativity of ≈, ̸≈, and also modulo prenex
form and α-renaming. We also assume that bound variables are renamed to avoid any
name collision. Rules are defined up to a renaming of free variables.

3 The PCE Problem

We now recall the conditions from [10], ensuring the decidability of the entailment
problem.

Definition 5 (PCE rule and SID). Let r be a function mapping every spatial predicate
p ∈ P to an element of J1, #(p)K. For any atom p(x1, . . . , xn), the variable xr(p) is the root
of p(x1, . . . , xn), and the root of an atom x→ (y1, . . . , yk) is x. A rule p(x1, . . . , xn)⇐ φ
is PCE w.r.t. some SID R if it is:

– progressing, i.e., φ is of the form ∃u1, . . . , um. (xi → (y1, . . . , yk)⋆ψ), where m ≥ 0,
ψ is a formula with no occurrence of→,∃,∨, and i = r(p);

– connected, i.e., moreover, all spatial predicate atoms occurring in ψ are of the form
q(z1, . . . , z#(q)) with zr(q) ∈ {y1, . . . , yk};

– established, i.e., moreover, for all i ∈ J1,mK, and for all structures (s, h) such that
(s, h) |=R ψ, either s(ui) ∈ dom(h) or s(ui) ∈ {s(x j) | j ∈ J1, nK}.

A SID R is PCE if every rule is PCE w.r.t. R. A formula φ is PCE if every predicate used
in φ is defined by PCE rules.

The problem we are investigating in the present paper is the following:

Definition 6 (PCE problem). Given a pair (φ,R), the PCE problem lies in deciding
whether there exists a formula φ′ and a PCE SID R′ such that (φ,R) ≡ (φ′,R′).

Assuming that φ is atomic is sufficient (complex formulas may be introduced by
inductive rules), but the possibility that φ′ is non-atomic allows for greater expressive-
ness. If one restricts oneself to list-shaped structures denoting words, then the PCE
conditions essentially state that the set of denoted words is regular. This entails the fol-
lowing result, obtained by reduction from the regularity of context-free languages (see
App. A):

Theorem 1. The PCE problem is undecidable.

It may be observed that the structures (s, h) satisfying PCE pairs (φ,R) necessarily
satisfy two essential properties. First, due to the connectivity condition, these structures
necessarily admit a bounded number of roots, which correspond to locations assigned
by s to (possibly quantified) variables occurring inside φ (at some root position in a
predicate or points-to atom, as defined in Def. 5).

Structures with multiple roots are permitted (e.g., doubly linked lists), but due to the
connectivity condition, if x is the root of an atom φ, then, for every model (s, h) of φ, the

5

singleton {s(x)} is a set of roots for →h (i.e., all locations in loc(h) must be accessible
from s(x)). Disjoint structures built in parallel (such as two lists with the same length)
are not allowed3. Second, these structures also admit a bounded number of “dangling
pointers” (i.e., elements of dgl(h)), which again correspond (by s) to variables occurring
in φ, since all the variables introduced by unfolding rules must be allocated due to the
establishment property. The latter property turned out to be essential for decidability [6].
This yields the definition of a property called PCE-compatibility:

Definition 7 (PCE-compatibility). Let k ∈ N. A structure (s, h) is k-PCE-compatible
if (i) card(dgl(h)) ≤ k and (ii) there exists a set of roots R for →h with card(R) ≤ k. A
pair (φ,R) is k-PCE-compatible if every R-model of φ is k-PCE-compatible.

Proposition 1. Let φ be a formula, and R be a PCE SID. Every R-model (s, h) of φ is
k-PCE-compatible, where k is the number of (free or bound) variables in φ.

Example 1. Let us consider the formula φ = p(x, y) and the SID R1 below. For read-
ability, we employ the same variable names in predicate definitions and predicate calls
to avoid introducing the renaming of variables:

p(x, y)⇐ ∃z. z→ (x, y) ,
p(x, y)⇐ x→ (y) ⋆ q(y) ,

q(y)⇐ ∃z, u, t.
(
y→ (z, t) ⋆ r(z, u, t)

)
,

r(z, u, t)⇐ u ̸≈ t ⋆ z→ (u) ⋆ t → (t) .
(7)

The SID R1, and thus (φ,R1), are not PCE. In the first rule for p, z is root but not a
free variable, the rule defining q is not established for the existential variable u and the
rule defining r does not respect the progress condition as it has two points-to atoms.

4 Overview of Our Procedure

The (nonterminating) algorithm for transforming a pair (Φ,R) into an equivalent PCE
pair is divided into four main steps (from now on, we denote the target formula by Φ,
whereas the meta-variable φ is reserved for formulas occurring in inductive rules).

Step 1: We compute abstractions of the models of Φ (and of all relevant predi-
cate atoms). The aim is to extract relevant information about the constraints satisfied
by these models concerning (dis)equalities, heap reachability and allocated locations.
The abstractions are constructed over a set of variables that includes the variables freely
occurring in the formulas, together with some additional variables — the so-called in-
visible variables — that correspond to existential variables that either occur in Φ or
are introduced by unfolding inductive rules. The usefulness of invisible variables will
be demonstrated later. The computation does not terminate in general, as the set of ab-
stractions is infinite (due to the presence of invisible variables). However, we prove that
the computation terminates exactly when the considered formula is k-PCE-compatible
(for some k ∈ N). Furthermore, we introduce a technique — the so-called ISIV condi-
tion — to detect when the formula is not k-PCE-compatible during the computation of

3 Indeed, to satisfy the connectivity condition the two lists must be defined in distinct atoms (as
they are not connected). But then it is impossible to ensure that they have the same number of
elements.

6

the abstractions. This ensures termination in all cases and also proves that the problem
of deciding whether a given pair is k-PCE-compatible, for some k, is decidable. This
step is detailed in Sect. 5.

Step 2: We transform the set of rules in order to ensure that every predicate is asso-
ciated with a unique abstraction, in which all invisible variables are replaced by visible
ones. This step always terminates. It adds some combinatorial explosion that could be
reduced by a smart transformation, but it greatly simplifies the technical developments.
This step is detailed in Sect. 6.

Step 3: We apply some transformations on the SID to ensure that every abstraction
admits exactly one root. This step may fail in the case where the structures described
by the rules do not have this property. See Sect. 7.

Step 4: We recursively transform any rule p(#»x)⇐ φ into a PCE rule by decompos-
ing φ into a separating conjunction y→ (z1, . . . , zk)⋆φ1⋆ · · ·⋆φk where y is the root of
the structure and every φi encodes a structure of root zi. Each of these formulas φi may
then be associated with fresh predicate atoms if needed. The process is repeated until
one gets a fixpoint. Equivalence is always preserved, but termination is not guaranteed.
This step is detailed in Sect. 8.

Before describing all these steps, we wish to convey some general explanations
about the difficulties that arise when one tries to enforce each condition in Def. 5.
The progress condition can often be enforced by introducing additional predicates to
ensure that each rule allocates exactly one location. For instance, the definition of lists
of odd length in Eq. (5) is not PCE, but it can be transformed into a PCE definition
by replacing the inductive rule (at right) with the two inductive rules given in Eq. (6)
(introducing a new predicate ls2(x, y)). The key point is that the root of the structure
must be associated with a parameter of the predicate, which sometimes requires the
addition of new existential variables in the formula. For instance, the formula p(x) with
p(x) ⇐ ∃y. y → (x) will be written: ∃y. p′(x, y) with p′(x, y) ⇐ y → (x). The set of
roots is computed in Step 1 above, and invisible roots (like y in the above example) are
made visible during Step 2. Note that this technique is applicable only if the number of
such roots is bounded; the ISIV condition will ensure that this constraint is satisfied.
The connectivity condition is enforced by using the abstract reachability relation com-
puted during Step 1 to identify the predicate atoms that do not satisfy this condition and
by modifying the rules to delay the call to these predicates until the connectivity condi-
tion is satisfied. For instance, the first rule below is modified into the second one:

q(x)⇐ ∃y1, y2, y3. (x→ (y1, y2) ⋆ ls+(y1, y3) ⋆ ls+(y3, y3) ⋆ ls+(y2, y2)) , (8)
q(x)⇐ ∃y1, y2, y3. (x→ (y1, y2) ⋆ q′(y1, y3) ⋆ ls+(y2, y2)) , (9)

where q′(y1, y3) is defined similarly to ls+(y1, y3) in Eq. (2) except the first rule:

q′(y1, y3)⇐ y1 → (y3)⋆ ls+(y3, y3) , q′(y1, y3)⇐ ∃z. (y1 → (z)⋆ q′(z, y3)) . (10)

The establishment condition may be enforced in two ways. If the considered exis-
tential variable only occurs in pure atoms (disequalities or equalities), then it can be
eliminated using usual quantifier elimination techniques. For instance, the predicate
r(x)⇐ ∃y. x→ ()⋆ x ̸≈ y can be reduced into r(x)⇐ x→ () since a location y distinct

7

from x always exists (recall that the equational atom x ̸≈ y only holds for empty heaps).
Otherwise, one must collect the set of all variables that are reachable but not allocated
and associate them with new existential variables in φ (and parameters of predicates).
For instance, the formula r′(x) with r′(x)⇐ ∃y. x→ (y) is transformed into ∃y. r′′(x, y)
with r′′(x, y) ⇐ x → (y). These variables correspond to invisible variables computed
during Step 1 and transformed into visible variables in Step 2. Again, the ISIV condition
ensures that the number of such variables is bounded.

5 Abstracting Models and Formulas

We formalize the notion of abstraction that summarizes the main features (locations
defined and allocated, reachability, etc.) of models and SL-formulas. Then, we define
two relations between abstractions and SL-structures. Finally, we define the abstraction
process for a formula, i.e., how we attach a set of abstractions to an SL-formula.

Definition 8 (Abstraction). An abstraction is a tuple A = ⟨V,∽,+,Vv,Va, h,⇝⟩where:
(i) V is a set of variables and ∽ is an equivalence relation on V; (ii) + (disequality
relation) is a symmetric and irreflexive binary relation on V; (iii) Vv ⊆ V is a finite
set of variables called visible variables; (iv) Va ⊆ V is a subset of classes of variables
called allocated variables; (v) h : Va −→ V

∗
is a partial heap mapping which associates

a tuple of classes of variables of arbitrary size to some class of allocated variables;
(vi)⇝⊆ V × V is a reachability relation which is a relation such that ∀ [x] ∈ Va and
∀
[
y
]
∈ h([x]), ([x] ,

[
y
]
) ∈⇝. The set of all abstractions is denoted by A. We designate

the components of an abstraction A using the dotted notation by A•V, A•Vv, etc. The set
of invisible variables of A is A•Vinv ≜ A•V ∖ A•Vv.

Abstractions are taken modulo renaming of invisible variables: two abstractions, A1
and A2, are considered equal, denoted A1 = A2, if there exists a renaming σ of invisible
variables such that A1 = A2σ.

Ap
1 : ∃z [x]

[
y
]

Ar
1 : [z] [u]

[t]

Aq
1 :

[
y
]

∃z

∃t

∃u

Fig. 1. Examples of abstractions.

Example 2. Fig. 1 graphically represents three abstractions denoted Ap
1 , Ar

1 and Aq
1.

Equivalence classes are represented by circles and are labelled by variable names. Allo-
cated classes are filled grey; invisible variables are prefixed with ∃, and [] are omitted.
Disequalities are represented with dashed lines, while heap and reachability relations
are represented with tick resp. snaked arrows.

8

An SL-structure is a model of an abstraction if its store is coherent with the ab-
straction (i.e., it maps equal variables to the same location and disequal variables to
different locations) and its heap contains at least all the reachability relations of the ab-
straction. However, the model may contain more allocated locations and paths between
locations. On the other hand, an abstraction of an SL-structure captures exactly the vis-
ibility of variables in the store, the equivalence between variables and the reachability
of locations in the heap; it abstracts the paths between locations labelled by (visible or
invisible) variables and going through locations not labelled by some variable.

Definition 9 (Model and Abstraction). A structure (s, h) is a model of an abstraction
A, denoted by (s, h) |= A, if there exists a functional extension ṡ of s satisfying the
following conditions: (i) dom(ṡ) = A•V and dom(s) = A•Vv; (ii) If (x, y) ∈ A•∽ then
ṡ(x) = ṡ(y); (iii) If ([x] ,

[
y
]
) ∈ A•+ then ṡ(x) , ṡ(y); (iv) For all x ∈ A•V, if [x] ∈

A•Va then ṡ(x) ∈ dom(h); (v) For all [x] ∈ A•Va if A•h([x]) = (
[
y1
]
, . . . ,

[
yk
]
) then

h(ṡ(x)) = (ṡ(y1), . . . , ṡ(yk)); (vi) For all x, y ∈ V, if ([x] ,
[
y
]
) ∈ A•⇝ then there exists a

path ℓ0 →h · · · →h ℓn in h such that ℓ0 = ṡ(x), ℓn = ṡ(y) and {ℓ1, . . . , ℓn−1} ∩ img(ṡ) = ∅.
If (s, h) |= A and the converses of Items (ii), (iii) and (vi) hold, then A is an abstraction

of (s, h). The set of all abstractions of (s, h) is denoted by abs(s, h).

Example 3. Consider the structure (s1, h1) defined over the set of variables {x, y} with
s1(x) = ℓ1, s1(y) = ℓ2 , ℓ1, h1(ℓ0) = (ℓ1, ℓ2). Ap

1 from Fig. 1 is an abstraction of
(s1, h1) for ṡ1(z) = ℓ0. Moreover, Ap

1 has as model (s2, h2) with s1(x) = s1(y) = ℓ1,
h1(ℓ0) = (ℓ1, ℓ1).

The following operations on abstractions are used in our abstraction process.

Definition 10 (Pure abstractions). The empty abstraction, denoted Aemp, has all its
components empty sets. Let V0 be a set of variables. The abstraction of equalities
over V0, denoted A≈(V0), is ⟨V0, {V0}, ∅,V0, ∅, ∅, ∅⟩, i.e., all variables are visible and
in the same equivalence class. The abstraction of disequalities over V0 is A̸≈(V0) =
⟨V0, IdV0 ,V

2
0 ∖ IdV0 ,V0, ∅, ∅, ∅⟩, i.e., all variables are visible and pairwise distinct, and

none is allocated.

Note that we identify equivalence relations with the set of their equivalence classes so
that {V0} denotes the relation {(x, y) | x, y ∈ V0}.

Definition 11 (Quantified abstractions). Let V0 ⊆ A•V be a set of variables. The
hiding of V0 in A, denoted by A∃(V0), is the abstraction having the same components as
A except the set of visible variables, i.e., A∃(V0) •Vv = A•Vv ∖ V0.

Definition 12 (Separated abstractions). Let A1 and A2 be two abstractions; w.l.o.g.,
we consider that A1 •Vinv ∩ A2 •Vinv = ∅, i.e., the sets of invisible variables are disjoint
(modulo renaming). Let V⋆ = A1 •V ∪ A2 •V and the equivalence relation ∽⋆ over V⋆

defined by the transitive closure of A1 •∽∪A2 •∽. Consider now the relation +⋆ over V⋆
∽⋆

(the set of equivalence classes of ∽⋆) defined by the symmetric closure of the relation:
{([x]∽⋆ ,

[
y
]
∽⋆

) | x, y ∈ V⋆, ([x]Ai•∽ ,
[
y
]

Ai•∽
) ∈ Ai •+, i ∈ {1, 2}} ∪ {([x1]∽⋆ , [x2]∽⋆) | xi ∈

V⋆, [xi]Ai•∽ ∈ Ai •Va, i ∈ {1, 2}}. If +⋆ is irreflexive, then A1 and A2 are separated.

9

Definition 13 (Separating abstractions). The separating composition A1 ⋆ A2 of two
separated abstractions A1 and A2 is the abstraction A⋆ such that:

– A⋆ •V = V⋆; A⋆ •∽ =∽⋆; A⋆ •+ =+⋆;
– A⋆ •Vv = A1 •Vv ∪ A2 •Vv;
– A⋆ •Va = {[x]A⋆•∽ | [x]Ai•∽ ∈ Ai •Va, i ∈ {1, 2}};
– A⋆ •h = [[x]A⋆•∽ 7→ (

[
y1
]

A⋆•∽ , . . . ,
[
yn
]

A⋆•∽) | Ai •h([x]Ai•∽) = (
[
y1
]

Ai•∽
, . . . ,

[
yn
]

Ai•∽
),

i ∈ {1, 2}];
– A⋆ •⇝ = {([x]A⋆•∽ ,

[
y
]

A⋆•∽) | ([x]Ai•∽ ,
[
y
]

Ai•∽
)∈ Ai •⇝, i ∈ {1, 2}}.

The following definitions are used to build the reachability relation in abstractions
by replacing chains [x0] 7→ [x1] 7→ . . . 7→ [xn−1] 7→ [xn] related by A•h with the tuple
([x0] , [xn]) in A•⇝ if the variables xi with i ∈ [1, n − 1] are not “special” for A.

Definition 14 (Roots). The roots of an abstraction A, root(A), is the set of minimal sets
of roots of A•⇝. We denote by x ∈∀ root(A) or [x] ∈∀ root(A) that [x] belongs to all
sets in root(A) and by x ∈∃ root(A) or [x] ∈∃ root(A) that [x] belongs to at least one set
in root(A).

As A•⇝may contain cycles, roots are not uniquely defined. However, the algorithm
for computing abstractions will ensure that root(A) is always non-empty.

Definition 15 (Special and persistent variables). A variable x ∈ A•Vinv is special
if its equivalence class is a singleton and it satisfies one of the following conditions:
(i) x ∈∀ root(A), i.e., x occurs in all sets of roots of A; (ii) [x] < A•Va, i.e., x is not
allocated, and there exists

[
y
]
∈ A•Va such that (

[
y
]
, [x]) ∈ A•⇝, i.e., x is reachable

from an allocated variable; (iii) there exists y ∈ A•Vv such that y ∈∃ root(A) and
[x] ∈ A•h(

[
y
]
), i.e., x is pointed to by a possible root that is visible; (iv) there exists[

y
]
∈ A•Va such that

[
y
]
∈∀ root(A) and [x] ∈ A•h(

[
y
]
), i.e., x is pointed to by a

necessary root that is visible or invisible. An invisible variable is persistent if it satisfies
one of the items (i) or (ii) above. The set of persistent variables is denoted by A•Vper.

Example 4. Abstractions Ap
1 and Aq

1 in Fig. 1 have a singleton set of roots built from
one class: root(Ap

1) = {{[z]}} and root(Aq
1) = {{

[
y
]
}}, while Ar

1 has a unique set of roots
but containing two classes root(Ar

1) = {{[z] , [t]}}. The variable z is not visible in Ap
1 , but

it is special and persistent since it fulfils the condition (i) of Def. 15. All the variables
in Aq

1 are special, but only y and u are persistent.

Definition 16 (Disconnected variable). A variable x ∈ A•Vv is disconnected if it sat-
isfies the following two conditions: (1) [x] < A•Va, i.e., x is not allocated; and (2) for
all
[
y
]
∈ A•Va, (

[
y
]
, [x]) < A•⇝, i.e., x is not pointed by an allocated variable.

If a variable is disconnected, any variable in its equivalence class is also discon-
nected. Moreover, a disconnected variable cannot be special. For any equivalence rela-
tion 1, we denote by 1∖x the restriction of 1 to the elements distinct from x. Similarly,
S ∖ x denotes the set {

[
y
]
| y ∈ S , y , x}, and for any relation→ on equivalence classes

of 1,→ ∖ x is the corresponding relation on equivalence classes of 1 ∖ x.

10

Definition 17 (Deletion of variables not special). Let A be an abstraction and x ∈
A•Vinv a variable that is not special. We define rem(A, x), the abstraction obtained by
deleting x from A as follows: Arem = ⟨A•V ∖ {x}, A•∽∖ x, A•+∖ x, A•Vv, A•Va ∖ x, A•h∖
x,⇝′ ∖ x⟩ with ⇝′= {(

[
y
]
, [z]) |

[
y
]
, [z] ∈ A•V ∧ (

[
y
]
, [x]) ∈ A•⇝ ∧ ([x] , [z]) ∈

A•⇝} ∪ A•⇝. We denote by rem(A) the abstraction obtained by removing all variables
not special in A.

Definition 18 (Set of abstractions of a symbolic heap). Let φ be a symbolic heap
formula of SL. The set of abstractions of a formula φ, denoted abs(φ), is inductively
constructed using the rules in Tab. 1.

Example 5. Consider the pair (φ,R) introduced by Ex. 1. The abstractions of φ are built
by firstly building the abstractions of the predicates r(z, u, t) and then q(y) — that calls
r — defined by the rules in Eq. (7). Then φ = p(x, y) has two abstractions. The first is
Ap

1 from Fig. 1, obtained from the non-recursive rule of p. The second is Ap
2 in Fig. 2,

obtained from A2 by removing variables z and t using the procedure in Def. 17 because
they are not special. The abstraction A2 is obtained by applying the rule [Sep] on Aq

1 in
Fig. 1, which is an abstraction of q(y), and the abstraction obtained by the rule [Pto] for
x→ (y).

Ap
2 : [x]

[
y
]

∃u A2 :
[
y
]

[x]

∃z

∃t

∃u

Fig. 2. Abstraction A2

Given A ∈ abs(φ), we consider the implicit tree of construction of A using rules in
Def. 18: every node of this tree is an abstraction created by one of the rules [Ex], [Pred]
and [Sep], and every leaf is an abstraction of an atomic formula. Therefore, every node
of this tree is associated with a formula, which is a sub-formula of an unfolding of φ.

Definition 19 (Condition “Infinite Set of Invisible Variables” (ISIV)). The abstrac-
tion A ∈ abs(p(x1, . . . , xn)) satisfies the condition ISIV if there exists an abstraction A′

in the construction tree of A such that:

1. A′ is associated with a renaming p(y1, . . . , yn) of p(x1, . . . , xn);
2. A has strictly more persistent variables than A′: card(A′ •Vper) < card(A•Vper);
3. the projections of abstractions A and A′ on their visible variables are equal (modulo

a renaming of the arguments xi ← yi).

Intuitively, the condition asserts that a “loop” exists in the unfolding tree of p, where
persistent variables are introduced inside the loop. As one can go through the loop
an arbitrary number of times, this entails that some branch exists with an unbounded

11

Table 1. Computing Abstractions of a Symbolic Heap Formula

Emp
abs(emp) ∋ Aemp

Eq
abs(x ≈ y) ∋ A≈({x, y})

NEq
abs(x ̸≈ y) ∋ A̸≈({x, y})

Pto

A•V = A•Vv = {x, y1, . . . , yn} A•∽ = Id A•+ = ∅

A•Va = {[x]} A•h = [[x] 7→ (
[
y1
]
, . . . ,

[
yn
]
)] A•⇝ = {([x] ,

[
yi
]
) | i ∈ J1, nK}

abs(x→ (y1, . . . , yn)) ∋ A

Sep
abs(ψ1) ∋ A1 abs(ψ2) ∋ A2 A1, A2 are separated A = rem(A1 ⋆ A2)

abs(ψ1 ⋆ ψ2) ∋ A

Ex
abs(ψ) ∋ A′ A = rem(A′∃({x}))

abs(∃x. ψ) ∋ A

Pred
abs(∃y1, . . . , yn. (y1 ≈ x1 ⋆ · · · ⋆ yn ≈ xn ⋆ ψ)) ∋ A p(y1, . . . , yn)⇐ ψ ∈ R

abs(p(x1, . . . , xn)) ∋ A

number of persistent variables, which in turn entails that non-k-PCE-compatible models
exist. If this condition is satisfied by one abstraction built during this step, the algorithm
fails. The following theorem states that the algorithm is correct and complete (proof in
App. B):

Theorem 2. Let φ be a formula and let R be an SID. We suppose that the construction
of abstractions terminates without failing. If A ∈ abs(φ), then there exists a model (s, h)
of φ such that A is an abstraction of (s, h). Moreover, if φ admits a model (s, h), then
there exists an abstraction A of φ such that (s, h) |= A.

We also show (see App. C) that the algorithm terminates, provided the ISIV con-
dition is used to dismiss pairs (φ,R) that are not k-PCE-compatible (thus that cannot
admit any equivalent PCE pair, by Prop. 1):

Theorem 3. Let φ be a formula and let R be an SID. If there exists k ∈ N such that
(φ,R) is k-PCE-compatible, then the computation of abs(φ) terminates without failure
(hence the ISIV condition is never fulfilled). Otherwise, the ISIV condition eventually
applies during the computation of abs(φ). Consequently, the problem of testing whether
(φ,R) is k-PCE-compatible for some k ∈ N is decidable.

6 Predicates with Exactly One Abstraction

We describe an algorithm reducing any pair (Φ,R) into an equivalent pair (Φ†,R†) such
that every predicate atom admits exactly one abstraction with no invisible variables.
We also get rid of some existential variables when possible. The eventual goal is to
ensure that the rules that were obtained are established (in the sense of Def. 5). We need

12

to introduce some definitions and notations. A disconnected set for an n-ary predicate
p and an abstraction A ∈ abs(p(x1, . . . , xn)) is any subset I of {1, . . . , n} such that all
variables xi for i ∈ I are disconnected in A. Let R be an SID. Let x1, . . . , xn, . . . be
an infinite sequence of pairwise distinct variables, which will be used to denote the
formal parameters of the predicates. For each n-ary predicate p occurring in R, for each
abstraction A ∈ abs(p(x1, . . . , xn)) and for all disconnected sets I for p, A, we introduce
a fresh predicate pA

I , of arity n + m − card(I), where m = card(A•Vinv). Intuitively,
pA

I will denote some “projection” of the structures corresponding to the abstraction A.
The additional arguments will denote the invisible variables. The removed arguments
correspond to disconnected variables.

Example 6. The predicate p, defined by rules on the left in Ex. 1, has two abstractions
(one by rule), Ap

1 and Ap
2 , where all roots are connected. In the same example, predicates

q and r also have only one abstraction. For all these predicates, the sets I are always ∅.

The rules associated with pA
I are obtained from those associated with p as follows.

For every formula φ such that p(x1, . . . , xn)⇐R φ, where φ is of the form ∃ #»y . (q1(#»u1)⋆
· · · ⋆ qk(#»uk) ⋆ φ′) and φ′ contains no predicate symbol, and for all abstractions Ai ∈

abs(qi(x1, . . . , x#(qi))) (for i ∈ J1, kK), we add the rule:

pA
I (#»s , x′1, . . . , x

′
m)⇐ ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆ qk

Ak
Jk

(#»t k,
#»vk) ⋆ φ′′)σ (11)

if all the following conditions hold:

– A is the abstraction computed from φ as explained in Def. 18, selecting Ai for the
abstraction of qi(x1, . . . , x#(qi)), i.e., A = rem(A′

∃(⃗z)), where {A′′} = abs(φ′) (since φ′

contains no predicate) and A′ = A1⋆ · · ·⋆Ak⋆A′′ is the abstraction computed from
the matrix (q1(#»u1) ⋆ · · · ⋆ qk(#»uk) ⋆ φ′) of φ.

– #»s (resp. #»t i) is the subsequence of x1, . . . , xn (resp. of #»ui) obtained by removing all
components of rank j ∈ I (resp. j ∈ Ji). Intuitively, I and Ji denote the parameters
that are removed from the arguments of p and qi, respectively.

– Ji is a subset of {1, . . . , #(qi)}, and for all variables z occurring as the j-th component
of #»ui, the following equivalence holds: j ∈ Ji iff z ∈ #»z ∪ {xi | i ∈ I} and z is
disconnected in A′. Note that the last condition entails that the j-th component of
#»ui is also disconnected in Ai; hence the predicate qi

Ai
Ji

exists. Intuitively, a variable
is removed if it is disconnected, and either it is existentially quantified in the rule,
or it is a free variable that was removed from the argument of p.

– (x′1, . . . , x
′
m) and #»v i are the sequences of invisible variables in A and Ai, respectively

(the order is irrelevant and can be chosen arbitrarily). We assume by renaming that
the Ai •Vinv are pairwise disjoint.

– σ is any substitution with dom(σ) ⊆ #»y and img(σ) ⊆ #»y ∪ #»s such that for all y ∈ #»y
and for all y′ ∈ #»y ∪ #»s : σ(y) = σ(y′) ⇐⇒ (y, y′) ∈ A′ •∽. Intuitively, σ is applied to
get rid of superfluous existential variables by instantiating them when it is possible,
i.e., when the variable is known to be equal to a free variable or another existential
variable4.

4 In the latter case several substitutions exist, one of them can be chosen arbitrarily (the resulting
rules are identical up to α-renaming, e.g., ∃x∃y(x ≈ y ⋆ q(x, y)) can be written ∃x(x ≈ y ⋆
q(x, y)){y← x} or ∃y(x ≈ y ⋆ q(x, y)){x← y}).

13

– φ′′ is obtained from φ′ by removing all pure atoms containing a variable that is
disconnected in A′ and does not occur in #»s .

– #»z is the sequence of variables occurring either in the formula φ′′ or in the sequences
#»t i or #»v i (for some i ∈ J1, kK) but not in {x1, . . . , xn, x′1, . . . , x

′
m}∪dom(σ) (again, the

order is irrelevant). These variables correspond to variables from #»y or #»v i that can
be eliminated during the computation of A using the rule introduced in Def. 17.

The obtained set of rules is denoted by R†. It is clear that R† is finite (up to α-
renaming) if R is finite and abs(p(x1, . . . , xn)) is finite for all n-ary predicates p in R.

Example 7. The new rules for p, q, and r defined in the SIDR1 in Ex. 1 are given below:

p
Ap

1
∅

(x, y, z)⇐ z→ (x, y) ,

p
Ap

2
∅

(x, y, u)⇐ ∃z, t. (x→ (y) ⋆

q
Aq

1
∅

(y, z, t, u)) ,

q
Aq

1
∅

(y, z, t, u)⇐ y→ (z, t) ⋆ r(z, t, u) ,

rAr
1
∅

(z, t, u)⇐ u ̸≈ t ⋆ z→ (u) ⋆ t → (t) . (12)

The arity of predicates p
Ap

2
∅

and q
Aq

1
∅

has been changed to include the invisible but

special variable u, and the predicate p
Ap

1
∅

now does not have an invisible root any more.

Example 8. In this example, we show how disconnected variables may be eliminated.
Let p, q be predicates defined by the rules: p(x, y) ⇐ ∃z. (x → (y) ⋆ q(x, z)), q(x, y) ⇐
x ̸≈ y. p(x1, x2) and q(x1, x2) both admit one abstraction, Ap and Aq, respectively, de-
fined by:

Ap = ({x1, x2}, {{x1}, {x2}}, ∅, {x1, x2}, {[x1]}{[x1] 7→ [x2]}, ∅) , (13)
Aq = ({x1, x2}, {{x1}, {x2}}, {([x1] , [x2])}, {x1, x2}, ∅, ∅, ∅) . (14)

The above transformation produces the rules: pAp

∅
(x, y) ⇐ (x → (y) ⋆ qAq

{2}(x)) and
qAr
{2}(x) ⇐ emp. The variable z is eliminated, as it is disconnected in the abstraction

corresponding to x → (y) ⋆ q(x, z). This yields the introduction of a predicate qAr
{2} in

which the second argument of q is dismissed.

The above transformation may be applied to the formulas Φ occurring in pairs
(Φ,R). Since the establishment condition applies only to the variables occurring in
the rule and not to the existential variables of Φ, there is no need to eliminate any
predicate argument in this case; thus, we may simply take I = ∅ for the predicates
pA

I such that p appears in Φ. Predicates of the form qB
I with I , ∅ will never ap-

pear at the root level in Φ, but they may appear in the rules of the predicates pA
∅

(in
practice, such rules will be computed on demand). More precisely, we denote by Φ†

the formula obtained from Φ by replacing every atom p(y1, . . . , yn) in Φ by the formula∨
A∈abs(p(x1,...,xn)) ∃

#»yA. pA
∅
(y1, . . . , yn,

#»yA), where #»yA is the sequence of variables in A•Vinv

(with arbitrary order). Note that in the case where abs(p(x1, . . . , xn)) = ∅, p(y1, . . . , yn)
is replaced by an empty disjunction, i.e., by false. The properties of this transformation
are stated by the following result (proof in App. D):

Theorem 4. (Φ,R) ≡ (Φ†,R†). Moreover, for all predicates pA
I defined in R†, the set

abs(pA
I (#»y , x′1, . . . , x

′
m)) contains exactly one abstraction.

14

7 Abstractions with Exactly One Root

We introduce an algorithm that transforms the considered SID by introducing and re-
moving predicates such that the abstraction of each predicate p defined by the new R
has only one root. This transformation is done in two steps: first, change predicates with
an abstraction without roots, and then change predicates with an abstraction with more
than one root. The transformation may fail if the structures corresponding to a given
recursive predicate have multiple roots, as such structures cannot be defined by PCE
rules (e.g., two parallel lists of the same length).

Removal of Abstractions Without Root: Let us consider every predicate p such
that its abstraction Ap ∈ abs(p(#»x)) satisfies root(Ap) = ∅. Because the abstraction of
p has no root, the associated structure has no allocated locations, and the predicate can
only be unfolded into formulas that do not contain points-to. Thus, for each unfolding
of p of abstraction A, which cannot be unfolded any more, it only contains equalities
and disequalities that are abstracted in A by A•∽ and A•+. As a consequence, we can
create a formula φA = (⋆i, j∈I≈ai ≈ a j) ⋆ (⋆i, j∈I̸≈bi ̸≈ b j) with {ai ≈ a j | i, j ∈ I≈} = A•∽
and {bi ̸≈ b j | i, j ∈ I ̸≈} = A•+. We can then replace every occurrence of p with φA.

Removal of Abstractions With Several Roots: We suppose now that for all pred-
icates p, the abstraction Ap ∈ abs(p(#»x)) verifies root(Ap) , ∅. Now let us consider
every predicate p such that its abstraction Ap ∈ abs(p(#»x)) has at least two roots, i.e.,
for all R ∈ root(Ap), card(R) ≥ 2. If p does not call itself, we unfold p by replacing each
occurrence of p with its definition using the rules in SID. Otherwise, the transformation
is considered impossible, and it fails.

At this point, if the transformation does not fail, we obtain:

Proposition 2 (Every abstraction has a single root). After applying the transforma-
tion in this section, for all predicates p, for all abstractions A ∈ abs(p(#»x)), there exists
a set R ∈ root(A) such that card(R) = 1.

Remark 1. We wish to emphasize that the failure of the above operation does not imply
that the transformation is unfeasible. For instance, one could, in principle, define two
lists of arbitrary (possibly distinct) lengths using one single inductive predicate, adding
elements in one of the lists in a non-deterministic way, although such a definition is very
unlikely to occur in practice. Then, our algorithm would fail (as it will detect that the
structure has two roots), although a PCE presentation exists. Extending the algorithm
to cover such cases is part of future work.

8 Transformation into PCE Rules

The last step of the transformation is a procedure reducing any pair (Φ†,R†) into an
equivalent pair (Φ‡,R‡) such that Φ‡ and R‡ are PCE formula resp. SID.

To this aim, we first introduce so-called derived predicates (adapted and extended
from [4]), the rules of which can be computed from the rules defining predicate symbols.
The aim is to extract from the call tree of a spatial atom the part that corresponds to
another atom. Given a SID R and two spatial atoms γ and λ, we denote by γ −−• λ the

15

atom defined by the following rules:

γ −−• λ⇐ ∃ #»x . (φ ⋆ (γ −−• λ′)) ,

γ −−• λ⇐ x1 ≈ y1 ⋆ · · · ⋆ xn ≈ yn ,

for all φ, λ′ with λ⇐R ∃ #»x . (φ ⋆ λ′) (up to AC of ⋆),

if γ = p(x1, . . . , xn) and λ = p(y1, . . . , yn), or

γ = x1 → (x2, . . . , xn) and λ = y1 → (y2, . . . , yn).
(15)

We assume that all such rules occur in R. Intuitively, γ −−• λ encodes a structure
defined as the atom λ but in which a call to γ is removed. It is easy to see that γ −−• λ
is unsatisfiable if λ is a points-to atom and γ is a predicate atom. By definition, (x1 →

(x2, . . . , xn)) −−• (y1 → (y2, . . . , ym)) is equivalent to x1 ≈ y1 ⋆ · · ·⋆ xn ≈ yn if m = n and
unsatisfiable otherwise. These remarks can be used to simplify the rules above (e.g., by
removing rules with unsatisfiable bodies).

For instance, given the rules p(x) ⇐ ∃y. (x → (y) ⋆ p(y)) and p(x) ⇐ x → (), the
derived atoms p(x′) −−• p(x) and (x′ → ()) −−• p(x) both denote a list segment from x to
x′, whereas (x′ → (x′′)) −−• p(x) denotes a list with a “hole” at x′. The corresponding
rules are, after simplification:

p(x′) −−• p(x)⇐ ∃y. (x→ (y) ⋆ (p(x′) −−• p(y))) , p(x′) −−• p(x)⇐ x ≈ x′ , (16)

x′ → () −−• p(x)⇐ ∃y. (x→ (y) ⋆ (x′ → () −−• p(y))) , x′ → () −−• p(x)⇐ x ≈ x′ , (17)

(x′ → (x′′)) −−• p(x)⇐ ∃y. (x→ (y) ⋆ (x′ → (x′′) −−• p(y))) , (18)

(x′ → (x′′)) −−• p(x)⇐ x ≈ x′ ⋆ p(x′′) . (19)

The operator −−• can be nested, for instance (x1 → (x′1)) −−• (p(x2) −−• p(x)) denotes
a list segment from x to x2 with a hole at x1.

Consider a rule ρ = p(x1, . . . , xn) ⇐ φ, where φ′ denotes the quantifier-free for-
mula such that φ = ∃ #»z . φ′. By Thm. 4, the formulas φ and φ′ have unique abstrac-
tions Aφ and Aφ′ , respectively (in what follows the notations [x] and ⇝ always refer
to abstraction Aφ′). Recall that, at this point, establishment is ensured, and all roots are
visible. As φ only has a unique abstraction, there is a unique k ∈ J1, nK such that [xk]
is the root of Aφ and the tuple pointed to by the location associated with xk contains
only locations associated with variables y1, . . . , ym that are visible or special in Aφ, with
Aφ •h([xk]) = (

[
y1
]
, . . . ,

[
ym
]
). To make the rule ρ PCE, it must be rewritten to have the

form p(x1, . . . , xn) ⇐ ∃ #»z . xk → (y1, . . . , ym) ⋆ q1(# »w1) ⋆ · · · ⋆ ql(#»wl) ⋆ ψ, where ψ is a
pure formula, and the root of each atom qi(#»wi) is in {y1, . . . , ym}. There are two cases:

Case 1: Assume that φ contains a points-to atom x′k → (y′1, . . . , y
′
l), with

[
x′k
]
= [xk]

and
[
y′i
]
=
[
yi
]

for all i ∈ J1, lK. The formula φ′ is of the form x′k → (y′1, . . . , y
′
m)⋆ψ⋆ψ′,

where ψ contains only points-to and predicate atoms and ψ′ is a pure formula. The
formula ψ may be decomposed into φ1 ⋆ · · ·⋆φl′ , where each formula φi allocates only
variables z such that

[
y ji

]
⇝∗ [z], where y j1 , . . . , y jl′ are variables in {y1, . . . , yl} such

that the
[
y ji

]
are pairwise distinct. Such a decomposition necessarily exists5 since [xk]

is the root of⇝, and every class reachable from [xk] must be reachable from one of the[
yi
]
. For i ∈ J1, l′K, if φi is not a predicate atom, then we create a fresh predicate qi whose

arguments are all the variables #»wi that appear in φi, we create the rule qi(#»wi) ⇐ φi, and
we replace in φ the formula φi by qi(#»wi). We get a rule ρ′ that is now PCE.

5 If several decompositions exist, then one of them is chosen arbitrarily.

16

Case 2: Now assume that φ contains no such points-to atom x′k → (y′1, . . . , y
′
l).

We have to extract this points-to from some rule that, when unfolded, creates it and
add it to a new rule equivalent to ρ. Because Aφ is unique and because every predicate
also has a unique abstraction, only one atom can allocate xk, and this atom must be
a predicate atom (because of case 1). Thus φ′ is of the form q(w⃗) ⋆ φ′′, where xk is
allocated in every model of q(w⃗). By the previous construction, the atom q(w⃗) may
be replaced by xk → (y1, . . . , yl) ⋆ (xk → (y1, . . . , yl) −−• q(w⃗)). We get a new rule
ρ′ = p(x1, . . . , xn) ⇐ ∃ #»z . xk → (y1, . . . , yl) ⋆ (xk → (y1, . . . , yl) −−• q(w⃗)) ⋆ φ′′ which
fulfils the previous condition, and we may apply the transformation described in the
previous item to ρ′. The new rules associated with xk → (y1, . . . , yl) −−• p′1(

#»

x′1) are
added to the set of rules.

The above transformations are applied until all rules are PCE. Note that termination
is not guaranteed (indeed, not all k-PCE-compatible pairs (Φ,R) admit an equivalent
PCE pair, and the existence of such a pair is undecidable by Thm. 1). To enforce ter-
mination in some cases, a form of memoization may be used: the predicates introduced
above may be reused if the corresponding formulas are equivalent. As logical equiva-
lence is hard to test (undecidable in general), we only check that the rules associated
with both predicates are identical up to a renaming of existential variables and spatial
predicates. In practice, termination may be ensured by imposing limitations on the num-
ber of rules or predicates. We show (see App. E) that if the transformation terminates,
we obtain the desired result.

Theorem 5. Let (Φ†,R†) be any pair obtained by applying the transformations in
Sects. 6 and 7. If the computation of (Φ‡,R‡) terminates, then (Φ†,R†) ≡ (Φ‡,R‡).
Also, the SID R‡, and thus Φ‡, are PCE.

9 Experimental Evaluation and Conclusion

We devised an algorithm to construct PCE rules for a given formula (if possible). The
existence of such a presentation is undecidable, but we identify a property called PCE-
compatibility, which is decidable and weaker. Our algorithm helps to relax the rigid
conditions on the PCE presentations. It is also able to construct PCE rules in some
more complex cases by performing deep, global transformations on the rules. We have
implemented an initial version of the algorithm in OCaml using the Cyclist [2] frame-
work and applied it to benchmarks taken from this framework and SL-COMP [1]. The
program comprises approximately 3000 lines of code. To ensure efficiency, the im-
plemented procedure is somewhat simplified compared to the algorithm described in
this paper: in Step 8, we avoid the use of derived predicates and instead employ a
fixed-depth unfolding of predicate atoms (the other sections strictly adhere to the the-
oretical definitions). All tests are performed with a timeout of 30 seconds. The run-
ning time is low in most examples. In the 145 tested examples, 105 are successfully
transformed into equivalent PCE-formulas, 20 trigger the ISIV condition (the struc-
tures are not k-PCE-compatible), 3 examples fail at Step 7 (recursive structures with
multiple roots) and 17 other timeout. The program and input data are available at
https://hal.science/hal-04549937. App. G provides more details about the im-
plementation and experimental results. We find the results highly encouraging, as about

17

https://hal.science/hal-04549937

86% of the tested examples are successfully managed. Therefore, this tool may be used
to provide a measure of the difficulty of the examples in the SL-COMP benchmark.

We end the paper by identifying some lines of future work. For efficiency, we
first plan to refine the transformation by avoiding the systematic reduction to one-
abstraction predicates given in Sect. 6. Indeed, this transformation is very convenient
from a theoretical point of view but introduces some additional computational blow-
up, which could be avoided in some cases. We wish to strengthen the definition of
k-PCE-compatible ID in order to capture additional properties of PCE definitions. No-
tice that the semi-decidability of the PCE problem is an open question. Finally, it could
also be interesting to extend the transformation to E-restricted IDs, a fragment of non-
established IDs introduced in [4], for which the entailment is decidable.

References

1. SL-COMP website. URL: https://sl-comp.github.io/.
2. James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A Generic Cyclic Theorem

Prover. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Languages and Systems,
volume 7705 of Lecture Notes in Computer Science, pages 350–367, Berlin, Heidelberg,
2012. Springer. doi:10.1007/978-3-642-35182-2_25.

3. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment Checking in Separation Logic
with Inductive Definitions is 2-EXPTIME hard. In Elvira Albert and Laura Kovacs, editors,
LPAR23. LPAR-23: 23rd International Conference on Logic for Programming, Artificial In-
telligence and Reasoning, volume 73 of EPiC Series in Computing, pages 191–211. Easy-
Chair, May 2020. ISSN: 2398-7340. URL: https://easychair.org/publications/
paper/DdNg, doi:10.29007/f5wh.

4. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Decidable Entailments in Separa-
tion Logic with Inductive Definitions: Beyond Establishment. In Christel Baier and Jean
Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science Logic
(CSL 2021), volume 183 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 20:1–20:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.
CSL.2021.20, doi:10.4230/LIPIcs.CSL.2021.20.

5. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Unifying Decidable Entailments in
Separation Logic with Inductive Definitions. In André Platzer and Geoff Sutcliffe, ed-
itors, Automated Deduction – CADE 28, volume 12699 of Lecture Notes in Computer
Science, pages 183–199, Cham, 2021. Springer International Publishing. doi:10.1007/
978-3-030-79876-5_11.

6. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment is Undecidable for Symbolic
Heap Separation Logic Formulæ with Non-Established Inductive Rules. Information Pro-
cessing Letters, 173:106169, January 2022. URL: https://www.sciencedirect.com/
science/article/pii/S0020019021000843, doi:10.1016/j.ipl.2021.106169.

7. Sheila Greibach. A note on undecidable properties of formal languages. Math. Systems
Theory, 2(1):1–6, March 1968. doi:10.1007/BF01691341.

8. Sheila A. Greibach. A New Normal-Form Theorem for Context-Free Phrase Structure Gram-
mars. J. ACM, 12(1):42–52, January 1965. URL: https://dl.acm.org/doi/10.1145/
321250.321254, doi:10.1145/321250.321254.

9. Xincai Gu, Taolue Chen, and Zhilin Wu. A Complete Decision Procedure for Linearly
Compositional Separation Logic with Data Constraints. In Nicola Olivetti and Ashish

18

https://sl-comp.github.io/
https://doi.org/10.1007/978-3-642-35182-2_25
https://easychair.org/publications/paper/DdNg
https://easychair.org/publications/paper/DdNg
https://doi.org/10.29007/f5wh
https://drops.dagstuhl.de/entities/document/10.4230/ LIPIcs.CSL.2021.20
https://drops.dagstuhl.de/entities/document/10.4230/ LIPIcs.CSL.2021.20
https://doi.org/10.4230/LIPIcs.CSL.2021.20
https://doi.org/10.1007/978-3-030-79876-5_11
https://doi.org/10.1007/978-3-030-79876-5_11
https://www.sciencedirect.com/science/article/pii/ S0020019021000843
https://www.sciencedirect.com/science/article/pii/ S0020019021000843
https://doi.org/10.1016/j.ipl.2021.106169
https://doi.org/10.1007/BF01691341
https://dl.acm.org/doi/10.1145/321250.321254
https://dl.acm.org/doi/10.1145/321250.321254
https://doi.org/10.1145/321250.321254

Tiwari, editors, Automated Reasoning, volume 9706 of Lecture Notes in Computer Sci-
ence, pages 532–549, Cham, 2016. Springer International Publishing. doi:10.1007/

978-3-319-40229-1_36.
10. Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The Tree Width of Separation Logic with

Recursive Definitions. In Maria Paola Bonacina, editor, Automated Deduction – CADE-24,
volume 7898 of Lecture Notes in Computer Science, pages 21–38. Springer, Berlin, Heidel-
berg, 2013. ISSN: 1611-3349. URL: https://link.springer.com/chapter/10.1007/
978-3-642-38574-2_2, doi:10.1007/978-3-642-38574-2_2.

11. Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’01, pages 14–26, New York, NY, USA, January 2001. As-
sociation for Computing Machinery. doi:10.1145/360204.375719.

12. Christoph Matheja, Jens Pagel, and Florian Zuleger. A Decision Procedure for Guarded Sep-
aration Logic Complete Entailment Checking for Separation Logic with Inductive Defini-
tions. ACM Trans. Comput. Logic, 24(1):1:1–1:76, January 2023. doi:10.1145/3534927.

13. J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceed-
ings 17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, Copen-
hagen, Denmark, July 2002. ISSN: 1043-6871. URL: https://ieeexplore.ieee.org/
document/1029817, doi:10.1109/LICS.2002.1029817.

19

https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36
https://link.springer.com/chapter/10.1007/978-3-642-38574-2_2
https://link.springer.com/chapter/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/3534927
https://ieeexplore.ieee.org/document/1029817
https://ieeexplore.ieee.org/document/1029817
https://doi.org/10.1109/LICS.2002.1029817

A Proof of Theorem 1 (Undecidability of the PCE Problem)

We recall Thm. 1:

Theorem 1. The PCE problem is undecidable.

The proof is by reduction from the problem of testing whether a contex-free lan-
guage is regular, which is well-known to be undecidable by Greibach’s theorem [7].

The proof relies on an encoding of words as list-shaped SL structures. We consider
words defined on an alphabet Σ. All symbols a ∈ Σ are associated with pairwise distinct
variables, which, to simplify notations, will also be denoted by a. Let #»z be the sequence
of variables a ∈ Σ (the order is unimportant).

Definition 20. Let x, y be two variables not occurring in #»z . A structure (s, h) encodes
a word a1, . . . , an if h is of the form {(ℓi, ℓi+1, s(ai)) | i ∈ J1, nK} with s(x) = ℓ1 and
s(y) = ℓn+1. A pair (φ,R) encodes a language L ⊆ Σ∗ (w.r.t. x and y) if the following
equivalence statement holds: w ∈ L iff there exists a structure m such that m |=R φ and
m encodes w.

Lemma 1. Let L ⊆ Σ∗ be a context-free language not containing the empty word ε.
There is an algorithm taking as an input a grammar G generating L and returning a
pair (φ,R) that encodes L. Moreover, if L is regular then R is PCE.

Proof. We assume, w.l.o.g., that G = (Σ,N, P, S) is in Greibach’s normal form [8].
Thus all rules in P are of the form A→ aB1 . . . Bn with possibly n = 0 (since ε < w, no
ϵ-rule is needed). We associate all nonterminal symbols A ∈ N with pairwise distinct
predicate of arity 2 + card(Σ), also denoted by A. We define a set of rules R as follows:

1. For each rule A→ a we introduce a rule A(x, y, #»z)⇐ x→ (y, a).
2. For each rule A → aB we introduce a rule A(x, y, #»z) ⇐ ∃y1. (x → (y1, a) ⋆

B(y1, y, #»z)).
3. For each rule A → aB1 . . . Bn with n > 1 we introduce a rule A(x, y, #»z) ⇐
∃y1, . . . , yn. (x→ (y1, a) ⋆ B(y1, y2,

#»z) ⋆ · · · ⋆ B(yn, y, #»z)).

By definition of the rules, it is easy to verify that a structure (s, h) validates S (x, y, #»z)
if h = {(ℓi, ℓ

′
i , ℓi+1) | i ∈ J1, nK}, where, for all i ∈ J1, nK, there exists ai such that

ℓ′i = s(ai), with a1 . . . an ∈ L. Consequently, a structure (s, h) validates S (x, y, #»z) iff it
encodes a word in L, and therefore (S (x, y, #»z),R) encodes L.

If G is regular, then P contains only rules of type 1 or 2 above, and it is easy to
check that R is PCE.

Lemma 2. Let L ⊆ Σ∗. If there exist a PC SID R and a formula φ such that (φ,R)
encodes L w.r.t. x, y, then L is regular.

Proof. The proof is by induction on φ. We assume, w.l.o.g., that ⋆ is pushed innermost
into the formula (by distributivity of ⋆ over ∨).

20

– We first consider the case where φ is a predicate symbol. We assume, w.l.o.g., that
all the variables in #»z are passed as parameters to every predicate symbol, so that all
atoms in φ,R are of the form p(#»u , #»z). As R is progressing, every rule in R must be
of the form (assuming w.l.o.g., that the root of the predicate is the first parameter):
A(u, #»v , #»z) ⇐ u → (#»t) ⋆ ψ. Moreover, as (φ,R) encodes some language L, we
may assume that #»t is necessarily of length 2 (as, by Def. 20, all tuples occurring
in encodings are of length 2). Moreover (again by definition of the encodings), the
second component of every referred tuple must be equal to some location s(a) with
a ∈ Σ, thus we may assume, w.l.o.g., that #»t is of the form (u′, a), with a ∈ Σ. Still
by definition of the encodings, a cannot be allocated, thus ψ contains at most one
predicate atom, of root u′ (by connectivity).
We construct a grammar G = (Σ,N, P, S) as follows. S is the predicate of φ. All
predicates A are associated with pairwise distinct nonterminal symbols also denoted
by A, and P contains a rule A → a.B for each rule of the above form in R, where
B denotes the unique predicate in ψ if such a predicate exists, or ε otherwise. It is
easy to check that G is regular and that L(G) = L.

– The proof for φ = emp is trivial as (φ,R) cannot encode L in this case (as L , {ε}
by hypothesis).

– Assume that φ = φ1 ∨ φ2. Then φ1 and φ2 necessarily encode languages L1, L2
with L = L1 ∪ L2. By the induction hypothesis L1 and L2 are regular, thus L is also
regular.

– Assume that φ = ∃x. ψ. Then it is clear that (ψ,R) also encodes L, thus L is regular
by the induction hypothesis.

– Now assume that φ is a separated conjunction of atoms φi. Then the φi’s correspond
to parts the structures encoding L. As R is connected, necessarily these parts must
themselves encode words, and φi must encode some language Li, w.r.t. the root xi

of φi and some variable yi that must be either the root of another atom φ j (j , i)
or the variable y. We may assume, by reordering the atoms if needed, that yi = xi+1
(for all i ∈ J1, n− 1K) and yn = y. Then L = L1.Ln. By the induction hypothesis,
every language Li is regular, thus L is also regular.

Putting things together we get the result:

Proof. (Of Thm. 1) Assume that the PCE problem is decidable. We construct an algo-
rithm to test whether a context-free language is regular, thus yielding a contradiction.
Let G be a context-free variable (we assume that ε < L(G), as it is clear that the prob-
lem of testing whether L(G) is regular is still undecidable in this case). By Lem. 1, we
construct a pair (φ,R) encoding L(G). Then we check whether there exists a PCE pair
(φ′,R′) such that (φ′,R′) ≡ (φ,R). If such a pair exists then by Lem. 2, L is necessarily
regular. Otherwise, L cannot be regular, as otherwise a regular grammar generating L
would exist, and we would get a PCE pair encoding L by applying again Lem. 1.

B Proofs of Theorem 2 (Correction and Completeness of the
Computation of Abstractions)

We recall Thm. 2:

21

Theorem 2. Let φ be a formula and let R be an SID. We suppose that the construction
of abstractions terminates without failing. If A ∈ abs(φ), then there exists a model (s, h)
of φ such that A is an abstraction of (s, h). Moreover, if φ admits a model (s, h), then
there exists an abstraction A of φ such that (s, h) |= A.

We first establish the correctness of the algorithm, by proving that for every ab-
straction of a formula φ, there exists a model of φ that is also a model of A. To prove
the result by induction, we actually need to establish a stronger property, stated below
(Lem. 3). For readability, we include some definitions. Let m = (s, h). We denote by m V

the model (s V , h). Let A be an abstraction. A store s is an A-store iff dom(s) = A•Vv

and for all x, y ∈ A•Vv, s(x) = s(y) ⇐⇒ (x, y) ∈ A•∽. Let m = (s, h). For every
total mapping λ : L → L such that λ is injective on dom(h), we define the structure
λ(m) = (λ ◦ s, λ(h)), with λ(h) = {(λ(ℓ0), . . . , λ(ℓn)) | (ℓ0, . . . , ℓn) ∈ h}. A total map-
ping λ : L → L is compatible with (A, s) (with A an abstraction and s a store) if
λ(ℓ1) = λ(ℓ2) ∧ ℓ1 , ℓ2 ⇒ ℓ1, ℓ2 ∈ img(s) and ([x] ,

[
y
]
) ∈ A•+ =⇒ λ(s(x)) , λ(s(y)).

Lemma 3 (Correctness). For every formula φ and for each A in abs(φ), (I) there exists
an SL-structure m = (s, h) such that s is an A-store, A ∈ abs(m) and λ(m) |=R φ, for
every mapping λ compatible with A and s. Furthermore, (II) there exists an extension ṡ
of s satisfying the conditions of Def. 9 such that for all ℓ ∈ loc(h) there exists a variable
x ∈ A•V with ṡ(x)→∗

h
ℓ.

Proof. The proof proceeds by structural induction on abs(φ); the result is established
for all abstractions constructed during the computation of abs(φ), even those that are
not in normal form w.r.t. the simplification rule in Def. 17. See Def. 18 for notations.

φ = emp: The only abstraction Aemp in abs(φ) has all components equal to the empty
set. Let m = (s, h) with s = ∅ and h = ∅. For any λ, the structure λ(m) = m and so
λ(m) is an SL-model of φ. Moreover, s is an Aemp-store and Aemp ∈ abs(m), w.r.t.
ṡ = s = ∅. Property (II) holds trivially for empty s and h.

φ = x ≈ y: The set abs(φ) is a singleton A = A≈({x, y}) as defined in Def. 10. Let m =
(s, h) with s = [x 7→ ℓ, y 7→ ℓ] for some ℓ ∈ L and h = ∅. Since dom(s) is a
singleton, the structure λ(m) is an SL-model of φ for every mapping λ and s is an
A-store. Moreover, A ∈ abs(m) by taking ṡ = s, since V = Vv = {x, y} = dom(ṡ),
ṡ(x) = ṡ(y) and the other components are empty. For (II), note that ṡ(y) = ℓ.

φ = x ̸≈ y: The set abs(φ) is a singleton A = A̸≈({x, y}) as defined in Def. 10. Let m =
(s, h) such that h = ∅ and s = [x 7→ ℓ1, y 7→ ℓ2] with ℓ1, ℓ2 ∈ L and ℓ1 , ℓ2. It is easy
to check that λ(m) is an SL-model of φ for any λ compatible with (A, s) because
λ(s(x)) , λ(s(y)). Moreover, s is an A-store and A ∈ abs(m) for ṡ = s.
For (II), note that ṡ(y) = ℓ.

φ = y0 → (y1, . . . , yn): The set abs(φ) is a singleton A, as defined in the rule [Pto] in
Tab. 1. Let m = (s, h) such that s = [y0 7→ ℓ0, y1 7→ ℓ1, . . . , yn 7→ ℓn] and h =
[ℓ0 7→ (ℓ1, . . . , ℓn)] with {ℓ0, ℓ1, . . . , ℓn} ⊆ L such that s is a bijective function (i.e.,
it associates each variable to only one ℓi) and img(s) contains pairwise distinct
elements. Because dom(s) = A•Vv and s is a bijection, then s is an A-store.
We show that A ∈ abs(m) for ṡ = s. Notice that each ℓi ∈ img(s) identifies an
equivalence class of A•∽ = Id. We have A•V = A•Vv = {y0, . . . , yn} = dom(ṡ),

22

dom(h) = {ℓ0} = {ṡ(y0)} and A•Va = {
[
y0
]
}; A•h = {

[
y0
]
7→ (
[
y1
]
, . . . ,

[
yn
]
)} and

h(s(y0)) = (ṡ(y1), . . . , ṡ(yn)), and A•⇝ = {(
[
y0
]
,
[
yi
]
) | i ∈ J1, nK}.

Since img(s) includes all ℓi, h has one element, and A•+ is empty, then any λ com-
patible with s and A gives that λ(m) is an SL-model of φ and s is an A-store.
For (II), with the above ṡ, since→h= {(ṡ(y0), ṡ(yi)) | i ∈ J1, nK}, for any ℓi ∈ img(s)
we have that ṡ(y0)→h ℓi for all i ∈ J0, nK.

φ = ∃x. ψ: Remember that we ignore for the moment the rem operation in rule [Ex]
(Tab. 1) Therefore, abs(φ) contains abstractions A = A′

∃(x) with A′ ∈ abs(ψ). By
induction hypothesis, there is an SL-structure m = (s′, h) such that A′ ∈ abs(m),
w.r.t. some extension ṡ of s′, s′ is an A′-store and λ(m) |=R φ for all mappings λ
compatible with (A′, s′). Let s be the restriction of s′ to the variables distinct from
x and let m∃ = (s, h). Since A•Vv = A′ •Vv ∖ {x} = dom(s), A•∽ is the restriction of
A′ •∽ on the variable distinct from x and s′ is an A′-store, then s is an A-store. Since
img(s) ⊆ img(s′) and A inherits from A′ all the disequality constraints between the
variables in A•V , any mapping λ compatible with (A′, s′) is also compatible with
(A, s). Thus, λ(m∃) is an SL-model of φ, for all mappings λ compatible with (A, s).
We show that A ∈ abs(m∃), w.r.t. the store ṡ (which is also an extension of s). The
only difference between A and A′ is that A•Vv = A′ •Vv ∖ x. Thus, since we use the
same extension ṡ for A′ and A, we only need to consider the condition (1) in Def. 9
that depend on A•Vv and s. We have A•Vv = A′ •Vv ∖ {x} = dom(s′) ∖ {x} = dom(s),
thus the condition holds.
For (II), notice that A′

∃(x) does not change the reachability relation of A′. In absence
of rem application, by the induction hypothesis, the property is satisfied for A.

φ = ψ1 ⋆ ψ2: From rule [Sep] from Tab. 1, abs(φ) contains abstractions A = A1 ⋆ A2,
where A1 and A2 are separated abstractions with Ai ∈ abs(ψi) (i ∈ {1, 2}). By apply-
ing the induction hypothesis for each ψi, there is an SL-structure mi = (si, hi) such
that Ai ∈ abs(mi) w.r.t. some extension ṡi of si, si is an Ai-store and λ(mi) |=R ψi, for
all mappings λ compatible with (Ai, si). We may assume, by renaming locations if
needed (using λ), that img(s1) ∩ img(s2) = ref (h1) ∩ ref (h2) = ∅.
Let e 7→ ℓe be any injective mapping from equivalence classes of A•∽ to elements
of L not occurring in img(si) or hi. Let γi be the function mapping every location
si(x) to ℓ[x] (where [x] denotes the equivalence class of x w.r.t. A•∽). Note that γi

is well-defined, since Ai •∽ ⊆ A•∽. By definition γ1(s1) and γ2(s2) coincide on all
variables in dom(s1)∩dom(s2). We denote by s the union of γ1(s1) and γ2(s2); from
the properties of si, s is an A-store.
From Def. 13, A = A1⋆A2 inherits all disequality constraints in each Ai. Therefore,
if a mapping λ is compatible with (A, s) then λ ◦ γi is compatible with (Ai, si). Thus
the structure λ(γi(mi)) is a model of ψi, for all λ compatible with (A, s).
Let m′i = (s′i , h

′
i), the image of mi by γi. Observe that h′1 and h′2 have disjoint do-

mains. Indeed, if there exists l ∈ dom(h′1) ∩ dom(h′2), then we necessarily have
l = λ(γi(si(xi))) = s(xi) for some xi ∈ dom(si) = Ai •Vv for i ∈ {1, 2} (A1 and A2
do not share invisible variables). Since Ai ∈ abs(mi) by induction hypothesis, we
deduce that the class of xi occur in Ai •Va, for i ∈ {1, 2}. By Def. 12 of A1 ⋆ A2, we
have ([x1] , [x2]) ∈ A•+, which contradicts the fact that λ is compatible with (A, s).
Thus h = h′1 ∪ h

′
2 is defined and (λ(s), λ(h)) |=R φ.

23

We check that A ∈ abs(s, h) w.r.t. an extension ṡ of s that is also an extension
of γ(ṡi) for i = 1, 2 since A1 and A2 do not share invisible variables dom(ṡ) =
dom(ṡ1) ∪ dom(ṡ2) = A•V and dom(s) = dom(s1) ∪ dom(s2) = A•Vv (Condition 1,
Def. 9).
Let ∽i= Ai •∽ in the following. The Condition (2) is satisfied if both variables belong
only to some Ai, or both variables are shared and visible, since Ai ∈ abs(mi). If one
variable or both are not shared but they are in the same equivalence class of A,
then by Def. 13 of ∽⋆, there exist two shared equivalent two these ones in the same
equivalence class ∽i; by the Ai-store property of si and the definition of ṡ, then both
variables are mapped to the same location. Conversely, if ṡ maps two variables to
the same location, then they are in the same equivalence class of A•∽ by definition.
The Condition (3) holds because a location ṡ(x) is allocated in h iff it is allocated
in some h′i for i ∈ {1, 2} and thus ṡ(x) = γi(ṡi(x))). Since Ai ∈ abs(mi) then [x]∽i ∈

Ai •Va. Moreover, by Def. 13 of A1 ⋆ A2, then [x] ∈ A•Va iff there exists x′ and i ∈
{1, 2} such that (x, x′) ∈ A•∽ and [x′]∽i ∈ Ai •Va. Thus ṡ(x) ∈ dom(h) iff [x] ∈ A•Va.
The Condition (4): Assume that A•h(

[
y0
]
) = (
[
y1
]
, . . . ,

[
yn
]
). By Def. 13, this entails

that, for i ∈ {1, 2}, Ai •h(
[
y′0
]
∽i

) = (
[
y′1
]
∽i
, . . . ,

[
y′n
]
∽i

), with (y j, y′j) ∈ A•∽. Since Ai ∈

abs(mi), we get hi(ṡi(y′0)) = (ṡi(y′1), . . . , ṡi(y′n)), so that h(ṡ(y0)) = (ṡ(y1), . . . , ṡ(yn)).
The Condition (5): By the above assumption on h1 and h2, any path ℓ0 →h . . .→h ℓn

in h such that ℓ0 = ṡ(x), ℓn = ṡ(y) and {ℓ1, . . . , ℓn−1} ∩ img(ṡ) = ∅ must be a path
in some γi(hi) for i ∈ {1, 2}. Thus, such a path exists iff ([x′]∽i ,

[
y′
]
∽i

) ∈ Ai •⇝,
for i ∈ {1, 2}, with (x, x′), (y, y′) ∈ A•∽. By construction of A•⇝ (Def. 13), this is
equivalent to state that ([x] ,

[
y
]
) ∈ A•⇝.

Property (II) follows immediately from the fact that loc(h) = loc(h1) ∪ loc(h2) and
from the induction hypothesis.

φ = p(x1, . . . , xn): By rule [Pred] from Tab. 1, A ∈ abs(∃y1, . . . , yn. (y1 ≈ x1⋆ · · ·⋆yn ≈

xn ⋆ ψ)), for some rule p(y1, . . . , yn)⇐ ψ. By the induction hypothesis there exists
an SL-model (s, h) of ∃y1, . . . , yn. (y1 ≈ x1 ⋆ · · · ⋆ yn ≈ xn ⋆ ψ) such that A is an
abstraction of (s, h). As φ is a logical consequence of ∃y1, . . . , yn. (y1 ≈ x1⋆· · ·⋆yn ≈

xn ⋆ ψ), (s, h) is also an SL-model of φ and the proof is completed.

It only remains to show that the simplification of abstractions by rem (removing in-
visible variables that are not needed — see Def. 15) preserves the properties (I) and (II).
Let A be an abstraction obtained from some abstraction A′ by removing some variable
u, i.e., A = rem(A′, u) (see Def. 17). Let φ be a formula and assume that an SL-structure
m = (s, h) exists such that s is an A′-store, λ(m) |=R φ for all mappings λ compati-
ble with (A′, s) and A′ is an abstraction of m, w.r.t. some store ṡ. Since A•Vv = A′ •Vv,
and A•∽ and A′ •∽ coincide on A•Vv, s is an A-store. As A inherits all the disequality
constraints between variables in A•Vv, every mapping λ compatible with A, s is also
compatible with (A′, s), thus we only have to show that A is an abstraction of m. Let ṡ′

be the restriction of ṡ to the variables distinct from u. As ṡ and ṡ′ coincide on any vari-
able other than u, and since the variable u does not occur in A•Vv, it is straightforward
to check that Conditions 1-4 in Def. 9 hold. We only have to consider the last condition
5 since it depends negatively on img(ṡ′).

– Assume that a path ℓ0 →h . . . →h ℓn in h exists such that ℓ0 = ṡ(x), ℓn =

ṡ(y) and {ℓ1, . . . , ℓn−1} ∩ img(ṡ′) = ∅. If {ℓ1, . . . , ℓn−1} does not contain ṡ(u), then

24

{ℓ1, . . . , ℓn−1} ∩ img(ṡ) = ∅, thus ([x] ,
[
y
]
) ∈ A′ •⇝. By definition of A, we deduce

that ([x] ,
[
y
]
) ∈ A•⇝. If ℓi = ṡ(u) for some i ∈ J1, nK then, assuming that the path is

minimal, we get {ℓ1, . . . , ℓi−1, ℓi, ℓn−1}∩ img(ṡ) = ∅, and therefore ([x] , [u]) ∈ A′ •⇝
and ([u] ,

[
y
]
) ∈ A′ •⇝. By definition of A, we deduce that ([x] ,

[
y
]
) ∈ A•⇝.

– Conversely, if ([x] ,
[
y
]
) ∈ A•⇝, then we have either ([x] ,

[
y
]
) ∈ A′ •⇝ and there

exists a path from ṡ′(x) to ṡ′(y) not crossing img(ṡ), or ([x] , [u]), ([u] ,
[
y
]
) ∈ A′ •⇝

and there exists paths from ṡ(x) to ṡ(u) and from ṡ(u) to ṡ(y) (respectively). In both
cases we deduce that a path exists from ṡ(x) to ṡ(y).

Finally, let ℓ ∈ loc(h). By the induction hypothesis there exists a variable u′ ∈ A′ •V
such that ṡ(u′) →h ℓ. If u , u′ then u′ ∈ A•V and the proof is completed. Now assume
that u = u′. By Def. 17, u cannot be special. By Def. 15, this entails that there exists a
set of roots R for A′ such that u < R. Then (r, u) ∈ A•⇝∗ for some r ∈ R. This entails
that ṡ(r)→h ṡ(u), thus ṡ(r)→h ℓ.

For all SL structures m = (s, h) and for all subsets E of V, we denote by m E the
structure (s E , h).

We then show that the algorithm is complete, in the sense that every model of a
formula φ can be associated with an abstraction of φ. Again, a stronger property must
be proven (Lem. 4). We need the following:

Definition 21 (Coherence). A store s is coherent with an abstraction A if it satisfies
the following conditions:

1. dom(s) = A•Vv;
2. for all x, y ∈ A•Vv if (x, y) ∈ A•∽ then s(x) = s(y) and
3. for all x, y ∈ A•Vv if ([x] ,

[
y
]
) ∈ A•+ then s(x) , s(y).

Lemma 4 (Completeness). For every formula φ and for each SL-structure m = (s, h)
such that m |=R φ, there exists an abstraction A of φ and an SL-structure m′ such that A
is an abstraction of m′ fv(φ), m′ |=R φ, and m = λ(m′) for some total mapping λ.

Proof. The proof proceeds by structural induction on the construction of |=R. See Def. 3
for notations. Let m = (s, h) be an SL-model of φ.

φ = emp: By definition, we must have h = ∅. By taking m′ = m and thus the identity
for λ, we get the result. Indeed, the abstraction with all components equal to the
empty set, which is in abs(φ) is an abstraction of m′ fv(φ) by taking ṡ = ∅.

φ = x ≈ y: We must have h = ∅ and s(x) = s(y). Thus, s fv(φ) = [x 7→ l, y 7→ l], with
l ∈ L. Taking A = A≈({x, y}), m′ = m and λ = Id, we get the result, since by
definition A ∈ abs(φ) and A is an abstraction of m′ fv(φ).

φ = x ̸≈ y: We have h = ∅ and s(x) , s(y). Thus, s fv(φ) = [x 7→ ℓ1, y 7→ ℓ2], with
ℓ1, ℓ2 ∈ L and ℓ1 , ℓ2. Taking A = A ̸≈({x, y}), m′ = m and λ = Id, we get the result.

φ = y0 → (y1, . . . , yn): We have fv(φ) ⊆ dom(s) and h = {(s(y0), . . . , s(yn))} according
to Def. 3. Let s′(x) = s(x) for all x < {y0, . . . , yn} and s′(yi) = ℓi with ℓ0, . . . , ℓn

locations in L such that s′ is injective on {y0, . . . , yn}. Let λ be the identity on L ∖
{ℓ0, . . . , ℓn} and defined by λ(ℓi) = s(yi) on {ℓ0, . . . , ℓn}. We have s = λ ◦ s′. Let
h′ = {(s(y0), ℓ1, . . . , ℓn)}, it verifies h = λ(h′). m′ = (s′, h′) verifies m = λ(m′) and

25

m′ |=R φ. The set abs(φ) is a singleton A, as defined by the Pto rule in Def. 18. It
is easy to check that A is an abstraction of m′ fv(φ) as it is done in the fourth item in
the proof of Lem. 3.

φ = ∃x. ψ: By Def. 3, fv(φ) ⊆ dom(s) and there exists a store s∃, coinciding with s
on all variables distinct from x, such that m∃ = (s∃, h) |=R ψ. By the induction
hypothesis, there exists an abstraction A∃ of ψ, an SL-structure m′

∃
= (s′

∃
, h′
∃
) and a

mapping λ∃ such that A∃ is an abstraction of m′
∃ fv(ψ), m′

∃
|=R ψ and m∃ = λ∃(m′∃).

Let A be the abstraction of φ obtained from A∃ as defined by the rule Ex in Def. 18.
Let ℓ be any location not occurring in img(s′

∃
) ∪ loc(h′

∃
) and λ defined such that

λ(ℓ) = s(x) and λ coincides with λ∃ on all locations other than ℓ. Let s′ such that
dom(s′) = dom(s), s′(y) = s′

∃
(y) for y ∈ dom(s)∖ {x}, s′(x) = ℓ if x ∈ dom(s) and let

m′ = (s′, h′) with h′ = h′
∃
. By construction, m = λ(m′) because h = λ∃(h′∃) = λ(h′),

s(y) = s∃(y) = λ∃(s′∃(y)) = λ(s′(y)) for y ∈ dom(s) ∖ {x} and, if x ∈ dom(s), then
s(x) = λ(ℓ) = λ(s′(x)). By definition, s′

∃
coincides with s′ on all variables distinct

from x and m′
∃
|=R ψ so m′ |=R φ. A∃ is an abstraction of m′

∃ fv(ψ) w.r.t. ṡ∃. By taking
ṡ = ṡ∃ we show as the fifth item of the proof of Lem. 3 that A is an abstraction of
m′ fv(φ).

φ = ψ1 ⋆ ψ2: According to Def. 3, fv(φ) ⊆ dom(s) and there exist disjoints domain
heap h1, h2 such that h = h1 ⊎ h2 and mi = (s, hi) |=R ψi, for all i ∈ {1, 2}. By the
induction hypothesis, there exist abstractions Ai of ψi, SL-structures m′i = (s′i , h

′
i)

and mappings λi such that Ai is an abstraction of m′i fv(ψi)
, m′i |=R ψi and mi = λi(m′i)

for each i ∈ {1, 2}. We can ensure that A1 •Vinv ∩ A2 •Vinv = ∅, by renaming invisible
variables in both abstractions as well as img(s′1)∩img(s′2) = ∅ and ref (h′1)∩ref (h′2) =
∅ by renaming locations.
To begin we check that abstractions A1 and A2 are separated, i.e., that the dise-
quality relation {([x1]A⋆•∽ , [x2]A⋆•∽) | xi ∈ A⋆ •V , [xi]Ai•∽ ∈ Ai •Va, i ∈ {1, 2}} ∪
{([x]A⋆•∽ ,

[
y
]

A⋆•∽) | x, y ∈ A⋆ •V , ([x]Ai•∽ ,
[
y
]

Ai•∽
) ∈ Ai •+, i ∈ {1, 2}} is irreflex-

ive. If there exists ([x] , [x]) in the first set, it implies that there exists xi such that
[xi]A•∽ = [x]A•∽ and [xi]Ai•∽ ∈ Ai •Va for i ∈ {1, 2} and such that (x1, x2) ∈ A j •∽, for
a j ∈ {1, 2}. Note that x, x1 and x2 must be visible because A1 •Vinv ∩ A2 •Vinv = ∅.
As Ai is an abstraction of m′i fv(ψi)

, s′i(xi) ∈ dom(h′i), i.e., s(xi) = si(xi) = λi(s′i(xi)) ∈
λi(dom(h′i)) = dom(hi). Similarly, s(x1) = λ j(s′j(x1)) = λ j(s′j(x2)) = s(x2) which
contradicts h = h1 ⊎ h2. By construction of A1 and A2 ([x] , [x]) cannot exist in the
second set.
Let A be the abstraction of φ obtained from A1 and A2 as defined in the rule Sep of
Def. 18.
Let e 7→ ℓe be any injective mapping from equivalence classes of A•∽ to elements of
L not occurring in img(s), loc(h), img(s′i) or loc(h′i). Let γi be the function mapping
every location s′i(x) to ℓ[x] (where [x] denotes the equivalence class of x w.r.t. A•∽)
if [x] is defined, and to pairwise distinct fresh locations otherwise. γi is defined as
the identity on all other locations. Note that γi is well-defined, as si is necessarily
coherent with A (since it is coherent with Ai).
Let s′ be defined by s′(x) = ℓ[x] if ℓ[x] is defined and s′(x) = s(x) if not. Consider the
mapping λ : s′(x) 7→ s(x). Observe that λ is well-defined. Indeed, if s′(x) = s′(y)
for x , y, then by construction of e 7→ ℓe, If both ℓ[x] and ℓ[y] are defined, thus

26

[x] =
[
y
]

and s(x) = s(y) (because A•∽ = A1 •∽ ∪ A2 •∽ and s is coherent with Ai).
As a result, λ is well defined and s = λ ◦ s′.
Let h′ = γ1(h′1) ∪ γ2(h′2). We prove that γ1(h′1) and γ2(h′2) are disjoint. Assume, for
the sake of contradiction, that there exists ℓ ∈ dom(γ1(h′1)) ∩ dom(γ2(h′2)), then for
all i ∈ {1, 2} there exists ℓi such that ℓi ∈ dom(h′i) and ℓ = γi(ℓi). Because γi is the
identity on locations not in img(s′i) and because h′1 and h′2 are distinct, for all i ∈
{1, 2}, there exists xi such that ℓi = s

′
i(xi). That means γ1(s′1(x1)) = ℓ = γ2(s′2(x2))

i.e., [x1] = [x2] thus s(x1) = s(x2). However, s(xi) = λi(s′i(xi)) = λi(ℓi) ∈ dom(hi).
Finally, dom(h1)∩dom(h2) , ∅which is impossible. As a result, h′ = γ1(h′1)⊎γ2(h′2).
We note that for all ℓ ∈ img(s′i), λi(ℓ) = λi(s′i(x)) = s(x) = λ(s′(x)) = λ(ℓ[x]) =
λ(γi(s′i(x))) = λ(γi(ℓ)). Thus λi = λ ◦γi. As a result, h = h1 ⊎ h2 = λ1(h′1)⊎λ2(h′2) =
λ(γ1(h′1)) ⊎ λ(γ2(h′2)) = λ(h′).
We prove that (s′, h′) |=R φ. We need to show that (s′, γi(h′i)) |=R ψi. We know
that s′ = γi ◦ s

′
i , and (s′i , h

′
i) |=R ψi. Thus ψi ⇐

∗
R
∃ #»uψ′i , with (ṡ′i , h

′
i) |=R ψ′i for

some store ṡ′i coinciding with s′i on all variables not occurring in #»u and ψ′i contains
no predicate symbol and no quantifier. Let ṡ′ be a store coinciding with s′ on all
variables not occurring in #»u and with ṡ′i otherwise. Consider any atom a occurring
in ψ′i . By definition, there exists a subheap hai of h′i such that (ṡ′i , h

a
i) |=R a. If a is

a points-to atom, then this entails that (ṡ′, γi(hai)) |=R a. If a is an equation x ≈ y,
then ṡ′i(x) = ṡ′i(y) and hai = ∅, so that γi(ṡ′i(x)) = γi(ṡi(y)), and (ṡ′, γi(hai)) |=R a.
If a is a disequation x ̸≈ y, then ṡ′i(x) , ṡ′i(y) and hai = ∅. If ṡ′i(x) or ṡ′i(y) does
not occur in s′i(fv(φ)) then this entails, by definition of γi, that γi(ṡ′i(x)) , γi(ṡ′i(y)).
Otherwise, there exist x′, y′ ∈ fv(φ) such that ṡ′i(x) = s′i(x′) and ṡ′i(y) = s′i(y

′).
As A is an abstraction of m′ we get (x′, y′) ∈ A•∽, so that γi(s′i(x′)) , γi(s′i(y

′)),
by definition of γi. Thus (ṡ′, γi(hai)) |=R a. Consequently, (ṡ′, γi(h′i)) |=R ψ′i and
therefore (s′, γi(h′i)) |=R ψi.
To show that A is an abstraction of (s′ fv(ψ), h

′) we use the same proof as in the sixth
item of the proof of Lem. 3.

φ = p(x1, . . . , xn): According to Def. 3, fv(φ) ⊆ dom(s) and m |=R ψ for some ψ such
that φ ⇐R ψ. The formula ψ is equivalent to a formula ψ′ = ∃y1, . . . , yn. (y1 ≈

x1⋆ · · ·⋆ yn ≈ xn⋆ψ
′′), where R contains a rule of the form p(y1, . . . , yn)⇐ ψ′′, so

m |=R ψ′. By the induction hypothesis, there exist an abstraction Aψ′ of ψ′, an SL-
structure m′ and a mapping λ such that Aψ′ is an abstraction of m′ fv(ψ′), m′ |=R ψ′

and m = λ(m′). By the rule [Pred] in Def. 18, Aψ′ is an abstraction of φ. It is clear
that m′ |=R φ because ψ′ and ψ are equivalent and it is easy to verify that Aψ′ is also
an abstraction of m′ fv(φ).

We also must show that if A is an abstraction of (s′ fv(ψ), h
′) for a given φ, then the

simplification according to Def. 17 does not have any impact, i.e., rem(A) is also an
abstraction of (s′ fv(ψ), h

′). This follows immediately from the last part of the proof of
Lem. 3. We only need to take λ = Id in the proof to get the result.

C Proof of Theorem 3 (Termination of the Computation of
Abstractions)

We recall Thm. 3:

27

Theorem 3. Let φ be a formula and let R be an SID. If there exists k ∈ N such that
(φ,R) is k-PCE-compatible, then the computation of abs(φ) terminates without failure
(hence the ISIV condition is never fulfilled). Otherwise, the ISIV condition eventually
applies during the computation of abs(φ). Consequently, the problem of testing whether
(φ,R) is k-PCE-compatible for some k ∈ N is decidable.

We first assume that (φ,R) is k-PCE-compatible and show that the computation of
abs(φ) is finite. To this aim, we need to establish several interesting results. The first
lemma states that all minimal sets of roots have the same cardinality:

Proposition 3. Let→ be a binary relation. If R1 and R2 are two minimal sets of roots
for→, then card(R1) = card(R2).

Proof. Let R1 = {x1, . . . , xn} and R2 = {y1, . . . , ym}. As R2 is a set of roots, necessarily
for all i ∈ {1, . . . , n} there exists ji ∈ {1, . . . ,m} such that y ji →

∗ xi. As R1 is a set of
roots, this entails that the set {y j1 , . . . , y jn } is also a set of roots. By minimality of R2,
necessarily this set is of cardinality at least m (as {y j1 , . . . , y jn } ⊆ R2), thus n ≥ m. By
symmetry, we also have m ≥ n thus m = n.

We then observe that a variable that is recognized as persistent at some point during
the computation will always remain persistent, hence cannot be eliminated:

Proposition 4. Let φ be a formula and let A be an abstraction in abs(φ). For every
abstraction A′ occurring in the construction tree of A, A′ •Vper ⊆ A•Vper.

Proof. Let x ∈ A′ •Vper. By hypothesis, x is persistent in A′, hence fulfils Item 1 or
2 of Def. 15. Observe that none of the construction rules may possible introduce new
equations involving x, and cannot add new elements in Va, h or⇝ involving the class
of x. Indeed, by definition of the construction, such an addition would be possible only
at a time where x is visible, and (as invisible variables are renamed to avoid variable
collision) x cannot be visible outside of A′. Consequently, x must be persistent also in
A, hence x ∈ A•Vper.

The following lemma shows that the number of variables occurring in the abstrac-
tions of φ is bounded:

Lemma 5. Let (φ,R) be a k-PCE-compatible pair. Let A be an abstraction in abs(φ).
The number of variables in A is bounded by a number depending only on k, φ and R.

Proof. By Lem. 3, there exist a model (s, h) of φ and an extension ṡ of s such that A is
an abstraction of (s, h) w.r.t. ṡ and for all ℓ ∈ loc(h), there exists x ∈ A•V with ṡ(x)→∗

h
ℓ.

This entails that for all sets of roots R = {[xi] | i ∈ J1, nK} for A, the set {ṡ(xi) | i ∈ J1, nK}
is a set of roots for→h. Furthermore, this set is necessarily minimal, as R is minimal for
A•⇝. Since φ is k-PCE-compatible and (s, h) |=R φ, necessarily n ≤ k (using Prop. 3).
Consequently, the set S of invisible variables occurring in all sets of roots of A is also
of cardinality at most k (as invisible variables are alone in their classes). Moreover, for
every variable x ∈ A•V such that [x] < A•Va, we have ṡ(x) < dom(h). Using again the
fact that φ is k-PCE-compatible and that A is an abstraction of (s, h), we deduce that
the set {[x] | [x] < A•Va, x ∈ A•V} is of cardinality at most k. Since invisible variables

28

are alone in their classes, this entails that the set {x | [x] < A•Va, x ∈ A•Vinv} is also
of cardinality at most k. By Def. 15, all special variables either occur in {x | [x] <
A•Va, x ∈ A•Vinv} ∪S or are referred to by some visible variables or some variable in S .
This entails there exist at most (n+ k)×m+ 2× k special variables, where n denotes the
number of free variables in φ, and m denotes the maximal natural number such that R
or φ contains a points-to atom of the form u0 → (u1, . . . , um). As non special variables
are removed, the maximal number of variables is (n + k) × m + 2 × k + n.

The following result is immediate to prove and entails that the number of abstrac-
tions of φ is also bounded:

Proposition 5. For any k ∈ N, the number of abstractions containing at most k vari-
ables is bounded.

Conversely, we need to show that the ISIV condition eventually applies if φ is not
k-PCE-compatible.

Lemma 6. If the computation of abs(φ) does not terminate, then the ISIV condition
applies at some point during the computation.

Proof. By hypothesis, abs(φ) has construction trees of unbounded sizes. We may as-
sume, w.l.o.g., that all these construction trees are of minimal size. Consider a branch
b in a construction tree, and let (si)i∈J1,nK be the sequence of atoms occurring along the
branch (starting from the root), and (Ai)i∈J1,nK be the corresponding sequence of ab-
stractions. If the length of b is unbounded, then necessarily n is also unbounded (since
R is finite, hence the depth of the formulas in R is bounded). Note that by Prop. 4,
i ≤ j =⇒ A j •Vper ⊆ Ai •Vper. Consider the subsequence i j (1 ≤ j ≤ m) of 1, . . . , n such
that Ai j •Vper , Ai j+1 •Vper, for all j ∈ J1,m − 1K. As the construction tree is minimal, Ai

cannot be a renaming of A j if i , j, thus by Prop. 5, if n is unbounded, then necessarily
m is also unbounded. By the pigeonghole argument, if m is large enough, there exist
j, j′ with j < j′ and a renaming η such that si j = η(si j′) and Ai j coincides with η(Ai j′)
on all the variables in si j . Indeed, by Prop. 5, the number of restrictions of Ai to the
variables in si is finite. By definition the ISIV condition is fulfilled, with A = Ai j and
A′ = Ai j′ .

The last lemma shows that the ISIV condition is correct, in the sense that it applies
only when the consider formula is not k-PCE-compatible:

Lemma 7. Given a predicate p(x1, . . . , xm), if an abstraction A ∈ abs(p(x1, . . . , xm))
fulfils the ISIV condition (see Def. 19), then, for all n ∈ N, abs(p(x1, . . . , xm)) contains
an abstraction An with at least n persistent variables, where A•Vv = An •Vv and An and
A agree on all variables in A•Vv.

Proof. We establish the result by induction on n. The proof for n = 0 is immediate
(taking A0 = A). Now assume that the property holds for n. By definition, the con-
struction tree of A contains an occurrence of an abstraction A′ ∈ abs(p(y1, . . . , xm)),
where p(y1, . . . , ym) is a renaming of p(x1, . . . , xm). Since An ∈ abs(p(x1, . . . , xm)),
we may replace A′ by the abstraction A′n obtained from An by applying the renam-
ing {xi 7→ yi | i ∈ N} (and also renaming invisible variables to avoid any collision).

29

Since A′ and A′n coincide on all variables y1, . . . , ym, we get an abstraction An+1 ∈

abs(p(x1, . . . , xm)) which coincides with A on every variable x1, . . . , xm. By Prop. 4,
all persistent variables in A′n are persistent in An+1, as well as all the persistent variables
in A not occurring in A′. By the ISIV condition, card(A•Vper ∖ A′ •Vper) > 0, hence
card(An+1 •Vper) ≥ card(An •Vper) + 1 ≥ n + 1.

Putting things together we get the result:

Proof. (Of Thm. 3) If φ is k-PCE-compatible then by Lem. 5 the number of variables
occurring in abstractions generated during the computation of abs(φ) is bounded, which
entails by Prop. 5 that the number of such abstractions is also bounded. Consequently,
the computation of abs(φ) necessarily terminates, and (by Lem. 7), the ISIV condition
cannot apply. Otherwise, the ISIV condition applies by Lem. 6.

D Proof of Theorem 4 (Unicity of Predicate Abstraction)

We recall Thm. 4

Theorem 4. (Φ,R) ≡ (Φ†,R†). Moreover, for all predicates pA
I defined in R†, the set

abs(pA
I (#»y , x′1, . . . , x

′
m)) contains exactly one abstraction.

The first lemma states that every structure denoted by p is also denoted by some
predicate pA

I :

Lemma 8. Let p(x1, . . . , xn) be an atom and let (s, h) be a structure verifying (s, h) |=R
p(x1, . . . , xn). There exists an abstraction A ∈ abs(p(x1, . . . , xn)) such that (s, h) |= A,
and for all disconnected sets I for p, A, (s, h) |=R† ∃x′1, . . . , x

′
m. pA

I (#»y , x′1, . . . , x
′
m), where

{x′1, . . . , x
′
m} = A•Vinv and #»y is the sequence of variables xi with i < I.

Proof. The proof is by induction on the satisfiability relation. By definition, there exists
a formula φ such that p(x1, . . . , xn)⇐R φ and (s, h) |=R φ. The formula φ is necessarily
of the form (up to AC) ∃ #»z . (q1(#»u1)⋆ · · ·⋆ qk(#»uk)⋆φ′), where φ′ contains no predicate
atom. Since (s, h) |=R φ, there exist an extension ṡ of s to #»z and disjoint heaps h0, . . . , hk
such that h = h0∪ . . . hk, (ṡ, h0) |=R φ′ and (ṡ, hi) |=R qi(#»ui), for all i ∈ J1, kK. Let ṡi be the
store mapping every variable x j (for j ∈ J1, #(qi)K) to the image by ṡ of the j-nth compo-
nent of #»ui. By definition of ṡi, we have (ṡi, hi) |=R qi(x1, . . . , x#(qi)), hence by the induc-
tion hypothesis, there exist abstractions Ai ∈ abs(qi(x1, . . . , x#(qi)) (for i ∈ J1, kK) such
that (ṡi, hi) |= Ai, and for every disconnected set Ii for qi, Ai, (ṡi, hi) |=R† ∃ #»x ′i . qi

Ai
Ii

(#»y i,
#»x ′i),

where #»x ′i is the sequence of invisible variables in Ai and #»y i is the sequence of variables
xi with i < Ii. By definition of ṡi, this entails that (ṡ, hi) |=R† ∃ #»x ′i . qi

Ai
Ii

(#»u ′i ,
#»x ′i), where #»u ′i

denotes the subsequence of #»ui obtained by keeping only the components i < Ii. Let A
be the abstraction obtained from the rule p(x1, . . . , xn)⇐ φ and abstractions A1, . . . , Ak

as explained in Def. 18. Note that A necessarily exists, as we have (ṡ, h0) |=R φ′ and
(ṡ′, hi) |= Ai, for all i ∈ J1, nK, hence the construction of the abstraction cannot fail,
moreover we have (s, h) |= A. By definition A ∈ abs(p(x1, . . . , xn)). We denote by A′ the
corresponding abstraction of q1(#»u1) ⋆ · · · ⋆ qk(#»uk) ⋆ φ′. By definition, R† contains a
rule

pA
I (#»s , x′1, . . . , x

′
m)⇐ ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆ qk

Ak
Jk

(#»t k,
#»vk) ⋆ φ′′)σ

30

satisfying the conditions on rule Eq. (11) above. By letting Ii = Ji, in the above asser-
tion, we get (ṡ, hi) |=R† ∃ #»x ′i . qi

Ai
Ii

(#»t i,
#»x ′i), so that (ṡ, hi) |=R† ∃ #»x ′i . qi

Ai
Ii

(#»t i,
#»x ′i)σ, by defini-

tion of σ (since (ṡ, h) |= A′ and (x, σ(x)) ∈ A′ •∽). Now, observe that all atoms occurring
in φ′ but not in φ′′ are equational (indeed, if φ′ contains an atom v0 → (v1, . . . , vl) then
necessarily v0, . . . , vl cannot be disconnected in A′). As (ṡ, h0) |=R φ′, this entails that
we also have (ṡ, h0) |=R φ′′, and as φ′′ contains no predicate atom, (ṡ, h0) |=R† φ′′, so that
(ṡ, h0) |=R† φ′′σ. Thus (s, h) |=R† ∃ #»y .∃ #»x ′1. . . .∃

#»x ′k . (q1
A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆ qk

Ak
Jk

(#»t k,
#»vk) ⋆

φ′′)σ, and therefore (s, h) |=R† ∃x′1, . . . , x
′
m. pA

I (#»y , x′1, . . . , x
′
m) (as, by definition, the in-

visible variables x′1, . . . , x
′
m of A, are either invisible in A′1, . . . , A

′
k or occur in y⃗ \ z⃗).

Conversely, all structures denoted by pA
I are also denoted by p. To prove this as-

sertion, we first need to relate the abstractions associated with pA
I to A. Let p be an

n-ary predicate and let A be an abstraction in abs(p(x1, . . . , xn)). For any disconnected
set I for p and A, we denote by AI the abstraction B identical to A, except that B
has no invisible variables and that every variable xi with i ∈ I is removed. Formally:
B•V = A•V ∖ {xi | i ∈ I}, B•Vv = B•V , (x, y) ∈ B•∽ ⇐⇒ ((x, y) ∈ A•∽ ∧ x, y ∈ B•V)
and ([x] ,

[
y
]
) ∈ B•∽ ⇐⇒ (([x] ,

[
y
]
) ∈ A•∽ ∧ x, y ∈ B•V). Note that the removal of the

variables xi with i ∈ I affects neither A•Va, A•h nor A•⇝, nor the equivalence class of
the other variables, as by hypothesis all the variables xi with i ∈ I are disconnected.

The next lemma shows the second part of Thm. 4.

Lemma 9 (Unicity of the abstraction). Let p be an n-ary predicate symbol. For all
predicates pA

I , abs(pA
I (#»y , x′1, . . . , x

′
m)) = {AI}, where #»y is the sequence of variables

x1, . . . , xn with i < I, and x′1, . . . , x
′
m are the invisible variables in A.

Proof. The proof is by induction on abs(φ). By definition (since A ∈ abs(p(x1, . . . , xn)),
the SID R† contains (at least) one rule pA

I (#»s , x′1, . . . , x
′
m) ⇐ ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆

qk
Ak
Jk

(#»t k,
#»vk)⋆φ′′)σ satisfying all the conditions on the rule Eq. (11) above. Consider any

rule of this form. By the induction hypothesis, for every i ∈ J1, kK, abs(qi
Ai
Ji

(#»y i,
#»v i)) =

{Bi}, where Bi = Ai
Ji and #»y i is the sequence of variables x j with j ∈ J1, #(qi)K ∖ Ji.

Let B and B′ be the abstractions corresponding to the formulas (q1
A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆

qk
Ak
Jk

(#»t k,
#»vk) ⋆ φ′′)σ and ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆ qk

Ak
Jk

(#»t k,
#»vk) ⋆ φ′′)σ, respectively,

constructed from B1, . . . , Bk as explained in Def. 18. As (x, σ(x)) ∈ A′ •∽ holds for all
x ∈ dom(σ), A is also the abstraction of the formula ∃ #»y . (q1(#»u1) ⋆ · · · ⋆ qk(#»uk) ⋆ φ′)σ
(all variables y in dom(σ) are removed by the simplification rule, as they occur in the
same equivalence class as σ(y)). We denote by A′′ the corresponding abstraction of
(q1(#»u1) ⋆ · · · ⋆ qk(#»uk) ⋆ φ′)σ (by definition, A′′ is obtained from A′ by removing all
variables in dom(σ)). By the conditions above, the variables occurring in A′′ •V but
not in B′ •V must be disconnected in A′ (hence also in A′′). As disconnected variables
are not allocated and are alone in their classes, the removal of such variables does not
affect the properties of the other variables, thus A′′ and B′ agree on all variables in B′ •V
(except that all the variables in B′ are visible). If a variable is invisible in B, then it must
be some special variable in #»y , thus it must be also invisible in A, which is impossible
since by hypothesis all such variables occur in x′1, . . . , x

′
m (hence are necessarily visible

in B). Thus B has no invisible variable, and A and B agree on all variables in B•V ,
except that all the variables in B are visible. By the conditions on the rules in R†, all

31

the disconnected variables in y⃗ must be removed, as well as all variables xi with i ∈ I.
Moreover, all the variables xi with i ∈ I occur in B•V . Thus B = AI .

Lemma 10. Let p(x1, . . . , xn) be an atom, let A ∈ abs(p(x1, . . . , xn)) and let I be a
disconnected set for p and A. We denote by {x′1, . . . , x

′
m} the set of invisible variables in

A and by #»y the sequence of variables xi with i < I. Let (s, h) be a structure such that
(s, h) |=R† pA

I (#»y , x′1, . . . , x
′
m), and let ṡ be any extension of s to {xi | i ∈ I} that is coherent

with A. Then (ṡ, h) |=R p(x1, . . . , xn).

Proof. The proof is again done by induction on |=R† . By definition, since (s, h) |=R†

pA
I (#»y , x′1, . . . , x

′
m), there exist a rule pA

I (#»s , x′1, . . . , x
′
m) ⇐ ∃ #»z . (q1

A1
J1

(#»t 1,
#»v1) ⋆ · · · ⋆

qk
Ak
Jk

(#»t k,
#»vk)⋆φ′′)σ of the form of Eq. (11) above, an extension s′ of s and disjoint heaps

h0, . . . , hk such that (s′, h0) |=R† φ′′σ and (s′, hi) |=R† qi
Ai
Ji

(#»t i,
#»v i)σ (for all i ∈ J1, kK).

Let ṡ′ be any extension of s′ to the variables occurring in #»u1, . . . ,
#»uk (as defined in

the conditions on rule Eq. (11) above) but not in dom(s′) such that ṡ′ coincide with ṡ
on all variables in dom(ṡ) and maps all other variables to pairwise distinct locations
not occurring in img(ṡ) ∪ img(s′). Consider the store ṡ′i mapping every variable x j (for
j ∈ J1, #(q j)K) to the j-nth component of #»uiσ and coinciding with ṡ′ on #»v i. By definition,
(ṡ′i , hi) |=R† qi

Ai
Ji

(⃗yi,
#»v i), where y⃗i denotes the subsequence of x1, . . . , x#(qi) obtained by

removing the components in Ji. Observe that ṡ′i is coherent with Ai. Indeed, consider
any equality or disequality constraint x ▷◁ y induced by Ai. If x ▷◁ y occur in Ai

Ji

then it is necessarily fulfilled since by Lem. 9, ṡ′i is coherent with Ai
Ji (as (ṡ′i , hi) |=R†

qi
Ai
Ji

(#»y i,
#»v i)). Otherwise, one of the variables, say x, must occur in Ai •V but not in Ai

Ji
•V ,

hence must be disconnected in Ai, which entails that the constraint is negative (as a
variable that is not alone in its class cannot be disconnected). If (at some point during the
construction of A) both variables x, y occur in the same classes as variables from A, then
the constraint must be satisfied, as ṡ is coherent with A and A inherits all the constraints
from Ai. Otherwise ṡ′(x) is necessarily distinct from ṡ′(y), by definition of ṡ′, hence the
constraint x , y is necessarily satisfied. Consequently, by the induction hypothesis, we
get (ṡ′i , hi) |=R qi(x1, . . . , x#(qi)), so that (ṡ′, hi) |=R qi(#»ui)σ, i.e., (ṡ′, hi) |=R qi(#»ui) (since,
by the conditions on the rule Eq. (11), (x, σ(x)) ∈ A′ •∽). All atoms occurring in φ′

but not in φ′′ are either equations w ≈ w or disequations w ̸≈ w′ with (w,w′) ∈ A′ •+
(indeed, if φ′ contains a points-to atom or a non-trivial equation, then the variable in it
cannot be disconnected in A′). This entails that (ṡ′, h0) |=R φ′. Consequently, (ṡ′, h) |=R
q1(#»u1) ⋆ · · · ⋆ qk(#»uk) ⋆ φ′, thus (ṡ, h) |=R p(x1, . . . , xn).

The first part of Thm. 4 follows immediately from Lems. 8 and 10:

Corollary 1 (Soundness of the transformation). (φ,R) ≡ (φ†,R†).

E Proof of Theorem 5

We recall Thm. 5:

Theorem 5. Let (Φ†,R†) be any pair obtained by applying the transformations in
Sects. 6 and 7. If the computation of (Φ‡,R‡) terminates, then (Φ†,R†) ≡ (Φ‡,R‡).
Also, the SID R‡, and thus Φ‡, are PCE.

32

We state a property of derived predicates which will be sufficient for our purpose:

Lemma 11. Let R be an SID. Let γ be an atom and let (s, h) be a structure. Let
x, y1, . . . , yk be variables. If h(s(x)) = (s(y1), . . . , s(yk)) then (s, h) |=R γ ⇐⇒ (s, h) |=R
x→ (y1, . . . , yk) ⋆ (x→ (y1, . . . , yk) −−• γ).

Proof. – Assume that (s, h) |=R γ. The proof is by induction on the satisfiability
relation. We distinguish two cases.
• If γ is of the form u → (v1, . . . , vk), then h = {(s(u), s(v1), . . . , s(vk))}. By the

hypothesis of the lemma, we deduce that s(u) = s(x) and s(vi) = s(yi) for all
i ∈ J1, kK, so that (s, h) |=R x → (y1, . . . , yk) ⋆ x ≈ u ⋆ y1 ≈ v1 ⋆ · · · ⋆ yk ≈ vk.
By definition, x→ (y1, . . . , yk) −−• γ is x ≈ u⋆ y1 ≈ v1 ⋆ · · ·⋆ yk ≈ vk hence the
proof is completed.

• Otherwise, γ must be a predicate atom p(u1, . . . , un), and by definition, there
exists a rule p(v1, . . . , vn) ⇐ ∃ #»z . ψ and an extension s′ of s with (s′, h) |=R
ψ{vi ⇐ ui | i ∈ J1, nK}. Since h(s(x)) = (s(y1), . . . , s(yk)), ψ necessarily contains
an atom allocating x, i.e., ψ is of the form γ1⋆γ2 where γ1 is an atom and there
exist disjoint heaps hi (for i ∈ {1, 2}) with (s′, hi) |=R γi and x ∈ dom(h1). By the
induction hypothesis, we get (s′, h1) |=R x→ (y1, . . . , yk)⋆ (x→ (y1, . . . , yk) −−•
γ1), so that (s′, h) |=R x → (y1, . . . , yk) ⋆ (x → (y1, . . . , yk) −−• γ1) ⋆ γ2. By
definition of the rule defining x → (y1, . . . , yk) −−• γ this entails that (s, h) |=R
x→ (y1, . . . , yk) ⋆ (x→ (y1, . . . , yk) −−• γ).

– Conversely, assume that (s, h) |=R x → (y1, . . . , yk) ⋆ (x → ((y1, . . . , yk) −−• γ).
Again, we distinguish two cases.
• Assume that γ is of the form u → (v1, . . . , vk). Then (x → (y1, . . . , yk)) −−• γ is

x ≈ u⋆y1 ≈ v1⋆ · · ·⋆yk ≈ vk hence (s, h) |=R u→ (v1, . . . , vk), i.e., (s, h) |=R γ.
• Otherwise γ must be a predicate atom p(u1, . . . , un). Because (s, h) |=R x →

(y1, . . . , yk)⋆ (x→ (y1, . . . , yk) −−• γ), by definition of the rules defining derived
predicates, necessarily γ ⇐R ∃ #»x . (λ ⋆ φ), with (s′, h) |=R x → (y1, . . . , yk) ⋆
((x → (y1, . . . , yk)) −−• λ) ⋆ φ, for some extension s′ of s. By the induction
hypothesis, we get (s′, h) |=R λ ⋆ φ, so that (s, h) |=R γ.

Now for the proof of Thm. 5, it is clear that the first case preserve equivalence as
it only replaces some subformulas by predicates that can only be unfolded into these
subformulas. The second case preserves equivalence by Lem. 11.

Now we prove that the obtained rules must be PCE. Establishment is ensured by
Sect. 6. Indeed, since the obtained abstractions contain no invisible variable, all non
allocated variables originally introduced by unfolding are replaced by visible variables,
which are quantified existentially in Φ†. The fact that the described structures admit
exactly one root is ensured by not failing in Sect. 7. This allows the transformation in
Sect. 8 to ensure connectivity and progress. Indeed, if progress is not satisfied then Case
2 in Sect. 8 applies, and otherwise, if connectivity is not satisfied, then Case 1 applies.
As a result, every rule in R‡ is PCE.

F Examples

F.1 Example 1

We resume and complete here the running example.

33

The considered pair (φ,R) is composed of the formula φ = p(x, y) and the SID R
defined by the following rules:

p(x, y)⇐ ∃z. z→ (x, y) ,
p(x, y)⇐ x→ (y) ⋆ q(y) ,

q(y)⇐ ∃z, u, t.
(
y→ (z, t) ⋆ r(z, u, t)

)
,

r(z, u, t)⇐ u ̸≈ t ⋆ z→ (u) ⋆ t → (t) .
(20)

As said in Ex. 1, this SID is not PCE. Indeed, the first rule for p has a root z that
is not a free variable, the rule defining q is not established for the existential variable u
and the rule defining r does not respect the progress condition as it has two points-to
atoms.

Now let us compute the abstractions of φ thanks to the rules introduced in Sect. 5.
They are represented in Fig. 3. Equivalence classes are represented by circles and are
labelled by variable names. Allocated classes are filled grey; invisible variables are
prefixed with ∃ and [] are omitted. Disequalities are represented with dashed lines,
while heap and reachability relations are represented with tick resp. snaked arrows. The
set abs(φ) contains two abstractions, Ap

1 and Ap
2 . The former is built directly from the

non recursive rule of p. The latter is obtained by firstly building the abstractions Ar
1 for

the atom r(z, u, t) and then Aq
1 for the atom q(y) — that calls r(z, u, t) — using the rules

in Eq. (20). The abstraction A2 is obtained by applying the rule [Sep] on Aq
1 and on the

abstraction obtained by the rule [Pto] for x → (y). Finally Ap
2 is obtained from A2 by

removing variables z and t using the procedure in Def. 17 because they are not special.
In Fig. 3 are represented the abstractions used to created the abstraction of φ.

Ap
1 : ∃z [x]

[
y
]

Ar
1 : [z] [u]

[t]

Aq
1 :

[
y
]

∃z

∃t

∃u

Ap
2 : [x]

[
y
]

∃u A2 : [x]
[
y
]

∃z

∃t

∃u

Fig. 3. Abstractions used to construct abs(φ).

We note that abstractions Ap
1 and Aq

1 in Fig. 3 have a singleton set of roots built from
one class: root(Ap

1) = {{[z]}} and root(Aq
1) = {{

[
y
]
}}; both A2 and thus Ap

2 have the same
singleton set of roots: root(A2) = root(Ap

2) = {{[x]}}; while Ar
1 has a unique set of roots

but containing two classes: root(Ar
1) = {{[z] , [t]}}.

The variable z is not visible in Ap
1 but it is special and persistent since it fulfils the

condition 1 of Def. 15. All the invisible variables in Aq
1 are special but only y and u

are persistent. In A2, variables z, t, and u are still invisible but z and t are not longer
special and thus are removed to form abstraction Ap

2 . In the latter, y become invisible
and special.

34

All the abstraction are now constructed. The transformation described in Sect. 6
defines new predicates and new rules to impose the constraint that each predicate to
have a unique abstraction.

The predicate p defined by the rules on the left in Eq. (20) has two abstractions (one
by rule), Ap

1 and Ap
2 , where all roots are connected. In the same example, predicates

q and r have also only one abstraction. For all these predicates, the sets I, defined in
Sect. 6 are always ∅.

The new rules for the predicates p, q, r defined in the SID R in Eq. (20) are given
below in a new SID R†:

p
Ap

1
∅

(x, y, z)⇐ z→ (x, y) ,

p
Ap

2
∅

(x, y, u)⇐ ∃z, t. (x→ (y) ⋆ q
Aq

1
∅

(y, z, t, u)) ,

q
Aq

1
∅

(y, z, u, t)⇐ y→ (z, t) ⋆ r(z, u, t) ,

rAr
1
∅

(z, t, u)⇐ u ̸≈ t ⋆ z→ (u) ⋆ t → (t) .

(21)

The arity of predicates p
Ap

2
∅

and q
Aq

1
∅

has been changed to include the invisible vari-

ables u, z and t and the predicate p
Ap

1
∅

now does not have an invisible root any more.
The unique abstraction of each predicate defined by R†’s rules are represented in

Fig. 4.

Ap
Ap

1
∅ : [z] [x]

[
y
]

Ar
Ar

1
∅ : [z] [u]

[t]

Aq
Aq

1
∅ :

[
y
]

[z]

[t]

[u]

Ap
Ap

2
∅ : [x]

[
y
]

[u]

Fig. 4. Abstractions of new predicates p
Ap

1
∅

, p
Ap

2
∅

, q
Aq

1
∅

, and r
Ar

1
∅

.

This transformation also modify φ to be: φ† = ∃z. p
Ap

1
∅

(x, y, z) ∨ ∃u. p
Ap

2
∅

(x, y, u).
We remark that all the abstractions have at least one root, thus the first step of Sect. 7

does not apply. However, the predicate rAr
1
∅

still has two roots; since it is not recursive,
it can be unfolded.

The unfolding gives us a new SID R†
2:

p
Ap

1
∅

(x, y, z)⇐ z→ (x, y) ,

p
Ap

2
∅

(x, y, u)⇐ ∃z, t. (x→ (y) ⋆ q
Aq

1
∅

(y, z, t, u)) ,

q
Aq

1
∅

(y, z, t, u)⇐ y→ (z, t) ⋆ z→ (u) ⋆ t → (t) ⋆ u ̸≈ t .

(22)

35

The abstractions of the remaining predicates do not change.

Finally, the transformation in Sect. 8 applies only on the rule of q
Aq

1
∅

as p
Ap

1
∅

and

p
Ap

2
∅

are already PCE. The Case 1 applies: only two new predicates qz and qu for each
points-to atom reachable from the root have to be created to obtain PCE rules.

Therefore, the final pair is (φ†,R‡) with the SID R‡ defined as:

p
Ap

1
∅

(x, y, z)⇐ z→ (x, y) ,

p
Ap

2
∅

(x, y, u)⇐ ∃z, t. (x→ (y) ⋆ q
Aq

1
∅

(y, z, t, u)) ,

q
Aq

1
∅

(y, z, t, u)⇐ y→ (z, t) ⋆ qz(z, u) ⋆ qt(t) ⋆ u ̸≈ t ,

qz(z, u)⇐ z→ (u) ,
qt(t)⇐ t → (t) . (23)

F.2 Example 2

This example contains a very simple recursive predicate. It illustrates how the abstrac-
tion is built for recursive predicates. In this case, the abstraction process terminates
since the SID is 1-PCE-compatible; in fact this set of rules is PCE. However, our trans-
formation change the set of rules.

ls+(x, y)⇐ x→ (y) ,
ls+(x, y)⇐ ∃u. (x→ (u) ⋆ ls+(u, y)) .

(24)

The abstractions are indexed by the word of SID rules applied (from most recent to
the oldest), e.g., r221 means applied removing after 2 times call of second rule for ls
and first rule for ls.

Here, abs(ls+(x, y)) = {A1, A21, Ar221} with:

– A1 •V = {x, y}; A1 •∽ = Id; A1 •+ = ∅; A1 •Vv = {x, y}; A1 •Va = {[x]}; A1 •h = [[x] 7→
(
[
y
]
)]; A1 •⇝ = {([x] ,

[
y
]
)}. A1 abstract the formula of the first rule defining ls.

– A21 •V = {x, y, u1}; A21 •∽ = Id; A21 •+ = {([x] , [u1])}; A21 •Vv = {x, y}; A21 •Va =

{[x] , [u1]}; A21 •h = [[x] 7→ ([u1]), [u1] 7→ (
[
y
]
)]; A21 •⇝ = {([x] , [u1]), ([u1] ,

[
y
]
)}.

A21 is the second abstraction computed by unfolding using the second rule of ls
where ls+(u, y) is replaced with A1.

– Ar221 •V = {x, y, u2}; Ar221 •∽ = Id; Ar221 •+ = {([x] , [u2])}; Ar221 •Vv = {x, y};
Ar221 •Va = {[x] , [u2]}; Ar221 •h = [[x] 7→ ([u2])]; Ar221 •⇝ = {([x] , [u2]), ([u2] ,

[
y
]
)}.

Ar221 is the third abstraction computed by the instantiation of ls+(u, y) in the sec-
ond rule second with A21 and the removing of variable disconnected (u1).

Notice that there are only three abstractions for ls+(x, y) even if the number of
unfoldings is infinite. Indeed, we can see that A1 abstracts the unfolding x → (y) and
A21 the unfolding x → (u) ⋆ u → (y), i.e., a list of one element resp. a list of two
elements.

All the lists with three or more elements are abstracted by Ar211 thanks to the fact
that not special variables can be removed. Indeed, when Ar211 is computed using the
abstraction A21 for ls+(z, y), the variable u1 may be removed. Indeed, u1 is not a root, it
is not pointed by a root and it is not a visible variable of ls+(x, y). Thus the abstraction

36

A1 : [x]
[
y
]

A21 : [x] ∃u
[
y
]

Ar221 : [x] ∃u
[
y
]

Fig. 5. Abstractions of ls+(x, y).

only remembers that from u1 we can access to y. But it does not remember the number
of points-to that are used to do so.

Those abstractions are represented in Fig. 5.
To obtain the transformed form by our procedure, we notice that all abstractions

have one universal root and all parameters are used. Therefore, we obtain the following
PCE SID:

ls+A1
(x, y)⇐ x→ (y) ,

ls+A21
(x, y, u)⇐ x→ (u) ⋆ ls+A1

(u, y) ,

ls+Ar221
(x, y, u)⇐ ∃u′. (x→ (u) ⋆ ls+A21

(u, y, u′)) ,

ls+Ar221
(x, y, u)⇐ ∃u′. (x→ (u) ⋆ ls+Ar221

(u, y, u′)) ,

(25)

and the following formula: ls+A1
(x, y) ∨ ∃u. ls+A21

(x, y, u) ∨ ∃u. ls+Ar221
(x, y, u).

As the SID is already PCE, the next transformations will not have any effect.

F.3 Example 3

Let us consider the pair (lse(x, y),Rlse) with Rlse defined as following:

lse(x, y)⇐ x→ (y) ,
lse(x, y)⇐ ∃u. (lse(x, u) ⋆ u→ (y)) .

(26)

The SID Rlse is not PCE. It is exactly the one defined in Eq. (5) that defines a non-
empty list constructed from the end. Similarly to the previous example, lse(x, y) has
three abstractions, the same as previously. They are represented again in Fig. 6.

Als
e

1 : [x]
[
y
]

Als
e

2 : [x] ∃u
[
y
]

Als
e

3 : [x] ∃u′
[
y
]

Fig. 6. Abstractions of lse(x, y).

37

Once again the first transformation is applied to obtain predicates with only one
abstraction. We obtain the following PCE SID R†

lse :

lse
Alse1

(x, y)⇐ x→ (y) ,

lse
Alse2

(x, y, u)⇐ lse
Alse1

(x, u) ⋆ u→ (y) ,

lse
Alse3

(x, y, u)⇐ ∃u′. (lse
Alse2

(x, u′, u) ⋆ u′ → (y)) ,

lse
Alse3

(x, y, u)⇐ ∃u′. (lse
Alse3

(x, u′, u) ⋆ u′ → (y)) ,

(27)

and the following formula: lse
Alse1

(x, y) ∨ ∃u. lse
Alse2

(x, y, u) ∨ ∃u. lse
Alse3

(x, y, u).
Each new predicate has a unique root, therefore the transformations of Sect. 7 do

not apply.
However, the rules are not all PCE yet. The first rule is PCE and thus not changed.

The three last rules fall in the Case 2 of Sect. 8.

Let us consider the second rule. The transformation creates the following rule:

lse
Alse2

(x, y, u)⇐ x→ (u) ⋆ (x→ (u) −−• lse
Alse1

(x, u)) ⋆ u→ (y) ,

with a new predicate x→ (u) −−• lse
Alse1

(x, u) defined by the rule:

x→ (u) −−• lse
Alse1

(x, u)⇐ x→ (u) −−• x→ (u) ,

witch simplifies in x → (u) −−• lse
Alse1

(x, u) ⇐ emp. The second rule thus is simpli-
fied to: lse

Alse2
(x, y, u)⇐ x→ (u) ⋆ u→ (y), and then is transformed by the Case 1

into: lse
Alse2

(x, y, u)⇐ x→ (u)⋆qu(u, y), with qu(u, y)⇐ u→ (y) that is recognized
to be equivalent to lse

Alse1
(u, y). Finally the second rule is transformed into:

lse
Alse2

(x, y, u)⇐ x→ (u) ⋆ lse
Alse1

(u, y) . (28)

Now for the third rule. It is transformed into:

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ (x→ (u) −−• lse
Alse2

(x, u′, u)) ⋆ u′ → (y)) ,

with a new predicate x→ (u) −−• lse
Alse2

(x, u′, u) defined, after simplification, by:

x→ (u) −−• lse
Alse2

(x, u′, u)⇐ lse
Alse1

(u′, u) .

As before we group the two last atoms of the third rule to obtain:

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ qu(u, y, u′)) ,

qu(u, y, u′)⇐ lse
Alse1

(u, u′) ⋆ u′ → (y)) .

An equivalence between qu(u, y, u′) and lse
Alse2

(u, y, u′) can be observe and thus the
third rule is transformed into:

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ lse
Alse2

(u, y, u′)) . (29)

38

For the last rule, we obtain:

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ (x→ (u) −−• lse
Alse3

(x, u′, u)) ⋆ u′ → (y)) ,

with a new predicate x→ (u) −−• lse
Alse3

(x, u′, u) defined, after simplification, by the
two rules:

x→ (u) −−• lse
Alse3

(x, u′, u)⇐ ∃u′′. lse
Alse2

(u, u′, u′′) ,

x→ (u) −−• lse
Alse3

(x, u′, u)⇐ ∃u′′. ((x→ (u) −−• lse
Alse3

(x, u′′, u)) ⋆ u′′ → (u′)) .

If we rename (x → (u) −−• lse
Alse3

(x, u′, u) into DA(x, u′, u), observe that x is not
used in the rule, and apply a substitution [u ← x, u′ ← y, u′′ ← u], we obtain the
following rules:

DA(x, y)⇐ ∃u. lse
Alse2

(x, y, u) ,

DA(x, y)⇐ ∃u. (DA(x, u) ⋆ u→ (y)) .

However, this predicate has more than one abstraction. The abstractions of DA(x, y)
are exactly Als

e

2 and Als
e

3 , and if we apply Sects. 6 and 7 to DA we will obtain rules
similar to lse

Alse2
and lse

Alse3
. Therefore, DA(x, y) is equivalent to ∃u. lse

Alse2
(x, y, u)∨

∃u. lse
Alse3

(x, y, u). We can thus replace DA(u′, u), in the last rule of predicate lse
Alse3

,

by ∃u′′. lse
Alse2

(u, u′, u′′) ∨ ∃u′′. lse
Alse3

(u, u′, u′′) to obtain the two following rules:

lse
Alse3

(x, y, u)⇐ ∃u′, u′′. (x→ (u) ⋆ lse
Alse2

(u, u′, u′′) ⋆ u′ → (y)) ,

lse
Alse3

(x, y, u)⇐ ∃u′, u′′. (x→ (u) ⋆ lse
Alse3

(u, u′, u′′) ⋆ u′ → (y)) .

Then, the Case 1 applies and, as before, we obtain:

lse
Alse3

(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ qu(u, y, u′′)) ,

lse
Alse3

(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ q′u(u, y, u′′)) ,

with
qu(u, y, u′′)⇐ ∃u′. (lse

Alse2
(u, u′, u′′) ⋆ u′ → (y)) ,

q′u(u, y, u′′)⇐ ∃u′. (lse
Alse3

(u, u′, u′′) ⋆ u′ → (y) .

The rule of the predicate qu(u, y, u′′) is the same as the third rule of Eq. (27), and
thus it is transformed into:

qu(x, y, u)⇐ ∃u′. (x→ (u) ⋆ lse
Alse2

(u, y, u′)) .

For the rule of the predicate q′u(u, y, u′′), we have the same rule as the last rule of of
Eq. (27), and thus a similar transformation is applied to it, and we obtain:

q′u(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ pu(u, y, u′′)) ,
q′u(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ p′u(u, y, u′′)) ,

39

with
pu(u, y, u′′)⇐ ∃u′. (lse

Alse2
(u, u′, u′′) ⋆ u′ → (y)) ,

p′u(u, y, u′′)⇐ ∃u′. (lse
Alse3

(u, u′, u′′) ⋆ u′ → (y) .

And because we just applied the same transformation as before on the same rules,
then pu is equivalent to qu and p′u is equivalent to q′u and we can replace them:

q′u(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ qu(u, y, u′′)) ,
q′u(x, y, u)⇐ ∃u′′. (x→ (u) ⋆ q′u(u, y, u′′)) .

The last rule is thus transformed into these rules:

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ q′u(u, y, u′)) ,

qu(x, y, u)⇐ ∃u′. (x→ (u) ⋆ lse
Alse2

(u, y, u′)) ,

q′u(x, y, u)⇐ ∃u′. (x→ (u) ⋆ qu(u, y, u′)) ,
q′u(x, y, u)⇐ ∃u′. (x→ (u) ⋆ q′u(u, y, u′)) .

(30)

Now to summarise:
If we regroup the first rule of Eq. (27) and the rules we get in Eqs. (28) to (30) we have
the PCE form of (lse(x, y),Rlse).

The final PCE SID is the following:

lse
Alse1

(x, y)⇐ x→ (y) ,

lse
Alse2

(x, y, u)⇐ x→ (u) ⋆ lse
Alse1

(u, y) ,

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ lse
Alse2

(u, y, u′)) ,

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ qu(u, y, u′)) ,

lse
Alse3

(x, y, u)⇐ ∃u′. (x→ (u) ⋆ q′u(u, y, u′)) ,

qu(x, y, u)⇐ ∃u′. (x→ (u) ⋆ lse
Alse2

(u, y, u′)) ,

q′u(x, y, u)⇐ ∃u′. (x→ (u) ⋆ qu(u, y, u′)) ,
q′u(x, y, u)⇐ ∃u′. (x→ (u) ⋆ q′u(u, y, u′)) .

(31)

and the final formula is lse
Alse1

(x, y) ∨ ∃u. lse
Alse2

(x, y, u) ∨ ∃u. lse
Alse3

(x, y, u).

G Implementation and Experiments

We have implemented an initial version of the algorithm in OCaml using the Cy-
clist [2] framework. The prototype uses the front-end of Cyclist including the pars-
ing of input files (in local format or in SL-COMP [1] format) and the abstract syn-
tax tree of formulas and predicate definitions as well as the semantic analysis (mainly
typing of predicates definitions). The module implementing our algorithm comprises

40

approximately 3000 lines of code. The sources are available in the artefact archive at
https://hal.science/hal-04549937.

To ensure termination and efficiency, the implemented procedure simplifies the Step
8 to avoid the use of derived predicates. Instead, we employ a fixed-depth unfolding of
predicate atoms. The other sections strictly adhere to the algorithm implemented.

Our benchmark includes 145 examples including the ones presented in this paper
(main part or Appendix F), some taken in the benchmark of Cyclist (see https:
//www.cyclist-prover.org/) and some in the SL-COMP benchmark (mainly di-
visions qf_shls_entl, qf_shlid_entl, qf_shid_entl and shid_entl). These ex-
amples contain the definition of various data structures, including lists (singly linked,
doubly linked) built from start or from end, skip-lists up to three levels, nested lists,
binary trees, union-find, etc. The number of predicate definitions per file varies from 1
to 7, and the number of rules from 1 to 8. We include all the predicate definitions from
SL-COMP benchmark that may be expressed in our fragment.

We split the 145 tested examples on the following four categories:

– OK-CPCE: 105 examples are successfully transformed into equivalent new PCE-
formulas;

– NOK-ISIV: 20 examples trigger the ISIV condition (which proves that the structures
are not k-PCE-compatible);

– NOK-CPCE-rec: 3 examples fail at Step 7 (recursive structures with multiple roots);
– NOK-CPCE-maxit: 17 other exhaust the allocated execution time or the number of

iterations at Step 8; the maximal number of iterations is set to 10 and a timeout on
computation of the transformation is set to 30 seconds.

Each category is stored in a separate directory in the artefact archive.
We ran our experiments on a Apple M2 with 8 cores and 24 GB RAM. We mea-

sured the global running time (denoted by TG) and the percent of this time taken by the
first step in charge of building the abstractions (%TA) and testing ISIV condition; the
remaining time is taken by the transformation to PCE. We also measured the number of
rules generated by the transformation (Rout) and the number of rules in the input (Rin).

Table 2 provide the experimental results for the categories where the transforma-
tion is not done. Most examples in the NOK-ISIV section correspond to structures with
“dangling edges”, which model arbitrary data stored inside the structure. Such struc-
tures do not fulfil the establishment property (see Def. 5) hence cannot be defined with
PCE rules. In contrast, the failure at Step 7 for examples in the NOK-CPCE-rec section
does not entail that no equivalent PCE definition exists. We notice here that only 3 ex-
amples from SL-COMP benchmark trigger the ISIV condition, which is an interesting
insight for the organizers of this competition.

Table 3 includes a representative selection of the different results for the OK-CPCE
category (we include in this table all examples of predicate definitions from the SL-
COMP benchmark – in files with extension .smt2). In most cases, the computation of
abstraction dominates the global execution time. However, when it is not the case, e.g.,
sll-vc01.smt2, the formula is very big, so its transformation dominates the execution
time.

The transformation sometimes greatly increases the number of rules and predicates,
which can be attributed to two factors. Firstly, at Step 6, one predicate is introduced for

41

https://hal.science/hal-04549937
https://www.cyclist-prover.org/
https://www.cyclist-prover.org/

Table 2. Experimental results for categories NOK-ISIV, NOK-CPCE-maxit and NOK-CPCE-rec

Category File #Pin #Rin/Rout TG (ms) %TA

NOK-ISIV binlistfirst 1 2 / – < 1 98%
binlistsecond 1 2 / – < 1 98%
binpath 1 3 / – 1 99%
bintree 1 2 / – 1 99%
bintreeseg 2 5 / – 11 100%
bsll 1 2 / – < 1 97%
dll_entails_ls.sb.smt2 2 4 / – 6 100%
dll_entails_lspre.sb.smt2 2 4 / – 6 100%
dll_entails_lsrev.sb.smt2 2 4 / – 6 100%
dls 1 2 / – < 1 98%
funqueue 3 4 / – 2 100%
funqueuelists 2 4 / – 3 100%
isiv 1 2 / – < 1 99%
lsls 2 4 / – 10 100%
ncls2 1 2 / – < 1 98%
sll 3 6 / – 7 100%
sptrue 1 2 / – < 1 95%
sptrue2 1 2 / – < 1 96%
tree 2 4 / – 261 100%

NOK-CPCE-maxit bsll_nil 1 2 / – > 3 × 106

dll2-entails-dll2-rev.smt2 3 6 / – > 3 × 106

dll2-rev-entails-dll2.smt2 3 6 / – > 3 × 106

dll2-spaghetti.smt2 3 6 / – > 3 × 106

ncrls 1 2 / – 1052 100%
node-tll-tll-entails-tll.smt2 1 2 / – > 3 × 106

nonpce1 2 2 / – 3 89%
nonpce10 2 3 / – 1 85%
nonpce11 2 4 / – 1 86%
nonpce5 2 2 / – 6 89%
rlist 1 2 / – 1077 100%
tll-pp-entails-tll-pp-rev.smt2 3 6 / – > 3 × 106

tll-pp-rev-entails-tll-pp.smt2 3 6 / – > 3 × 106

tree-pp-entails-tree-pp-rev.smt2 3 8 / – > 3 × 106

tree-pp-rev-entails-tree-pp.smt2 3 8 / – > 3 × 106

uf 2 3 / – 8 85%
NOK-CPCE-rec funqueuelists_nil 2 4 / – 46 83%

test 1 2 / – 2 84%

42

each abstraction. While this convention greatly simplifies theoretical developments, it
negatively impacts the size of the input, particularly for tree-shaped structures where
rules involve multiple predicate calls. Secondly, the system does not attempt to reuse
predicates when possible, due to the additional bookkeeping involved. Improving both
aspects is left to future work.

Overall, we find the results highly encouraging, as approximately 86% of the ex-
amples are successfully managed. This success is either achieved by transforming them
into equivalent PCE definitions or by demonstrating the infeasibility of such a transfor-
mation.

These results may be used by the organisers of SL-COMP to identify the “difficult”
problems in the current benchmark and to propose a mesure of this difficulty based on,
e.g., the number of rules generated by the translation.

43

Table 3. Experimental results for OK-CPCE

Category File #Pin #Rin/Rout TG (ms) %TA

OK-CPCE append_sll_cll_slk-1.smt2 7 9 / 25 6 88%
append_sll_ls_slk-1.smt2 6 8 / 21 5 89%
append_sll_slk-1.smt2 4 5 / 13 3 83%
bolognesa-10-e01.tptp.smt2 1 2 / 4 96 1%
clones-01-e01.tptp.smt2 1 2 / 4 1 84%
dll-entails-dll-rev.smt2 2 4 / 12 22 68%
dll-entails-dll0+.smt2 2 4 / 12 24 70%
dll-rev-entails-dll.smt2 2 4 / 12 22 68%
dll-vc01.smt2 1 2 / 6 9 75%
append_dllnull_entails_dllnull.sb.smt2 2 4 / 10 11 75%
append_tail_entails_dll.sb.smt2 1 2 / 6 10 74%
append_tail_entails_dllnull.sb.smt2 2 4 / 10 11 75%
append_tail_entails_dllrev.sb.smt2 1 2 / 6 9 73%
concat.sb.smt2 1 2 / 6 10 74%
concat_dllrev.sb.smt2 2 4 / 12 20 70%
entails_dllrev.sb.smt2 2 4 / 12 20 70%
nil_tl_entails_dllnull.sb.smt2 2 4 / 10 11 75%
elist 1 2 / 6 2 87%
elseg4_slk-1.smt2 2 3 / 8 4 86%
eolseg_01.sb.smt2 4 8 / 24 6 87%
exF-1 3 4 / 5 2 86%
funqueue_nil 3 4 / 59 69 89%
listoe 2 3 / 5 1 85%
ls-vc01.smt2 1 2 / 4 1 84%
exF-2 1 2 / 4 1 83%
ls.smt2 2 5 / 22 6 88%
ls2_entail_ls_01.sb.smt2 2 5 / 22 6 87%
ls_entail_ls_nonrec_01.sb.smt2 2 5 / 16 4 87%
lsbt 2 4 / 200 125 82%
lsls_nil 2 4 / 36 23 86%
lsnil 1 2 / 4 1 84%
lss-vc01.smt2 1 2 / 4 1 84%
ncls 1 2 / 4 1 84%
ncls2_nil 1 2 / 8 5 85%
nll-vc01.smt2 2 4 / 56 45 83%
node-dll-rev-dll-entails-dll.smt2 2 4 / 12 23 68%
node-node-dll-entails-dll.smt2 2 3 / 7 12 69%
odd-lseg3_slk-1.smt2 1 2 / 5 1 84%
skl2-vc01.smt2 2 4 / 56 51 85%
skl3-vc01.smt2 3 6 / 1524 20117 83%
sll-vc01.smt2 1 2 / 4 2603 0%
smallfoot-vc01.tptp.smt2 1 2 / 4 1 84%
tseg_join_2.sb.smt2 2 5 / 840 1397 85%
tseg_join_2_entail_tree.sb.smt2 2 5 / 840 1387 85%
tseg_join_tree.sb.smt2 2 5 / 840 1388 85%
tseg_join_tree_entail_tseg.sb.smt2 2 5 / 840 1384 85%

44

	What is Decidable in Separation Logic Beyond Progress, Connectivity and Establishment?

