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Abstract: Al systems have an increasing sprawling impact in many application areas. Embedded
systems built on Al have strong conflictual implementation constraints, including high computation
speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural
Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances.
As a consequence, they are an interesting target for approximate computing seeking reduced resources,
lower power consumption and faster computation. Also, the large number of computations required
by a single inference makes hardware acceleration almost unavoidable to globally meet the design
constraints. The reported study, based on an integer version of LeNet, shows the possible gains when
coupling approximation and hardware acceleration. The main conclusions can be leveraged when
considering other types of NNs. The first one is that several approximation types that look very
similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the
selected approximation has to be carefully chosen. Also, a strong approximation leading to the best
hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder
approximation defined in the literature. Finally, combining hardware acceleration and approximate
operators in a coherent manner also increases the global gains.

Keywords: AI; CNN; Hardware acceleration; Approximate computing; LeNet

1. Introduction

Artificial Intelligence (Al) applications exist today spanning through all areas, in-
cluding natural language processing, computer vision, speech recognition, robotics, au-
tonomous vehicles, aeronautics, spacecraft, biology, healthcare, malware classification
and security, but also supply chain management, manufacturing, education, recruitment,
marketing, financial services, agriculture and many others. Applications are so varied that
all papers in the literature focus on a given application subset. However, as a common
point, Machine Learning (ML) and Deep Learning (DL) systems manipulate large amounts
of data and require high computational capability, often centralized in cloud-based services.
Nevertheless, the rapidly increasing number of devices that are producing and collecting
data in Internet of Things (IoT) applications raises the need for applying Al computation on
the edge for performance and energy efficiency. In this context of Edge AI, many resources
have to be developed, both hardware and software [1].

We focus in this paper on applications such as computer vision and pattern recogni-
tion, widely used in many embedded systems. However, the general approach and the
global conclusions could be applied in many other cases. We seek systems with strong
implementation constraints in terms of hardware resources, power, energy, cost and also
dependability. Such systems increasingly run ML or DL models for edge Al even with
strong requirements for reliability in harsh environments, e.g., avionics and space [2,3],
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or in safety-critical applications, e.g., autonomous vehicles. We will not directly address
the dependability aspects in this paper. However, optimizations leading to more efficient
hardware and software implementations can also help in reaching a better dependability
level for the final system. The presented case study is therefore chosen to be well suited
to this kind of application, especially when implemented using field programmable gate
arrays (FPGAs) with hard or soft microprocessor (CPU) cores.

We will also focus in this paper on inference only. Training the model is assumed to
have been performed before it is used in the embedded system. However, even inference
requires heavy computations. Real-time constraints that are necessary in some applications
still increase the difficulty of running the Al models on resource-constrained equipment.
In order to reach the required computation speed as well as meet the resource and power
constraints, hardware acceleration is most often unavoidable. In consequence, many works
have addressed this aspect for various Al models, using different number representations
and different architectures for the underlying neural networks (NNs) [1,3-5]. For the type
of systems we target, floating point or even fixed point computations are not optimal in
terms of resources, computation load and power or energy consumption. We will therefore
focus our study on models using integer computations and accelerators built around
integer operators.

Another approach to achieve higher computation speed is to increase the hardware
clock frequency, at least when it is feasible within the power budget. One possibility is
to reduce the critical path in the operators thanks to the approximate (AxC) or inexact
computation paradigm [6,7]. In fact, AxC is often considered as able to simultaneously im-
prove computation speed, resource usage, power consumption and energy efficiency, at the
expense of some loss in accuracy of outputs. NNs, being brain-inspired architectures, have
some inherent fault tolerance capabilities, partly because they contain more neurons than
are actually required for a given task. In spite of some similarities with brain characteristics,
the analogy of biological neural networks cannot lead to the assumption of a very high
fault tolerance level by relying only on the intrinsic masking ability [8-10]; the actual level
of robustness clearly depends on the hardware design decisions. As already mentioned,
we will not discuss further this attribute in this paper, but regardless, the inherent capa-
bility of these networks to tolerate some discrepancies during computations makes them
particularly attractive in the context of approximate computing. The use of approximations
can even result in more dependable systems, as discussed in [11]. This approach can be
applied at all levels, from the ML definition and implementation in the global system down
to the design of circuit subblocks. It can also target the weight format and values, or the
computations during inference. In our case, we will consider approximated operations at
circuit level and focus more specifically in this study on approximated additions.

In the sequel, we will show the benefits of combining hardware acceleration and
approximate computing on an example of a convolutional neural network (CNN) using
integer computations. We will also discuss the need for a cautious selection of the approxi-
mations in order to achieve the best gains while preserving good accuracy of the results.

The remainder of this paper is structured as follows: Section 2 gives more details
on related works, emphasizing previous works leveraged during our study. Section 3
details the analysis of the LeNet software, describes the decisions made for the accelerated
implementation and summarizes the results. Section 4 reports on the accuracy achievable
with the selected set of adder approximations, for both non-uniform and uniform imple-
mentations. Finally, Section 5 draws conclusions based on a global discussion and provides
some perspectives.

2. Related Works and Case Study Definition

We will focus here on previous works directly used during our study. This covers the
three aspects mentioned in the introduction: (1) the CNN chosen as the target application,
(2) the hardware/software embedded system used as the implementation target with
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hardware acceleration of the Al computations and (3) the type of approximations used
during inferences.

2.1. Target Network and Data Set

Since we focus for this case study on applications such as computer vision and pattern
recognition, a natural choice was to consider LeNet as a reference model. This network was
initially proposed in [12] and named after Yann LeCun, who was at that time a researcher at
AT&T Bell Labs. It is one of the first published CNNs, having captured wide attention for
its performance on computer vision tasks and especially handwritten character recognition,
achieving an error rate of less than 1% per digit. It was eventually adapted to recognize
digits for processing deposits in ATMs and was still in use recently [13].

As illustrated in Figure 1, LeNet is composed of six hidden layers and a final output
layer. Layers C1, C3 and C5 are convolutions. The pooling layers S2 and 54 are sums of
four inputs, multiplied by a trainable weight coefficient, with a trainable offset and results
output through the sigmoid function. The F6 layer is a fully connected layer, calculating the
dot product between the input vector and the weight vector, plus an offset, and the result is
output through the sigmoid function. Lastly, the output layer, finalizing the handwritten
character recognition, is also a densely connected layer but with Gaussian connections; the
results are directly output without an activation function.

Feature Feature
maps Feature maps  Feature
6-28x28 maps 16 - 10x10 maps 120 84 10
6 - 14x14 16 - 5x5
3 o| [@e] [e®
. % o o |@
% o @ @
3 Convolution @ O @
== c1 O[s2 Hlcs fs4 s >F6 >Outpu[t}> 3
]
32x32 images BubsAmpling @ ® ® Classification
O ‘ . result
o O @
o @ e
\ T
Y Y
Feature learning Classification

Figure 1. Architecture of LeNet-5, a CNN used for digit recognition.

For our purpose, we looked for a version of LeNet avoiding the costly floating point
computations performed in TensorFlow or GPU implementations. We also wanted to avoid
fixed point computations. We therefore relied on a version using only integer computations
and that is publicly available at [14].

In this version, the seven layers of the network are adapted with respect to the original
implementation. In particular, tanh and sigmoid activations are rarely used nowadays due
to saturation problems and complex computations. They are most often replaced by ReLU
(Rectified Linear Unit). Also, the post-training quantization from [15] is used to achieve a
weight offset that is null after training. The computations in the layers, without mentioning
the differences in dataset sizes, can then be summarized as follows.

Cl—convolutional with output through ReLU (negative results are forced to 0, all
results are on 8 bits with values above 255 forced to 255);

S2—downsampling with MaxPool (activation already applied on the output of C1);

C3—as C1;

S4—as S2, followed by reshaping;

C5—full connection with ReLU;

F6—full connection with ReLU;

Output—ReLU followed by Argmax (Gaussian connections are not useful for inference only).
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In practice, C5, F6 and Output are three similar layers that use the “dense” function
we will refer to in the following. C1 and C3 use “conv2d”.

In this study, we only consider the inference computations performed by a pre-trained
network. The set of weights is stored in a file for the software version of the network,
or in a memory when implemented as an embedded system. The network was trained
using the MNIST database (Modified National Institute of Standards and Technology
database) containing binary images of handwritten digits. This collection has a training set
of 60,000 examples and a test set of 10,000 examples. It was used for all our experiments.

2.2. Hardware Setup: Target Embedded System

The goal of this study was to evaluate the global effect of acceleration and approxima-
tion in the context of edge Al implemented in an embedded system. This system should
also be able to run other functions, so it cannot be reduced to a dedicated Al accelerator.
We therefore targeted a general-purpose processor associated with a hardware accelerator
well suited for the main operations performed in Al systems, i.e., matrix multiplication
and accumulation.

Such an accelerator was recently proposed, designed with the same global objectives
and targeting critical applications such as in aerospace [16-18]. The accelerator can be
associated with one general-purpose CPU from Frontgrade Gaisler, i.e., Leon3 or NOEL-V.
It is available at [19] with all the necessary support for software development exploiting
the custom instructions that control the accelerator functions. We decided for our study to
select this accelerator, called Sparrow, and the Leon3 CPU core. Compilations were made
with the adapted version of GCC, using assembly instructions for the accelerated parts of
the LeNet software.

Sparrow is activated by custom instructions dedicated to parallel computations based
on the SIMD (Single Instruction Multiple Data) paradigm. The most important features of
the SIMD architecture of Sparrow, leveraged during our study, are summarized in Figure 2.
Two 32-bit operand registers are used to store four pairs of 8-bit data. A first computation
stage allows computing a given operation on the four pairs in parallel. The available
operations include integer multiplication. The four results are stored in 16-bit registers. A
second computation stage allows reduction, including accumulation with a final result on
32 bits. More details are given in [16].

4 SPARROW )
)= JE==
T I
[ ] ]
i Stagel:v V
2-Open:3nd SIMD Opgrations i
iv v v ¥
(o e ) a ) )GEe
v v v i
Stage 2:
Reduction Operations
o )
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Figure 2. Simplified architecture of Sparrow.

2.3. Selected Approximation Alternatives

As illustrated in [20], approximations can be performed at algorithm level or at circuit
level, combined with error compensation and accuracy recovery techniques. In our case, we
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use the weights obtained during the training without further modification or retraining and
we apply approximations at circuit level during the computations by modifying arithmetic
operators. Since no retraining is performed, the approximation method must be chosen
to directly satisfy an acceptable accuracy level. For the reported case study, we focused
on adders that perform one of the two main operations in the selected network and are
the most straightforward to efficiently modify at the hardware level. Previous works also
considered, for example, approximate multipliers, as in [21] where such operators were
implemented in ASICs for Depthwise Separable CNNs, but this was left in our case for
future work, especially because multipliers optimized at the layout level in FPGA fabrics
are often more efficient than multiplier architectures eventually implemented using general
logic primitives and inefficient routing.

Various approaches to approximate additions have been proposed for more or less
complex adder architectures (e.g., [22]). The main constraints in our case were to use
flexible architectures that allow easy changes to the level of approximation and to ensure
compatibility with efficient implementations in soft cores, which can be synthesized either
on ASIC standard cell libraries or onto FPGAs. In the latter case, efficient structures gener-
ally exist in the fabric to implement fast carry propagation. In consequence, simple adders
are in general more efficient than more complex adder architectures with irregular and/or
complex connections that eventually require using the general-purpose interconnection
resources when routing critical paths. In consequence, we focused on adders implemented
with architectures very close to the simple Ripple Carry architecture, in order to reach a
good trade-off between hardware complexity /flexibility /power/energy efficiency and
computation speed.

The main selected hardware architecture is represented in Figure 3a and corresponds
basically to a Ripple Carry Adder with n serially connected 1-bit adders (“Full Adders”
or FAs). In the exact version, all FAs implement the reference addition truth tables of the
1-bit sum and the output carry as recalled in column FA of Table 1. In an approximate
version, the k Least Significant Bits (LSBs) are computed with an approximate FA (ApxFA)
defined by slightly modified truth tables. The n-bit operator is therefore made of a k-bit
fully approximate adder, connected in series with a (n-k)-bit exact adder. For our work, we
considered as ApxFA the five alternatives presented in [23] and recalled for completeness
in Table 1. This table also compares the published evaluations about area and power
characteristics for the six FAs.

An_]?n—l Ay By Ak_?k—l A B,
Il N [l
Cout,_#+— FA |« Cin,_, ... Cout,+—| FA ApxFA |— Cin,_, ... Couty+— ApxFA |— cCin, ()

! I !

Snfl o Sk Skfl .es SO

AL A S
Il I ?
Cout,_q#—{ FA |+— Cin,_; ... Cout,+—{ FA (b)
! |
Su1 o Sk S o So

Figure 3. Architectures of studied approximate adders: (a) k-bit approximate Ripple Carry Adder;
(b) k-bit Lower-part OR Adder (LOA).
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Table 1. Full adder truth tables and implementation characteristic examples for accurate and studied
approximated 1-bit additions (reproduced from [23]). Red bold characters indicate the approximated
values, i.e., those modified with respect to exact computations performed with FA.

Inputs FA ApxFA1 ApxFA2 ApxFA3 ApxFA4 ApxFA5
A B Cin Sum Cout Sum Cout Sum Cout  Sum Cout Sum Cout  Sum Cout
000 00 00 10 10 00 00
001 10 10 10 10 10 00
010 10 01 10 01 00 10
011 01 01 01 01 10 10
100 10 00 10 10 01 01
101 01 01 01 01 01 01
110 01 01 01 01 01 11
111 11 11 01 01 11 11
Area (GE) 441 4.23 1.94 1.59 1.76 0
Power (nW) 1130 771 294 198 416 0

We also included in our study a well-known approximate adder called LOA for Lower-
part OR Adder, introduced in [24] and represented in Figure 3b. This bio-inspired structure,
as presented by the authors, may be thought to be relevant in the context of neural networks
and was applied in the implementation of a face-recognition three-layer network in [24].
In this version of approximate adder, a small modification of the carry propagation chain
consists in adding an extra AND gate to generate the input carry of the (n-k)-bit exact adder
subblock. Since there is no carry propagation within the LSBs, this architecture does not
modify the use of the optimized interconnection resources in an FPGA.

Another design decision is between the choice of uniform or non-uniform approxima-
tion. Uniform approximation employs only a single type of approximate unit. For our case,
it means only one type of addition approximation is used, and all approximations are made
with the same number of approximated bits. The main advantage is to simplify the hard-
ware design and the use of the implemented operators. With non-uniform approximation,
several types of approximations are used depending on the on-going operation, and/or the
number of approximated bits can change from one operation to the other. This may allow
tuning the approximation to each operation’s intrinsic tolerance. However, this implies the
use of more resources in an operator to configure it for the selected approximated function
and select the right number of bits at each operation. A consequence is that this hinders
most of the advantages of the hardware-implemented approximation since the configura-
tion resources (e.g., multiplexers) imply more area, more power and energy consumption
and in most cases an increased critical path, resulting in increased computation time. In the
following, we will discuss the two possibilities for our case study.

3. Accelerated LeNet Implementation
3.1. Analysis of LeNet Source Code

Both acceleration and approximation require identifying in the code the operations
that can be targeted for optimizations. Operations that must be sequential cannot be
targeted for SIMD execution. Some operations must also have exact results to guarantee
correct network behavior during execution.

The main operations in our targeted software are integer additions and multiplications.
Among all the additions performed when running an inference, some correspond to loop
index computations. These additions cannot be parallelized and would completely disturb
the control flow if approximated. Our optimizations must therefore focus on additions
and multiplications performed on the data manipulated by the Al model (object data and
weights) but leave the control operations unchanged.

Integer data multiplications can be found in matrix multiplications performed during
the convolutions. Integer data additions can be found in both matrix multiplications and
offset computations.
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We eventually found four different additions that are potentially interesting for our
purposes. They correspond to inner-loop data computations and can be individually
selected for accelerated or approximated computing. Each of them is used in several layers
in the network, as summarized in Table 2. The Additions numbered 1 and 3 are in the inner
loops of matrix multiplications and have a much larger number of occurrences than the
Additions numbered 2 and 4, which are in offset computations. In the following, these four
additions will be written with a capital letter (i.e., Additions) to distinguish them to all
other additions performed during the inferences.

Table 2. Data Additions in LeNet data flow: position and number of occurrences.

Layer Addition to Approximate Number of Occurrences
Cl—conv2d function Addition 1 117,600
Addition 2 4704
C3—conv2d function Addition 1 240,000
Addition 2 1600
. Addition 3 48,000
C5—dense function Addition 4 120
. Addition 3 10,080
F6—dense function Addition 4 84
. Addition 3 840
Output—dense function Addition 4 10

In the target architecture, the most frequent operations are the most interesting to
assign to the SIMD accelerator. The main focus for speed improvement is therefore on
Additions 1 and 3 in the conv2d and dense functions. Data manipulations during MaxPool
or reshaping are not pertinent for optimizations.

In our target embedded system, we therefore decided to assign Additions 1 and 3
and the associated multiplications to the Sparrow accelerator. All other operations are
performed using the Arithmetic and Logic Unit (ALU) of the general-purpose processor.

3.2. Accelerated Version of the Software: Modifications and Results

The architecture of Sparrow allows performing four operations in parallel in its first
pipeline stage (including multiplications and subtractions) and additions in the second
pipeline stage. The number of loop iterations must therefore be a multiple of four, or the
loop must be modified with some padding or loop transformations.

In the dense function, the inner loop directly has a number of iterations that is a
multiple of four. The global operation performed can be decomposed into a subtraction, a
multiplication and an addition. The 8-bit data used for subtractions and multiplications are
concatenated into 32-bit words and the operations are then performed using the custom
Sparrow instructions, inserted as assembly instructions in the LeNet C code.

One problem here is the list of operations available in the original version of Sparrow.
Multiplications can be performed on several data types, whether signed or unsigned
(integer or natural), but for LeNet, multiplications must be made between a signed and an
unsigned integer. We therefore slightly modified the Sparrow description, available open-
source, to slightly change the behavior of one Sparrow operation. With this modification,
the dense function was accelerated using two SIMD instructions in the inner loop. Let us
mention that in the future this modification may have to be revisited in order to maintain
upward compatibility with other applications using Sparrow.

In the case of conv2d calls, the transformation to SIMD instructions is more tricky. In
the first call, iterations can be limited to parameters equal to one or five and in the second
call the inner loop has six iterations. It was therefore necessary to deeply modify the loop
imbrications. Finally, five operations in the loops were replaced by two SIMD instructions.

During this transformation, another important point had to be taken into account.
The implementation of our system is on a SoC FPGA, and 8-bit data are stored in internal
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memory blocks called BRAMs, with 32-bit words. In order to read four 8-bit pieces of
data in one memory access, all pieces must be in the same word. When five pieces of data
are required as in an inner loop of the first call, they cannot all be in the same word, and
furthermore, the group of useful pieces of data for one computation is not always split
in the same way between two memory words. Making the computation regular requires
aligning the data tables in a specific way, with lines of four pieces of data and adapted to
the loop transformations. Some paddings with zeros were also necessary. These zeros allow
both alignment and masking of extra computations performed by the SIMD instructions
but not present in the reference application program.

The results obtained after all these transformations are summarized in Table 3. Both
versions of the software (with and without use of the SIMD instructions) were compiled with
the O3 GCC optimization with Leon3 as a target. About 1,250,000 basic operations were
replaced by 420,000 SIMD operations. As shown in Table 3, this resulted in a 3.8 x acceleration
factor with a small size increase in the two main memory sections. The Text section contains
the instructions. The Data section contains data that are initialized at the beginning of the
program, such as weights. The system validation becomes also much more tractable, with a
4.8 gain in simulation time using GHDL on a standard PC: 25 ms for simulating a single
LeNet inference using SIMD instructions instead of 95 ms for simulating an inference with
only standard operations on the general-purpose processor.

Table 3. Comparison of LeNet implementations: characteristics of the accelerated version compared
to the original version.

Characteristic Difference from the Original Software
Memory size—Text section +2.7%
Memory size—Data section +5.4%
Execution time —73.7%
Simulation time —79.2%

4. Selection of Approximations and Impacts
4.1. Impact of the Approximations on the Network Accuracy: Results for Individual Additions

As detailed in Section 3.1, control-related additions must be differentiated from data-
related additions. Control-related additions cannot be approximated without disastrous
control flow modifications. We therefore focus here on the additions previously num-
bered 1 to 4. The approximated additions in the convolutional layers are thus only the
additions performing accumulations in the second stage of Sparrow, shown in Figure 2;
multiplications are left unchanged and computed in the first stage of Sparrow.

The impact of the approximations was first analyzed on the software implementation
of the network. For this purpose, a configurable addition function was written and used as
replacement of the standard C addition in the four selected places. This function allowed
us to quantify the accuracy loss with respect to each type of approximation and to the
number of approximated bits for each individual Addition. The results are summarized in
Figures 4 and 5. They were obtained after inference with the whole set of 10,000 test images
in the MNIST database.

Starting with the LOA approximation, Figure 4 shows the evolution of the network
accuracy as a function of the number of approximated bits in each individual Addition
among the four selected targets. Without approximation, the accuracy is 99%. Addition
4 and Addition 2 are the two most sensitive operations with respect to the number of
approximated bits, with a quick decrease in the accuracy around 8 approximated bits out
of 16. Addition 1 is very robust, with little impact on accuracy until 13 approximated bits.



Electronics 2024, 13, 2709

9 of 15

Accuracy %

Accuracy %

100

Addition 1 approximation

100 — —
90 N
80
70
60
50
40
30
20
10

Accuracy %

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of approximated bits

e Addition 1 Addition 2 s Addition 3 === Addition 4
Figure 4. Effect of LOA approximation on individual LeNet Additions (10,000 images).

Addition 2 approximation

80

60

40

20

e ADXFAL

100

2

3

= 100

8
2 60
s 40
2
© 20
0
4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of approximated bits Number of approximated bits
e ADXFA2 o ADXFA3 ApXFA4 e ADXFAS o ADXFAL —em— ADXFA2 e ADXFA3 ApXFA4 e ApXFAS

Addition 3 approximation

Addition 4 approximation

80
60
40

20

o ApXFA1

2

3

4

5

Number of approximated bits

s ADXFA2 s ApXFA3 ApXFA4 s ApXFAS — ApxFAL

6 7 8 9 10 11 12 13 14 15 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of approximated bits

. ADXFA2 s ApXFA3 ApXFA4 s ApXFAS

Figure 5. Effect of ApxFA approximations on individual LeNet Additions (10,000 images).

With LOA, it clearly appears that computations on offsets are more critical in terms
of approximation than computations in matrix multiplications. This trend is confirmed
for the five other approximation types, as shown in Figure 5. Also, in the case of offsets, a
saturation phenomenon appears, sometimes after some trend inversion in terms of accuracy
loss as exhibited with ApxFA1. Addition 1 remains the less sensitive operation with respect
to the recognition accuracy.

Table 4 summarizes the type of approximation inducing the fastest significant decrease
in accuracy for each Addition. A threshold of 97% accuracy was arbitrarily selected. As
an example, when increasing the number of approximated bits for Addition 1, ApxFA4 is
the first type of approximation leading to an accuracy under 97% (in that case, 94%) for
8 approximated bits. With the same number of approximated bits, all the other types of
approximation maintain an accuracy of at least 97%.
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Table 4. Worst approximation type and minimum number of approximated bits leading to an
accuracy under 97% for each individual LeNet Addition (10,000 images).

Approximated Number Type of
Operation of Bits Approximation Accuracy
Addition 1 8 ApxFA4 94%
Addition 2 5 ApxFA2 or ApxFA3 96%
Addition 3 8 ApxFA4 94%
Addition 4 5 ApxFA1 93%

Table 5 lists in a similar way the approximation leading to the latest decrease in
accuracy under 97%. As an example, when increasing the number of approximated bits for
Addition 2, LOA is the last type of approximation leading to an accuracy over 97% (in that
case, 99%) for 7 approximated bits. With the same number of approximated bits, all the
other types of approximation have an accuracy under 97%, and with 8 approximated bits
the accuracy with LOA goes under 97% (in that case, a sharp drop down to 28%).

Table 5. Best approximation type and maximum number of approximated bits leading to an accuracy
at least equal to 97% for each individual LeNet Addition (10,000 images).

Approximated Number Type of
Operation of Bits Approximation Accuracy
Addition 1 12 ApxFA1 or ApxFA5 or LOA 98%
Addition 2 7 LOA 99%
Addition 3 10 ApxFA1 or ApxFA5 or LOA 98%
Addition 4 5 ApxFA2 98%

As shown in these tables, the worst and best approximation types often differ from
one Addition target to another; however, similar results are observed for the two Additions
involved in matrix multiplications. From these results, approximations ApxFA4 and then
ApxFAS3 are not suited to our application target. LOA, and then ApxFA1 or ApxFA5, are
the most efficient for one single approximated Addition.

Even when the same approximation type can be chosen for several Additions, the
best number of bits is not the same for all. This could lead to favoring non-uniform ap-
proximation. However, as mentioned in Section 2.3, modifying the type of approximation
or just the number of approximated bits for the different computation phases during an
inference would imply implementing a configurable operator. Such a configuration capa-
bility would lead to a more complex operator with higher area, higher power consumption
and increased critical path. All this would be opposite to the main objectives of using
approximate computing. In order to reach the best profit from approximation, another
approach is to determine the best solution for the global inference computation. The best
trade-off has to be reached choosing the same approximation type and the same number of
approximated bits for all the approximated additions.

4.2. Impact of the Approximations on the Network Accuracy: Results for Global Approximations

Figure 6 shows the impact of LOA approximation applied to all four selected additions
with the same number of approximated bits. With only 6 bits, the accuracy falls down to
93% (96% with 5 bits). This is basically the result obtained with the most sensitive Addition
alone (Addition 4).
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Figure 6. Accuracy vs. number of approximated bits for all four Additions computed with the same
approximated LOA adder.

Since the Additions computing offsets have a higher sensitivity to approximation, it
is interesting to analyze the accuracy decrease when only Addition 1 and Addition 3 are
approximated. The result with LOA is shown in Figure 7. In that case, with 10 approximated
bits, the accuracy is still at 98%, and it goes down to 96% with 11 bits.

100
80

60

40

Accuracy %

20

4 5 6 7 8 9 10 11 12 13 14

Number of approximated bits

Figure 7. Accuracy vs. number of approximated bits for Addition 1 and Addition 3 computed with the
same approximated LOA adder, with Addition 2 and Addition 4 being computed without approximation.

The same analyses can be made for the five other approximation types. Results are
summarized in Figure 8a for the four additions being approximated and in Figure 8b when
only Addition 1 and Addition 3 are approximated.

As in the case of LOA, targeting approximation for the four Additions results in a
limited approximation feasibility with 97% accuracy reached from only 5 bits with ApxFA4
and fewer bits for the other approximation types.

Restricting approximations to Addition 1 and Addition 3 clearly leads to better op-
portunities since several approximation types allow 98% accuracy with 10 approximated
bits (ApxFA1, ApxFA5 and LOA). With 11 approximated bits, ApxFA1, ApxFA5 and LOA
allow, respectively, 97%, 93% and 96% accuracy.
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ApxFAS ApxFA2
(a)
ApxFA4 ApxFA3
=@=4 Dits ==@=5 bits 6 bits =@=7 bits =#=8 bits =—#=29 bits 10 bits
ApxFA2
ApxFA4 ApxFA3
=8=7 bits =®=8 bits =®=9 bits 10 bits =®=11 bits =®=12 bits ==@=13 bits =®=14 bits

Figure 8. Accuracy vs. approximation type and number of approximated bits (a) for all four Additions
with the same approximated adder and (b) for Addition 1 and Addition 3 with the same approximated
adder, and Addition 2 and Addition 4 with exact computation.

5. Discussion

The results presented in Section 4 support the choice of restricting approximations
to a subset of the Additions. Approximating Addition 2 and Addition 4 is too limiting
in the case of uniform approximation, and the use of non-uniform approximation would
completely hinder the potential advantages of approximate computing when taking into
account the required hardware modifications.
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These results also have to be put in perspective with the study on acceleration. The
conclusion was to accelerate multiplications and the same subset of additions. The two
types of optimizations go therefore in the same direction, towards a separation between
SIMD approximated additions and standard exact additions. The first ones can be assigned
in our system to the Sparrow accelerator with an approximate adder and the others can be
executed by the standard ALU of the general-purpose processor, with all operations related
to control flow.

Another interesting point is about the type of approximations that are the most efficient
for our case study. Looking at the truth tables for ApxFA5, one could notice that Sum =
B and Cout = A. This means that for the k approximated bits, the output bit is equal to
one operand bit and there is no carry propagation. The global n-bit approximate adder is
therefore just an (n-k)-bit exact adder. The single carry propagation is the connection of one
operand bit to the input carry of the exact adder. This also explains the null cost indicated
in Table 1 for a 1-bit ApxFAS5 cell. In the case of LOA, the approximate adder is made of
k OR gates and an AND gate, so the hardware cost is higher but there is again no carry
propagation. The critical path can, however, be larger than with the ApxFA5 version since
the AND gate is added before the input carry of the exact adder. The penalty depends on
the exact implementation of the FA cell. In the case of ApxFAl, a real carry propagation
occurs in the approximate part, so the computation will be noticeably slower. Also, ApxFA1
is the most costly alternative in terms of area and power among those considered in this
study, as shown in Table 1. It is therefore more efficient from a hardware point of view to
select ApxFA5 or LOA, even with a slightly smaller value of k if required to achieve the
specified accuracy.

Following this analysis, uniform approximation is therefore performed in our case
study for Addition 1 and Addition 3 in the SIMD version using ApxFA5, in the Sparrow
accelerator equipped with a simplified non-configurable adder with approximation on
10 bits to maintain an accuracy over 97% (98% in this case). In practice, this means that
the 16-bit adders are replaced by 6-bit adders connected to the MSBs of the operands and
another bit used as input carry; the other outputs are directly connected to operand inputs.
The modifications in Sparrow are therefore quite straightforward to make in this case. The
gain in area for each 16-bit adder is 10/16, i.e., 62.5%, and the gains obtained for each
addition in terms of power and computation speed are similar.

If an accuracy of 96% is considered sufficient for the application, LOA could be selected
with 11 approximated bits. However, the 11 OR gates and the AND gate would be more
costly than one FA both in terms of power and area. Moreover, the propagation time
through the AND gate would roughly lead to the same critical path as with an additional
carry propagation in one FA, and would even probably be larger if implemented in an
FPGA, with a Configurable Logic Block used to implement the AND function and then
routed to the input carry of the exact adder.

For completeness, we must mention that the gains in terms of power are not limited to
the approximate adders. In fact, combining SIMD acceleration and approximation leads to
more global power savings. In a standard execution of the initial software on the general-
purpose microprocessor, each addition would use three 32-bit registers and the 32-bit ALU,
resulting in power consumption also in all the register cells that are not really useful for the
computations. The SIMD acceleration avoids this waste, since all bits in registers become
meaningful. Of course, the exact gain could only be quantified taking into account all
modifications in the system (hardware structures, application code, memory accesses, . ..)
and the characteristics of the target implementation technology.

Conclusions for this case study, and in particular the comparison between the approxi-
mation types, cannot be considered as universal. However, an interesting outcome is that a
strong approximation, very efficient in terms of hardware optimization, can also be very ef-
ficient in terms of computation accuracy. This study also shows that several approximation
types that look very similar can exhibit very different trade-offs between accuracy loss and
hardware optimizations. Combining hardware acceleration and approximate operators
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in a coherent manner also increases the global gains. All these findings can be leveraged
when implementing neural networks, not limited to the type of network considered in this
case study.

Perspectives of this work include from one side the approximation of the multiplica-
tions in the context of the hardware accelerator and on another side analyzing the impact
of both acceleration and approximation on the robustness of the resulting system when
operating in harsh environments and/or safety-critical applications.

In this case study, the critical path limiting the main clock frequency of the whole
system is not related to the adders modified with the approximations. In consequence, the
speed improvement due to approximate computation cannot really be exploited. Another
perspective would be to revisit the architecture of the accelerator in order to perform several
successive operations in one cycle, taking advantage of the reduced carry chains to further
accelerate SIMD operations.
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