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Abstract. This article discusses the implementation of a software joint
velocity limitation dedicated to a Spherical Parallel Manipulator (SPM)
with coaxial input shafts (CoSPM) using a speed control loop. Such an
algorithm takes as input the current joint positions as well as the joint ref-
erence velocities computed by the speed controller and limit the latter in
order to avoid any known singular configuration. This limitation takes into
account the workspace properties of the mechanism and the physical char-
acteristics of its actuators. In particular, one takes advantage of the coaxi-
ality of the input shafts of the CoSPM and the resulting unlimited bearing.

A 3-DOF 3-RRR Spherical Parallel Manipulator (SPM) [1,2] with coaxial
input shafts (CoSPM) [3] has been used in [4] as a device for the inertial Line-
Of-Sight (LOS) stabilization. In particular, such a robot was controlled by its
joint and operational velocities taking into account its kinematic model. In this
respect, a certified singularity-free delimitation of the joint- and workspace has
been established to avoid undesired dangerous behavior of the mechanism. How-
ever, a speed control strategy does not guaranty that the robot remains in the
safe regions especially if the operational speed reference is non-zero. To solve this
issue, we propose in this article an algorithmic solution that acts as a software
joint velocity limitation. This algorithm requires the knowledge of the Kinemat-
ics of CoSPMs that will be recalled in the following section. The reader may
refer to [4] for the details on the modeling.

1 Preliminary Kinematic Analysis of CoSPMs

Let 𝜽 �
[
𝜃1 𝜃2 𝜃3

]T and 𝝌 �
[
𝜒1 𝜒2 𝜒3

]T denote the active joint and opera-
tional vector coordinates of the robot of interest. More precisely, 𝜒1, 𝜒2 and 𝜒3
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J. Lenarčič and M. Husty (Eds.): ARK 2024, SPAR 31, pp. 43–52, 2024.
https://doi.org/10.1007/978-3-031-64057-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64057-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-64057-5_6


44 A. Lê et al.

respectively represent the bank, the elevation and the bearing angles of the sight
device given the Euler Tait-Bryan ZYX convention used in [4,5]. Figure 1 recalls
the design of the SPM of interest with its parameters and Table 1 its values.

Fig. 1. Details on the Coaxial Spherical Parallel Manipulator of interest

Table 1. Design parameters of the SPM of interest

Design parameter Proximal link Distal link Pivot linkage

Notation 𝛼1,1 𝛼1,2 𝛼1,3 𝛼2,1 𝛼2,2 𝛼2,3 𝜂1 𝜂2 𝜂3 𝛽1 𝛽2

Value (rad) 𝜋/4 𝜋/4 𝜋/2 𝜋/2 𝜋/2 𝜋/2 𝜋/4 −𝜋/4 0 0 𝜋/2

Let V = {(𝜽 , 𝝌) ∈ R
6 | 𝒇 (𝜽 , 𝝌) = 03×1} the algebraic variety describing all the

possible solutions to the general geometric model, Π𝜽 (resp. Π𝝌) the projection
onto the joint space (resp. workspace). Given 𝜽0 ∈ Π𝜽 (V) (resp. 𝝌0 ∈ Π𝝌 (V))
there exists possibly several solutions to the Forward Kinematic Problem (FKP)
𝒇 (𝜽0, 𝝌) = 0 (resp. Inverse Kinematic Problem (IKP) 𝒇 (𝜽 , 𝝌0) = 0). We then
set an initial configuration (𝜽 init, 𝝌init) ∈ V★ ⊂ V and suppose that V★ is a
simply connected set that does not contain any singularity of V nor any critical
point of Π𝜽 and Π𝝌. Then, for any 𝜽0 ∈ Π𝜽 (V

★) (resp. 𝝌0 ∈ Π𝝌 (V
★)) we define

𝝌0 (resp. 𝜽0) such that (𝝌0, 𝜽0) ∈ V★ as being “the” solution of the FKP:
𝝌0 = FKP(𝜽0) (resp. IKP: 𝜽0 = IKP(𝝌0)) accordingly to the implicit function
theorem. In our case, the resulting geometric model of this mechanism is given by
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the non-linear system 𝒇 (𝜽 , 𝝌) = 03×1 where 𝑓𝑖 (𝜃𝑖 , 𝝌) � 𝒘T
𝑖 (𝜃𝑖) 𝒗𝑖 (𝝌) − cos

(
𝛼2,𝑖

)
,

𝑖 ∈ �1, 3�. One can show that all CoSPMs satisfy 𝒇 (𝜃1 + 𝜖, 𝜃2 + 𝜖, 𝜃3 + 𝜖, 𝝌) =
𝒇 (𝜽 , 𝜒1, 𝜒2, 𝜒3 + 𝜖). A proof is given in [4, Proposition 1].

Fig. 2. Operational and joint spaces of CoSPMs

As a result, an 𝜖-displacement in bearing 𝜒3 make all the actuators 𝜃𝑖, 𝑖 ∈
�1, 3� move by −𝜖 without modifying the geometry of the robot. In other words,
the singularity loci of all CoSPMs do not vary w.r.t. the bearing axis (thereafter
called as invariance axis). While the latter is collinear w.r.t. 𝜒3 in the operational
space, the same axis has equation 𝜃1 = 𝜃2 = 𝜃3 in the joint space (see Fig. 2). Such
a kinematic property allows us to study the workspace Π𝝌 in the (𝜒1, 𝜒2)-plane.

Fig. 3. Joint- and workspace of the CoSPM of interest

One focuses on a subset W★ ⊂ Π𝝌 called regular workspace [6] (see Fig. 3b
in dashed) allowing the robot to make ±10◦ in bank, 100◦ in elevation with
unlimited bearing. Starting from the home initial configuration 𝝌init = 0 ↔



46 A. Lê et al.

𝜽 init = 𝜋
2 13×1, one ensures that this leaf of solution does not meet any Type-1

(see Fig. 3b in solid) or Type-2 singularities. Establishing the joint stops requires
determining a subset Q★ ⊂ Π𝜽 , called regular joint space, that is non-singular
while allowing the robot to reach any 𝝌 ∈ W★. It is clear that the image of W★

at constant bearing 𝜒3 = 𝐵 through the Inverse Kinematics, i.e. IKP(W★(𝐵))
is no longer a rectangle lying on a plane but rather a distorted surface in R

3.
Given W★, the idea is to approximate such a surface by another quadrilateral in
the (𝜃1, 𝜃2)-plane and set 𝜃3 at an arbitrary value, e.g. 𝜋/2 (as shown in Fig. 3a)
that is Q★. Physically speaking, this means that we immobilize the 3rd leg and
check if the robot still reaches all the desired ranges for 𝜒1 and 𝜒2 while being
indifferent to the value of 𝜒3. A Kantorovich unicity operator [7,8] applied to
Q★ guarantees its singularity-freeness and a certified Newton scheme over Q★

ensures that FKP(Q★) (strictly) includes W★ as shown in Fig. 3b in green. The
latter set is then also dextrous. Such information is crucial for the establishment
of any strategy limiting the velocities in order to avoid the singular regions.

2 Limitation of the Joint Velocities

Let �𝜽 �
[
�𝜃1 �𝜃2 �𝜃3

]T denote the joint velocity vector and �𝝌 �
[
�𝜒1 �𝜒2 �𝜒3

]T

the vector of the ZYX Tait-Bryan angular rates1. As the singularities of the
mechanism are independent w.r.t. the 𝜒3-coordinate, the key idea is to limit �𝜽
such that:

(i) the characteristics of the actuators (maximum joint velocity �𝜃𝑖,max and accel-
eration 	𝜃𝑖,max) are taken into account;

(ii) only �𝜒1 (bank rate) and �𝜒2 (elevation rate) are limited in function of the
distance between the current pose and its nearest singularity configuration.

It is also worth mentioning that the three coaxial actuators are identical and
therefore share the same characteristics ( �𝜃𝑖,max = �𝜃max, 	𝜃𝑖,max = 	𝜃max, ∀ 𝑖 ∈

�1, 3�).

Maximal Joint Velocity and Acceleration. Regarding (i) and the speed
control of [4], the joint velocity reference vector (output of the Jacobian matrix)
�𝜽c has to undergo a preliminary saturation �𝜽 ensuring that − �𝜃max ≤ sat

(
�𝜃c,𝑖

)
=

�𝜃𝑖 ≤ �𝜃max and − 	𝜃max ≤ sat
(
	𝜃c,𝑖

)
= 	𝜃𝑖 ≤ 	𝜃max.

Let 𝑇𝑒 be the sampling period of the (speed) control loop. The signal 	𝜃c,𝑖 is
computed at a time 𝑡 = 𝑘𝑇𝑒 using the current and previous values of �𝜃c,𝑖 and the
Euler approximation 	𝜃c,𝑖 (𝑡 = 𝑘𝑇𝑒) = 	𝜃c,𝑖 [𝑘] �

1
𝑇𝑒

(
�𝜃c,𝑖 [𝑘] − �𝜃c,𝑖 [𝑘 − 1]

)
.

1 which is different from the velocity twist coordinates of the platform. See [4] for
details.
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Auxiliary Joint Coordinates. Regarding (ii), an interesting approach
involves the use of auxiliary joint coordinates. For this purpose, one can consider
a rotational mapping matrix 𝜽 ↦→ 𝒒 = 𝑸𝜽 that brings the axis of joint invariance
(𝜃1 = 𝜃2 = 𝜃3) to a single entry of the auxiliary vector 𝒒 (e.g. the third one as
for the orientation vector 𝝌).

Proposition 1 Let 𝑹𝑥 (·), 𝑹𝑦 (·) and 𝑹𝑧 (·) denote the usual elementary rotation
matrices. The rotational mapping 𝜽 ↦→ 𝒒 = 𝑸𝜽 defined by

𝑸 � 𝑹𝑦

(
− arctan

(√
2
2

))
𝑹𝑥

(
𝜋
4

)
, (1)

brings the geometric invariance to the third auxiliary entry 𝑞3.

Proof Bringing the axis of joint invariance (𝜃1 = 𝜃2 = 𝜃3) to the third entry of a
vector yields finding a rotation matrix 𝑸 satisfying

[
0 0 1

]T
=

√
3
3 𝑸

[
1 1 1

]T.
This rotation matrix can be viewed as the product of two elementary rotation
matrices 𝑹𝑥 (𝛼𝑥) and 𝑹𝑦 (𝛼𝑦). In the case where 𝑸 � 𝑹𝑦 (𝛼𝑦)𝑹𝑥 (𝛼𝑥), an identi-

fication of 𝛼𝑦 and 𝛼𝑥 leads to 𝛼𝑥 = 𝜋
4 ⇒ 𝛼𝑦 = − arctan

(√
2
2

)
.

Using the auxiliary joint coordinates allows us to represent the whole regular
joint space Q★ in the (𝑞1, 𝑞2)-plane with the free coordinate 𝑞3 ∈ R (see Fig. 4b)
instead of the (𝜃1, 𝜃2, 𝜃3)-space (Figs. 2 and 3a). Given the previous studies and
the design of our robot, the boundary of Q★ is composed of four stops 𝑑𝑖 that
have equation 𝑑𝑖 (𝑞1, 𝑞2) = 𝑎𝑖 𝑞1 + 𝑏𝑖𝑞2 + 𝑐𝑖. In our case, we have 𝑎1 = 0.624,
𝑎2 = −1.72, 𝑎3 = −0.528, 𝑎4 = 1.72, 𝑐1 = 0.353, 𝑐2 = 3.05, 𝑐3 = 0.346, 𝑐4 = 1.54,
𝑏1 = 𝑏2 = 1, and 𝑏3 = 𝑏4 = −1. The coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are chosen such
that 𝑑𝑖 ≥ 0, ∀ 𝑖 ∈ �1, 4� iff (𝑞1, 𝑞2) ∈ Q★.

Fig. 4. Joint space Q★ represented in the plane of interest for the joint velocity
limitation

The relative distance 𝛿𝑖 between a configuration 𝒒★ �
[
𝑞★1 𝑞★2 𝑞★3

]T and a
stop 𝑑𝑖 is then given by 𝛿𝑖 (𝑞

★
1 , 𝑞

★
2 ) =

(
𝑎2𝑖 + 𝑏2𝑖

)−1/2 (
𝑎𝑖𝑞

★
1 + 𝑏𝑖𝑞

★
2 + 𝑐𝑖

)
. Let 𝑘 be the
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index of the nearest stop 𝑑𝑘 . The shortest distance to the joint space boundary
is then given by 𝛿 = 𝛿𝑘 . Such a formalism is useful for the limitation of the
joint velocities as the latter depends on the distance between the current joint
configuration (𝑞★1 , 𝑞

★
2 ) and its nearest stop 𝑑𝑘 .

Limitation of the Auxiliary Joint Velocities. In this article, the limita-
tion of the auxiliary joint velocities �𝑞1 and �𝑞2 will be applied through their
normal and tangential components w.r.t. the nearest stop 𝑑𝑘 . Let {𝒆𝑞1 , 𝒆𝑞2 }

(resp. {𝒆⊥𝑘 , 𝒆
//

𝑘 }) denote the canonical basis of the (𝑞1, 𝑞2)-coordinates (resp.
(𝑞⊥𝑘 , 𝑞

//

𝑘 )-coordinates). Figure 4a illustrates the mapping (2) to apply for each
stop of Fig. 4b. As a result, one can show that the angles 𝜁𝑘 are given by
𝜁1 = −𝜋/2 − |arctan (𝑎1) |, 𝜁2 = −𝜋/2 + |arctan (𝑎2) |, 𝜁3 = 𝜋/2 − |arctan (𝑎3) |
and 𝜁4 = 𝜋/2 + |arctan (𝑎4) | given the planar mapping:

[
�𝑞⊥𝑘
�𝑞//𝑘

]
= 𝑹𝑘 (𝜁𝑘)

[
�𝑞1
�𝑞2

]
=

[
cos (𝜁𝑘) sin (𝜁𝑘)
− sin (𝜁𝑘) cos (𝜁𝑘)

] [
�𝑞1
�𝑞2

]
(2)

where �𝑞⊥𝑘 and �𝑞//𝑘 respectively denote the normal and tangential velocities
w.r.t. 𝑑𝑘 , such that 𝒆⊥𝑘 is oriented towards 𝑑𝑘 and {𝒆⊥𝑘 , 𝒆

//

𝑘 } is direct.

Fig. 5. Maximal joint values in the ( �𝑞1, �𝑞2)-plane

Limiting the joint velocities given the maximal velocity of the actuators
implies that �𝜃𝑖 ∈ [− �𝜃max, �𝜃max]. Such a set is a cube in the ( �𝜃1, �𝜃2, �𝜃3)-space
and its projection onto the ( �𝑞1, �𝑞2)-plane describes a regular hexagon of side
2
3

√
6 �𝜃max, as shown in Fig. 5. Such a shape describes the set of all the admissible

joint velocities in the ( �𝑞1, �𝑞2)-plane. For purpose of simplification, one focuses
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on a subset of this regular hexagon that is the inscribed disk of radius
√

2 �𝜃max,
so that �𝑞⊥𝑘,max

is defined uniformly in the ( �𝑞1, �𝑞2)-plane by

�𝑞⊥𝑘,max =
√

2 �𝜃max. (3)

The same logic applies for the maximal normal acceleration 	𝑞⊥𝑘,max
=
√

2 	𝜃max.
Once the maximal joint normal velocity is determined in function of �𝜃max,

the behavior of the joint velocity between the nominal case and near a joint stop
must be defined. Figure 6 plots the joint velocity limitation profile of the normal
joint velocity �𝑞⊥𝑘 w.r.t. the distance of the current configuration to the nearest
stop 𝛿.

Fig. 6. Joint velocity profile w.r.t. the distance to the nearest stop 𝛿

The resulting velocity profile in question can be divided into three distinct
zones. Each of them has its own distinctive deceleration law although the conti-
nuity of the overall function:

• [0, 𝛿int] is the closest zone to the stop 𝑑𝑘 in which the limited joint speed is
proportional to 𝛿, such that −𝐾𝛿 ≤ �𝑞⊥𝑘,lim ≤ 𝐾𝛿, where 𝐾 is a gain. As 𝛿 is
small, this allows the joint normal velocity to reach 0 without abusively using
the actuators. The parameter 𝛿int defines the linear zone threshold and is set
as 𝛿int = 	𝑞⊥𝑘,max

/𝐾2.
• [𝛿int, 𝛿𝜑] is the maximal deceleration zone defined by the parameters 𝛿 𝑓 and

𝛿𝜑 such that 𝛿 𝑓 = 	𝑞⊥𝑘,max
/(2𝐾2) = 𝛿int/2 and 𝛿𝜑 = 𝛿 𝑓 + ( �𝑞⊥𝑘,max

)2/(2 	𝑞⊥𝑘,max
).

In this zone, the joint normal velocity is bounded by | �𝑞⊥𝑘,lim | ≤ (2 	𝑞⊥𝑘,max
| |𝛿 | −

𝛿 𝑓 |)
1/2. Such a condition allows the robot to stop with a zero speed.

• 𝛿 > 𝛿𝜑 is the nominal zone in which the joint position is sufficiently far
from the nearest stop 𝑑𝑘 (and thus, any singularity). In fact, 𝛿𝜑 is the joint
limitation threshold. Accordingly, the normal velocity component �𝑞⊥𝑘 is only
limited by the maximal velocity of the actuators �𝜃max (or �𝑞⊥𝑘,max

).
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Finally, the limited joint velocity �𝑞⊥𝑘,lim can be piecewise-defined as:

�𝑞⊥𝑘,lim =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

min
(
�𝑞⊥𝑘 , sgn (𝛿) �𝑞⊥𝑘,max

)
(if |𝛿 | > 𝛿𝜑)

min
(
�𝑞⊥𝑘 , sgn (𝛿)

√
2 	𝑞⊥𝑘,max

��|𝛿 | − 𝛿 𝑓

��
)

(if 𝛿int < |𝛿 | ≤ 𝛿𝜑)

min
(
�𝑞⊥𝑘 , 𝐾𝛿

)
(if |𝛿 | ≤ 𝛿int)

(4)

In order to ensure that the robot stops at the boundary of Q★, one can limit
the tangential one �𝑞//𝑘 such that

𝑞//𝑘,lim =

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

𝑞//𝑘 𝑞
⊥
𝑘,lim

𝑞⊥𝑘
(if 𝑞⊥𝑘 ≠ 0)

𝑞//𝑘 (otherwise)
(5)

Once the normal �𝑞⊥𝑘 and tangential �𝑞//𝑘 joint velocities are limited, one can go
back to �𝒒- and the (original) �𝜽-coordinates through the (orthogonal) matrices
𝑹T
𝑘 and 𝑸T. Finally, Fig. 7 depicts the diagram of the joint velocity limitation.

Fig. 7. Transformations involved in the limitation of the joint velocities

3 Example of Simulation

In this section, we implement the joint velocity limitation algorithm of Fig. 7
using Matlab 2022a & Simulink. We set 𝐾 = 100, �𝜃max = 2 rad/s and 	𝜃max =
20 rad/s2 which implies that 𝛿 𝑓 = 0.0014 rad, 𝛿int = 0.0028 rad, 𝛿𝜑 = 0.1428 rad,
with �𝑞max = 2.8284 rad/s and 	𝑞max = 28.28 rad/s2. Starting from the home
configuration, we consider the following threefold scenario:

�𝜃c,1 =

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

0 (𝑡 ≤ 0)
−0.5 (0 < 𝑡 ≤ 2.5)
0.5 (𝑡 > 2.5)

, �𝜃c,2 = − �𝜃c,1, �𝜃c,3 =

{
0 (𝑡 ≤ 3)
0.5 (𝑡 > 3)

The current joint vector 𝜽 is being estimated by integration of �𝜽 lim (the actuator
loop is assumed ideal). Moreover, one can deduce the output angular rates �𝝌lim
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Fig. 8. Results of Scenario 1

given that �𝝌lim � 𝑱 �𝜽 lim. Results of this simulation is shown in Fig. 8: Fig. 8a
displays the actual joint values whereas Fig. 8b shows the limited auxiliary coor-
dinates.

First, the physical constraints of the actuators are taking into account as seen
in Fig. 8a. Indeed, the joint velocity references �𝜃c,1 and �𝜃c,2 instantly change
from 0 to ±0.5 rad/s. Despite the discontinuity of these reference signals, the
corresponding limited joint velocities �𝜃lim,𝑖 are continuous, starting with a slope
of 20 (in absolute value) which is in fact the maximal acceleration 	𝜃max (in
rad/s2). The same thing happens for �𝜃sat,3 at 𝑡 = 3 s. Requirement (i) is here
respected. Moreover, setting �𝜃1 = − �𝜃2 enables a motion in elevation 𝜒2 (its
rate is non-zero as shown in Fig. 8d). The latter makes the robot leave the safe
joint region Q★ by going towards 𝑑4 (see Fig. 8b and 8c). However, the joint
velocity limitation allows the robot to decelerate from 𝑡 = 1.09 s until it stops
at 𝑡 = 1.15 s. More precisely, according to Fig. 8b, the mechanism enters the
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maximal deceleration zone of the 4th stop at 𝑡 = 0.9 s without immediately
reducing the normal joint velocity �𝑞⊥4 as it is already lower than the maximal
velocity allowed in this zone. The linear zone of 𝑑4 is reached at 𝑡 = 1.1 s and
all the legs stop moving until the opposite motion is made at 𝑡 = 2.5 s. This
allows the robot to turn back until the 3rd leg is actuated at 𝑡 = 3 s. As a result,
the trajectory of the robot bifurcates (see Fig. 8c and 8d) by making a motion
in bank and bearing so that the 1st stop is reached without being crossed at
𝑡 = 3.95 s. Furthermore, one can see in Fig. 8d that the vanishing rates at the
end are �𝜒1 (bank) and �𝜒2 (elevation). Only �𝜒3 is non-zero being at −0.13 rad/s.
Requirement (ii) is here respected.

4 Conclusions and Outlook

This paper explored a joint velocity limitation strategy applied to a CoSPM. In
particular, it has been shown that such an algorithm took into consideration the
workspace properties as well as the physical features of the actuators (maximal
velocity and acceleration). Part of further studies will study critical cases (e.g.
bisectors, vertices) and explore other limitation strategies in order to compare
them with the one in this paper. Finally, future works will better take into
account the shape of the admissible joint velocity space.
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