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Abstract

This paper establishes error bounds for the convergence of a piecewise linear approximation of
the constrained optimal smoothing problem posed in a reproducing kernel Hilbert space (RKHS).
This problem can be reformulated as a Bayesian estimation problem involving a Gaussian process
related to the kernel of the RKHS. Consequently, error bounds can be interpreted as a quantifi-
cation of the maximum a posteriori (MAP) accuracy. To our knowledge, no error bounds have
been proposed for this type of problem so far. The convergence results are provided as a function
of the grid size, the regularity of the kernel, and the distance from the kernel interpolant of the
approximation to the set of constraints. Inspired by the MaxMod algorithm from recent literature,
which sequentially allocates knots for the piecewise linear approximation, we conduct our analysis
for non-equispaced knots. These knots are even allowed to be non-dense, which impacts the defini-
tion of the optimal smoothing solution and our error bound quantifiers. Finally, we illustrate our
theorems through several numerical experiments involving constraints such as boundedness and
monotonicity.

Keywords: Gaussian processes, inequality constraints, maximum a posteriori, reproducing kernel
Hilbert space, basis function approximation, approximation error, asymptotic convergence.

1 Introduction

Consider a nonempty set Ω of Rd and a set E of functions from Ω to R. Given data (xi, yi)
n
i=1 ∈ Ω×R,

the smoothing problem is to find a function û ∈ H solution of

min
u∈H

∥u∥2H +
1

τ

n∑
i=1

(u(xi)− yi)
2, (1)

where H is the reproducing kernel Hilbert space (RKHS) defined by a kernel K on Ω×Ω, with τ > 0.
Hence, H is a Hilbert space included in E, and we let ∥·∥H be its Hilbert norm. Considering an RKHS
allows the solution of (1) to be interpreted as a Bayesian estimator, involving a Gaussian process (GP)
Y with covariance function K: K(x, x′) = cov(Y (x), Y (x′)). We refer for instance to [Stein, 1999,
Rasmussen and Williams, 2005, Karvonen, 2023] for references on GPs. In the Bayesian framework,
τ > 0 is the noise variance term. Kimeldorf and Wahba [1970] prove that û is the mean of the GP Y
conditionally to noisy observations:

û(t) = E[Y (t)|Y1 = y1, . . . , Yn = yn],

where E denotes the expectation of random variables. For the noisy case, the Bayesian model is
Yi = Y (xi) + Ei for all i = 1, . . . , n, where E = (Ei)i ∼ N (0, τI) is an independent centered Gaussian
vector. Here, I is the n × n identity matrix. For simplicity, we omit the subscripts to the identity
matrices as their sizes will be clear from the context. The solution û is then given by

û(t) = k⊤n (t) (Kn + τI)−1 y,
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where kn(t) = [K(t, x1), . . . ,K(t, xn)]
⊤, Kn = (K (xi, xj))1≤i,j≤n and y = [y1, . . . , yn]

⊤.
If an additional constraint is added to (1), given by a closed convex set C of functions, we obtain

the constrained smoothing problem of finding a function û, in H ∩ C, solution of

min
u∈H∩C

∥u∥2H +
1

τ

n∑
i=1

(u(xi)− yi)
2. (2)

This problem can be rewritten as a constrained GP model so that the solution can be interpreted as
a Bayesian estimation [Grammont et al., 2024]. Two important examples in practice are when C is
composed of bounded or componentwise monotonic functions. We refer to [Bellec, 2018, Durot, 2002,
Cousin et al., 2016, Durot and Lopuhaä, 2018, Groeneboom and Jongbloed, 2014, Golchi et al., 2015,
Groeneboom et al., 2001, Hornung, 1978, Lin and Dunson, 2014, López-Lopera et al., 2018, López-
Lopera et al., 2019, López-Lopera et al., 2020, Maatouk and Bay, 2017, Riihimäki and Vehtari, 2010,
Zhou et al., 2019] for consideration of these constraints with GPs and more generally in statistics.

Unlike the unconstrained smoothing problem in (1), there is no explicit expression for the solution
in the constrained case, thus a numerical approximation of û is required. For clarity, we restrict
our study to the one-dimensional setting Ω = [0, 1]. Nevertheless, as explained in Remark 5.1, the
techniques we develop can be extended to the general d-dimensional case, albeit with more cumbersome
notations.

A fruitful approach for numerical approximation is to consider piecewise linear finite-dimensional
kernels, RKHSs and GPs [Bachoc et al., 2019, Cousin et al., 2016, Grammont et al., 2024, López-
Lopera et al., 2018, Maatouk and Bay, 2017, Zhou et al., 2019]. In particular, we consider the
approximate solution ûN in the RKHS defined by KN , the covariance function of a finite-dimensional
GP YN approximating the GP Y . Here, N ∈ N is the number of knots defining the piecewise linear
approximation. The function ûN is then the solution to a constrained discretized smoothing
problem, and also the maximum a posteriori (MAP) of the posterior distribution of the constrained
finite-dimensional GP YN . In [Grammont et al., 2024], it is shown that ûN converges to û as N → ∞
for fixed data (xi, yi)

n
i=1, however, no error bounds are provided for this convergence. More generally,

to our knowledge, no general error bounds have been provided for numerical approximations of the
constrained optimal smoothing problem or for the equivalent formulation with the MAP. This is the
ambitious aim of this paper.

An error estimation is always highly dependent on regularity, which is related to the function space
in which the exact solution is sought. In this paper, this function space is determined by the kernel K
that we assume to be β-Hölder, 0 < β ≤ 1. We note that Hölder-continuity is a very standard regularity
measure in statistics and machine learning for functions that are not necessarily differentiable [see,
e.g., Locatelli and Carpentier, 2018]. In addition, our error bound construction would not benefit
from a stronger regularity that Lipschitzness (1-Hölder continuity), because of piecewise linearity (see
Remark 5.2).

To provide as much generality as possible, we allow for non-equispaced knots defining the finite-
dimensional approximation, and we even allow the sequence of knots not to be dense in the input space.
Non-equispaced knots enable higher accuracy for a given computational budget N [Bachoc et al., 2022,
López-Lopera et al., 2022] and can be selected automatically by the MaxMod algorithm introduced
in [Bachoc et al., 2022]. Furthermore, the convergence proof of MaxMod includes an intermediary
step analyzing convergences for non-dense knots. This justifies our consideration of non-dense knots
when providing error bounds.

To account for non-dense and non-equispaced knots, we measure the asymptotic density of the
N knots by the specific grid size δN defined in (8). Ultimately, the decay rate of our error bound
depends on β (i.e. the regularity of the GP), the grid size δN , and a third factor we have highlighted:
the distance of the kernel interpolant of the approximate solution to the set of constraints CF . In
the following, this third factor is denoted as αN (see definition in (28)). Furthermore, for non-dense
knots, the limit function to ûN is not û as in (2), but the function ûF defined in (5), which depends on
the closure set F of the sequence of knots. This definition relies on the notion of multiaffine extension
introduced in [Bachoc et al., 2022]. Naturally, when F = [0, 1], we have ûF = û.

Our final and general error bounds are provided in Theorems 5.1 and 5.2. In Theorem 5.1, we
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consider the case where αN = 0, meaning the kernel interpolant of the approximate solution satisfies

the constraints CF . Here, the error bound is of order O(δ
β/4
N ). In Theorem 5.2, we address the most

general case, where this kernel interpolant does not necessarily meet the constraints. In this scenario,
the error bound also depends on αN . We demonstrate that αN approaches zero (see Remark 5.3),
though we leave open the problem of quantifying its decay rate.

In numerical experiments, we illustrate and validate our theoretical results through various syn-
thetic examples that account for different types of inequality constraints (e.g., boundedness and mono-
tonicity) and regularity assumptions (i.e. smoothness of the kernel). We examine both scenarios where
the knots are dense and where they are not. Numerically, we confirm the convergence as N → ∞,
observing a faster convergence for larger regularity β.

The paper is organized as follows. Section 2 presents the constrained optimal smoothing prob-
lem, introducing ûF , our regularity indicators and the multiaffine extension, and stating various of
their properties. Section 3 discusses the numerical approximation of constrained optimal smoothing,
denoted as ûN , and states its existence and unicity. Section 4 focuses on the quantitative properties
of the set of approximants involved in ûN , which are essential for the final bounds. Sections 5 and 6
provide the error bounds (with Theorems 5.1 and 5.2) and the numerical experiments, respectively.
Section 7 concludes the paper.

Several proofs are included in the main text to elucidate the construction of the error bounds.
Additional proofs, primarily technical or containing pre-existing concepts for completeness, are in
Appendix A.

2 Framework for the constrained optimal smoothing problem

In this section, we present the tools needed to pose the constrained optimal smoothing problem
properly. Then we prove, with classical arguments, that the problem has a unique solution with a
regularity that we outline.

To ensure that our approach is easiest to understand, we have chosen to focus on the one-
dimensional case. Remark 5.1 discusses the extension to the multi-dimensional case. Hence, in this
paper, E is the set of real valued continuous functions on Ω = [0, 1]. Let F be a compact subset of
[0, 1] containing 0 and 1. F will be the closure of the set of knots required in the discretization process
of the approximation (see Section 3). As discussed in Section 1, allowing for a general F that does not
coincide with the entire set Ω is an intermediary step in the convergence proof of MaxMod in [Bachoc
et al., 2022]. This justifies our interest here to allow for a general F .

We define EF as the set of real-valued continuous functions restricted to F , endowed with the
supremum norm:

∥u∥∞ = max
t∈F

|u(t)|,

for u ∈ EF . Let HF and H be the RKHSs associated to the centered GPs (Y (x))x∈F and (Y (x))x∈[0,1]
(respectively), both having covariance function K. The Hilbert scalar product and norm for H are
written as ⟨·, ·⟩H and ∥ · ∥H. Similarly, for HF they are written as ⟨·, ·⟩HF

and ∥ · ∥HF
. Let us notice

that HF = H|F , where

H|F = {g : F → R;∃f ∈ H s.t. ∀x ∈ F, g(x) = f(x)},

see [Berlinet and Thomas-Agnan, 2011, Theorem 6]. Both H and HF rely on the reproducing kernel
K, which is always symmetric and positive semi-definite.

The regularity of K has a major influence on the error bounds. Here, regularity is measured by
Hölder-continuity (recall the corresponding discussion in Section 1 and Remark 5.2). Let β be a real
number such that

0 < β ≤ 1.

Definition 2.1. A function f is β-Hölder continuous on [0, 1] if there exists a constant cf > 0 such
that, ∀s, t ∈ [0, 1],

|f(s)− f(t)| ≤ cf |s− t|β.
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Condition 2.1. The reproducing kernel K is β-Hölder continuous with respect to both its inputs.
That is, there exists a constant cK > 0 such that

∀u, s, t ∈ [0, 1], |K(u, s)−K(u, t)| ≤ cK |s− t|β.

In the following, we will define quantities which are capable of reflecting the regularity of the
problem and which will be useful in setting the error bounds. Let us define the modulus of continuity
of a function defined and continuous on a compact subset S of [0, 1]:

Mf (δ) =

{
sup

s,t∈S, |s−t|≤δ
|f(s)− f(t)| if δ ≤ 1,

Mf (1) if δ ≥ 1.
(3)

Let us define the following quantity intended to be an indicator of regularity:

Ψf (δ) = sup
t≥1

Mf (tδ)

t
. (4)

The indicator Ψf is adapted to the hat functions considered in Section 3 for the numerical approxi-
mation, and is then involved in the proofs of our main error bounds. The following proposition will
clarify its order of magnitude according to the regularity of f .

Proposition 2.1. Let S be a compact subset of [0, 1]. If f is continuous on S,

lim
δ→0

Ψf (δ) = 0.

If f is β-Hölder continuous on S,
Ψf (δ) ≤ cfδ

β.

Proof. The proof is postponed to Appendix A.

Then, we define the multi-affine extension announced in Section 1. This extension will allow us
to define the constrained optimal smoothing problem for functions defined on F rather than on [0, 1].
Then, this extension will allow us to define the limit function ûF discussed in Section 1, to which this
paper provides upper bounds.

Definition 2.2. For t ∈ [0, 1],

• If t ∈ F , then define t− = t+ = t and w−(t) = w+(t) = 1/2.

• If t ̸∈ F , then define t− = sup{x, x ∈ F, x ≤ t}, t+ = inf{x, x ∈ F, x ≥ t}, and

w−(t) = (t+ − t)/(t+ − t−),

w+(t) = (t− t−)/(t+ − t−).

Define the operator P : EF → E as follows. For all u ∈ EF ,

P (u)(t) = u(t−)w−(t) + u(t+)w+(t),

and call P (u) ∈ E the multi-affine extension of u.

We remark that, in Definition 2.2, the multi-affine extension could also be called the affine exten-
sion. Nevertheless, Definition 2.2 is extended to the general multi-dimensional case in [Bachoc et al.,
2022], where the name multi-affine extension is appropriate. Hence, for clarity, we will refer to P (u)
in Definition 2.2 as a multi-affine extension also in the one-dimensional exposition of this paper.

Proposition 2.2. P (u) is the unique function in E equal to u on F and affine on the intervals of
[0, 1]\F . Moreover the map u → P (u) is linear and 1-Lipschitz from EF to E equipped with the
supremum norm. In particular, it preserves uniform convergence.
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Proof. See [Bachoc et al., 2022, Proposition 4.4].

We recall the constraint set C, which is assumed to be closed and convex in E. Let us then define
the set of functions on F which multi-affine extensions are in C.

CF = {f ∈ EF : P (f) ∈ C}.

The next condition guarantees the compatibility of the constraints with the kernel K and the set F .

Condition 2.2. HF ∩ CF ̸= ∅.

Condition 2.2 means that there is a function in the RKHS HF which multi-affine extension satisfies
the constraints. It is clear that our definition of ûF in (5) below needs this condition, where ûF is
discussed in Section 1. For the standard cases where C is the a set of bounded, monotonous or convex
functions, Condition 2.2 holds for many standard classes of kernels, see [Bachoc et al., 2022] and
references therein.

Since P is linear and C is convex, CF is a convex set of EF . We consider the constrained optimal
smoothing:

ûF = argmin
v∈HF∩CF

JF (v), (5)

where, for v ∈ HF ,

JF (v) = ∥v∥2HF
+

1

τ

n∑
i=1

(P (v(xi))− yi)
2. (6)

The problem (5) is the extension of the problem (2) announced in Section 1, taking into account
that the closure set F is allowed to be different from [0, 1]. Next, we introduce the standard notion of
strong convexity which we will use in this paper to show the existence and unicity of ûF and also to
obtain our error bounds.

Definition 2.3. For a Hilbert space V and a function g : V → R, we say that g is strongly convex
with parameter m if and only if for all u, v ∈ V and t ∈ [0, 1], we have

g(tu+ (1− t)v) ≤ tg(u) + (1− t)g(v)− m

2
t(1− t)∥u− v∥2V .

Proposition 2.3. The function v ∈ HF 7→ JF (v) is strongly convex with parameter m = 2.

Proof. It is well-known that the function v 7→ ∥v∥2HF
is strongly convex with parameter m = 2.

Furthermore, the function

v 7→ 1

τ

n∑
i=1

(P (v(xi))− yi)
2,

is convex as the composition of the affine function v 7→ 1√
τ
(Pv(xi)− yi)i=1,...,n by the squared Eu-

clidean norm which is convex. Hence, JF , which is the sum of the two functions, is strongly convex
with parameter m = 2.

The next lemma addresses the optimization space HF ∩ CF in (5). To prove this lemma and
throughout this paper, we will exploit the reproducing property [Berlinet and Thomas-Agnan, 2011]
in the RKHSs H and HF : for any f ∈ H and x ∈ [0, 1], we have f(x) = ⟨f,K(x, ·)⟩H. Similarly for
f ∈ HF and x ∈ F , we have f(x) = ⟨f,K(x, ·)⟩HF

.

Lemma 2.1. The set HF ∩ CF is a closed subset of HF w.r.t. || · ||HF
.
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Proof. We have HF ∩ CF = {v ∈ HF : Pv ∈ C}. Let us fix v ∈ HF and consider a sequence
vn ∈ HF ∩ CF such that vn → v for || · ||HF

. By the reproducing property,

||vn − v||∞ ≤ ||vn − v||HF
sup
t∈F

√
K(t, t).

As K is continuous, we deduce that ||vn − v||∞ → 0. Now P is 1-Lipschitz with respect to || · ||∞ and
thus continuous. Hence Pvn → Pv for || · ||∞. As C is a closed subset of E, then Pv ∈ C. This proves
that v ∈ CF and thus v ∈ HF ∩ CF .

Finally, we can state the existence and unicity of ûF , and additionally quantify its regularity.

Theorem 2.1. The constrained optimal smoothing problem in (5) has a unique solution ûF . Moreover
ûF is β

2 -Hölder continuous with constant
√
2cK∥ûF ∥HF

, recalling cK from Condition 2.1.

Proof. As JF (v) ≥ ||v||2HF
, we have lim∥v∥7→∞ JF (v) = ∞. Furthermore, as CF is a convex set of EF ,

as HF ∩CF ̸= ∅ (Condition 2.2) and from Lemma 2.1, HF ∩CF is a non empty closed convex set of EF .
By Proposition 2.3, JF is strictly convex. Then, as JF is clearly continuous on HF , by [Hiriart-Urruty,
2012, Theorem 1.18], (5) has a unique solution and, as K is β-Hölder continuous, we have:

|ûF (t)− ûF (s)| = |⟨ûF (·),K(·, t)−K(·, s)⟩HF
|

≤ ∥ûF ∥HF
∥K(·, t)−K(·, s)∥HF

≤ ∥ûF ∥HF
(K(t, t)−K(t, s) +K(s, s)−K(s, t))1/2

≤ ∥ûF ∥HF

√
2cK |s− t|β/2.

3 The Discrete constrained optimal smoothing Problem

We now introduce the finite-dimensional spaces where the approximate to ûF is sought. First, we deal
with the notion of grid size compatible with the closure set F of the knots discussed in Sections 1 and
2. Then, we introduce the hat basis functions given by the knots and yielding the piecewise linear
approximation ûN,F discussed in Section 1.

We consider a sequence of nested subdivisions, i.e. sets of knots SN ⊂ SN+1 with

SN : 0 = t1 < · · · < tN = 1.

As explained in Section 2, F is the closure of
⋃

N≥1

SN , i.e.

F =
⋃
N≥1

SN .

Hence F is a compact set of [0, 1] containing 0 and 1. The nodes of SN allow the construction of the
finite-dimensional approximation spaces, as we will detail below.

Before tackling this approximation space, we first define the grid size of SN . As the set F is
allowed to have holes, it is insufficient to define the grid size simply as maxN−1

i=1 |ti+1 − ti|. Indeed,
when F ̸= [0, 1], this quantity will not tend to zero as N → ∞. To overcome this issue, we need a more
nuanced definition of the grid size. For t ∈ F , we define two nodes t−SN

∈ SN and t+SN
∈ SN , which

are, respectively, the closest grid points of SN to t on its left and right. In other words, if t ∈ SN ,
then t−SN

= t+SN
= t, otherwise

t−SN
= max{x, x ∈ SN , x ≤ t}, t+SN

= min{x, x ∈ SN , x ≥ t}. (7)

Thus, we can define the grid size as

δN = sup
t∈F

min
(
|t− t−SN

|, |t− t+SN
|
)
. (8)
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Note that since F is the closure of SN , we have δN → 0 as N → ∞, which is the benefit of the
definition in (8).

We now proceed to formally define the piecewise linear approximation. We define the set of hat
functions (ϕ1, . . . , ϕN ), similarly as in [Bachoc et al., 2022],

ϕi(t) =


t− ti−1

ti − ti−1
if i ≥ 1 and t ∈ [ti−1, ti],

ti+1 − t

ti+1 − ti
if i ≤ n− 1 and t ∈ [ti, ti+1],

0 otherwise,

with the convention that t0 = −1 and tN+1 = 2. Note that a linear combination of the ϕi’s is a
piecewise linear function.

Then, as in [Bay et al., 2016, 2017, Grammont et al., 2022], we place an RKHS structure on
the linear combinations of the ϕi’s, by defining a kernel KN . This kernel can also be seen as an
approximation of K, thus corresponding to a finite-dimensional approximation of a GP with kernel
K. We let HN,F be the finite-dimensional subspace of EF defined by

HN,F = Span{ϕi|F , i = 1, . . . , N}.

Here, for a function g : [0, 1] → R, we let g|F be the restriction of g to F , that is the function F → R
defined by, for x ∈ F , g|F (x) = g(x). On HN,F , we now construct the kernel KN to obtain an RKHS.
For this we first need to define the matrix

ΓN = (K(ti, tj))1≤i,j≤N ,

and we assume Condition 3.1.

Condition 3.1. ΓN is invertible.

This condition is verified for a strictly positive definite kernel, for instance the squared exponential
kernel [see e.g. Karlin and Studden, 1966, Chapter 1, §3, Example 5].

Then, let us define the following inner product on HN,F :

⟨u, v⟩N = c⊤u Γ
−1
N cv, (9)

where cu = [u(t1), . . . , u(tN )]⊤ and cv = [v(t1), . . . , v(tN )]⊤. Write ∥ · ∥N for the corresponding norm.
We can now state the RKHS structure of HN,F .

Proposition 3.1. [Bay et al. [2017], Theorem 1] The space HN,F , equipped with the scalar product
(9), is an RKHS with kernel KN given by

∀x, x′ ∈ F, KN (x, x′) =

N∑
i,j=1

K(ti, tj)ϕi(x)ϕj(x
′).

Proof. See the proof in [Bay et al., 2017, Theorem 1].

These tools allow us to define the discrete problem which will approximate the original problem
(5). We can approximate (6) by the following functional, for uN ∈ HN,F ,

JN,F (uN ) = ∥uN∥2N +
1

τ

n∑
i=1

(P (uN )(xi)− yi)
2. (10)

Hence we approximate ûF by ûN,F solution of

ûN,F = argmin
vN∈HN,F∩CF

JN,F (vN ). (11)

Note that when F = [0, 1], ûN,F corresponds to the approximant ûN that was discussed in Section 1.
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Proposition 3.2. JN,F is Fréchet differentiable, strongly convex with parameter 2, and

lim
∥vN∥N→∞

JN,F (vN ) = ∞.

Proof. It is obvious that JN is Fréchet differentiable. With the same arguments as in the proof of
Proposition 2.3, JN,F is strongly convex with parameter 2. Finally, as JN,F (vN ) ≥ ∥vN∥2N then
lim∥vN∥N→∞ JN,F (vN ) = ∞.

Then, we define πN as the piecewise affine interpolation associated to the subdivision SN , defined
from EF onto HN,F by

∀f ∈ EF , πN (f) =

N∑
j=1

f(tj)ϕj|F .

Notice that πN is a projection in the sense that πN ◦ πN = πN . The following proposition provides a
first approximation property for this projection. However, it does not offer a quantitative measure of
the approximation’s quality. This will be addressed in Section 4.

Proposition 3.3. For any f ∈ HF , we have

∥πN (f)∥N ≤ ∥f∥HF
,

πN (f) −−−−→
N→∞

f in EF .

Moreover HF is characterized by

HF =
{
f ∈ EF : sup

N
∥πN (f)∥N <∞

}
,

and, for all f ∈ HF , by
∥f∥2HF

= lim
N→∞

∥πN (f)∥2N .

Proof. See [Bay et al., 2016, Theorem 3.1].

In Proposition 3.3, and throughout the paper, recall that the convergence in EF is defined with
the uniform norm. We make the following assumption:

Condition 3.2. πN (CF ) ⊂ CF .

It can be shown that this assumption holds for boundedness, monotonicity and convexity con-
straints, using reasoning similar to [Bachoc et al., 2022]. Finally, we can state the existence and
unicity of the approximate solution ûN,F .

Theorem 3.1. Under Conditions 2.1 to 3.2, (11) has a unique solution ûN,F .

Proof. From Condition 2.2, we can take g ∈ HF ∩ CF . Then, thanks to Condition 3.2, πN (g) ∈
HN,F ∩CF , so that HN,F ∩CF is nonempty. From the same arguments as in Lemma 2.1, it is a closed
convex subset of HN,F . Similarly as in the proof of Theorem 2.1, we have the conclusion.

4 Quantitative properties of the set of approximants HN,F

In this section, we aim to quantitatively assess whether the class of approximants we have chosen is
suitable. The first indicator is based on the error resulting from the finite-dimensional approximation:

FN (f) = ∥πN (f)− f∥∞, (12)

for f in EF or HF .
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As HN,F is intended to approximate HF , a second indicator evaluating the quality of the RKHS
approximation plays a key role in the error bound. One way to achieve this is through their kernels:

GN = sup
t∈F

∥ρN (KN (·, t))−K(·, t)∥2HF
. (13)

Here, since K and KN belong to different spaces, we extend KN using the operator ρN . Thus, ρN
is the extension operator from the approximating space HN,F to the infinite-dimensional space HF

defined as follows:

∀vN ∈ HN,F , ρN (vN ) :=
N∑
i=1

λiK(·, ti), (14)

where Λ = (λ1, . . . , λN )⊤ solves ΓNΛ = cvN , recalling the definition of cvN after (9). The vector Λ is
defined such that the operator ρN is an isometry between HN,F and HF , i.e., ∀vN ∈ HN,F , we can
check that

∥ρN (vN )∥2HF
= ∥vN∥2N . (15)

Remark 4.1. It is possible to define ρN on EF . In fact, ρN (f) is denoted by IN (f) in [Karvonen,
2022], and is often called the kernel interpolant because it corresponds to the unique function in the span
of K(·, ti) that interpolates f at the nodes ti, where ti ∈ SN . The difference is that [Karvonen, 2022]
considers interpolation at the observation points, whereas here, it is at the knots. While [Karvonen,
2022] aimed to investigate the accuracy of the kernel interpolant, it serves here as an intermediary
that allows us to compare the exact solution with the approximate one.

We now study both quality indicators in (12) and (13). For FN , it is useful to give the simplest
explicit formula to evaluate πN (f)(t), for t ∈ F and f ∈ EF . For this, we define wN−(t) and wN+(t) as
follows. Recall the definition of t−SN

and t+SN
in (7). If t ∈ SN , then wN−(t) = wN+(t) = 1/2, otherwise

wN−(t) =
t+SN

− t

t+SN
− t−SN

, wN+(t) =
t− t−SN

t+SN
− t−SN

.

This yields
πN (f)(t) = f(t−SN

)wN−(t) + f(t+SN
)wN+(t). (16)

We then have the following proposition.

Proposition 4.1. Recall Ψf from (4) and δN from (8). If f is in E or EF , then

FN (f) ≤ 2Ψf (δN ). (17)

Proof. As wN−(t) + wN+(t) = 1, (16) implies

πN (f)(t)− f(t) = (f(t−SN
)− f(t))wN−(t) + (f(t+SN

)− f(t))wN+(t).

Let us suppose without loss of generality that t− t−SN
≤ t+SN

− t. As t− t−SN
≤ δN ,

t+SN
− t =

(t+SN
− t)(t− t−SN

)

t− t−SN

≤
(t+SN

− t)

t− t−SN

δN ≤ xNδN , (18)
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where xN =
t+SN

−t−SN

t−t−SN

≥ 1, so that

|πN (f)(t)− f(t)| ≤ |f(t−SN
)− f(t)|

t+SN
− t

t+SN
− t−SN

+ |f(t+SN
)− f(t)|

t− t−SN

t+SN
− t−SN

≤ |f(t−SN
)− f(t)|+ |f(t+SN

)− f(t)|
t− t−SN

t+SN
− t−SN

≤Mf (δN ) +
|f(t+SN

)− f(t)|
t+SN

− t−SN

t− t−SN

(recall Mf (δ) from (3))

≤Mf (δN ) +
Mf (t

+
SN

− t)

t+SN
− t−SN

t− t−SN

≤Mf (δN ) +
Mf (δNxN )

xN
,

where we can conclude that |πN (f)(t)− f(t)| ≤Mf (δN ) + Ψf (δN ) ≤ 2Ψf (δN ).

For GN , we have the following proposition.

Proposition 4.2. We have
GN −−−−→

N→∞
0. (19)

Furthermore, if K satisfies Condition 2.1, then

GN ≤ d2δ
β
N , (20)

where d2 := 6cK .

Proof. We have ρN (KN (·, t)) =
N∑
i=1

λi(t)K(·, ti), where ΓNΛ(t) = cKN (·,t), and

KN (·, t) =
N∑
i=1

(
N∑
j=1

K(ti, tj)ϕj|F (t)

)
ϕi|F .

Hence ΓNΛ(t) = ΓNϕ(t), where ϕ(t) = (ϕ1|F (t), . . . , ϕN |F (t))
⊤. Then, Λ(t) = ϕ(t) and

ρN (KN (·, t)) =
N∑
i=1

ϕi|F (t)K(·, ti).

Applying the reproducing property of K and KN , we obtain

⟨K(·, ti),K(·, t)⟩HF
= K(t, ti),

⟨KN (·, t),KN (·, t)⟩N = KN (t, t).

As ρN is isometric (see (15)), we have

∥ρN (KN (·, t))−K(·, t)∥2HF
= ∥ρN (KN (·, t)) ∥2HF

+ ∥K(·, t)∥2HF
− 2⟨ρN (KN (·, t)) ,K(·, t)⟩HF

= ∥KN (·, t)∥2N + ∥K(·, t)∥2HF
− 2

N∑
i=1

ϕi,F (t)K(t, ti)

= KN (t, t) +K(t, t)− 2
N∑
i=1

ϕi,F (t)K(t, ti).
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Setting Kt(·) = K(·, t), if K satisfies Condition 2.1, then, according to Propositions 2.1 and 4.1,∣∣∣∣∣Kt(t)−
N∑
i=1

ϕi,F (t)Kti(t)

∣∣∣∣∣ = |Kt(t)− πN (Kt(t))| ≤ ∥Kt − πN (Kt)∥∞ ≤ 2cKδ
β
N .

We have, for t ∈ [t−SN
, t+SN

],

KN (t, t) = Kt−SN

(t−SN
)w2

N−(t) +Kt+SN

(t+SN
)w2

N+
(t) + 2Kt−SN

(t+SN
)wN+(t)wN−(t).

Also

Kt−SN

(t)wN−(t) = Kt−SN

(t)wN−(t)[wN−(t) + wN+(t)],

Kt+SN

(t)wN+(t) = Kt+SN

(t)wN+(t)[wN−(t) + wN+(t)].

Hence,∣∣∣∣∣KN (t, t)−
N∑
i=1

ϕi,F (t)Kti(t)

∣∣∣∣∣ = ∣∣∣KN (t, t)−Kt−SN

(t)wN−(t)−Kt+SN

(t)wN+(t)
∣∣∣

≤
∣∣∣Kt−SN

(t−SN
)−Kt−SN

(t)
∣∣∣w2

N−(t) +
∣∣∣Kt+SN

(t+SN
)−Kt+SN

(t)
∣∣∣wN+(t)

2

+

[∣∣∣Kt−SN

(t+SN
)−Kt−SN

(t)
∣∣∣+ ∣∣∣Kt+SN

(t−SN
)−Kt+SN

(t)
∣∣∣]wN+(t)wN−(t).

Let us now suppose, without loss of generality, that t − t−SN
≤ t+SN

− t. As Kt+SN

and Kt−SN

are

β-Hölder continuous, we have ∣∣∣Kt−SN

(t−SN
)−Kt−SN

(t)
∣∣∣w2

N−(t) ≤ cKδ
β
N .

Using (18), as t+SN
− t ≤ xNδN , where xN =

t+SN
−t−SN

t−t−SN

≥ 1, we obtain

∣∣∣Kt+SN

(t+SN
)−Kt+SN

(t)
∣∣∣w2

N+
(t) ≤MK

t+
SN

(t+SN
− t)

(
t− t−SN

t+SN
− t−SN

)2

≤
MK

t+
SN

(δNxN )

x2N

≤
MK

t+
SN

(δNxN )

xN

≤ ψK
t+
SN

(δN ) ≤ cKδ
β
N ,∣∣∣Kt−SN

(t+SN
)−Kt−SN

(t)
∣∣∣wN+(t)wN−(t) ≤MK

t−
SN

(t+SN
− t)

(
t− t−SN

t+SN
− t−SN

)

≤
MK

t−
SN

(δNxN )

xN
≤ cKδ

β
N ,∣∣∣Kt+SN

(t−SN
)−Kt+SN

(t)
∣∣∣wN+(t)wN−(t) ≤ cKδ

β
N .

Finally, ∣∣∣∣∣KN (t, t)−
N∑
i=1

ϕi,F (t)Kti(t)

∣∣∣∣∣ ≤ 4cKδ
β
N ,

so that ∥ρN (KN (·, t)) − K(·, t)∥2HF
≤ 6cKδ

β
N , which allows to conclude the proof of (20), under

Condition 2.1. The proof of (19) uses the same arguments and that lim
δ→0

Ψf (δ) = 0 from Proposition 2.1.
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5 Error Bound

We here analyze the error committed when approximating ûF , the solution of (5), by ûN,F , the
solution of (11). We not only prove that ûN,F → ûF when N → ∞, but also give an error bound.
To estimate the error ∥ûN,F − ûF ∥∞, we split it in two terms: the piecewise linear interpolation error
∥πN (ûF ) − ûF ∥∞, and the distance from the approximate solution to the projection of the exact
solution, both on HN,F , ∥πN (ûF ) − ûN,F ∥∞. This splitting is treated rigorously in the following
proposition.

Proposition 5.1. Under Conditions 2.1 to 3.2, there is a constant c such that

∥ûN,F − ûF ∥∞ ≤ c ∥πN (ûF )− ûN,F ∥N + d1δ
β/2
N , (21)

where d1 :=
√
8cK∥ûF ∥HF

, with cK and β from Condition 2.1.

Proof. We have
∥ûN,F − ûF ∥∞ ≤ ∥ûN,F − πN (ûF )∥∞ + ∥πN (ûF )− ûF ∥∞.

As ∥πN (ûF ) − ûF ∥∞ = FN (ûF ), according to the bound in (17), FN (ûF ) ≤ 2ψûF
(δN ). Theorem 2.1

states that ûF is β
2 -Hölder continuous, so that applying Proposition 2.1, we obtain

∥πN (ûF )− ûF ∥∞ ≤ 2
√
2cK∥ûF ∥HF

δ
β/2
N = d1δ

β/2
N . (22)

As HN,F is an Hilbertian space of EF , from Lemma 5.1 in [Grammont et al., 2024], there exists a
constant c such that, ∀hN ∈ HN,F ,

∥hN∥∞ ≤ c∥hN∥N . (23)

Similarly as in (23) and up to increasing c, for all h ∈ HF ,

∥h∥∞ ≤ c∥h∥HF
. (24)

It remains to address the second term ∥πN (ûF )− ûN,F ∥N , that requires a more delicate treatment,
provided in the next propositions. In the following, for the sake of readability, some of the proofs will
be presented in Appendix A.

We first show that the bound of ∥πN (ûF ) − ûN,F ∥N relies on the characterization of the strong
convexity for a differentiable function and the necessary condition of the first order for its minimum.

Proposition 5.2. Under Conditions 2.1 to 3.2, we have

∥πN (ûF )− ûN,F ∥2N ≤ JN,F (πN (ûF ))− JN,F (ûN,F ),

with JN,F as in (10).

Proof. As JN,F is differentiable from Proposition 3.2 with Fréchet derivative J ′
N,F , then the strong

convexity leads to, ∀v, u ∈ HN,F ,

JN,F (v)− JN,F (u) ≥ ⟨J ′
N,F (u), v − u⟩N + ∥v − u∥2N .

If u = ûN,F and v = πN (ûF ), then

JN,F (πN (ûF ))− JN,F (ûN,F ) ≥ ⟨J ′
N,F (ûN,F ), πN (ûF )− ûN,F ⟩N + ∥πN (ûF )− ûN,F ∥2N .

As πN (ûF ) ∈ HN,F ∩ CF thanks to Condition 3.2, and ûN,F solves (11), we have

⟨J ′
N,F (ûN,F ), πN (ûF )− ûN,F ⟩N ≥ 0,

which allows to conclude the proof.
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The next proposition derives the bounds of JN,F (πN (ûF )) and JN,F (ûN,F ).

Proposition 5.3. Under Conditions 2.1 to 3.2, we have

JN,F (πN (ûF )) = −ÊN + JF (ûF ) + ϵN , (25)

JN,F (ûN,F ) = JF (ρN (ûN,F )) + ηN , (26)

where
ÊN = ∥ûF ∥2HF

− ∥πN (ûF )∥2N ,

|ϵN | ≤ d3δ
β/2
N , d3 =

2nd1
τ

(
c∥ûF ∥HF

+max
i

|yi|
)
,

|ηN | ≤ d4δ
β/2
N , d4 =

2n
√
d2

τ
∥ûN,F ∥N

(
c∥ûN,F ∥N +max

i
|yi|
)
.

Proof. This proposition has no standalone value but it serves as an intermediary result required for
subsequent derivations. Its proof relies solely on computations and the application of previously
established results. The complete proof is provided in Appendix A.

Now, from Propositions 5.2 and 5.3, we can establish the error bound of ∥πN (ûF )− ûN,F ∥N .

Proposition 5.4. Under Conditions 2.1 to 3.2

∥πN (ûF )− ûN,F ∥2N ≤ JF (ûF )− JF (ρN (ûN,F )) + d5δ
β/2
N , (27)

where d5 = d3 + d4.

Proof. From Proposition 3.3, ÊN ≥ 0. Using Propositions 5.2 and 5.3,

∥πN (ûF )− ûN,F ∥2N ≤ JN,F (πN (ûF ))− JN,F (ûN,F )

= −ÊN + JF (ûF ) + ϵN − JF (ρN (ûN,F ))− ηN

≤ JF (ûF )− JF (ρN (ûN,F )) + d3δ
β/2
N + d4δ

β/2
N .

Since d5 = d3 + d4, we have the bound in (27).

To complete the construction of an error bound that is easy to read and interpret, we need to add
a third quantity to the first two (β, which measures regularity, and δN , which measures the grid size).
This final quantity required for the error bound is the distance, in HF , between ρN (ûN,F ) and the
constraints CF . This is the distance of the kernel interpolant of ûN,F to the set of constraints:

αN := d(ρN (ûN,F ), CF ) = ∥PC(ρN (ûN,F ))− ρN (ûN,F )∥HF
, (28)

where PC in HF is the orthogonal projection in HF onto the closed convex set CF .
We first address the case where ρN (ûN,F ) ∈ CF , i.e. αN = 0, which corresponds to Condition 5.1

next.

Condition 5.1. For N large enough, ρN (ûN,F ) ∈ CF .

Theorem 5.1. Under Conditions 2.1 to 5.1,

∥ûN,F − ûF ∥∞ = O(δ
β/4
N ). (29)

Proof. From Proposition 5.1, ∥ûN,F − ûF ∥∞ ≤ c ∥πN (ûF ) − ûN,F ∥N + d1δ
β/2
N . If Condition 5.1 is

verified, then ρN (ûN,F ) ∈ CF so that JF (ûF )− JF (ρN (ûN,F )) ≤ 0. Hence, from Proposition 5.4,

∥πN (ûF )− ûN,F ∥2N ≤ d5δ
β/2
N ,

so that

∥ûN,F − ûF ∥∞ ≤ c

√
d5δ

β/2
N + d1δ

β/2
N .
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Intuitively, Condition 5.1 is expected to hold when ûN,F is significantly “inside” the constraint
set, since ρN (ûN,F ) is expected to be close to ûN,F for large N . Nevertheless, when ûN,F is close to
the boundary of the constraint set, then its kernel interpolant ρN (ûN,F ) could fall outside of this set.
To give a very simple example, when the constraint set imposes functions to take values in [0, 1], it
is possible that the values of a function at the knots are in [0, 1] but very close to 0 or 1, so that its
kernel interpolant function takes some values outside of [0, 1], for some kernels K.

Hence, it is valuable to analyze the case where Condition 5.1 does not hold (i.e. αN ̸= 0). In this
case, the convergence proof of the error bound becomes more challenging and relies on some weak
compactness arguments as we show in Theorem 5.2 next.

Theorem 5.2. Under Conditions 2.1 to 3.2,

ûN,F −−−−→
N→∞

ûF in EF . (30)

Moreover, with c as in Proposition 5.1,

∥ûN,F − ûF ∥∞ ≤ c

√
d8αN + d5δ

β/2
N + d1δ

β/2
N , (31)

where d8 is a constant which is defined in the proof.

Proof. The convergence in (30) is already proved in [Grammont et al., 2024]. The proof is also provided
in Appendix A for a self-contained reading.

Let us now construct the error estimation involving δN and αN (see definitions in (8) and (28),
respectively). Setting ĥN := ρN (ûN,F ), we have

JF (ûF )− JF (ρN (ûN,F )) = JF (ûF )− JF (PC(ĥ
N )) + JF (PC(ĥ

N ))− JF (ĥ
N ).

As PC(ĥ
N ) ∈ HF ∩ CF , then JF (ûF ) − JF (PC(ĥ

N )) ≤ 0. This implies that the quantity JF (ûF ) −
JF (ρN (ûN,F )) is bounded by JF (PC(ĥ

N ))− JF (ĥ
N ), which is equal to

∥PC(ĥ
N )∥2HF

−∥ĥN∥2HF
+

1

τ

n∑
i=1

(
P (PC(ĥ

N ))(xi)− P (ĥN )(xi)
)(

P (PC(ĥ
N ))(xi) + P (ĥN )(xi)− 2yi

)
.

Recall that P (u) ∈ E the multi-affine extension of u (see Definition 2.2).
In the proof of (30) in [Grammont et al., 2024, Appendix, Proof of Proposition 5.8], it is shown

that (ĥN )N is bounded in HF . As PC is 1-Lipschitz, then

∥PC(ĥ
N )− PC(ûF )∥HF

≤ ∥ĥN − ûF ∥HF
,

and the sequence (PC(ĥ
N ))N is also bounded in HF . According to (24), these two sequences are also

bounded in EF . This implies that, for all i ∈ {1, . . . , n}, |P (PC(ĥ
N ))(xi)+P (ĥ

N )(xi)−2yi| is bounded
(we let d6 be the bound), and so is ∥PC(ĥ

N )∥HF
+ ∥ĥN∥HF

(we let d7 be the bound). Moreover,∣∣∣P (PC(ĥ
N ))(xi)− P (ĥN )(xi)

∣∣∣ ≤ ∥PC(ĥ
N )− ĥN∥∞

≤ c∥PC(ĥ
N )− ĥN∥HF

= cαN ,

∥PC(ĥ
N )∥2HF

− ∥ĥN∥2HF
= (∥PC(ĥ

N )∥HF
+ ∥ĥN∥HF

)(∥PC(ĥ
N )∥HF

− ∥ĥN∥HF
)

≤ d7αN .

Hence,

JF (ûF )− JF (ρN (ûN,F )) ≤
(
d7 +

ncd6
τ

)
αN = d8αN .

Using the results in (21) and (27) from Propositions 5.1 and 5.4, we obtain the error bound in (31).
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Remark 5.1. With a similar approach as provided here, it is possible to provide error bounds on the
numerical approximation of the constrained smoothing problem in higher dimensions. In particular,
the multi-affine extension is defined for general dimensions in Bachoc et al. [2022], and all its proper-
ties, including those related to the constraint sets of bounded, monotonic, and componentwise convex
functions, are also established for general dimensions. Nevertheless, presenting detailed proofs, as we
do here, in general dimension yields significantly more complex notations and cumbersome arguments.
To maintain readability, we present our results and proofs in one dimension.

Remark 5.2. Our error bounds depend on the regularity parameter β ∈ (0, 1] for the kernel K

(Condition 2.1), using the notion of Hölder-continuity, and with the rate O(δ
β/4
N ) in Theorem 5.1.

It is natural to ask whether faster decay rates of the upper bounds could be achieved with stronger
regularity assumptions, particularly by assuming derivatives of multiple orders. However, it is unclear
if this additional regularity would be beneficial in our setting. This is because we rely on piecewise linear
interpolation, which typically does not gain further benefits from regularity beyond Lipschitzness. As
explained in [Bachoc et al., 2022], piecewise linear interpolation is crucial for numerically handling
standard constraint sets (boundedness, monotonicity and convexity). Using an interpolation scheme
that would benefit from regularity beyond Lipschitzness, for instance piecewise polynomial interpolation,
is not suitable for numerically handling these constraint sets.

Remark 5.3. The distance of the kernel interpolant of ûN,F from the set of constraints CF , denoted

as αN (see definition in (28)), tends to zero as N → ∞. Indeed, recall the definition ĥN = ρN (ûN,F )
from the proof of Theorem 5.2. As PC(ûF ) = ûF , we have

αN ≤ ∥PC(ĥ
N )− PC(ûF )∥HF

+ ∥ûF − ĥN∥HF
≤ 2∥ûF − ĥN∥HF

.

In the proof of (30) in Theorem 5.2, it is proved that a subsequence of ĥN is weakly convergent
to ûF in HF . This implies that ĥNk(t) → ûF (t) for all t ∈ F . By construction of the multi-affine
extension P in Definition 2.2, it is also true for all t ∈ [0, 1]. Thus,

1

τ

n∑
i=1

(
P (ĥNk)(xi)− yi

)2
→ 1

τ

n∑
i=1

(P (ûF )(xi)− yi)
2 .

As JF (ĥ
Nk) → JF (ûF ), we have

∥ĥNk∥HF
→ ∥ûF ∥HF

.

This property, combined with the weak convergence, leads to the convergence of ĥNk to ûF in HF . As
ûF is the unique accumulation point, we have

∥ûF − ĥN∥HF
→ 0.

6 Numerical Experiments

In this section we aim to numerically illustrate Theorems 5.1 and 5.2. Let us recall that the ap-
proximate solution ûN,F is also the MAP estimate of a GP approximation conditionally to noisy
observations and the inequality constraints [Grammont et al., 2024]. Our numerical assessment relies
on this property. Therefore, we consider constrained GPs with stationary Matérn kernels [Genton,
2001]:

K(x, x′) = σ2
21−ν

Γ(ν)

(√
2ν

|x− x′|
ℓ

)ν

Hν

(√
2ν

|x− x′|
ℓ

)
, (32)

where x, x′ ∈ [0, 1], Γ is the Gamma function, Hν is the modified Bessel function of the second kind
of order ν, and (σ2, ℓ) ∈ (0,∞)2 are the variance and length-scale parameters, respectively. The
parameter ν ∈ (0,∞) allows controlling the regularity of the GP. The larger ν, the smoother the GP
samples.

Given the settings above, we sample twenty constrained GP replicates using the finite-dimensional
approximation in [López-Lopera et al., 2018] assuming an equispaced grid of knots with N = 200. The

15



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

Y
(x
)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

Y
(x
)

Figure 1: Random GP replicates under boundedness (left) and both boundedness and monotonicity
constraints (right) used in the experiments in Section 6.1. As boundedness constraints, we consider
0 ≤ Y (x) ≤ 1, for all x ∈ [0, 1].

choice of N balances the need for better resolution of the piecewise approximation while considering
the computational limitations inherent in Monte Carlo techniques. To introduce noise, we corrupt the
samples by using independent centred Gaussian noises with noise variance τ = 5× 10−2.

We compute the MAP estimate ûN,F for each random noisy replicate. This procedure results in
twenty predictors that will be used to illustrate Theorems 5.1 and 5.2. For the predictor ûF , which
cannot be evaluated in practice, we approximate it using ûN,F assuming an equispaced grid of knots
with N = 103. As parameter estimation is not the focus here, we use the same covariance parameters
and noise variance that have been set to generate the constrained GP replicates.

In the first part of our experiments (Section 6.1), we focus on the cases where the grid of the knots
is either dense or not. Thus, we fix ν = 5/2 to have the same regularity conditions. In the second part
(Section 6.2), we vary ν seeking to test convergence for different values of β while keeping promoting
a dense grid of knots. In our context, the link between ν and β is given by β = min(1, 2ν) (see for
instance Loh [2015]).

For dense grids, we conduct the MaxMod algorithm introduced by [Bachoc et al., 2022] and
discussed in Section 1, with a minimal initial number of knots (i.e. N0 = 2), and a maximal budget
Nmax = 250. This budget has been set aiming for a trade-off between computational time and
numerical stability due to inversion of covariance matrices. Using the MaxMod algorithm will allow
to verify convergence of the error bounds without involving equispaced grid of knots necessarily.

The implementation of the constrained GPs and the MaxMod algorithm are based on the R package
lineqGPR [López-Lopera, 2022].

6.1 Error bounds with fixed regularity assumptions

In this experiment, we sample random GP replicates under monotonicity and boundedness constraints
(see Figure 1). We impose the boundedness constraint 0 ≤ Y (x) ≤ 1, for all x ∈ [0, 1], and use a
Matérn 5/2 kernel with σ2 = 1 and ℓ = 0.4. We consider two cases where the grid of knots is dense or
not. For dense grids, we apply the MaxMod algorithm to each random replicate. For non-dense grids,
we restrict the addition of knots to the interval I = [0, 0.3] ∪ [0.6, 1]. The refinement process is then
conducted via rejection sampling with t ∼ Uniform(0, 1). In both cases, we set Nmax = 250.

Figure 2 presents boxplots of the error ∥ûN,F − ûF ∥∞ and the grid size δN (defined in (8)) for
the twenty replicates. We must remark that the asymptotic error bounds of ∥ûN,F − ûF ∥∞ cannot
be displayed, as αN (defined in (28)) cannot be computed numerically. We observe that the error
decreases as δN decreases, which is consistent with Theorems 5.1 and 5.2 as the asymptotic error
there bounds become smaller as δN decreases. The boxplots show median error values smaller than
10−3 once the maximal budget Nmax is reached, except for the example under boundedness constraints
with non-dense grids of knots. This increase in error is due to abrupt changes in the MAP around
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Figure 2: Boxplots of the error log10 ∥ûN,F − ûF ∥∞ (blue) and the grid size δN (red) as a function of
the number of knots N . The boxplots are computed for the twenty replicates in Figure 1, considering
cases when the grid of knots is dense or not (top and bottom, respectively). Results are presented for
examples under boundedness (left) or both boundedness and monotonicity (right) constraints.

x = 0.3 and x = 0.6 (limits of the rejection interval). To achieve smaller error values, it is possible to
repeat the experiments with a larger Nmax expecting adding knots close to the limits. In particular
for this example, a median error value smaller than 10−3 is achieved after N = 275.

6.2 Error bounds with different regularity assumptions

We now perform experiments with dense grids while varying β, the parameter related to the regularity
of the kernel. To do so, we consider ν = 1/4, 3/8, 1/2, 3/4, 5/2 (respectively, β = 1/2, 3/4, 1, 1, 1).
Although β = 1 for ν = 1/2, 3/4, 5/2, we opt to conduct experiments with these values to observe
the impact of the GP samples’ smoothness order on the rate of error decrease. We follow the same
procedure as described in Section 6.1 with the same GP parameters except for the length-parameter
that we have increased to ℓ = 0.8 to control the variability of the samples (see Figure 3, left panels).
This choice seeks to have visible convergence trends for N ≤ Nmax = 250. As monotonicity is unlikely
to be satisfied for Matérn kernels with ν ≤ 1/2, we focus here on boundedness constraints. To
assess if narrower bounds may have an impact in the results, we suggest GP replicates satisfying
0 ≤ Y (x) ≤ 0.5.

In line with Figure 2, Figure 3 shows a decreasing trend of the error ∥ûN,F − ûF ∥∞ as δN decreases
independently of the value of β. In particular, we note that the error decreases faster as β increases,
which is consistent with Theorems 5.1 and 5.2 as the asymptotic error bounds there become smaller
as β increases. In addition, the rate of decrease is higher for smoother GP samples (i.e. for larger ν
values). This pattern has also been verified for the squared exponential kernel, i.e. when ν → ∞, in
experiments unreported here.
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Figure 3: Right: boxplots of log10 ∥ûN,F − ûF ∥∞ (blue) and δN (red) as a function of N . The
boxplots are computed for twenty constrained GP replicates using a Matérn kernel with ν =
1/4, 3/8, 1/2, 3/4, 5/2 (from top to bottom). For a better visualization, we only display three of
the twenty replicates (left).
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7 Conclusions

We have introduced a general error bound (see Theorem 5.2) for the constrained optimal smoothing
problem and for the equivalent formulation with the MAP estimator. We show that this bound de-
pends on the the grid size, the regularity of the kernel, and the distance from the kernel interpolant
of the approximation to the set of constraints. In particular, if the kernel interpolant satisfies the con-

straints, then the latter distance is zero, and the error bound is given by O(δ
β/4
N ) (see Theorem 5.1).

Convergence results are provided for non-equispaced and non-dense grids of knots, allowing certifi-
cation of sequential schemes, such as the MaxMod algorithm in [Bachoc et al., 2022], introduced for
the efficient allocation of knots. To the best of our knowledge, our theoretical results are the first to
provide quantitative error bounds for numerical approximations of constrained GPs.

Our results are illustrated numerically through various synthetic examples that account for different
types of inequality constraints (e.g., boundedness and monotonicity) and regularity assumptions (i.e.
smoothness of the GP samples). Additionally, we examine scenarios with both dense and non-dense
grids of knots. Our experiments show that the approximation error decreases as the grid size decreases,
with a faster rate of decrease observed for smoother GP samples. This is in line with our theoretical
analysis.
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A Remaining proofs

In order to make the paper self-contained, we provide in this appendix the proofs that are primarily
technical or containing pre-existing concepts from other works.

Proof of Proposition 2.1. Let f be continuous on S. Suppose that the property limδ→0Ψf (δ) = 0 is
not true. Hence, there exists a sequence (δn)n∈N such that δn → 0 and a constant A > 0 such that
Ψf (δn) > A for all n ∈ N. Moreover, there exists a sequence (tn)n∈N with tn > 1 such that

Mf (tnδn)

tn
> A. (33)

If (tn)n∈N has a bounded subsequence, then 1 ≤ tϕ(n) ≤ b and
Mf (tϕ(n)δn)

tϕ(n)
≤ Mf (bδn). As f is

continuous, Mf (bδn) corresponds to a modulus of continuity, so limδn→0Mf (bδn) = 0. This leads to

a contradiction with (33). If limn→∞ tn = ∞, then
Mf (tnδn)

tn
≤ Mf (1)

tn
, and so limδn→0

Mf (tnδn)
tn

= 0.
Hence, there is a contradiction with (33).

We next analyze the case where f is β-Hölder continuous. Then Mf (δ) ≤ cfδ
β. Hence, for t ≥ 1

and tδ ≤ 1,
Mf (tδ)

t
≤ cfδ

βtβ−1 ≤ cfδ
β,

and for t ≥ 1 and tδ ≥ 1,
Mf (tδ)

t
=
Mf (1)

t
≤
cf
t

≤ cfδ.

As δ ≤ 1 and 0 < β ≤ 1, we have that Ψf (δ) ≤ cfδ
β.
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Proof of Proposition 5.3. From (10), we have

JN,F (πN (ûF )) = ∥πN (ûF )∥2N +
1

τ

n∑
i=1

(P (πN (ûF ))(xi)− yi)
2

= ∥πN (ûF )∥2N − ∥ûF ∥2HF
+ ∥ûF ∥2HF

+
1

τ

n∑
i=1

(P (πN (ûF ))(xi)− yi)
2.

Using (6), then

JN,F (πN (ûF )) = ∥πN (ûF )∥2N − ∥ûF ∥2HF
+ JF (ûF ) +

1

τ

n∑
i=1

(P (πN (ûF ))(xi)− yi)
2 − (P (ûF )(xi)− yi)

2

= ∥πN (ûF )∥2N − ∥ûF ∥2HF
+ JF (ûF ) + ϵN ,

with

ϵN =
1

τ

n∑
i=1

[P (πN (ûF ))(xi)− P (ûF )(xi)] [P (πN (ûF ))(xi) + P (ûF )(xi)− 2yi] .

In the following, to simplify the notation, we will denote t−i = max{t, t ∈ SN , t ≤ xi}, t+i =
min{t, t ∈ SN , t ≥ xi}, w− = wN− and w+ = wN+ .

From (22), we have the bound

|PπN (ûF )(xi)− PûF (xi)| = [πN (ûF )− ûF ](t
−
i )w−(xi) + [πN (ûF )− ûF ](t

+
i )w+(xi)

≤ ∥πN (ûF )− ûF ∥∞ ≤ d1δ
β/2
N .

Using Proposition 3.3, (23) and (24),

|P (πN (ûF ))(xi)| = |πN (ûF )(t
−
i )w−(xi) + πN (ûF )(t

+
i )w+(xi)|

≤ ∥πN (ûF )∥∞
≤ c∥πN (ûF )∥N
≤ c∥ûF ∥HF

,

|P (ûF )(xi)| = |ûF (t−i )w−(xi) + ûF (t
+
i )w+(xi)|

≤ ∥ûF ∥∞
≤ c∥ûF ∥HF

.

Therefore, JN,F (πN (ûF )) = −ÊN + JF (ûF ) + ϵN , with

|ϵN | ≤ d3δ
β/2
N , and d3 =

2nd1
τ

(
c∥ûF ∥HF

+max
i

|yi|
)
.

From the isometric property of ρN in (15), we have

JN,F (ûN,F ) = ∥ûN,F ∥2N +
1

τ

n∑
i=1

(P (ûN,F )(xi)− yi)
2

= ∥ρN (ûN,F )∥2HF
+

1

τ

n∑
i=1

(P (ûN,F )(xi)− yi)
2

= JF (ρN (ûN,F )) + ηN ,

with

ηN =
1

τ

n∑
i=1

(P (ûN,F )(xi)− yi)
2 − (P (ρN (ûN,F ))(xi)− yi)

2

=
1

τ

n∑
i=1

[P (ûN,F )(xi)− P (ρN (ûN,F ))(xi)] [P (ûN,F )(xi) + P (ρN (ûN,F ))(xi)− 2yi] .
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Thanks to (15), (23) and (24), we obtain

|P (ûN,F (xi))| ≤ ∥ûN,F ∥∞
≤ c∥ûN,F ∥N ,

|P (ρN ûN,F )(xi)| ≤ ∥ρN (ûN,F )∥∞
≤ c∥ρN (ûN,F )∥HF

≤ c∥ûN,F ∥N ,

and hence,

P (ûN,F − ρN (ûN,F ))(xi) = (ûN,F − ρN (ûN,F ))(t
−
i )w−(xi) + (ûN,F − ρN (ûN,F ))(t

+
i )w+(xi).

For t ∈ F ,

(ûN,F − ρN (ûN,F ))(t) = ⟨ûN,F ,KN (·, t)⟩N − ⟨ρN (ûN,F ),K(·, t)⟩HF

= ⟨ρN (ûN,F ), ρN (KN (·, t))⟩HF
− ⟨ρN (ûN,F ),K(·, t)⟩HF

= ⟨ρN (ûN,F ), ρN (KN (·, t))−K(·, t)⟩HF
,

|ûN,F − ρN (ûN,F )(t)| ≤ ∥ρN (ûN,F )∥HF
∥ρN (KN (·, t))−K(·, t)∥HF

≤ ∥ûN,F ∥N
√
GN .

From Proposition 4.2, JN,F (ûN,F ) = JF (ρN (ûN,F )) + ηN where

|ηN | ≤ d4δ
β/2
N , d4 =

2n
√
d2

τ
∥ûN,F ∥N

(
c∥ûN,F ∥N +max

i
|yi|
)
.

Proof of (30) in Theorem 5.2. Recall ĥN = ρN (ûN,F ). As πN (ûF ) ∈ HN,F ∩ CF , according to (25)

and (26), and as ÊN ≥ 0,

∥ĥN∥2HF
≤ JF (ĥ

N ) ≤ JN,F (ûN,F ) + |ηN | ≤ JN,F (πN ûF ) + |ηN | ≤ JF (ûF ) + |ϵN |+ |ηN |. (34)

Hence, the sequence (ĥN )N is bounded in HF so that, by weak compactness in a Hilbert space, there
exists a subsequence (ĥNk)k and h∗ ∈ HF such that

ĥNk −−−⇀
k→∞

h∗ ∈ HF , (weak convergence). (35)

As HF is an RKHS with kernel K, for all ti ∈ SN ,K(·, ti) ∈ HF and

⟨ĥNk ,K(·, ti)⟩HF
= hNk(ti) −−−⇀

k→∞
⟨h∗,K(·, ti)⟩HF

= h∗(ti).

Therefore, for all N ≥ 1, πN (ĥNk) −−−→
k→∞

πN (h∗) in the finite-dimensional space HN .

As SN ⊂ SN+1, as far as Nk ≥ N , πN (ĥNk) = πN (ρNk
(ûNk,F )) = πN (ûNk,F ), so that

πN (ûNk,F ) −−−→
k→∞

πN (h∗) in HN .

As HN is an Hibertian subspace of EF ,

πN (ûNk,F ) −−−→
k→∞

πN (h∗) in EF .

As πN (ûNk,F ) ∈ CF and CF is closed in EF , so that ∀N ,

πN (h∗) ∈ CF .
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CF is closed in EF and πN (h∗) →
N→∞

h∗ in EF , then h
∗ ∈ CF so that

JF (ûF ) ≤ JF (h
∗).

Then, as JF is convex and lower semi continuous and ĥNk −−−⇀
k→∞

ĥ∗ ∈ HF and thanks to (34), as

lim
N→∞

δN = 0, so that by Proposition 5.3, lim
N→∞

ϵN = 0 and lim
N→∞

ηN = 0,

JF (ûF ) ≤ JF (h
∗)

≤ lim inf
k

JF (ĥ
Nk)

≤ lim inf
k

JNk,F (ûNk,F )

≤ lim inf
k

JNk,F (πNk
(ûF ))

≤ lim sup
k

JNk,F (πNk
(ûF ))

≤ JF (ûF ).

Hence
lim

N→∞
JF (ĥ

Nk) = lim
N→∞

JNk,F (ûNk,F ) = lim
N→∞

JNk,F (πNk
(ûF )) = JF (ûF ).

The real sequences (JF (ĥ
N )), (JN,F (ûN,F )) (JN,F (πN ûF )) are bounded and have a unique accumula-

tion point JF (ûF ) so that

JF (ĥ
N ) −−−−→

N→∞
JF (ûF )

JN,F (ûN,F ) −−−−→
N→∞

JF (ûF )

JN,F (πN ûF ) −−−−→
N→∞

JF (ûF ).

The following bounds

∥ûN,F − ûF ∥∞ ≤ c ∥πN (ûF )− ûN,F ∥N + F̂N ,

∥πN (ûF )− ûN,F ∥2N ≤ JF (ûF )− JF (ĥ
N ) + |ϵN |+ |ηN |,

lead to (30) .
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F. Bachoc, A. Lagnoux, and A. F. López-Lopera. Maximum likelihood estimation for Gaussian pro-
cesses under inequality constraints. Electronic Journal of Statistics, 13(2):2921–2969, 2019.
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