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Abstract

Background: Breast Background Parenchymal Enhancement (BPE) is correlated with

the risk of breast cancer. BPE level is currently assessed by radiologists in Contrast-Enhanced

Mammography (CEM) using 4 classes: minimal, mild, moderate and marked, as described

in Breast Imaging Reporting and Data System (BI-RADS). However, BPE classification re-

mains subject to intra- and inter-reader variability. Fully automated methods to assess BPE

level have already been developed in breast Contrast-Enhanced MRI (CE-MRI) and have been

shown to provide accurate and repeatable BPE level classification. However, to our knowledge,

no BPE level classification tool is available in the literature for CEM.

Materials & Methods: A BPE level classification tool based on Deep Learning (DL) has

been trained and optimized on 7012 CEM image pairs (low-energy and recombined images)

and evaluated on a dataset of 1013 image pairs. The impact of image resolution, backbone

architecture and loss function were analyzed, as well as the influence of lesion presence and

type on BPE assessment. The evaluation of the model performance was conducted using dif-

ferent metrics including 4-class balanced accuracy and mean absolute error. The results of the

optimized model for a binary classification: minimal/mild versus moderate/marked, were also

investigated.

Results: The optimized model achieved a 4-class balanced accuracy of 71.5% (95% CI:

71.2–71.9) with 98.8% of classification errors between adjacent classes. For binary classifi-

cation, the accuracy reached 93.0%. A slight decrease in model accuracy is observed in the

presence of lesions, but it is not statistically significant, suggesting that our model is robust to

the presence of lesions in the image for a classification task. Visual assessment also confirms

that the model is more affected by non-mass enhancements than by mass-like enhancements.

Conclusion: The proposed BPE classification tool for CEM achieves similar results than

what is published in the literature for CE-MRI.

Keywords: Contrast-Enhanced Mammography, Background Parenchymal Enhancement, Deep

Learning, Breast Imaging

1 Introduction

Contrast-Enhanced Mammography (CEM) is a recent imaging technique exploiting the process of

tumor angiogenesis using intravenous injection of an iodine contrast agent. It has been demon-

strated to improve breast cancer detection and characterization [1]. In CEM, two 2D projection
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images of the breast are acquired at different energies of the X-ray beam; these low-energy (LE)

and high-energy (HE) images are used to create a so-called recombined image (REC) showing

contrast uptake [2]. Although this imaging modality has shown greater sensitivity and specificity

for breast cancer detection compared to standard mammography, especially in women with dense

breasts [3, 4], its diagnostic performance remains comparable to contrast-enhanced magnetic reso-

nance imaging (CE-MRI) [2, 5]. Nonetheless, CEM is cost effective and some studies have shown

a strong preference of patients for CEM over MRI [6, 7].

Background Parenchymal Enhancement (BPE) refers to the enhancement of the normal fibro glan-

dular tissue (FGT) of the breast after contrast administration. BPE has been first described in

breast CE-MRI and included in the Breast Imaging Reporting and Data System [8] (BI-RADS) 5th

edition in 2013. Its counterpart in CEM was introduced with the BI-RADS supplement dedicated

to CEM in 2022 [9]. The literature suggests that BPE is associated with increased risk of breast

cancer [10, 11]. It is a key feature visually assessed and reported by radiologists at study-level,

using four classes: minimal, mild, moderate, and marked. Some studies have shown a correlation

between BPE and clinical factors such as age, breast density, menstruation status and menstrual

cycle timing [12, 13]. In addition, high BPE (moderate/marked) can mask lesions and thus affect

image reading and tumor extent assessment [14, 15, 16]. For all those reasons, assessing BPE

in CEM exam is essential, but as no automatic classifier exists, this task is currently extremely

reader-dependent.

The classification of BPE using four levels is highly affected by intra- and inter-reader variability.

Based on kappa statistic (κ), radiologists have demonstrated moderate agreement in classifying

BPE (κ = 0.43, 95% CI: 0.05–0.69) after training on CEM [17]. In breast CE-MRI, inter-reader

agreement was fair [18, 19], but improved with training until a moderate agreement [19]. These

results highlight the importance of guidelines and standardized BPE levels in a reference atlas.

To overcome the problem of human variability, fully-automatic methods have been proposed in

breast CE-MRI on 3D volumes, notably using a deep convolutional neural network (CNN) archi-

tecture [20, 21] such as VGG [22, 23] or a radiomics feature extraction approach with breast and

FGT segmentation [24]. These models have shown accuracy values ranging from 67 to 75% for

4-class classification and 79 to 91.5% for binary classification. A similar classification tool does

not exist in CEM. Even if CE-MRI differs from CEM in particular from its 3D aspect, automated

MRI approaches can be used as a source of inspiration, as both imaging modalities are used to

detect contrast uptakes coming from angiogenesis. In addition, a study has shown a substantial

agreement (κ = 0.66, 95% CI: 0.61-0.70) for BPE classification between CEM and breast MRI [25],

highlighting similarities between these two applications [26].

Another four-level classification exists in mammography: the classification of breast density [27].

In the case of breast density, the literature has shown that deep learning (DL) tools can help reduce

reader variability [28]. DL models such as ResNet-50 and EfficientNet-B0 have already shown to

provide accurate and standardized assessment using a consensus between 2 to 3 radiologists as

the reference standard [29, 30, 31, 32, 33], and can therefore be used as a source of inspiration.

Compared with BPE, the image pattern recognition task remains different (i.e., different physics,

physiological phenomena, input images and image rendering).

As for BPE in CE-MRI and breast density in mammography, a BPE level classification tool in

CEM would improve consistency between radiologists. In this work, a DL-based tool assessing

BPE of a CEM image pair (LE/REC images) is developed. The purpose of this tool is to replicate

a consensus-based radiologist assessment and automate the classification of BPE, thereby improv-

ing clinical effectiveness. The model was trained on a large CEM database labeled by multiple
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independent readers. To the best of our knowledge, this study is the first to conduct the evaluation

of an Artificial Intelligence (AI) model to assess the BPE level in CEM.

2 Materials

2.1 Database

The database used for this study contains CEM images from patients acquired between June 2019

and December 2022 from five clinical sites worldwide, in Europe, North America, Africa and Asia.

In total, 2023 patients were enrolled, contributing to a dataset comprising 9073 image pairs (low-

energy and recombined images).

CEM exams were performed with three different acquisition systems from GE HealthCare (GEHC):

Senographe Pristina™, Senographe Essential™ and Senographe DS™ (GE HealthCare, Chicago, IL,

USA).

Each patient case consisted of CEM images, including low-energy (LE) images, high-energy (HE)

images and recombined (REC) images. REC images were obtained using SenoBright™ HD with

NIRA, the latest GEHC recombination algorithm effective in reducing CEM-related artifacts [34].

For all patients, CEM images were acquired for the left and right breasts mainly with craniocaudal

(CC) and mediolateral oblique (MLO) projections. Potential retakes and additional views such

as mediolateral (ML), lateromedial (LM), lateral (LAT) and exaggerated CC (XCC) were also

included in the database, but represent only 3% of the images. One to four exams were collected

per patient.

2.2 Annotation and data split

The complete database was split into 3 datasets: a training, a validation and a test set of 1581,

222 and 220 patients, respectively, corresponding to 7012, 1048 and 1013 LE/REC image pairs.

To ensure labelling accuracy and reduce individual biases, multiple CEM experts previously trained

on a set of images performed the annotation using the same software. Each reader assigned a BPE

level to each CEM image pair: minimal, mild, moderate or marked.

Two methods are defined below to determine the ground truth GT associated with each CEM

image pair. Both methods use the ground-truth probability PGT
i associated with class i ∈

{minimal,mild,moderate,marked}, defined as follows:

PGT
i =

1

Nreader

Nreader∑
n=1

{
1 if reader n assigns the class i

0 else
(1)

where Nreader is the number of readers.

1. Distribution Method: This approach uses the variety of labels given by different readers

for each image. It offers a more detailed insight than just a single discrete label by using a

probability distribution of BPE levels as ground truth.

GTdistribution = [PGT
minimal, P

GT
mild, P

GT
moderate, P

GT
marked] (2)

2. Categorical Method: Here, the most common label among the readers is chosen as the

consensus. In case of a tie, the image gets the highest BPE level.
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GTcategorical = argmax
i

PGT
i (3)

As a result, every image was associated with both a discrete BPE level label (categorical method)

and a distribution of BPE labels (distribution method).

For the training and validation sets, the BPE annotation was performed by three independent

CEM-expert scientists. The split between training and validation was stratified patient-wise based

on the BPE level, regardless of clinical site or acquisition system. The BPE distribution is reported

in Table 1. It can be noted that a perfectly distributed dataset was not possible as the database

does not include enough high BPE cases. As some images (CC/MLO, left/right breast) inside a

CEM exam from the same patient might have different assigned BPE, the category reported per

patient in the table corresponds to the majority class on all views.

The test set was collected in a later stage from a single clinical site and annotated by a radiologist,

specializing in breast imaging and CEM for over 5 years, and by three CEM-expert scientists with

4, 6 and 10 years of experience. The Cohen’s kappa statistic was used to measure the inter-rater

reliability. The overall inter-rater agreement was fair (κ = 0.25, 95% CI: 0.08-0.42). Ultimately,

the test set includes 57 minimal cases, 106 mild cases, 42 moderate cases and 15 marked cases as

reported in Table 1.

In addition, to analyze the influence of lesion presence and type, a radiologist conducted lesion

location annotation and lesion classification of the test dataset, distinguishing between mass and

non-mass enhancement. The annotation process consists of marking rectangular boxes on the lesion

areas of each view, and provides the approximate lesion size. The test dataset was then divided

into three categories: images without lesions, images containing mass-like lesions, and images con-

taining non-mass-like lesions. Since the BPE texture is visually closer to a non-mass enhancement,

CEM image pairs containing both mass and non-mass were classified as non-mass. The retakes

and additional views were excluded from this analysis. Table 2 presents the stratification of the

test dataset, including number of images and annotation length per lesion type. When an image

contains multiple lesions, the reported annotation length corresponds to the sum of the lesion sizes.

Dataset Number of patients
BPE per patient

minimal mild moderate marked

Training 1581 (7012 images) 472 (30%) 750 (47%) 270 (17%) 89 (6%)

Validation 222 (1048 images) 73 (33%) 68 (31%) 43 (19%) 38 (17%)

Test 220 (1013 images) 57 (26%) 106 (48%) 42 (19%) 15 (7%)

Table 1: BPE distribution and number of patients per dataset.

Lesion type Number of images
Annotation length [mm]

mean ± std (min-max)

None 422 NA

Mass 277 61 ± 33 (16-171)

Non-mass 134 109 ± 44 (30-299)

Table 2: Stratification of the test dataset by lesion type. The number of images and the average

annotation length are reported.
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3 Methods

3.1 Model architecture and training

An architecture based on a deep convolutional neural network was implemented. The AI-pipeline

consists in three different steps: a pre-processing stage, an image feature extraction stage, and a

classification stage. Figure 1 shows the overall process of the BPE level classification.

Figure 1: DL-based BPE classifier. Example using a ResNet-18 architecture and an image size of

570×479 pixels.

Pre-processing Pre-processing was applied to the images, including thresholding on the recom-

bined image, then normalization on all channels. To meet the input requirement of pre-trained

DL models, the REC image was stacked twice to obtain, with the LE image, 3 channels. Since

the database contains images of different sizes, zero padding was used to set a single image size of

2850×2394 pixels and preserve a constant image resolution in the dataset (100 µm). All images

were bi-linearly resized. The impact of resizing was analyzed by training the AI-pipeline with four

different sizes of image: (285×239), (407×342), (570×479), and (950×798) pixels corresponding

respectively to a resolution of 1000, 700, 500, and 300 µm. The image resolutions are to be com-

pared with the length of the BPE patterns. For this purpose, an order of magnitude of the BPE

granular texture length can be extracted and compared with the initial image size. The method

proposed here is a texture length extraction obtained by thresholding the auto-correlation function

at a chosen threshold (here 0.5):

L = 2 ·max {x | ∀x, |(f ∗ f)(x)| > 0.5} (4)

Feature extraction Several deep-learning models were investigated for feature extraction in-

cluding ResNet-18 [35], MobileNetV3-Small [36], DenseNet-121 [37] and VGG-16 [38]. Models

were initially pre-trained on ImageNet. VGG-16 is a standard CNN model already used in differ-

ent studies including the fully automatic classification of breast CE-MRI background parenchymal

enhancement [22], and has 138 × 106 trainable parameters. The three other tested models, ResNet-

18, DenseNet-121 and MobileNetV3-Small are lighter with respectively 11.7 × 106, 7.9 × 106 and

2.5 × 106 parameters and thus less prone to overfitting [39].

To prevent over-fitting, data augmentation strategies were performed, including random horizontal

and vertical flips, rotations with random angle from 0 to 180 degrees and random zooms. As in

our training dataset the BPE classes are unbalanced, class weighting method was also used.
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Classification The final classification step consists in a Global Average Pooling layer (GAP) and

a top Fully Connected (FC) layer with a Softmax activation function, as shown in Figure 1. The

last layer outputs 4 probability scores Pi, one for each following class: minimal, mild, moderate

and marked. To provide a final unique classification, the class with the highest score was selected.

The model was trained to classify each CEM image pair independently.

Loss function As explained in paragraph 2.2, each CEM image pair is associated with a discrete

label and a BPE class distribution. To leverage both the discrete nature required for a clinical BPE

application and the continuous information within the distribution, we propose a custom weighted

loss function Ltot, defined as:

Ltot = αCCELCCE + αc MSELc MSE + αKLLKL (5)

• LCCE is the categorical cross-entropy loss, the standard loss used for multi-class classifica-

tion [40].

• Lc MSE, a custom mean squared error (MSE) loss, is a regression loss. It is defined as the

mean of weighted squared errors. This loss leverages both the discrete label and the BPE

class distribution. The error between ground truth and output scores is weighted by class.

Each weight corresponds to the number of classes of deviation from the discrete ground truth

label. Classification errors are all the more penalized as the number of gap classes is high.

This loss is used to leverage the hierarchical order of BPE levels. The Lc MSE loss is defined

as:

Lc MSE =

nC∑
i=1

wi · (PGT
i − Pi)

2, wi = |GT − i| (6)

where nC denotes the number of classes (here nC = 4), wi is the weight associated with class

i and GT is the ground truth class. The ground-truth probability of class i is referred to as

PGT
i and the probability of class i predicted by the model as Pi.

• LKL is the Kullback-Leibler (KL) divergence loss, it measures how two probability distribu-

tions are different from each other [41]. The model output is compared to the probability

distribution obtained from multiple annotations per image.

The loss weights αCCE, αc MSE, and αKL are set such as αCCE + αc MSE + αKL = 1. Different

combinations of loss weights were tested to optimize the model.

For cases failing between two adjacent classes (e.g., mild/moderate) where ground truth is dis-

tributed across these two classes, KL divergence loss and custom MSE loss will encourage the

model to represent this distribution. On the opposite, cross-entropy loss will penalize the model if

it does not output the correct major class.

3.2 Evaluation protocol

To perform the evaluation, we defined a reference model (called hereafter reference model). The

latter model corresponds to: a ResNet-18 architecture, an image resizing of 570×479 pixels and

the loss function defined in Equation 5 with αCCE = 1, αc MSE = 0, and αKL = 0. All perfor-

mances of other model’s variants (different image resolutions, architectures, loss weights) will be

compared to this reference model performance. The CNN architecture and loss function chosen

for the reference model correspond to classics in the literature, while the choice of input image size
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is based on preliminary tests.

For each experiment, the model was trained 5 times to estimate the training uncertainty. For all

metrics, related 95% confidence interval is presented. In addition, p-values were computed with

the Welch’s t-test to assess whether there is a statistically significant difference in performance

between each model variant and the reference model. Two notations can be reported: n.a. (not

applicable) for the reference model and n.s. (not significant) in the absence of a statistically

significant difference (p-value > 0.05).

Evaluation metrics Because the BPE model outputs both a probability distribution (4 scores)

and a discrete final BPE label, multiple metrics were used to evaluate the results: the 4-class

balanced accuracy and the mean absolute error (MAE).

To obtain the MAE, the classification problem was reconfigured into a representation on a [0,1]

scale, considering the class hierarchy [minimal, mild, moderate, marked]. For a particular BPE

class distribution, the center of gravity G, a value between [0,1], has been chosen to represent the

central tendency of the distribution. It is defined as the following weighted sum:

G =

nC∑
i=1

αi · Pi (7)

where nC denotes the number of classes (here nC = 4), Pi is the probability associated with class

i and αi is the weight associated with class i, such as α0 = 0, α1 = 1/3, α2 = 2/3, α2 = 1. This

implies that a 100% probability of belonging to minimal, mild, moderate or marked class corre-

sponds respectively to a center of gravity G = 0, G = 1/3, G = 2/3, G = 1. The mean absolute error

between predicted and ground truth distributions was then computed by calculating the difference

between the centers of gravity of the two distributions.

For the reference model, additional metrics are reported: area under the curve (AUC) of one-vs-rest

receiver operating characteristic curves, confusion matrix, accuracy at one class apart, and accuracy

for binary classification, i.e., low BPE (minimal/mild) versus high BPE (moderate/marked). These

are standard metrics for a classification problem [42].

Lesion impact on BPE classification evaluation Contrast-enhancing lesions could be in-

terpreted by the DL model as BPE, causing a decrease in the performance of the BPE level

classification. The impact of the presence and type of lesions on the reference model classification

performance was therefore analyzed. The model performance was evaluated on three subsets: one

containing no lesion, another containing mass-like lesions and the third containing non-mass-like

lesions, using both 4-class balanced accuracy and MAE. As shown in Table 2, images containing

non-mass lesions are associated with a higher lesion size. Indeed, their reported annotation average

size is 109 mm compared with 61 mm for masses. To exclude potential bias in our results related

to lesion size, a second analysis was conducted, considering only images with lesion sizes greater

than 5 cm.

Besides, to obtain visual explanations of the CNN classification decision, the class activation maps

were extracted from the last convolutional layer using the Gradient-weighted Class Activation

Mapping (Grad-CAM) [43] method. Grad-CAM quantifies the gradients of the target class output

with respect to the feature maps of the last convolutional layer in the backbone. These gradients

represent how sensitive the output is to changes in the feature maps. By weighting the feature

maps with these gradients, Grad-CAM generates a heat-map that indicates the importance of

each spatial location in the feature maps for the final prediction. Additionally, a heat-map can be
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obtained for each of the four outputs, to understand which parts of the image contributed to the

output scores of each class.

4 Results

Performance of the reference model This section presents the classification results of the

reference model described in 3.2.

The 4-class balanced accuracy is 71.5% (95% CI: 71.2–71.9) and the mean absolute error is 0.094

(95% CI: 0.090–0.099). Figure 2 presents the corresponding confusion matrix. Most classification

errors occur between adjacent classes, except for 4 images on average (out of 1013). The accuracy

at one class apart is 99.7%. The best classification performance was achieved for the extreme

classes, i.e., minimal and marked, with average success rates of 95.6% and 80.2%, respectively.

Only 14 images labeled as minimal have been incorrectly classified as mild. The one-vs-rest AUC

of minimal, mild, moderate and marked classes, is respectively 0.95 (95% CI: 0.948–0.951), 0.88

(95% CI: 0.868–0.891), 0.89 (95% CI: 0.883–0.896) and 0.97 (95% CI: 0.963–0.972). This highlights

that images labeled as minimal or marked are more easily classified by the model. In addition,

the model has more difficulty distinguishing between certain categories, in particular between

minimal/mild and between moderate/marked classes, as shown in Figure 2. Indeed, for binary

classification, the average accuracy of the model is of 93.0%.

Figure 2: Confusion matrix of the reference model containing mean and standard deviation values

in percentage.

Optimal input image resolution The classification results for different input image resolutions

are presented in this section. The 4-class balanced accuracy and its corresponding confidence

interval (CI) at 95% are presented in Figure 3 and reported in Table 3 together with the mean

absolute error. We observe that increasing image size from 285×239 to 407×342 pixels improves

the average 4-class balanced accuracy from 70.4% to 72.0% and reduces the associated variance. At

size 570×479 pixels, the performances are not statistically different, but the variance still decreases.

For higher image resolution, the performances both in terms of accuracy and MAE are significantly

reduced. Therefore the image size of 570×479 pixels is best suited to combine performance and

low variability of results.
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Figure 3: 4-class balanced accuracy for different input image resolutions. The orange bullets

represent the five trainings. The black dotted line links the mean accuracies. The black whiskers

indicate the 95% CI.

4-class balanced accuracy MAE

285×239 70.4% [68.5–72.3] (n.s.) 0.092 [0.087–0.097] (n.s.)

407×342 72.0% [70.9–73.1] (n.s.) 0.087 [0.083–0.091] (n.s.)

570×479 71.8% [71.4–72.2] (n.a.) 0.090 [0.088–0.092] (n.a.)

950×798 70.7% [70.2–71.2] (0.002) 0.095 [0.091–0.099] (0.028)

Table 3: Evaluation metrics for different input image sizes. Mean value, 95% CI and p-value are

reported. n.a.: not applicable, n.s.: not significant.

Backbone evaluation The evaluation of different DL backbone architectures is reported in

Table 4. In terms of accuracy, no statistically significant difference was found between ResNet-18

and MobileNetV3-Small. ResNet-18 shows a 4-class balanced accuracy of 71.5% (95% CI: 70.5–

72.6) and MobileNetV3-Small of 72.0% (95% CI: 70.6–73.4). In addition, slightly lower results are

obtained for VGG-16 and DenseNet-121 models with an average accuracy, respectively, of 70.3%

(95% CI: 70.1–70.5) and 69.8% (95% CI: 68.4–71.2). ResNet-18 was finally chosen to maximize

accuracy while having the minimum variability.

Evaluation of different loss weight combinations Different loss weights were experimented

from the loss function defined in Equation 5. The corresponding evaluation metrics, including

4-class balanced accuracy and MAE, are reported in Table 5. The three first lines correspond to

the use of a single type of loss (either categorical cross-entropy, KL divergence or custom MSE),

and the other lines combine different losses.

Other combinations of loss weights were tested, but only relevant results are reported. We excluded

the case where αCCE = 0 in the loss combination experiments as the BPE assessment remains a

classification issue for which the categorical cross-entropy loss is best suited. Regarding the three

first lines, the model performance is significantly weaker for the custom MSE loss. Indeed, the 4-

class balanced accuracy is of 67.5% (95% CI: 64.8–70.2) against 71.5% (95% CI: 71.2–71.9) for the
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4-class balanced accuracy

ResNet-18 71.5% [70.5–72.6] (n.a.)

VGG-16 70.3% [70.1–70.5] (0.033)

MobileNetV3 72.0% [70.6–73.4] (n.s.)

DenseNet-121 69.8% [68.4–71.2] (0.030)

Table 4: 4-class balanced accuracy for different feature extractor architectures. Mean accuracy,

95% CI and p-value are reported. n.a.: not applicable, n.s.: not significant.

αCCE αc MSE αKL 4-class balanced accuracy MAE

1 0 0 71.5% [71.2–71.9] (n.a.) 0.094 [0.090–0.099] (n.a.)

0 1 0 67.5% [64.8–70.2] (0.014) 0.086 [0.084–0.088] (0.004)

0 0 1 71.1% [70.4–71.8] (n.s.) 0.086 [0.083–0.090] (0.003)

0.5 0.5 0 71.2% [70.2–72.2] (n.s.) 0.091 [0.088–0.094] (n.s.)

0.25 0 0.75 70.9% [69.9–71.9] (n.s.) 0.089 [0.084–0.094] (n.s.)

Table 5: Evaluation metrics for different loss weight combinations. Mean value, 95% CI and p-

value are reported. n.a.: not applicable, n.s.: not significant.

categorical cross-entropy loss and 71.1% (95% CI: 70.4–71.8) for the KL divergence loss. In terms

of mean absolute error, the cross-entropy loss is less effective with a value of 0.094 against 0.086

for the two other losses. By combining cross-entropy loss and custom MSE loss, the results are

better but not significantly different from those of cross-entropy loss alone. For the KL divergence

loss, the increased weight of the cross-entropy loss does not appear to improve the performance of

the model, on the contrary the MAE tends to increase. Ultimately, loss combinations do not lead

to significantly better results than the categorical cross-entropy loss alone as used by the reference

model.

Influence of the presence of lesions on classification results Table 6 indicates the 4-class

balanced accuracy and MAE results for the test dataset stratified by lesion presence and type. The

model performs better in the absence of lesions with a 4-class balanced accuracy of 72.7% (95%

CI: 71.0–74.4) against 72.3% (95% CI: 69.7–74.9) in the presence of masses and 71.0% (95% CI:

67.1–75.0) in the presence of non-masses. Nevertheless, the absence of any significant statistical

difference between these results suggests that the model is robust to the presence of lesions for

a classification task. As for the mean absolute error, it is significantly lower in the absence of

lesions, with a value of 0.085. The difference in MAE between mass and non-mass lesions is also

statistically significant, suggesting that the DL model performs better in predicting a BPE score

distribution when the image contains mass enhancement rather than non-mass enhancement.

4-class balanced accuracy MAE

Absence of lesions 72.7% [71.0–74.4] (n.a.) 0.085 [0.079–0.091] (n.a.)

Presence of lesions
Mass 72.3% [69.7–74.9] (n.s.) 0.096 [0.094–0.099] (0.001)

Non-mass 71.0% [67.1–75.0] (n.s.) 0.108 [0.106–0.111] (8e-06)

Table 6: Evaluation metrics for a stratified test dataset: absence of lesions vs presence of lesions

(mass/non-mass). Mean value, 95% CI and p-value are reported. n.a.: not applicable, n.s.: not

significant.

Table 2 highlights that non-masses have a higher average size than masses. Given this difference

between lesion types and in order to determine whether it affects previous results, lesions smaller
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4-class balanced accuracy MAE

Mass 72.4% [70.0–74.8] (n.a.) 0.101 [0.099–0.103] (n.a.)

Non-mass 70.0% [65.6–74.5] (n.s.) 0.110 [0.107–0.113] (7e-05)

Table 7: Mass vs Non-mass for lesion size > 5 cm. Mean value, 95% CI and p-value are reported.

n.a.: not applicable, n.s.: not significant.

Figure 4: Pairs of low-energy and recombined images and Grad-CAM results for different BPE

levels on cases showing lesion contrast uptake. Each green box corresponds to the ground truth

cancer annotation that appears to be taken into account in the Grad-CAM heatmap.

than 5 cm were excluded from the test dataset for a second analysis. Two sets were then obtained:

one set with masses (151 images) and another with non-masses (127 images), all larger than 5 cm.

The results presented in Table 7 lead to the same conclusion: there is no statistical difference in

terms of classification performance (4-class balanced accuracy) between mass and non-mass, while

there is a statistical difference when considering the MAE metric. Consequently, this confirms that

the results of Table 6 are not biased by the size of the lesions, and the observed differences are

indeed due to the type of finding.

CEM image pairs are shown below to visually support the quantitative analysis of the lesion type

most impacting the BPE classification. Figure 4 shows LE images, REC images and Gradient-

weighted class activation maps (Grad-CAMs) for four cases comprising a mass-like lesion contrast

uptake. On each LE image, the lesion location annotation was conducted. The heat-maps reflect

higher neuron activation for the predicted class, knowing that each example was correctly classified,

and gives an indication on where the DL focuses its attention. The attention seems to be well

located on the clinically relevant region, i.e., not on the lesion area. The minimal case presents a

heat-map focused on the flat area. The mild, moderate and marked cases are well characterized

by features extracted in the area where BPE is indeed seen. Each heat-map avoids the lesion. The

Grad-CAMs seem to illustrate that the model does not take into account small and large masses

in the BPE assessment.

Regarding misclassification, Figure 5 shows the Grad-CAMs for two other cases with lesions. The

first case was labeled as mild and classified as moderate. For the predicted class, the heat-map is

located both on the lesion and another region of the breast. This lesion is not as distinct as in
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the previous cases. However, the score outputted by the model for the mild class is not null. The

second case presents a non-mass-like enhancement lesion, the model seems to identify patterns

specific to the lesion as BPE. While the ground truth is minimal, this image was classified as

marked by the DL tool.

Figure 5: Pairs of low-energy and recombined images and Grad-CAMs for all 4 outputs on two

cases incorrectly classified. The probability distribution scores are indicated, as well as the ground

truth label. Each green box corresponds to the ground truth cancer annotation.

5 Discussion

The reference model reached an accuracy of 71.5% for 4-class classification and 93.0% for binary

classification. There is no basis for comparison in CEM literature, but in breast CE-MRI, BPE

classification models have been implemented with accuracy values ranging from 67 to 75% for

4-class classification and 79 to 91.5% for binary classification [22, 23, 24]. Our results fall within

these ranges, and are even better for binary classification. In addition, the accuracy at one class

apart was of 99.7%. This value shows that the majority of classification errors are between adjacent

classes. Similar conclusions have been discussed in another BPE breast CE-MRI study [22]. The

inter-reader agreement on the test set was described as fair (κ = 0.25, 95% CI: 0.08-0.42). Such

a gap between readers confirms the need for standardization and may explain why exploring and

adapting different parameters is not enough to significantly increase the success rate of the model.

Several variants of this model were tested. For the image size analysis, it can be seen that an image

too small does not allow the model to optimally identify the different levels of BPE given the loss

of information. But, an image too large does not seem to be necessary for this classification task.
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The image resolutions are to be compared with the length of the BPE patterns. This length (com-

puted by auto-correlation length presented in 3.1) is 3 to 4 mm. At the lowest image resolution,

the BPE pattern is hence represented by 3-4 pixels. Consequently, keeping a resolution adapted

to the CNN model scales is important for correctly encoding the BPE patterns. For large images,

there may be noise affecting the pattern recognition by the CNN. Also, the network architecture

may not be suitable for extracting the BPE pattern size in high-resolution images.

ResNet-18 shows results equivalent to MobileNetV3-Small and better than VGG-16 and DenseNet-

121 on the monitored metrics. The number of trainable parameters of the MobileNetV3-Small

model (2.5 × 106) is significantly lower, making them less prone to overfitting, as opposed to

VGG-16 which has 138 × 106 parameters. In addition, ResNet and MobileNet are less computa-

tionally demanding and would be more adapted to standard clinical hardware. It is worth noting

that the choice of the optimal image resolution and optimal loss combination was performed using

ResNet-18 and fixed for the architecture comparison. Therefore, they may be not as optimal for

other architectures as for ResNet-18. A complete study will require to optimize those parameters

for all architectures.

On the optimal loss analysis, in terms of 4-class balanced accuracy, the categorical cross-entropy

gives the best performance. On the other hand, KL divergence loss achieves better results than

cross-entropy loss regarding the MAE, even though they demonstrate similar accuracy. This is

expected given that the KL divergence compares predicted and ground truth probability distri-

butions and that the MAE corresponds to the difference between the centers of gravity of these

same two distributions. In addition, to leverage the hierarchical order of BPE levels, a custom

MSE loss was tested but did not show any improvements. The combination of different losses did

not improve either the performance of the model. Depending on the target BPE application, some

losses are more appropriate, e.g., categorical cross-entropy is more suitable for displaying a single

BPE category, while to show the 4 output scores, KL divergence is better.

Regarding the influence of the presence and type of lesions, the model appears robust to the pres-

ence of lesions for a classification task. When the DL model predicts a BPE score distribution, a

significant decrease in performance is observed in the presence of lesions and between mass and

non-mass lesion types. As the decrease in model accuracy in the presence of non-masses is not due

to the size of the lesions, it is probably be caused by the resemblance between the BPE texture and

non-mass enhancement. A multi-view BPE classifier could help to distinguish BPE from lesions

and would improve the performance of a such tool.

This study has several limitations and improvement opportunities. First, the proposed model is

an image-level classification model. For future work, the objective is to combine all exam views to

obtain a relevant BPE level prediction and to entirely and precisely replicate the clinical task at

study level.

One of the limitations of this study is the imbalance of our dataset in terms of BPE. Indeed, the

test set comprises 15 marked cases, compared to 106 mild cases. The primary reason for this

imbalance is that marked cases represent less than 5% of clinical cases [44]. A balanced database

would be optimal to obtain a better performing model.

Furthermore, a study has shown that the label variability has a considerable impact on the eval-

uation of the quality of models [45], so improving the quality of the labels is essential to achieve

better performance of our classification tool. The poor agreement between readers on training and

test sets may affect model performance. Ultimately, multiple expert radiologists performing BPE

assessment of the training, validation and test datasets under clinical conditions through a more

controlled reading procedure would improve the model’s performance.
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6 Conclusion

This study presents a BPE level classification tool for CEM based on deep learning. Several

variants of a reference model were tested by modifying image resolution, backbone architecture

and loss function to obtain an optimized classifier. Ultimately, the reference model achieved an

accuracy of 71.5% for the 4-class classification problem and 93.0% for the binary classification.

Most classification errors occur between adjacent classes. In addition, the classification model has

demonstrated robustness in the presence of lesions in the image. To our knowledge, this study is

the first to conduct an evaluation of such a BPE level classifier in CEM.
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