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ON A BRANCHED TRANSPORT MODEL FOR TYPE-I

SUPERCONDUCTORS

MICHAEL GOLDMAN

Abstract. This is an extended abstract of the talk I gave in Cortona for the conference
Geometric Measure Theory and applications, 2024.

A few years ago we derived in [3] a branched transport model from the Ginzburg-Landau
functional for type I superconductors in the regime of very small applied external magnetic
fields. Let us first describe the limit model. We let T2 = (R/Z)2 be the two-dimensional flat
torus and consider for T > 0 the domain QT = T2 × (−T, T ). The unknown is a measure
µ = µt ⊗ dt ∈ M(QT ) such that for a.e. t ∈ (−T, T ) we have

µt =
∑
i

φiδXi

where φi ≥ 0 are such that
∑

i φi = 1 and Xi ∈ T2. We then define the internal energy

I(µ) =

∫ T

−T

∑
i

√
φi + φi|Ẋi|2dt. (0.1)

Here Ẋi denotes the derivative with respect to t of the curve t 7→ Xi(t). For λ > 0 we then
consider the energy

Eλ(µ) = I(µ) + λ∥µ±T − 1∥2
H−1/2 . (0.2)

Here we used the short-hand notation

∥µ±T − 1∥2
H−1/2 = ∥µ−T − 1∥2

H−1/2 + ∥µT − 1∥2
H−1/2 .

Remark 0.1. Let us point out that in [3], the case λ = ∞ i.e. imposing the constraint
µ±T = 1 was obtained. This corresponds to the so-called uniform branching regime, see
below. The derivation of the model in the case λ ∈ (0,∞) is work in progress.

Let us notice that the first term in the definition (0.1) of I corresponds to isoperimetric
effects. Since it penalizes a concave power of φi, this term forces concentration. Using the
Benamou-Brenier formula, the second term in (0.1) can be seen to be a transport term, see
[3]. This makes the model a cousin of the more common branched transport energies studied
for instance in [1]. A boiled-down version of the scaling laws obtained in [2, 4] yields that

min
µ

Eλ(µ) ≃ min(T
1
3 , λ

2
7T

3
7 ). (0.3)

The first regime corresponds to the so-called uniform branching regime where we expect that
µ±T ≃ 1 while the second regime corresponds to the non-uniform branching regime where we
expect the boundary measure to be quite far from the Lebesgue measure.
In the non-uniformly branching regime, based on the construction leading to the upper bound
estimate in (0.3), Conti Otto and Serfaty conjectured that

dimµ±T = 8/5.
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For ε > 0, let

I(µ, ε) =

∫ T

T−ε

∑
i

√
φi + φi|Ẋi|2dt.

That is I(µ, ε) measures how much energy there is in the slab of height ε close to {t = T}.
In [6] we proved that dimensional bounds on µT are equivalent to decay rates for I(µ, ε).

Theorem 0.2. Let µ be a minimizer of Eλ. If there exists β > 0 such that lim supε→0 I(µ, ε)/ε
β <

∞ then

f(β) =
1 + 3β

1 + β
≤ dimµT ≤ g(β) =

4(1− β)

1 + β
. (0.4)

Notice that we have

f(β) = g(β) =
8

5
for β =

3

7
.

In particular this means that if we could show that I(µ, ε) ≲ ε3/7 then the conjecture of
Conti-Otto-Serfaty would be proved. Let us point out that, recalling (0.3), this is in line with
the fact that for a self-similar minimizer, the global and local scaling laws should coincide.
The proof of (0.4) is made of two parts. The estimate dimµT ≥ f(β) may be seen as a
regularity statement. Indeed, we prove through a variation argument that if I(µ, ε) is small
then µT ∈ H−γ(T2) for some γ < 1/2. Moreover, the smaller I(µ, ε) is (that is the larger
β), the smaller is γ. The proof of dim µT ≤ g(β) is instead a refinement of the interpolation
argument leading to the proof of the lower bound in (0.3).

When considering a one-dimensional variant of the problem, that is replacing T2× (−T, T )
by T1 × (−T, T ), where T1 = R/Z more information can be obtained on the minimizers.
In this case it is also natural to replace the perimeter term

∑
i

√
φi by #{φi ̸= 0}. The

main advantage in this setting is that by the no-loop property, the transport plan induced
by the branched transport problem is monotone and thus coincides with the classical optimal
transport map. In particular, it is possible to exactly compute the irrigation tree connecting
a Dirac mass to the Lebesgue measure, see [7]. This is one of the very rare examples where
explicit minimizers for such non-convex variational problems can be found. Moreover, assum-
ing that the optimal measure is Ahlfors regular (which is a strong hypothesis!) we obtained
in [5] its precise dimension.

Theorem 0.3. Let µ be a minimizer of Eλ in T1 × (−T, T ) and assume that for some
α ∈ [0, 1], µT (Br(x)) ≃ rα for every x ∈ SptµT and every r ∈ (0, 1), then

α =
2

3
.

In order to prove that α ≤ 2/3, we combine the interpolation argument leading to dim µT ≤
g(β) (recall that this is similar to the lower bound in (0.3)) in (0.4) together with a first
variation argument. In turn, the proof of α ≥ 2/3 combines a construction (as in the proof
of the upper bound in (0.3)) together with another first variation argument.
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