
HAL Id: hal-04644979
https://hal.science/hal-04644979v1

Submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Taming Delegations in Anonymous Signatures: k-Times
Anonymity for Proxy and Sanitizable Signature

Xavier Bultel, Charles Olivier-Anclin

To cite this version:
Xavier Bultel, Charles Olivier-Anclin. Taming Delegations in Anonymous Signatures: k-Times
Anonymity for Proxy and Sanitizable Signature. CANS 2024 - 23rd International Conference on
Cryptology and Network Security, Sep 2024, Cambridge, United Kingdom. �hal-04644979�

https://hal.science/hal-04644979v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Taming Delegations in Anonymous Signatures:
k-Times Anonymity for Proxy and Sanitizable Signature

Xavier Bultel1[0000−0002−8309−8984] and Charles Olivier-Anclin1,2,3[0000−0002−9365−3259]

1 LIFO, Université d’Orléans, INSA Centre Val de Loire, Inria, Bourges, France
2 Université Clermont Auvergne, LIMOS, CNRS, Clermont-Ferrand, France

3 be ys Pay

Abstract. Fully traceable k-times anonymity is a security property concerning anonymous signatures:
if a user produces more than k anonymous signatures, its identity is disclosed and all its previous
signatures can be identified. In this paper, we show how this property can be achieved for delegation-
supported signature schemes, especially proxy signatures, where the signer allows a delegate to sign
on its behalf, and sanitizable signatures, where a signer allows a delegate to modify certain parts of
the signed messages. In both cases, we formalize the primitive, give a suitable security model, provide
a scheme and then prove its security under the DDH assumption. The size of the keys/signatures is
logarithmic in k in our two schemes, making them suitable for practical applications, even for large k.

1 Introduction

Proxy signature [25], which enables the signer to delegate the ability to sign messages on its behalf to a
delegate, is a standard cryptographic primitive that has attracted a great deal of interest in recent decades.
In some contexts, it is preferable to hide the delegate’s identity from the signature verifier. Such a signature
is called an anonymous proxy signature [18]. A trivial way of achieving this property is to give the delegate
the signing key directly, however, this technique allows the delegate to impersonate the signer without any
constraint, which is clearly not desirable. The signer therefore needs a way of tracing its delegates if one of
them abuses their power. This leads to two inherent issues: the signer must be active to manage the trace,
and must have access to the signatures.

The concept of traceable k-times anonymity offers an alternative way to delegate tracing. Signature
schemes following this paradigm allow users to create k signatures anonymously. If they exceed this limit,
a verifier can then publicly link two signatures and trace the identity of the signer. This property has been
defined for ring signatures [19], group signatures [2] and anonymous authentication [26]. Moreover, a k-times
signature is said to be fully traceable when the verifier can retrieve all the signatures generated by the signer
which has exceeded the k limit a posteriori. To the best of our knowledge, this more powerful property has
only been defined for ring signatures [7].

However, k-times anonymity has never been applied directly to proxy signatures, even though they seem
naturally suited to this property. This would enable a verifier, which has access to all signatures, to publicly
trace dishonest proxies on its own, while preserving the anonymity of honest proxies, without the intervention
of the signer. In this paper, we close this gap by modeling and instantiating the first fully traceable k-times
anonymous proxy signature.

On the other hand, sanitizable signatures [1] are conceptually close to proxy signatures: in this primitive,
the delegate (called the sanitizer) can no longer produce signatures by itself, but can modify certain parts
of a signed message. When considering a setting where the sanitizer must remain anonymous, the same
problems arise as with proxy signatures. Applying a similar approach, we propose the first fully traceable
k-times anonymous sanitizable signatures.

Contributions and Technical Overview. We give a formal definition, a security model, and an efficient
scheme (in term of size of the keys/signatures) for fully traceable k-times anonymous proxy signatures and
fully traceable k-times anonymous sanitizable signatures. We give security proofs for these schemes. From
a technical point of view, we rely on the method proposed in [7]: the delegate has k different public/secret



keys; if it reuses the same key twice, then it is possible to link the two signatures to the user and extract an
element that links all its other signatures. However, this method requires a number of keys linear in k; our
main technical contribution is a method for generating k distinct and mutually unlinkable keys from 2 log2(k)
keys only. The idea is to compose, at the ith signature, the keys corresponding to the bits of i to obtain a new
public/secret key pair. These keys must be certified by the delegator, but must be unlinkable. To achieve
these two properties simultaneously, we use a signature on equivalence class [17], which allows the delegate
to randomize the 2 log2(k) keys while maintaining the validity of their certificate. This method requires the
creation of an ad-hoc zero-knowledge proof ensuring the verifier that the delegate has correctly generated
its key. For the special case where k is not a power of 2, we build another ad-hoc zero-knowledge proof to
ensure that i is indeed less than k. Both of these proofs have logarithmic complexity in size, enabling us to
obtain logarithmic complexity in size for both our keys and our signatures. This method is fairly generic, so
we think it could be of independent interest in other primitives requiring the generation of several certified
keys. Our sanitizable signature scheme uses the same technique as the one proposed in [3] combined with
the method described above to make it k-times anonymous. The main technical challenge here is to adapt
the signature to enable the signer to simulate the use of the 2 log2(k) keys in the original signature, so that
it is not possible to determine whether it has been sanitized or not.

For each signature primitive, we define the following properties in addition to unforgeability:

Anonymity: signatures are anonymous as long as the delegate does not exceed k signatures. In particular,
they cannot be linked to each other.

Traceability: if the delegate exceeds the k signatures limit, it cannot prevent anyone from linking all its
signatures and recovering its identity.

Non-framability: a delegate cannot produce a signature that can be traced back to someone else.

We also adapt the security properties of sanitizable signatures:

Immutability: it is not possible to modify parts of messages that are not intended to be modified.
Transparency: it is not possible to guess whether a signature has been sanitized or not. This property

implies privacy: it is not possible to determine any information about the original message.
Unlinkability: it is not possible to link a sanitized signature to the original signature, or to link sanitized

signatures from the same original signature. A few schemes such as [16] achieve this property. Note that
unlinkability differs from anonymity, which ensures that it is not possible to link signatures from the
same user. We provide more details about this on Section 6.

Invisibilty: it is not possible to identify which part of the message is modifiable. Note that designing
schemes that are both unlinkable and invisible is challenging, and there are only two schemes in the
literature that combine these properties [8, 3].

Motivations. Anonymous proxy signatures are used wherever an entity wishes to delegate the ability to sign
on its behalf to others, without making the delegation policy transparent to the recipient of the messages.
Anonymity can also protect proxies when their identity must remain secret, for example in legal proceedings
where retaliation is possible. Conversely, anonymity provides a high level of protection for proxies who might
be tempted to abuse their power. The fully traceable k-times anonymity property can significantly limit
this, even in the absence of the delegate. Sanitizable signatures extend proxy signatures by adding a degree
of control over the messages sent by delegates. For example, they can be used to force the use of message
templates.

For instance, consider a manager who delegates the ability to sign and send emails on their behalf
from their email address to multiple entities. These could be employees or servers that automatically send
emails that contain, depending on their role, specific messages, appointments, contracts, payments, invoices,
reminders, summonses or other legal or commercial documents. If too many emails are being sent from the
same entity on behalf of the manager, the company’s mail server can use the k-times mechanism to locate the
offending entity, block the emails it is sending, list all its signatures and alert the manager and anyone else
who has received emails from this entity in the past. Note that in our case the server is honest but curious:
we trust it to check signatures and detect anomalies (it cannot be fully corrupted by an active attacker),

2



but the information it processes does not allow it to learn anything about the identity of honest proxies
or the delegation policy (a passive attacker can observe everything that passes through the server without
compromising anonymity).

To control the content of messages, it is helpful to use sanitizable signatures that force delegates to use
templates. For example, by setting the metadata it is possible to allow emails to be sent only to certain
people, on certain dates, with certain subjects, or by forcing the addition of copy users who can check
the content of the email. In the case of automatic emails, such as invoices, it is possible to impose a very
precise template where only the customer’s name, date and amount can be changed. Note that thanks to
the security properites of our sanitizable signatures (transparency, anonymity, unlinkability, and invisibility),
the company’s delegation policy remains entirely private from the point of view of the verifiers and the mail
server as long as the k limit is not exceeded,

Related works. Anonymous proxy signatures have been introduced by Fuchsbauer and Pointcheval [18].
Since then, several other anonymous proxy signature schemes have been proposed [27, 28]. However, as
mentioned above, they all consider active traceability management by the original signer or a dedicated
semi-trusted proxy. Note that unlike our scheme, Fuchsbauer and Pointcheval’s scheme allows hierarchical
management of proxies (a delegate can allow a sub-delegate to sign in its place, etc.). This feature could
naturally be achieved by extending our scheme, despite a linear growth in the number of delegations. This
function is left outside of the scope of this work.

k-times anonymity has been introduced for authentication, group signature (where the group is managed
by an authority that generates keys), and ring signature (where the group is chosen ad-hoc at the time of
signing) in [26], [2], and [19] respectively. In some schemes, the identity of the signer leaks if it produces more
than k signatures. Fully traceable k-times anonymity [7] extends this concept by making it possible to trace
all signatures produced a priori by the user that exceed the k signatures (and not just a pair of signatures).
To the best of our knowledge, the only scheme that matches this property is the ring signature described
in [7], and this at the cost of a signature size in O(nk) where n is the number of users, and a secret key size
in O(k).

In [18], Fuchsbauer and Pointcheval mention that anonymous proxy signatures can be seen as group
signatures: the delegator becomes the group manager and each delegate (i.e., each group member) can sign
anonymously on behalf of the manager (i.e., within the group). We can therefore see our fully traceable
k-times proxy signature as the first fully traceable k-times group signature. Since our aim is also to design
sanitizable signatures, which have some similarities with proxy signatures (in both cases a delegator gives
a delegate the power to create new signatures on his behalf), we have chosen to present our scheme as an
anonymous proxy signature rather than as a group signature. In comparison with the only k-times group
signature scheme [2] in the literature, our scheme achieves full traceability, in return the key/signature size
is in O(log(k)) whereas [2] claims a constant key/signature size (note, however, that in this scheme, the
delegator must produce and share a public key of size linear in k, moreover if the limit k is different for each
delegate, then this key must be kept secret by each delegate, which significantly restrains its practicability
for large k).

Sanitizable signatures were introduced by Ateniese et al. in [1], who identified several security properties
(unforgeability, immutability, privacy, transparency, and accountability) later formally defined in [4]. They
show that privacy (the original message does not leak from the sanitized signature) is implied by transparency.
Invisibility was also introduced in [1] but received formal treatment much later in [9]. Last but not least,
unlinkability has been introduced and formalized in [5] and studied in [6, 16]. Only two schemes guarantee
all these properties at once [8, 3]. In this paper, we adapt and prove all these properties on our scheme, with
the exception of accountability, which consists in allowing the signer to reveal the author (i.e., the original
signer or the sanitizer) of a problematic signature, since this information leaks spontaneously if the sanitizer
exceeds the limit of k sanitizations.

Traceable k-times anonymous proxy signatures should not be confused with the k-times (not anonymous)
proxy signatures introduced by Liu et al. in [24], where if the (non-anonymous) proxy exceeds a limit of k
signatures, then its secret key leaks. This primitive is close to ours, but differs in two crucial points: (i) the
proxy is not anonymous, so there is no need to trace it or link signatures, thus full traceability makes no sense

3



in [24], and (ii) unlike [24] we do not want to leak the proxy’s secret key for security reasons. Indeed, if a
verifier recovers a proxy secret key, it can sign messages as a proxy without the original signer having chosen
to give it this power. As a result, users which have not had access to the k + 1 proxy signatures (including
the original signer) are unaware that this verifier can impersonate the signer, which causes serious security
problems in most applications. Similarly, one line of work, started in [22], aims to limit the sanitizer’s power
in various ways in sanitizable signatures [11]. In particular, in [22, 11] the authors propose a scheme where
if the (non-anonymous) sanitizer exceeds a limit of k signatures, then its secret key leaks, as in k-times (not
anonymous) proxy signatures [24]. The differences between this primitive and ours are the same as those
between k-times proxy signatures [24] and our k-times anonymous proxy signatures.

Finally, k-times anonymous sanitizable signatures should not be confused with γ-times sanitizable sig-
natures [3], where γ bounds the number of blocks that can be modified instead of the number of times the
signature can be sanitized. In the primitive introduced in [3], the sanitizer is not anonymous, and cannot (in
the computational sense) sanitize a signature by modifying more than γ blocks. The mechanism is therefore
very different, as there is no intention of triggering some secret information leak when the limit is exceeded.

2 Preliminaries

Notations. r ←$ S means that r is chosen uniformly at random over the set S and |S| is the cardinal of S.
The operator p−→ denotes the parsing of a tuple or a set of elements. We denote by y ← A(x) the execution
of an algorithm A outputting y on input x. When A is probabilistic, [A] denotes the set of all its possible
outputs. Considering a second algorithm O, AO means that the algorithm A has access to O as a black-box
oracle. PPT means Probabilistic Polynomial Time. JnK denotes the set JnJ. For a vector m = (m1, · · · ,mn)
and an integer µ, mµ denotes the vector (mµ

1 , · · · ,mµ
n). ⊔ operates as the union ∪ while preserving the

repetition of elements, hence producing a multi-set. Finally, η[i] refers to the ith bit of some integer η.

Mathematical background. Throughout this paper, we consider a bilinear group setting (p,G1,G2,Gt, e)
where G1 G2, and Gt are multiplicative groups of prime order p, g1 ∈ G1 and g2 ∈ G2, and e is a type-3 bilinear
pairing e : G1 × G2 → Gt. We assume the Decision Diffie-Hellman (DDH) assumptions over these three
groups: given (g, ga, gb, gz) ∈ G4, there exists no PPT algorithm in |p| able to decide whether z = a · b or not
with non negligible probability4. This assumption implies hardness of the Discrete Logarithm (DL) problem:
given (g, gx) ∈ G2, there exists no PPT algorithm in |p| able to return x with non-negligible probability. We
also consider the relation R over (p,G1,G2,Gt, e) defined by R = {(m,m′) ∈ Gl ×Gl | ∃µ ∈ Zp,m

′ = mµ}
defining equivalence classes [M ]R ⊂ G for an element M ∈ Gl.

In what follows, we recall the definitions of structure-preserving signatures for equivalent class, zero-
knowledge proofs, and encryption scheme.

Definition 1 (Class-hiding). Let l > 1 be an integer, and G be group. (G∗)l is class-hiding if for all PPT
adversaries A, the following probability is negligible:

Pr

[
b←$ {0, 1}, M ←$ (G∗)l, M (0) ←$ (G∗)l,
M (1) ←$ [M ]R, b∗ ← A(M,M (b))

: b = b∗
]
.

Lemma 1 (Fuchsbauer et al. [17]). Let l > 1 be an integer, and G be a group of prime order p. Then
(G∗)l is a class hiding message space if and only if the DDH assumption holds in G.

Definition 2 (SPS-EQ [17]). A Structure-Preserving Signatures for Equivalence Classes R SPS-EQ over a
group G is a tuple of algorithms:
KeyGenSPS-EQ(1

λ, l;R) : given an integer l > 1, return a key pair (pk, sk).
SignSPS-EQ(sk,m;R) : given a secret sk and a message m, return a signature σ.
ChgRepSPS-EQ(m,σ, µ, pk;R) : given a representative m of an equivalent class, a signature σ, a scalar µ, and

a public key pk, return an updated signature σ′ for the message mµ.
4 A function ϵ : N→ R

+ is called negligible, if ∀c > 0, ∃k0 ∈ N, ∀k > k0, |ϵ(k)| < 1
|kc| .

4



VerifSPS-EQ(m,σ, pk;R) : given a public key pk, a message m, a signature σ, return 0 or 1 (meaning reject
or accept).
We require that SPS-EQ meets Correctness, EUF-CMA, and Signature Adaptation (stating that SignSPS-EQ

and ChgRepSPS-EQ outputs are identically distributed). We further describe these properties in Appendix A.
Since we always use the relation R defined above, we will no longer specify it in the input to the SPS-EQ
algorithms.

Definition 3 (NIZK [12] and SoK [21]). A Non-Interactive Zero-Knowledge proof (NIZK) for a relation
R is a pair of PPT algorithms:
ZK {w : (w, ϕ) ∈ R} : given a witness w and a statement ϕ, return a proof π,
ZK.Verif(ϕ, π) : given a statement and a proof, return a bit 0 or 1.
A NIZK requires Completeness, Simulation-Extractability and Zero-Knowledge properties to be secure. We
recall the definition of these properties in Appendix A.

A Signature of Knowledge (SoK) is similar to a NIZK except that the proof algorithm SoKm{w : (w, ϕ) ∈
R} takes m as an additional parameter. As a consequence, the Simulation-Extractability of a SoK, similar
to soudness of NIZK proofs, implies that it can be used as an EUF-CMA signature scheme, where ϕ is the
public key, w is the secret key, m is the signed message, and π is the signature. SoK also achieve Perfect
Simulability which is defined similarly to zero-knowledge for NIZK proofs. A signature of knowledge can be
constructed from a non-interactive zero knowledge proof based on the Fiat–Shamir heuristic [10].

Definition 4 (Asymmetric Encryption [20]). An asymmetric encryption scheme E is a triple of PPT
algorithms:
KeyGen(1λ) : return a key pair (pk, sk).
Enc(pk, p) : given a public key pk and a message p, return a ciphertext c.
Dec(sk, c) : given a secret key sk and a ciphertext c, return a message p.
An encryption scheme E has to achieve Correctness and Indistinguishability under Chosen Ciphertext Attack
(IND-CCA). We recall this property in Appendix A.

3 k-Times Anonymous Proxy Signature

In this section we give a formal definition and security model for (fully traceable) k-times anonymous proxy
signature. In this primitive, a signer can delegate to a proxy the authority to anonymously produce at most k
signatures. To do this, the signer generates a delegation certificate (denoted del) via the algorithm Delegate,
using the proxy’s public key and the limit k as input. To produce a proxy signature, the proxy uses this
delegation with an integer η ∈ {0, · · · , k − 1} that must be different for each k signature. Note that η must
not appear in the signature to preserve anonymity (we will describe the corresponding security model in
more detail later in this section), so it is not given as input to the verification algorithm. If the proxy decides
to produce more than k signatures, it will be forced to use the same index η twice, triggering a mechanism
that allows any user to link these two signatures using an algorithm Link, and to extract the identity of the
proxy. The algorithm Link also returns a token w which, when used with a signature as input to the Trace
algorithm, indicates whether or not the signature was generated by the same proxy, making it possible to
find all signatures generated by the proxy in the past. Note that the signer can extend the limit by generating
new delegations for the same proxy.

Definition 5 (k-APS). A k-times Anonymous Proxy Signature scheme (k-APS) is a tuple of algorithms:
Setup(1λ) : given a security parameter, return a public parameter params. Note that params is considered as

implicit input of all the following algorithms.
KeyGen(1λ, k) : given a limit k ∈ N, return the signer secret/public keys (sk, pk).
PKeyGen(1λ) : return the proxy secret/public keys (psk, ppk).
Delegate(sk, ppk, l) : given the keys sk, ppk and l ≤ k, return a delegation certificate del.
Sign(pk, psk,m, del, η) : given the keys pk, psk, a message m, a certificate del, and an index η, return a

signature σ.

5



Verify(pk,m, σ) : given the key pk, a message m, and a signature σ, return 0 or 1 (for reject or accept).
Link(pk,m, σ,m′, σ′) : given a public key pk and two message-signature pairs (m,σ), (m′, σ′), return identity

denoted by the public key ppk of ther signer and a witness w or ⊥ in case of failure.
Trace(w, σ) : given a witness w and a signature σ, return 0 or 1.

A k-APS is said to be correct if, using keys/certificateshonestly generated by the algorithms KeyGen,
PKeyGen, and Delegate, (i) any signature produced by the algorithm Sign is verified by the algorithm Verify
using the signer public key, (ii) 2 signatures are linked by the algorithm Link which outputs the corresponding
public key if and only if they were produced with the same delegation certificate and the same η, and (iii)
the algorithm Trace returns 1 on the token outputted by Link and any of the signatures produced from this
delegation certificate.

Our security model is inspired both by that of anonymous proxy signatures [18] and that of k-times
full traceability [7]. The security experiments and associated oracles are given in Figure 1, with Figure 2
providing a subroutine for the experiment associated to the traceability. For each oracle, the underlined
inputs correspond to those chosen by the opponent. Experiments use multisets (sets that may contain the
same element multiple times) that are considered to be global variables (and can therefore be accessed and
modified in oracles): U stores the registered users, D stores the delegations, S stores the produced signatures,
and H stores the signature indexes. The security properties required for k-APS are defined as follows:

Unforgeability. This property ensures that an adversary playing the role of proxies will not be able to
produce a signature unless they have received a delegation certificate. For this property to hold, a PPT
adversary A must forge a valid fresh message/signature pair (m∗, σ∗) for a message that has never been
queried to the signature oracle. The adversary can request delegation certificates generated for non-corrupted
proxies whose secret keys it does not know. A k-APS is Unforgeable if for any probabilistic polynomial time
algorithm A, the probability Advunfk-APS,A(1

λ) = Pr[Expunfk-APS,A(1
λ) = 1] is negligible.

Anonymity. The anonymity ensures that the signatures do not disclose the identity of the proxy signer
(given by its public key) and that signatures generated by the same proxy signer remain unlinkable. Note
that in our model, anonymity only concerns the signature verifiers, and not the delegator; indeed, in our
application, there is no reason why the delegator should not know the identity of the proxy signing on
its behalf, and it is even rather preferable that it should for accountability reasons. In the corresponding
experiment, the adversary chooses a limit t ≤ k, then it tries to distinguish the origin of a challenge signature
produced by one of two honest proxies. The adversary can request to the oracles a maximum of t−1 signatures
for each of the proxies, and a single signature for one of the two proxies (the one chosen by the challenger),
which guarantees that the adversary cannot obtain more than t signatures for one of the two proxies (it
would trivially link these signatures to the challenge, which is an inherent property of our primitive). For
each of the two proxies, the signature oracle increments the index η at each signature, which ensures that a η
is not used twice for the same proxy. Our model therefore considers adversaries trying to link two signatures
from two different proxies with the same η, which would allow the adversary to infer that two signatures are
not from the same proxy, and thus generally ensures that η is not leaked from the signature.

A k-APS is anonymous if for any PPT A, the probability AdvAnok-APS,A(1
λ) = |Pr[ExpAnok-APS,A(1

λ) = 1]−1/2|
is negligible.

Traceability. This property guarantees that the Trace algorithm leaks the identity of any adversary over-
passing the delegation limit. In the corresponding experiment, the adversary’s target is to produce more
signatures than allowed by the delegator, without the Link and Trace algorithms being able to correctly
link or trace the signatures. For that the adversary can obtain multiple delegation certificates for different
limits and different public keys ppk. Since each delegation certificate allows it to produce ki signatures, it is
required to produce strictly more than

∑n
i=1 ki valid signatures. The adversary wins the experiment if the

number of traced signatures is less than the number of signatures that would have been traced if they had
been generated honestly. This test, which is described in Figure 2, has to take account of all the delegations
that have been exceeded in any execution scenario. First, note that if the limit of a delegation certificate
for a public key is exceeded, then it must be possible to trace all signatures generated by the owner of
that public key, even if they were generated using a different delegation certificate. Thus, the number of

6



Expunf
k-APS,A(1λ)

1 : D,S ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k)

4 : (m
∗
, σ

∗
)←− AOunf

Register,O
unf
Delegate,O

unf
Sign (pk, k)

5 : return Verify(pk,m∗
, σ

∗
) ∧ ((m

∗
, ·) /∈ S)

ExpTrace
k-APS,A(1λ)

1 : D ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k)

4 : (m
∗
i , σ

∗
i )

qs
i=1 ← A

ODelegate (pk)

5 : b← CheckTrace(pk, (m∗
i , σ

∗
i )

qs
i=1)

6 : return b

Expno−Frame
k-APS,A (1λ)

1 : U,D,S ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k)

4 : (m
∗
i , σ

∗
i )

2
i=1

5 : ← AOno−Frame
Register

,ODelegate,O
no−Frame
Sign (pk)

6 : (ppk, w)← Link(pk,m∗
1 , σ

∗
1 ,m

∗
2 , σ

∗
2 )

7 : if (ppk, ·, ·, 1) ∈ U ∧ |S[ppk]| ≤ k,

8 : return 1

9 : return 0

General Oracle
Oracle ODelegate(sk, ppk, l ≤ k)

1 : del← Delegate(sk, ppk, l)

2 : D ← D ⊔ {(ppk, del, l)}
3 : return del

Non-Frameability Oracles
Ono−Frame

Register (U , ppk)
1 : if ppk =⊥,

2 : (ppk, psk)← PKeyGen(1λ)

3 : U ← U ∪ {(ppk, psk, |U|, 1)}
4 : else U ← U ∪ {(ppk,⊥, |U|, 0)}
5 : return ppk

Ono−Frame
Sign (pk, (pski, deli)i∈{0,1}, j, η,m)

1 : if η ∈ S[ppk], return ⊥
2 : if ∃psk, i s.t. (ppk, psk, i, 1) ∈ U,
3 : S[ppk]← S[ppk] ∪ {η}
4 : return Sign(pk, pskj ,m, delj , η)

5 : else return ⊥

ExpAno
k-APS,A(1λ)

1 : b←$ {0, 1},D ← ∅, η0, η1 ← 0, γ ← 1

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k)

4 : for j ∈ {0, 1},

5 : (ppkj , pskj)← PKeyGen(1λ)

6 : t← AODelegate (pk, ppk0, ppk1)

7 : if t /∈ JkK, return b

8 : for j ∈ {0, 1},
9 : delj ← Delegate(sk, ppkj , t)

10 : b
∗ ← AODelegate,O

Ano
Sign,O

Ano
chal (pk, ppk0, ppk1)

11 : return b
∗
= b

Anonymity Oracle
Oracle OAno

chal(b, t, (pski, deli)i∈{0,1},m)

1 : if γ = 0, return ⊥
2 : γ ← 0

3 : σ ← OAno
Sign(b, t, (pski, deli)i∈{0,1}, b,m)

4 : return σ

OAno
Sign(b, t, (pski, deli)i∈{0,1}, j,m)

1 : if j = b ∧ ηj = t− γ, return ⊥
2 : if j = 1− b ∧ ηj = t− 1, return ⊥
3 : σ ← Sign(pk, pskj ,m, delj , ηj)

4 : ηj ← ηj + 1

5 : return σ

Unforgeability Oracles
Ounf

Register(⊥)

1 : (ppk, psk)← PKeyGen(1λ)

2 : U ← U ∪ {(ppk, psk)}
3 : return ppk

Oracle Ounf
Delegate(sk, ppk, l ≤ k)

1 : if ∄psk, s.t.(ppk, psk) ∈ U, return ⊥
2 : del← Delegate(sk, ppk, l)

3 : D ← D ⊔ {(ppk, del, l)}
4 : return del

Oracle Ounf
Sign(pk, ppk, del, η,m)

1 : if ∄psk, s.t.(ppk, psk) ∈ U, return ⊥
2 : σ ← Sign(pk, psk,m, del, η)

3 : S ← S ∪ {(m,σ)}
4 : return σ

Figure 1: Experiments and Oracles modeling the Security of k-Times Anonymous Proxy Signatures.
(Oracles inputs provided by the adversary are underlined, the other are provided by the challenger. The

sets U ,D,S,H are global parameters. Subroutine CheckTrace is defined in Figure 2.)

7



CheckTrace(pk, (m∗
i , σ

∗
i )

qs
i=1)

1 : if D is defined,D p−→ (pki, deli, ki)
n
i=1 // For proxy signatures only.

2 : if S is defined ∧ ∃i ∈ JqsK, (m∗
i , σ

∗
i , ∗, ∗) ∈ S, return 0 // For sanitizable signatures only.

3 : T ← 0,W, ID← ∅, diff ← qs −
∑

1≤i≤n

ki // diff is required to be strictly positive.

4 : if (∃i ∈ JqsK,Verify(pk,m∗
i , σ

∗
i ) = 0) ∨ (∃i, j ∈ JqsK, j ̸= i, (m

∗
i , σ

∗
i ) = (m

∗
j , σ

∗
j )) ∨ (diff ≤ 0),

5 : return 0

6 : for 1 ≤ i < j ≤ qs,

7 : (ppki,j , wi,j)← Link(pk,m∗
i , σ

∗
i ,m

∗
j , σ

∗
j ) // Try linking any two signatures.

8 : if (ppki,j , wi,j) ̸=⊥ ∧ppki,j /∈ ID, // Identities for which signatures have been linked.

9 : ID← ID ∪ {ppki,j},W [ppki,j ]← W [ppki,j ] ∪ {wi,j}

10 : T ←
∑

ppk∈ID

 ∑
w∈W[ppk]

(
qs∑
i=1

Trace(w, σi)

) // Sum up traced signatures and compare it to the
number of allowed signatures for these entities.

11 : if T <
∑

pki∈ID

ki + diff, return 1, else , return 0

Figure 2: CheckTrace Subroutine for the Traceability Experiment.

signatures traced T should be at least the sum of the limits ki of each delegation produced for each public
key traced (expressed as

∑
pki∈ID

ki in Figure 2), to which we add the number of signatures that exceed the
global sum of the limits for all delegation certificate used by the adversary (expressed as diff = qs −

∑n
i=1 ki

in Figure 2, where qs is the number of signatures outputted by the adversary). A k-APS is traceable if for
any PPT algorithm A, the probability AdvTracekAPS,A(1

λ) = Pr[ExpTracek-APS,A(1
λ) = 1] is negligible.

Non-Frameability. This property prevents a PPT adversary from framing someone else by generating
malformed yet valid signatures. More precisely, the goal of the adversary is to output two signatures traceable
to a registered proxy who remains honest. To help it, the adversary has access to oracles that can be
used to register users, obtain delegation certificates, and obtain signatures for honest users. The adversary
must of course not have abused the signature oracle by producing more than k signatures for the proxy it
wishes to trace. Note that in our model we implicitly assume that the linking of two signatures and the
tracing are performed by the same user (we do not consider the case where an adversary only generates
a tracing token w that traces an honest user without the linked signatures). In practice, this means that
to delegate tracing, the delegate must be provided with the two linked signatures so that it can link them
and produce its own token w. A k-APS is Non-Frameable if for any PPT algorithm A, the probability
Advno−Frame

k-APS,A (1λ) = Pr[Expno−Frame
k-APS,A (1λ) = 1] is negligible.

4 Our k-Times Anonymous Proxy Signature Scheme

In this section, we present our k-times anonymous proxy signature (Setup,KeyGen,PKeyGen,Delegate,Sign,
Verify, Link,Trace), which uses a bilinear group setting (p,G1,G2,Gt, e) and a SPS-EQ scheme.

Construction Intuition. The setup (algorithm Setup) of our construction returns several group elements and
the description of a hash function. In particular, the group element g1 will be used as a basis for the proxy
public key ppk = gpsk1 (where psk is the proxy secret key). The signer key pair (generated from based on
KeyGen) is a SPS-EQ key pair supporting vectors of 4l + 1 group elements in G1, where l = ⌈log2(k)⌉.

To delegate (algorithm Delegate) the power to create k anonymous signatures, the signer will create two
sets of l public/secret keys (yi,0, xi,0)i∈JlK and (yi,1, xi,1)i∈JlK. The idea behind this technique is to be able
to create k public/secret keys by composing the previous 2 log2(k) keys: given an integer η < k, the key
corresponding to η will be composed of the keys corresponding to each of the bits in η. For each i, the signer
also produce a Diffie-Hellman key ppki,j = g

psk·xi,j

1 between yi,j = g
xi,j

1 and ppk = gpsk1 . This will enable

8



us to link the keys produced by these elements to the ppk owner later on. Finally, all these public keys are
signed with an SPS-EQ, acting as a certificate, so that they can be randomized. All these elements are stored
in the delegation del. Thanks to del, we have already shown that the proxy can produce k distinct pairs of
certified ElGamal public/secret keys. The idea of our signature algorithm (Sign) is to use one of its keys for
each signature. If the same key is used several times, however, it will be possible to find its owner thanks to
the mechanism introduced in [7] (this point will be discussed further in this section). However, to preserve
anonymity, these keys must not be linkable, so they must be randomized (note that the SPS-EQ properties
preserve their certification by the signer).

Assume that the delegate is using the algorithm for the ηth time. First, the delegate randomizes g1 and
all the elements yi,j and ppki,j using the same random r as an exponent, and adapts the SPS-EQ accordingly.
The randomized version of g1 is denoted ĝ1, and the keys are respectively denoted ŷi,j and p̂pki,j . This first
step randomizes all the elements in the delegation yi,j and ppki,j , so that it is not possible to make the
link between the randomized delegation ŷi,j and p̂pki,j and the original one. Then, the delegate chooses a
new random s, randomize the basis ĝ1 in g̃1, and randomizes only the ŷi,η[i] and p̂pki,η[i] corresponding to
the bits of η to obtain the keys ỹi and p̃pki. The delegate uses a zero-knowledge proof to ensure that the
randomization has been done correctly and with an integer η actually lower than k (the instantiation of
this proof is rather technical and described in more details in the next section). In this way, it is possible
to multiply the public keys ỹ =

∏l
i=1 ỹi and add the corresponding secret keys x =

∑l
i=1 xi,η[i] to obtain a

new public/secret key pair (ỹ, x) that verifies ỹ = g̃x1 . This second step allows the proxy to hide its chosen η

in the elements ỹi and p̃pki (by randomizing the ŷi,η[i] and p̂pki,η[i] again) while preserving the link between
the randomized delegation ŷi,j and p̂pki,j and the generated key pair (ỹ, x). Note that p̃pk =

∏l
i=1 p̃pki is

the Diffie-Hellman of ỹ and ppk, which links ỹ to the owner of ppk in a hidden way. It allows the delegate
to prove in zero-knowledge that the identity revealed by the mechanism of [7] is indeed the identity of the
delegate. This proof, denoted πσ, also proves that the mechanism of [7] triggers correctly if the delegate signs
more than k messages. The technical description of this proof is given in Appendix B.

The signature verification (algorithm Verify) consists of re-computing ỹ and p̃pk and checking that the
proof πσ is valid. Finally, the Link and Trace algorithms work in the same way as in [7]: each signature
contains α1 = hx

1 , α2 = gt2, α3 = hx
2 · g

u·psk
1 , and α4 = hx

3 · h
v·psk
4 . Thus, if the same key x is used twice in

signatures, they can be linked since they share the same α1 = hx
1 . Let’s note α′3 = hx

2 ·g
u′·psk
1 the element α3 of

the second signature. It is possible to find the identity of the delegate by computing (α3/α
′
3)

1/(u−u′) = ppk.
By a similar way, the token ω = hpsk

4 leaks from α4 when two signatures are linked. Each signature has also
the elements τ = e(ω, α2). Without knowledge of ω, τ is indistinguishable from a random element under the
DDH assumption, but a user which knows the delegate’s token ω can retrieve its signatures by recomputing
τ , thus achieving full traceability.

Formal Description. Below is the formal description of our scheme.
Setup(1λ) : sample g1, h1, h2, h3, h4 ∈ G1 and g2 ∈ G2, choose a hash function H : {0, 1}∗ → Z

∗
p, and return

them as the common parameters.
KeyGen(1λ, k) : set l = ⌈log2(k)⌉, and return (pk, sk)← KeyGenSPS-EQ(1

λ, 4l + 1).
PKeyGen(1λ) : sample psk←$ Zq and set ppk = gpsk1 . Return the pair (psk, ppk).
Delegate(sk, ppk, k) : set l = ⌈log2(k)⌉, abort if the SPS-EQ key sk does not support message of 4l + 1

elements. For all (i, j) ∈ JlK × {0, 1}, sample xi,j ←$ Z∗p, set yi,j = g
xi,j

1 , ppki,j = ppkxi,j and produce
σ̂ ← SignSPS-EQ(sk, g1, y1,0, · · · , yl,1, ppk1,0, · · · , ppkl,1). Return del = ((xi,j , yi,j , ppki,j)i∈JlK;j∈{0,1}, σ̂).

Sign(pk, psk,m, del, η) : set l = ⌈log2(k)⌉. Sample r, s←$ Z∗p, set ĝ1 = gr1 and g̃1 = ĝ1
s. For all i ∈ JlK and j ∈

{0, 1}, compute ŷi,j = yri,j and p̂pki,j = ppkri,j , adapt the SPS-EQ signature σ̂ ← ChgRepSPS-EQ((g1, y1,0,

· · · , yl,1, ppk1,0, · · · , ppkl,1), σ̂, r, pk), compute ỹi = ŷsi,η[i], and p̃pki = p̂pk
s

i,η[i]. Generate a zero-knowledge

proof Π<k of knowledge of s and η which proves that (i) ỹi and p̃pki are well formed according to s
and some integer η of l bits and (ii) η < k. We defer the formalisation of this zero-knowledge proof to

9



Section 5. Set x =
∑l

i=1 xi,η[i], ỹ =
∏l

i=1 ỹi, p̃pk =
∏l

i=1 p̃pki, sample t ←$ Z∗p and compute α1 = hx
1 ,

α2 = gt2, u = H(m, 0, α2) and v = H(m, 1, α2). Generate the matching elements α3 = hx
2 · g

u·psk
1 and

α4 = hx
3 · h

v·psk
4 , and the tracing element τ = e(h4, α2)

psk. Also generate:

πσ ← ZK

{
psk, x, t :

ỹ = g̃1
x ∧ p̃pk = ỹpsk ∧ α1 = hx

1 ∧ α2 = gt2
∧α3 = hx

2 · g
u·psk
1 ∧ α4 = hx

3 · h
v·psk
4 ∧ τ = e(h4, α2)

psk

}
.

Set σdel = (ĝ1, ((ŷi,b, p̂pki,b)b∈{0,1}, ỹi, p̃pki)i∈JlK, σ̂, Π<k) and return the signature σ = (g̃1, α1, α2, α3, α4,
τ, πσ, σdel).

Verify(m,σ, pk) : parse σ
p−→ (g̃1, α1, α2, α3, α4, τ, πσ, σdel) and σdel

p−→ (ĝ1, ((ŷi,b, p̂pki,b)b∈{0,1}, ỹi, p̃pki)i∈JlK,

σ̂, Π<k). Compute u = H(m, 0, α2), v = H(m, 1, α2), ỹn =
∏l

i=1 ỹi, and p̃pk =
∏l

i=1 p̃pki. Verify the
signature σ̂ and the proofs Π<k and πσ. If all checks are correct, returns 1, otherwise 0

Link(pk,m, σ,m′, σ′) : verify that Verify(pk,m, σ) = Verify(pk,m′, σ′) = 1 and return 0 if α1 ̸= α′1 or if one of
the verification failed. Compute u = H(m, 0, α2), v = H(m, 1, α2), u′ = H(m′, 0, α′2), v′ = H(m′, 1, α′2),
ppk = (α3/α

′
3)

1/(u−u′) and w = (α4/α
′
4)

1/(v−v′). Return (ppk, w).
Trace(w, σ) : return 1 if and only if τ = e(w,α2).

In the following, we informally explain why each of the security properties presented in Section 3 holds
in our scheme.

Unforgeability. Zero-knowledge proofs produced during the signing process ensure that the delegate has
used its certificate correctly. This means that a user who has not been delegated cannot produce a valid
fresh signature under the assumption that the proof is sound.

Anonymity. Since the elements of the certificate are randomized for each new signature, and since the
delegate is able to create public keys ỹ for k different secret keys x, it is not possible to link two signatures
from the elements ŷi,j and ỹi under the DDH assumption. Recall also that the p̂pki,j and p̃pki do not allow
the signature to be linked to ppk under the DDH assumption either. On the other hand, the element hx

2

(resp. hx
3) is the Diffie-Hellman of h2 (resp. h3) and ỹ (where ỹ varies with each of the k signatures), and

therefore hides the elements linked to the identity of the delegate composing α3 (resp. α4). Finally, τ hides
the value of ppk under the DDH assumtion on the elements h4 and ppk. Assuming that the proofs are indeed
zero-knowledge, it is not possible to link two signatures from the same honest user.

Traceability and Non-Frameability. Zero-knowledge proofs ensure that the signature is correct and
that the delegate knows the secret key corresponding to the public key used in the certificate. Thus, the
delegate cannot bypass the mechanism for linking/tracing its signatures if it exceeds the limit, which ensures
traceability, and the delegate can only use elements of its own delegation, which ensures non-frameability.

We therefore have the following theorem, the proofs are available in Appendix C.

Theorem 1. Instanciated by a signature on equivalent classes that is unforgeable, class-hiding, and signature
adaptatable, by NIZK proofs which are zero-knowledge and sound, and by a collision-resistante hash function,
our k-APS scheme is unforgeable, anonymous, traceable and non-frameable under the DDH assumption in
G1 and G2.

5 Zero-knowledge Proof Instantiation

The proof Π<k requires several building blocks. In [13], Chaum and Pedersen introduce a zero-konwledge
proof of knowledge for discrete logarithm equality ZK {x : y1 = gx1 ∧ y2 = gx2} in a group of prime order p.
This proof is a sigma protocol: the prover sends a commitment, the verifier sends a challenge (chosen in Z∗p),
and the prover sends a response. This proof can be extended to prove the equality of more than two discret
logarithms equalities, in this case the size of the resulted transcript is linear in the number of statements.
In general, if two sigma protocols for two instances ϕ1 and ϕ2 and two relations R1 and R2 use the same

10



challenge space, it is possible to merge the proofs by using the same challenge in order to obtain an and-proof
ZK {w1, w2 : (w1, ϕ1) ∈ R1 ∧ (w2, ϕ2) ∈ R2}. This method can also be extended to any number of instances.
In [14], Cramer et al. propose a zero-knowledge proof to prove the knowledge of the witness corresponding to
one of two instances ZK {w : (w, ϕ1) ∈ R1 ∨ (w, ϕ2) ∈ R2}, under the hypothesis that ZK {w : (w, ϕ1) ∈ R1}
and ZK {w : (w, ϕ2) ∈ R2} are sigma protocols that use the same challenge space. The challenge space of the
resulting proof remains the same as that of the two combined proofs. The method can be extended to prove
the knowledge of a witness in relation to one instance among n, in which case the transcript size is equal to
the sum of the transcript sizes of the proofs of each instance.

The proof Π<k ensures that the prover knows s and η such that (i) ỹi and p̃pki are well formed ac-
cording to s and some integer η of l bits, and (ii) η < k. Proving (i) is equivalent to prove (g̃1 = ĝs1
and ỹi = ŷsi,0 and p̃pki = p̂pk

s

i,0) or (g̃1 = ĝs1 and ỹi = ŷsi,1 and p̃pki = p̂pk
s

i,1) for all i ∈ J0, lK. The
tools introduced in the previous paragraph allow us to construct the following proof for such a statement:
ZK

{
s :

∧l
i=0

∨1
j=0

(
g̃1 = ĝs1 ∧ ỹi = ŷsi,j ∧ p̃pki = p̂pk

s

i,j

)}
. The transcript of this proof is linear in l. On the

other hand, proving (ii) consists in proving η < k, where each bit η[i] of η is committed in ỹi = ŷsi,η[i]. So to
prove that η is smaller than k, we need to compare k and η as binary words across commitments ỹi, by going
through the bits from most to least significant. For instance, using k = 1001101, proving that η < k consists
in proving that η[0] = 0 or (η[1] = 0 and η[2] = 0 and (η[3] = 0 or (η[4] = 0 or (η[5] = 0 and η[6] = 0))). In
this case, the required proof is:

ZK

s :
(g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0) ∨ ((g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0) ∧ (g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0)
∧((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0) ∨ ((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0)
∨((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0) ∧ (g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0)))))

 .

This technique can be generalized as follows. Let (ij)0≤j≤n be the indices of the 1’s in the binary word k.
Note that i0 is always 1. Proving that η < k consists in the following proof:

ZK

s :

(g̃1 = ĝs1 ∧ ỹi0 = ŷsi0,0) ∨ (
∧i1−1

i=i0+1(g̃1 = ĝs1 ∧ ỹi = ŷsi,0)∧
((g̃1 = ĝs1 ∧ ỹi1 = ŷsi1,0) ∨ (

∧i2−1
i=i1+1(g̃1 = ĝs1 ∧ ỹi = ŷsi,0) ∧ (· · ·

(g̃1 = ĝs1 ∧ ỹin = ŷsin,0) ∨ (
∧l

i=in+1(g̃1 = ĝs1 ∧ ỹi = ŷsi,0)) · · ·))))


The relation of this proof is a boolean combination of l proofs of equality of discrete logarithms. Using the
techniques presented above, we thus obtain a proof whose transcript size is l times the transcript size of
a proof of equality of discrete logarithms. This may seem surprising, since the development of the boolean
formula gives on the order of l2 terms, however the generic transformations we use for the and and or proofs
depend on how the formula is expressed, and the size of the proofs is linear in the number of termes in the
formula. In Appendix D, we detail an example to illustrate this point. Finally, we use the Fiat-Shamir [15]
transform to change these proofs into non-interactive ones. The proof Π<k is the composition of the two
proofs presented above.

6 Extension to Sanitizable Signatures

Sanitizable signature schemes [1] enable a delegate called the sanitizer to modify specific sections of a signed
message m = m1∥ · · · ∥mn and update the signature consistently with these modifications. They can also be
seen as a more restrictive variant of proxy signatures, in which the sanitizer receives delegations prescribing
portions of the messages it can sign: the (sanitizable) signature algorithm produces both a signature and
data enabling the delegate to produce new signatures using the sanitization algorithm (corresponding to the
delegation certificate in proxy signature) as long as the restrictions chosen by the signer are respected.

In this section we formalise the notion of a (fully traceable) k-times anonymous sanitizable signature
(k-SAN). Due to space limitations, we only briefly describe the formal definition and the security model for
k-SAN (the full definitions are given in the Appendix E). We then extend our proxy signature scheme to
the case of sanitizable signatures. Our formal definition combines the features of the k-times anonymous

11



proxy signatures defined in Section 3 with the standard features of sanitizable signatures [4, 11, 23, 3]. In
particular, each sanitization requires the use of a delegation that can only be used k times, even if it is used
for different signatures.

A k-SAN is composed by the algorithms Setup, KeyGen, SaKeyGen, Delegate, Sign, Sanitize, Verify, Link
and Trace. With the exception of Sign and Sanitize, all these algorithms are defined in a similar way to k-APS
(SaKeyGen correspond to PKeyGen and generate the sanitizer key pair (ssk, spk)). The algorithms Sign and
Sanitize are defined as follows:
Sign(m,ADM, sk, spk) : given a signer secret key sk, a sanitizer public key spk, a message m, a admissible

set ADM (which describes the set of all modifications MOD that can be applied to the message), return
a signature σ.

Sanitize(m,σ,MOD, ssk, pk, del, η) : given the signer public key pk, the sanitizer secret key ssk, a message-
signature pair (m,σ), a modification MOD, a delegation del, a signature index η, return a signature σ′

(for the modified message MOD(m)).
A k-times Anonymous Sanitizable Signature scheme is required to achieve Unforgeability, Immutability,

Transparency, Invisibility, Unlinkability, Anonymity, Traceability and Non-Frameability. After describring
our scheme, we give some intuition on these requirement and set out how they are achieved.

Note that sanitizable signatures usually have two additional algorithms, Prove and Judge, which allow
the delegating signer to reveal a posteriori that a given signature was produced by the sanitizer. In this
case, an additional security property, accountability, is required to ensure that the signer cannot blame the
sanitizer for a signature it did not produce, and that the sanitizer will not be able to produce a signature
that cannot be traced by the signer. Since in this article we are considering a scenario where the tracing
of dishonest users is not done by the signer, but by the verifier using the mechanism triggered when the
sanitizer produces too many signatures, we have not provided our construction with these algorithms and
have not adapted the accountability model.

Our k-times anonymous sanitizable signature combines the design of the sanitizable signatures in [8,
3] with the mecanism we introduced in our k-times anonymous proxy signature. The signature contains
commitements that allows the sanitizer to show that only admissible blocks are modified. More precisely, the
sanitizer gives a proof that for every block within the altered message, the commitment corresponds to the
hash of the index or the hash of the index combined with its content. If any unauthorized block is altered,
then the sanitizer is unable to generate the proof. In addition, the sanitizer produces elements that enable
our tracing mechanism to work if it exceeds its sanitization limit. In order to achieve transparency, we show
how the signer can simulate these elements in the original signature. This results in two computationally
identically distributed signatures outputed by Sign and Sanitize. In what follows, we describe our k-SAN
scheme. The Setup algorithm is the same as in Section 4.
KeyGen(1λ, k, n) : if n > 1, set l = ⌈log2(k)⌉, and generate two SPS-EQ keys pairs (pkdelSPS-EQ, sk

del
SPS-EQ) ←

KeyGenSPS-EQ(1
λ, 4l+1) and (pkMOD

S , skMOD
S )← KeyGenSPS-EQ(1

λ, 2n). Sample sklog ←$ Z∗p and set pklog =

g
sklog
1 . Return pk = (pkdelSPS-EQ, pk

MOD
SPS-EQ, pklog) and sk = (skdelSPS-EQ, sk

MOD
SPS-EQ, sklog).

SaKeyGen(1λ) : sample ssklog ←$ Zq, set spklog = g
ssklog
1 , run (sske, spke) ← KeyGenE(1

λ) and return ssk =
(ssklog, sske) as the secret key and spk = (spklog, spke) as the public key.

Delegate(sk, spk, k) : set l = ⌈log2(k)⌉, abort if the SPS-EQ key skdelSPS-EQ does not support messages of 4l+1

group elements. For all (i, j) ∈ JlK × {0, 1}, sample xi,j ←$ Z∗p, set yi,j = g
xi,j

1 , spki,j = spklog
xi,j

and produce the SPS signature σ̂ ← SignSPS-EQ(sk
del
SPS-EQ, g1, y1,0, · · · , spkl,1). Return del = ((xi,j , yi,j ,

spki,j)i∈JlK;j∈{0,1}, σ̂).
Below, we describe the Sign and Sanitize algorithms, drawing parallels between their similarities and speci-
fying their respective executions when they differ.

Both Sign(m,ADM, sk, spk) and Sanitize(m,σ,MOD, ssk, pk, del, η) set l = ⌈log2(k)⌉. Then:
Sign: Parse m

p−→ m1∥ · · · ∥mn, sample η ←$ J0, k − 1K, s ←$ Z∗p, and ĝ1, ŷi,j , ŝpki,j ←$ G1 for all (i, j) ∈
JlK× {0, 1}. Simulate a delegation by singing σ̂ ← SignSPS-EQ(sk

del
SPS-EQ, ĝ1, ŷ1,0, · · · , ŝpkl,1). For all i ∈ JlK

and j ∈ {0, 1}, set ỹi = ŷsi,η[i], and s̃pki = ŝpk
s

i,η[i].

12



Sanitize: Parse MOD(m)
p−→ m1∥ · · · ∥mn, σ p−→ (delσ, tra, πσ), delσ

p−→ (ĝ1, g̃1, ((ŷi,b, ŝpki,b)b∈{0,1}, ỹi, s̃pki)i∈JlK, σ̂,

Π<k) and tra
p−→ ((ui, vi)

n
i=1, ỹ, α1, α2, α3, α4, τ, πMOD, σMOD, e) (Note that the values of most of these vari-

ables will be updated by reallocation during the algorithm). Then proceeds similarly to the initial steps
of the Sign algorithm of the k-APS signature scheme, halting before the execution of the proof Π<k.

Both algorithms generate the proof Π<k of knowledge of s and η which proves that (i) ỹi and s̃pki are well
formed according to s and some integer η of l bits and (ii) η < k. This proof follows the same instantiation
as before. To conclude this first part, set delσ = (ĝ1, g̃1, ((ŷi,b, ŝpki,b)b∈{0,1}, ỹi, s̃pki)i∈JlK, σ̂, Π<k).

Both algorithms start the second phase by setting the message blocks:
Sign: To mandate the sanitizer for a set of modifiable blocks: sample a ←$ Z∗p. For all i ∈ ADM let

ui = H(mi, i, 0)
a and vi = H(mi, i, 1)

a, otherwise let ui = H(i, 0)a and vi = H(i, 1)a. Encrypt
e← Enc(spke, a)

Sanitize: Sample b ←$ Z∗p, decrypt a ← Dec(sske, e) and update e ← Enc(spke, a · b). Set ADM = ∅ and
∀i ∈ JnK, let ui = H(mi, i, 0)

a·b and vi = H(mi, i, 1)
a·b when the signature contains H(mi, i, 0)

a and
H(mi, i, 1)

a, otherwise let ui = H(i, 0)a·b and vi = H(i, 1)a·b. Check MOD ⊂ ADM and set a = a · b.
Both algorithms prove:

πMOD ← SoKe

a :
∧

1≤i≤n

(ui = H(mi, i, 0)
a ∧ vi = H(mi, i, 1)

a)
∨ (ui = H(i, 0)a ∧ vi = H(i, 1)a)

 .

Sign: execute σMOD ← SignSPS-EQ

(
skMOD

SPS-EQ, u1, v1, · · · , un, vn

)
. Set ỹ =

∏l
i=1 ỹi, s̃pk =

∏l
i=1 s̃pki, u =∑n

i=1 ui, v =
∑n

i=1 vi and sample the elements α1, α3, α4 ←$ G1, α2 ←$ G2 and a tracing element
τ ←$ Gt.

Sanitize: Adapt σMOD according to the randomness b: σMOD ← ChgRepSPS-EQ((u1, v1, · · · , un, vn), σMOD, b,

pkMOD
SPS-EQ). Set x =

∑l
i=1 xi,η[i], ỹ =

∏l
i=1 ỹi, s̃pk = ỹssklog , and compute α1 = hx

1 . Let u =
∑n

i=1 ui,
v =

∑n
i=1 vi and sample t ←$ Z∗p. Compute α2 = gt2, the matching elements α3 = hx

2 · g
u·ssklog
1 , α4 =

hx
3 · h

v·ssklog
4 and a tracing element τ = e(h4, α2)

ssklog .
The vector of elements tra = ((ui, vi)

n
i=1, ỹ, α1, α2, α3, α4, τ, πMOD, σMOD, e) is set by both entities and embed

in a signature of knowledge where the sanitizer proves the first part of the or statement and the signer the
second part:

πσ ← SoK(del,tra){sklog : (ỹ = ĝ1
x·s ∧ s̃pk = ỹssklog ∧ α1 = hx

1 ∧ α2 = gt2∧

α3 = hx
2 · g

u·ssklog
1 ∧ α4 = hx

3 · h
v·ssklog
4 ∧ τ = e(h4, α2)

ssklog) ∨ (pklog = g
sklog
1 )}.

Finally Sign and Sanitize return the signature σ = (delσ, tra, πσ).
The signature verification consists of re-computing the elements that are necessary for the verification of

every SPS-EQ and signature of knowledge.
We will now informally describe the security properties of k-SAN (we recall that the formal definition can

be found in Appendix E) and explain why they hold on our scheme, except for anonymity, traceability and
non-frameability that are reached in a similar way to our k-APS (Section 4).

Unforgeability. The users cannot generate a valid signature without knowing a secret key which has
obtained a delegation. This property relies on the hardness of recovering the secret key of the signer or one
of the sanitizers, which is ensured by the DDH assumption. Once this have been ruled out, we can reduce
the ability of an adversary to forge a signature to its ability to forge SPS signatures.

Immutability. A sanitizable signature is immutable when no adversary is able to sanitize with unauthorized
modification. This property relies on the collision resistance of the hash function, as well as the soundness and
zero-knowledge properties of the signature of knowledge πMOD (as they link the message to the signature).
Moreover, the EUF-CMA security of the SPS-EQ and the DDH assumption prevent impersonation of the
signer.

13



Transparency. The verifier cannot decide whether a given signature has been sanitized or not, which means
that the outputs of Sign and Sanitize should be computationally indistinguishable. The randomised delegation
encompassed in the signature is identically distributed to a newly produced one. All SoK can be produced by
both the signer and the sanitizer, while the other elements are shown to computationally indistinguishable
based on the DDH problem.

Invisibility. The invisibility property prevents an adversary which is not the signer nor the sanitizer of a
signature from determining any information on the modifiable blocks. The difference between a modifiable
block and a non-modifiable block is the input of the hash function serving as a commitment. The obtained
hash is then elevated to a secret random power. Therefore, invisibility mainly relies on the class hiding
property (Definition 1).

Unlinkability. Considering a fixed sanitizer assigned with two signatures, the verifier cannot link a sanitized
signature with its original version. In the proposed signature scheme, all elements undergo randomization
during sanitization or are entirely new, which ensures this property.

Anonymity versus unlinkability. We highlight the fact that, although conceptually close, the properties
of unlinkability and anonymity capture independent attack scenarios. In unlinkability, the adversary tries
to link signatures modified for a single known sanitizer, while in anonymity, the adversary has to guess the
identity of an unknown sanitizer for a given message and can control the modifications this sanitizer makes
to these signatures. Since in anonymity the adversary chooses for itself how and by whom signatures are
modified via oracles, knowing how to link a sanitized signatures to its original gives it no advantage. Note
that for signatures sanitized by the unknown sanitizer that the adversary has to determine, the sanitization
oracle will always use the key of the unknown sanitizer, thus avoiding trivial attacks where the adversary
tests whether the sanitization of its signature by a chosen sanitizer fails or not.

On the other hand, in unlinkability, the adversary receives a signature sanitized by a given user, and must
determine the original signature used. As the original signature can only be sanitized by one sanitizer chosen
a priori by the signer, guessing the identity of this sanitizer by attacking anonymity gives the adversary no
advantage. So there is no implication between unlinkability and anonymity.

Note that when the k limit is exceeded, it is the identity of the sanitizer and the link between their
signatures that are leaked, but it is still not possible to link the sanitized signatures to the original signatures;
we link the signatures of a sanitizer, but the unlinkability property still holds for these signatures.

We therefore have the following theorem, the proofs are available in Appendix F.

Theorem 2. Instanciated by a signature on equivalent classes that is unforgeable, class-hiding, and signature
adaptatable, by NIZK proofs which are zero-knowledge and sound, by a collision-resistante hash function, by
a SoK that is perfectly-simulability and simulation-extractability, and by an IND-CCA public key encryption,
our k-SAN is unforgeable, immutable, transparent, unlinkable, anonymity, invisible, k-traceable and non-
frameable under the DDH assumption in G1 and G2 in the random oracle model.

7 Conclusion

In this paper, we mitigate for practical purposes the delegations carried out through some signatures with
anonymity. To this end, we define full traceable k-times anonymity for proxy signatures and sanitizable
signatures. In both cases, we define a security model, give an efficient scheme (in the sense that the size of
keys and signatures is logarithmic in k), and prove its security. In the future, we would like to address two
problems that we leave open: the construction of k-times proxy/sanitizable signature schemes that produce
signatures of constant size, and the construction of schemes that do not require the generic group model
(required for equivalence class signatures).

Acknowledgments. This article is an extended version of a paper published at the CANS 24 conference. The
authors would like to thank Jan Bobolz and the anonymous reviewers of CANS 2024 conference for their valuable

14



and insightful comments. Xavier Bultel’s research was supported by the ANR project PRIV-SIQ (ANR-23-CE39-
0008). Charles Olivier-Anclin’s research was partially supported by the ANR projet MobiS5 (ARN-18-CE39-0019).

References

1. Ateniese, G., Chou, D.H., De Medeiros, B., Tsudik, G.: Sanitizable signatures. In: Computer Security–ESORICS
2005: 10th European Symposium on Research in Computer Security (2005)

2. Au, M.H., Susilo, W., Yiu, S.M.: Event-oriented k-times revocable-iff-linked group signatures. In: ACISP 2006
(2006)

3. Bossuat, A., Bultel, X.: Unlinkable and invisible γ-sanitizable signatures. In: International Conference on Applied
Cryptography and Network Security (2021)

4. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security
of sanitizable signatures revisited. In: Public Key Cryptography–PKC 2009: 12th International Conference on
Practice and Theory in Public Key Cryptography (2009)

5. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: PKC 2010 (2010)
6. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group

signatures. In: Public Key Infrastructures, Services and Applications: 10th European Workshop (2014)
7. Bultel, X., Lafourcade, P.: k-times full traceable ring signature. In: 2016 11th International Conference on Avail-

ability, Reliability and Security (2016)
8. Bultel, X., Lafourcade, P., Lai, R.W., Malavolta, G., Schröder, D., Thyagarajan, S.A.K.: Efficient invisible and

unlinkable sanitizable signatures. In: 22nd IACR International Conference on Practice and Theory of Public-Key
Cryptography (2019)

9. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral
trapdoors. In: PKC 2017 (2017)

10. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Advances in Cryptology —
CRYPTO ’97 (1997)

11. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Cryptographers’ Track at the RSA
Conference (2010)

12. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Advances in Cryptology-CRYPTO: 26th Annual
International Cryptology Conference (2006)

13. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Advances in Cryptology — CRYPTO’ 92 (1993)
14. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding

protocols. In: CRYPTO ’94 (1994)
15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In:

CRYPTO’ 86 (1987)
16. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitiz-

able signatures from signatures with re-randomizable keys. In: 19th IACR International Conference on Practice
and Theory in Public-Key Cryptography (2016)

17. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size
anonymous credentials. Journal of Cryptology (2019)

18. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Security and Cryptography for Networks: 6th
International Conference (2008)

19. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Public Key Cryptography – PKC 2007 (2007)
20. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences (1984)
21. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from simulation-extractable snarks.

In: Annual International Cryptology Conference (2017)
22. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Proceedings of the 9th International Conference

on Information Security and Cryptology. ICISC’06 (2006)
23. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures. In: International Workshop on

Data Privacy Management (2015)
24. Liu, W., Yang, G., Mu, Y., Wei, J.: k-time proxy signature: Formal definition and efficient construction. In: Prov-

able Security: 7th International Conference, ProvSec 2013, Melaka, Malaysia, October 23-25, 2013. Proceedings
7 (2013)

25. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Pro-
ceedings of the 3rd ACM Conference on Computer and Communications Security. CCS ’96 (1996).
https://doi.org/10.1145/238168.238185

15



26. Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: ASIACRYPT
2004 (2004)

27. Wei, J., Yang, G., Mu, Y.: Anonymous proxy signature with restricted traceability. In: 2014 IEEE 13th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications (2014)

28. Wei, J., Yang, G., Mu, Y., Liang, K.: Anonymous Proxy Signature with Hierarchical Traceability. The Computer
Journal (2015)

Auxiliary Supporting Material
A Security Properties of our Building Blocks

Security of SPS-EQ Schemes We require that SPS-EQ meets the following requirements:
Correctness: for all l ∈ N, (pk, sk), m ∈ Gl, and µ ∈ Z∗p, the following equations should be true :

VerifSPS-EQ(m,SignSPS-EQ(sk,m;R), pk;R) = 1 and VerifSPS-EQ(µm,ChgRepSPS-EQ(m,Sign(sk,m;R), µ,
pk;R), pk;R) = 1.

EUF-CMA (existantial unforgeability under adaptative chosen-message attacks): let l > 1 and 1λ a given
security parameter;

Pr

[
(pk, sk) ∈ [KeyGenSPS-EQ(1

λ, l;R)],
(m∗, σ∗)← ASignSPS-EQ(·,sk;R)(pk, l)

:
∀m ∈ S,m∗ /∈ [m]R∧
VerifSPS-EQ(m,σ, pk;R)

]
,

is negligible for every PPT adversary A where S is the set of queries that A has issued to the signing
oracle.

Signature Adaptation: let l > 1 and 1λ a given security parameter, (pk, sk) ∈ [KeyGen(1λ, l;R)], µ ∈ Z∗p
and m ∈ Gl. For all tuples (sk, pk,m, σ, µ) the distributions of Sign(sk,m;R) and ChgRep(m,σ, µ, pk;R)
are identical.

Security of NIZK proofs A NIZK requires the following properties:
Completeness: For any (w, ϕ) ∈ R, ZK.Verif(ϕ,ZK {w : (w, ϕ) ∈ R}) = 1.
Simulation-Extractability: For all PPT adversary A returning a valid proof on the statement ϕ∗ with

non-negligible probability, there exists a PPT extractor ExtA returning w∗ such that (w∗, ϕ∗) ∈ R
with overwhelming probability. This implies that no PPT algorithm can output a valid proof on a false
statement with non-negligible probability.

Zero-Knowledge: For any (w, ϕ) ∈ R, there exists a PPT algorithm Sim(ϕ) that follows the same proba-
bility distribution as ZK {w : (w, ϕ) ∈ R}.

Security for Asymmetric Encryption Schemes An encryption scheme E has to achieve Correctness and
Indistinguishability under Chosen Ciphertext Attack. (IND-CCA) Formally, for all PPT adversary A, given a
decryption oracle Dec(sk, ·) (which rejects the challenge c), has at most a negligible probability∣∣∣∣Pr [ (sk, pk)←$ KeyGen(1λ), (m0,m1)← ADec(sk,·)(pk)

b←$ {0, 1}, c← Enc(pk,mb), b
∗ ← ADec(sk,·)(c)

: b = b∗
]
− 1

2

∣∣∣∣ .
B Instantiation of the Proof Πσ

In this section, we show how to instantiate the proof πσ used in Section 4. For the sake of clarity, we rewrite
this proof with more generic notations (where for any integer i, each gi, γi, and hi is an element of a group
Gi of the same prime order p):

πσ ← ZK

{
x, y, z :

h1 = g1
x ∧ h2 = g2

y ∧ h3 = g3
x ∧ h4 = g4

z

h5 = g5
x · γy

5 ∧ h6 = g6
x · γy

6 ∧ h7 = g7
y

}
.

Our construction follows the Schnorr protocol structure:

16



– The prover picks (r, s, t)
$←− Z3

p and sets R1 = gr1; S2 = gs2; R3 = gr3; T4 = gt4; R5 = gr5; S5 = gs5; R6 = gs6;
S5 = gs6; and S7 = gs7. The prover sends (R1, S2, R3, T4, R5, S5, R6, S5, S7) to the verifier.

– The verifier picks a challenge c
$←− Zp and sends it to the prover.

– The prover computes α = r + x · c, β = s+ y · c, and δ = t+ z · c, then sends (α, β, γ) to the verifier.
– If the following equations holds, then the verifier accepts the proof, else the verifier rejects: gα1 = R1 ·hc

1;
gβ2 = S2 · hc

2; gα3 = R3 · hc
3; gδ4 = T4 · hc

4; gα5 · γ
β
5 = R5 · S5 · hc

5; gα6 · γ
β
6 = R6 · S6 · hc

6; and gβ7 = S7 · hc
7.

This proof is complete by construction.
To show that this proof is sound, we show that knowing two valid transcripts τ0 = ((R1, S2, R3, T4, R5, S5,

R6, S5, S7), c0, (α0, β0, γ0)) and τ1 = ((R1, S2, R3, T4, R5, S5, R6, S5, S7), c1, (α1, β1, γ1)) using both the same
commitment (R1, S2, R3, T4, R5, S5, R6, S5, S7) but different challenges c0 and c1, it is possible to deduce
(x, y, z) in polynomial time (special soundness). Since the two transcripts are valid, we have: gα0

1 = R1 · hc0
1 ;

gβ0

2 = S2 · hc0
2 ; gα0

3 = R3 · hc0
3 ; gδ04 = T4 · hc0

4 ; gα0
5 · γ

β0

5 = R5 · S5 · hc0
5 ; gα0

6 · γ
β0

6 = R6 · S6 · hc0
6 ; gβ0

7 = S7 · hc0
7 ;

gα1
1 = R1 · hc1

1 ; gβ1

2 = S2 · hc1
2 ; gα1

3 = R3 · hc1
3 ; gδ14 = T4 · hc1

4 ; gα1
5 · γ

β1

5 = R5 · S5 · hc1
5 ; gα1

6 · γ
β1

6 = R6 · S6 · hc1
6 ;

and gβ1

7 = S7 · hc1
7 . Setting x = (α1 − α0)/(c1 − c0); y = (β1 − β0)/(c1 − c0); and z = (δ1 − δ0)/(c1 − c0) and

using the equations above, we find that: h1 = g1
x; h2 = g2

y; h3 = g3
x: h4 = g4

z; h5 = g5
x · γy

5 ; h6 = g6
x · γy

6 ;
and h7 = g7

y, which concludes the proof of soundness.
We show that this proof is zero-knowledge by giving a polynomial-time simulator that outputs tran-

scrpits indistinguishable from the transcripts of the real protocol without using the secret value (x, y, z).
The simulator picks (c, α, β, δ)

$←− Z4
p; R5

$←− G5; and R6
$←− G6. Then the simulator computes: R1 = gα1 /h

c
1;

S2 = gβ2 /h
c
2; R3 = gα3 /h

c
3; T4 = gδ4/h

c
4; S5 = (gα5 · γ

β
5 )/(R5 · hc

5); S6 = (gα6 · γ
β
6 )/(R6

cdothc
6); and S7 = gβ7 /h

c
7. The simulator returns ((R1, S2, R3, T4, R5, S5, R6, S5, S7), c, (α, β, γ)).

Finally, as this proof is a sigma protocol, it can be made non-interactive using the Fiat-Shamir trans-
formation [15].

C Proof of Theorem 1

Proof. Let A be a PPT adversary against each of the experiments. AdvdiffGi,Gi+1
(A) denotes the probability

|Pr[Gi(A) = 1]− Pr[Gi+1(A) = 1]|. We investigate each of the properties independently.

Correctness. It is verified by investigation.

Unforgeability. Let Gameunf0 denote the experiment Expunfk-APS,A(1
λ) instantiated by the Log Size k-APS.

Gameunf1 : is similar to Gameunf0 but we abort if there is a collision for the responses of the hash function in
the elements that the challenger sees.
Claim. We claim that the adversary’s A advantage in hybrids Gameunf0 and Gameunf1 only differs by a negligible
factor, i.e., AdvdiffG0,G1

(A) ≤ Advcol−resistH .
The reduction is straightforwardly achieved based on a record of the hashs. The reduction returns the
collisions it sees.

Gameunf2 : is similar to Gameunf1 but the witness (psk∗, pski
∗, r∗) is extracted from the proof NIZK proof π∗σ

and matched with the signature’s elements.
Claim. We claim that the adversary’s advantage in hybrids Gameunf1 and Gameunf2 only differs by a negligible
factor, i.e., AdvdiffG1,G2

(A) ≤ AdvsoundNIZK .
The reduction is direct to the soundness of the NIZK proof.

Gameunf3 (enabling step): is similar to Gameunf2 but the proof πσ is simulated on calls to the signing oracle.
The reduction directly follows from the zero-knowledge property of the NIZK proof. Hence, the adversary’s
advantage only differs by a negligible factor, i.e., AdvdiffG2,G3

(A) ≤ qSign · AdvZKNIZK, where qSign represent the
number of calls to the signing oracle.

17



Gameunf4 (enabling step): is similar to Gameunf3 but we define h4 = gr41 based on a random value r4 ←$ Z∗p.
This elements keeps the same distribution, thus, the adversary has indistinguishable viewing of these two
experiments.

Gameunf5 : is similar to Gameunf4 but we abort if the signature σ∗ has been produced for a registered user. This
is check by verifying if (gpsk

∗

1 , psk∗) ∈ U .

Claim. We claim that the adversary’s advantage in hybrids Gameunf4 and Gameunf5 only differs by a negligible
factor, i.e., AdvdiffG4,G5

(A) ≤ qU · AdvDL
G1

.

Reduction. Consider a sequence of hybrids H1, · · · , HqU , where we expect the difference in between two con-
secutive experiments to be at most AdvDL

G1
. Define Hi as Gameunf4 where the game is aborted if (gpsk

∗

1 , psk∗) ∈ U
was produced during the i first calls to Ounf

Register. It follows that H0 = Gameunf4 and HqU = Gameunf5 . Consider
Ri the reduction simulating Hi and additionally receiving a challenge X = gx1 ∈ G1 to the DL problem. On
the ith call to Ounf

Register, Ri sets the key of the user generated on as ppk = X. From the previous bridging, we
can compute the elements involving the key psk: α3 = hx

2 · ppk
u;α4 = hx

3 · ppk
v·r4 ; τ = e(ppkr4 , α2) an output

πσ based on the simulator, which allows us to output valid signatures. Receiving a response from A, we can
transfer the extracted value psk∗ as an answer to the challenger of the DL problem. An adversary winning
against Hi and not against Hi+1 would have output a valid answer, as this is only possible with negligible
probability AdvDL

G1
, we have proven our claim.

Analysis. Forgery of the NIZK proof πσ or adversarial produced NIZK proofs for registered users leads to an
abort in Gameunf5 . Hence, the adversary A can only output signatures for unregistered users.

Claim. The adversary’s A advantage in hybrid Gameunf5 is negligible, given that the SPS-EQ scheme is
existentially unforgeable under adaptive chosen-message attacks, i.e., AdvunfG5

(A) ≤ AdvEUF-CMA
SPS-EQ .

Reduction. Consider an adversary A winning against Gameunf5 . Let R be a reduction emulating between the
answers of A and ExpEUF-CMA

SPS-EQ . We implement R straightforwardly setting pk as the public key received from
the challenger against ExpEUF-CMA

SPS-EQ . To issue σ̂ on a call to Ounf
Delegate, R calls the signing oracle for the message

(g1, y1,0, · · · , ppkl,1). For a winning adversary outputting a pair (m∗, σ∗), it holds that VerifSPS-EQ(pk, (ĝ1
∗,

ŷ∗1,0, · · · , p̂pk
∗
l,1), σ̂

∗) = 1. The message-signature pair is transfer to the challenger of the EUF-CMA experiment
and a bit b is returned. As previously established, a successful adversary A must generate a new delegation
to win in Gameunf5 . This implies that R would produce a valid forgery for the SPS-EQ signature, which
contradicts the EUF-CMA property of the SPS-EQ signature.

Anonymity. Let GameAno0 denote the experiment ExpAnok-APS,A(1
λ) instantiated by our k-APS. What we then

call challenge is the output of the oracle OAno
chal which is generated when the adversary calls this oracle. We

modify the challenge sent to the adversary to decorrelate it from the identity of the proxy signer who issued
it. In this game hope, we modify the challenge to decoralt it from the identity of the proxy signer making
it.

GameAno1 : is similar to GameAno0 but generates new SPS-EQ signatures σ̂ for the randomised messages base
on the secret sk instead of randomising the certificate.

Claim. We claim that adversary’s advantage is left unchanged under this modification, i.e., AdvdiffG0,G1
(A) = 0.

Reduction. Randomised signatures and newly generated ones follow identical distributions, hence A has
indistinguishable viewing of these two experiments.

GameAno2 : is similar to GameAno1 but the NIZK proofs Π<k and πσ in the challenge σ are simulated. As argued
previously, this results in a negligible difference in the adversary’s advantage, i.e., AdvdiffG1,G2

(A) ≤ 2 ·AdvZKNIZK.

18



GameAno3 (enabling step): is similar to GameAno2 but sets h1 = gr11 , h2 = gr21 , h3 = gr31 and h4 = gr41 from
sampled values r1, r2, r3, r4 ←$ Z∗p. The distribution of these elements remains unchanged, hence A has
indistinguishable viewing of these experiments, i.e., AdvdiffG2,G3

(A) = 0.

GameAno4 : is similar to GameAno3 but for all k ∈ {0, 1}, i ∈ JlK, j ∈ {0, 1} elements ppkki,j , are sampled at
random within G1.
Claim. We claim that the adversary’s advantage in hybrids GameAno3 and GameAno4 only differs by a negligible
factor, i.e., AdvdiffG3,G4

(A) ≤ 4l · AdvDDH
G1

.

Reduction. Consider a sequence of hybrids H0, · · ·H2l, such that for all i ∈ JlK, j ∈ {0, 1} in H2i+j , the first
2i + j elements of the vector (ppk1,0, · · · , ppkl,1) are sampled randomly at uniform, the remaining ones are
generated similarly to GameAno3 . We see that H0 = GameAno3 and H2l = GameAno4 . Now consider the reduction
R2i+j in between H2i+j and H2i+j+1 receiving a DDH challenge (X,Y, Z). The reduction sets ppk = X, and
y2i,1 = Y , if j = 0 or y2(i+1),0 = Y , when j = 1. Based on the simulator of the proof πσ is simulated, and the
following equalities: α3 = ỹr2 ·ppku;α4 = ỹr3 ·ppkv·r4 ; τ = e(ppkr4 , α2), and α1 = Y

∑l
k=1;k ̸=i xk,η[k] , then,R can

perfectly simulate the remaining of the actions prescribed by the experiments. Given a distinguisher between
hybrids H2i+j and H2i+j+1 emulated by the reduction R2i+j , the latter returns the obtained decisions bit b
to the challenger of the DDH problem. R2i+j succeeds to the DDH problem with the same probability that
the distinguisher has to differentiate in between the two hybrids. The same reduction is now applied for the
elements generated to proxy of index 1, which leads to the proof of the claim.

GameAno5 : is similar to GameAno4 but elements (ĝ1, ŷ1,0, · · · , p̂pkl,1) used to produce σ are sample uniformly at
random in G4l+1

1 .
Claim. We claim that the adversary’s advantage in hybrids GameAno4 and GameAno5 only differs by a negligible
factor, i.e., AdvdiffG4,G5

(A) ≤ Advclass−hidG1
.

Reduction. Let R be a reduction based on a challenge from the class-hiding experiment in G1. The reduction
R receives two elements M,M ′ ∈ G4l+1

1 . During the setup it defines g1 ← M1 (the first element of vector
M), then executing Delegate(sk, ppkb, t), it signs M as σ̂. During the execution of Sign(pk, pskb,m∗, delb, i∗),
it inputs M ′ into the SPS-EQ signature scheme, thus obtaining σ̂ ← SignSPS-EQ(sk,M

′) embedded in the
signature σ with M ′. The rest of the experiment is executed normally. Based on the challenge M ′, we either
emulate GameAno4 when M ′ has been picked in the equivalent class of M , or GameAno5 when M ′ has been
picked at random. As a result, a distinguisher between GameAno4 and GameAno5 , has a negligible probability of
success.

GameAno6 : is similar to GameAno5 but α3 is sampled uniformly at random in G1, when producing the signature
σ.
Claim. We claim that the adversary’s advantage in hybrids GameAno5 and GameAno6 only differs by a negligible
factor, i.e., AdvdiffG5,G6

(A) ≤ AdvDDH
G1

.

Reduction. Based on a DDH challenge (X = gx1 , Y = gy1 , Z), a reduction R set h2 = X during the setup,
ỹ = Y to produce the signature σ and generates the ỹi in order to preserve ỹ =

∏l
i=1 ỹi. Among (ỹi)i∈JlK,

l−1 elements are generated normally and the remaining element is set to ỹl = ỹ ·
(∏l−1

i=1 ỹi

)−1
, thus ensuring

the same distribution as before. Then set α3 = Z · gu·psk1 . Knowing the discrete logarithm of h3, R we can
compute α4 = Y r3 ·hv·psk

4 and it simulates the NIZK proofs Π<k and πσ as prescribed by the experiment.When
Z = gxy1 we have perfectly simulated GameAno5 and when Z ←$ G1, we have perfectly simulated GameAno6 .
Hence, distinguishing between these two experiments implies distinguishing between the two event of the
DDH problem.

GameAno7 : is similar to GameAno6 but we sample α4 it at random α4 ←$ G1 when producing the signature σ.
Claim. We claim that the adversary’s advantage in hybrids GameAno6 and GameAno7 only differs by a negligible
factor, i.e., AdvdiffG6,G7

(A) ≤ AdvDDH
G1

.

19



Reduction. The reduction is analogous to the previous one: consider a reduction R basing itself on a DDH
challenge (X = gx1 , Y = gy1 , Z) and emulating either GameAno6 or GameAno7 based on the value of Z. The
reduction sets h3 = X during the setup, it sets ỹ = Y and the generates elements ỹi for i ∈ JlK, preserving
ỹ =

∏l
i=1 ỹi. Then it sets α4 = Z · hv·psk

4 based on the challenge and compute α1 = Y
∑l

k=1;k ̸=i xk,η[k] , and
α3 = ỹr2 · gpsk·u1 . The rest of the experiment is executed as it should have been in both game. Distinguishing
between these two experiments implies distinguishing between the two event of the DDH problem as these
two games only differs by a DDH challenge.

GameAno8 : is similar to GameAno7 but we sample an element Z ←$ G1 at the beginning of the game and let
τ = e(Z,α2) to produce a signature with psk0.
Claim. We claim that the adversary’s advantage in hybrids GameAno7 and GameAno8 only differs by a negligible
factor, i.e., AdvdiffG7,G8

(A) ≤ AdvDDH
G1

.

Reduction. Consider a reduction R taking as input a DDH challenge (X,Y, Z) ∈ G3
1. R defines h4 = X during

the setup and ppk0 = Y during the key generation of the proxy associated to index 0. The element τ is meant
to be computed as τ = e(h4, α2)

pskb = e(h
pskb
4 , α2). Based on the DDH challenger we set τ = e(Z,α2). The

remaining computation are conducted as follow: α3 = hx
2 · Y u α4 = hx

3 · Zv and algorithms Setup, KeyGen;
PKeyGen, Delegate and Sign for psk1 remain unchanged. It is important to ensure that the threshold of k
signature is not overpasses as no tracing could be possible for the produced signature as it is done in OAno

Sign.
The bit returned by the adversary A is then transferred as the decision against the DDH challenge. When
Z = gxy we perfectly emulate GameAno7 otherwise GameAno8 , our claim follows.

GameAno9 : is similar to GameAno8 but we sample a new Z for each signature request to the signer of index 0
and set τ = e(Z,α2).
Claim. We claim that the adversary’s advantage in hybrids GameAno8 and GameAno9 only differs by a negligible
factor, i.e., AdvdiffG8,G9

(A) ≤ Advclass−hidG2
.

Reduction. This reduction rely on the fact that τ = e(Z,α2) = e(g1, α
logg1

(Z)

2 ). Consider a reduction R based
on a challenge from the class hiding experiment in G2 receiving two elements M,M ′ ∈ GqS

2 . We refer to α2

(resp. τ) on the ith call from A to the OAno
Sign as α2,i (resp. τi). Let α2,i = Mi and τi = e(g1,M

′
i) for all i ∈ JqSK.

Based on the challenge, we have either τi = e(g1,M
r
i ), for all i and an integer r fixed for all sanitization of

index 0, or either τi = e(g1,M
′
i), for a new random element M ′i changed for each sanitization of index 0. As

a result, we emulate perfectly one or other of the games. We can forward the adversary’s response to the
challenger of the class hiding experiment and we win against this game with equal probability. This prove
the claim.

GameAno10 : is similar to GameAno9 but we apply the last two modifications to the actions of the proxy using the
key psk1. This leads the same modifications of the adversary’s advantage.
In Experiment GameAno10 , the elements provided to A are entirely independent of the value b. Any guessing
strategy employed by A would result in a zero advantage because the distribution of the outputs produced
by the adversary A is unrelated to the uniformly distributed value b←$ {0, 1}. This concludes our proof for
this property.

Traceability. Let GameTrace0 be the experiment ExpTracek-APS,A(1
λ) instantiate with the k-APS signature of

Section 4.

GameTrace1 : is similar to GameTrace0 but we abort if there is a collision for the responses of the hash function. As
argued in Gameunf1 the adversary’s A advantage differs by a negligible factor, i.e., AdvdiffG0,G1

(A) ≤ Advcol−resistH .

GameTrace2 : is similar to GameTrace1 but for all A’s responses, the NIZK proofs π∗σ,j and Πj
<k are extracted.

The experiment is aborted if any of the extractions fails or if a valid proof for an invalid statement has

20



been produced. The reduction to the soundness of the proofs is direct through an hybrid sequence. We can
conclude that: AdvdiffG1,G2

(A) ≤ 2qs · AdvsoundNIZK .

GameTrace3 : is similar to GameTrace2 but the indices ηj extracted from the proofs Πj
<k, for j ∈ JqSK are used to

verify if the adversary overpasses the signature limitations. If there exist η such that the public key ppk did
not receive at least η delegation or if there exist a second occurrence of η for the same public key, we abort
the experiment. The adversary’s A advantage is left unmodified under this change: AdvdiffG2,G3

(A) = 0.

Analysis. It is now ensured that A has produced valid proofs of knowledge, in particularly from all the π∗σ,
the elements α3 = hx

2 · g
u·psk
1 , α4 = hx

3 · h
v·psk
4 τ = e(h4, α2)

psk are well formed and correspond to certified
keys. Based on the correctness, we can always recover ppk = (α3/α

′
3)

1/(u−u′) and w = (α4/α
′
4)

1/(v−v′) when
the number of signature has overpass the number obtained in the delegations for one user. Hence, it cannot
win this game unless it forges a SPS-EQ signature for the original signer’s key.
Claim. The adversary’s A advantage in hybrid GameTrace3 is negligible, given the SPS-EQ scheme is existen-
tially unforgeable under adaptive chosen-message attacks, i.e., AdvdiffG2,G3

(A) ≤ AdvEUF-CMA
SPS-EQ .

Reduction. Similar to the conclusion of the proof of unforgeability.

Non-Frameability. Let Gameno−Frame
0 be the experiment of Non-Frameability instantiated with our k-APS

scheme of Section 4.

Gameno−Frame
1 : is similar to Gameno−Frame

0 but we abort if there is a collision for the responses of the hash func-
tion in the elements that the challenger sees. Once more the adversary’s A advantage differs by AdvdiffG0,G1

(A) ≤
Advcol−resistH .

Analysis. This prevent from an adversary outputting u1 = H(m1, 0, α1
2) = H(m2, 0, α2

2) = u2 such that ppk
would be set to 0 in the Trace algorithm.

Gameno−Frame
2 : is similar to Gameno−Frame

1 but we abort the experiment if two proxy public keys produced by
the challenger are the same.
Claim. We claim that the adversary’s advantage in hybrids Gameno−Frame

1 and Gameno−Frame
2 only differs by a

negligible factor, i.e., AdvdiffG1,G2
(A) ≤ |U|/|G1|.

Secret keys psk are sampled uniformly within the group Z∗p, which has the same order as G1. The probability
to draw to equal keys based on |U| independent and identically distributed draw is |U|/|G1|.

Gameno−Frame
3 : is similar to Gameno−Frame

2 but the NIZK proofs πσ in the signatures returned byA are extracted.
The soundness of the proof is verified and the experiment is aborted if valid proof for invalid statements are
provided. As argued before we obtain the following difference in the advantages: AdvdiffG2,G3

(A) ≤ 2 · AdvsoundNIZK .

Analysis. Soundness of the NIZK proof ensures that A holds the witness (pski, xi, ri) associated to πi
σ for

i ∈ {1, 2} and that (α1
3, α

1
4) and (α2

3, α
2
4) are correctly computed. If A wins, then we want to show that we

have extracted the discrete logarithm of the public keys of one of the users.

Gameno−Frame
4 (enabling step): is similar to Gameno−Frame

3 but the challenger defines h4 = gr41 for r4 ←$ Z∗p.
The adversary has indistinguishable viewing of these experiments as the distribution of h4 is left unchanged.

Gameno−Frame
5 (enabling step): is similar to Gameno−Frame

4 but the NIZK proofs πσ are simulated. This leads
to a negligible difference of the adversary’s advantage, i.e., AdvdiffG4,G5

(A) ≤ qSign · AdvZKNIZK.
Claim. The adversary’s A advantage in hybrid Gameno−Frame

5 is negligible, given that the discrete logarithm
problem is hard, i.e., Advno−Frame

G5
(A) ≤ AdvDL

G1
.

Reduction. Consider a reduction R emulating Gameno−Frame
5 based on a challenge X for the DL problem. For

a registration request from A, it sets set ppk = Xsi for si ←$ Zp. On signing requests, the elements involving
the public key ppk are computed as follows: α3 = hx

2 · ppk
u, α4 = hx

3 · ppk
r4·v and τ = e(ppkr4 , α2). All

21



these elements follows the same distribution as before, hence, Gameno−Frame
5 is perfectly simulated. On A’s

success, sk1 and sk2 are extracted consistently from both proofs. The value sk = sk1 · s−1i for the according
index i is returned to R’s challenger. The reduction R has the same probability as A to win against the DL
problem. ⊓⊔

D An Example for the Proof Π<k

In this section, we give more details about the structure of the second part of the proof Π<k, then we show
an example that illustrates how the proof works and why it is linear in l. We first recall some facts about
sigma protocols and or-proofs. A Sigma protocol is made up of three interractions, enabling the exchange of
a commitment R, a challenge c, and a response z. Usually, the simulator of such a protocol for some discrete
logarithm relation in a group of prime order p randomly picks a challenge c ∈ Z∗p and a response z ∈ Z∗p,
then computes the comitment R from (c, z) to complete the simulated transcript (R, c, z).

The Cramer et al. or-proof transformation [14] transfoms n sigma protocols sharing the same challenge
space for the respectives statements/relations (ϕi)i∈JnK and (Ri)i∈JnK denoted ZK {w : (w, ϕi) ∈ Ri} into a

or-proof sigma protocol ZK
{
w :

∨
i∈JnK(w, ϕi) ∈ Ri

}
. This transformation works as follows: assume that the

prover knows the witness wj for the statement/relation ϕj and Rj . It first produces the commitment Rj for
ϕj as in the proof ZK {w : (w, ϕj) ∈ Rj}, then simulates the transcripts (Ri, ci, zi) for the other statements ϕi

where i ̸= j. It sends the commitments (Ri)i∈JnK to the verifier and receives the challenge c. The prover then
computes cj = c⊕

⊕
i∈JnK;i ̸=j ci, computes the response zj from wj , Rj and cj as in ZK {w : (w, ϕj) ∈ Rj},

and returns (ci, zi)i∈JnK to the verifier. The verifier checks that c =
⊕

i∈JnK ci, and checks that each transcript
(Ri, ci, zi) is valid according to ϕi and Ri for i ∈ JnK.

On the other hand, the and-proof transformation we use to build the zero-knowledge proofs

ZK

(wi)i∈JnK :
∧

i∈JnK

(w, ϕi) ∈ Ri


consists in running the proofs ZK {wi : (wi, ϕi) ∈ Ri} in parallel by using a unique challenge c: the prouver
sends the commitments (Ri)i∈JnK, receives a challenge c, and outputs the responses (zi)i∈JnK such that each
(Ri, c, zi) is a valid transcript for the statement/relation (ϕi,Ri).

In what follows, we will show how the second part of the proof Π<k works for the example k = 1001101
given in Section 4:

ZK

s :

(g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0) ∨ ((g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0)
∧(g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0) ∧ ((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0)
∨((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0)
∧(g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0)))))

 .

Throughout this section:

– R denotes the relation:

(g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0) ∨ ((g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0) ∧ (g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0)
∧((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0) ∨ ((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0)
∧(g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0))))).

– R0 denotes the relation (g̃1 = ĝs1 ∧ ỹ0 = ŷs0,0).
– R1,2− denotes the relation:

(g̃1 = ĝs1 ∧ ỹ1 = ŷs1,0) ∧ (g̃1 = ĝs1 ∧ ỹ2 = ŷs2,0) ∧ ((g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0)
∨((g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0) ∨ ((g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0) ∧ (g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0)))).

– R3 denotes the relation (g̃1 = ĝs1 ∧ ỹ3 = ŷs3,0).

22



– R4 denotes the relation (g̃1 = ĝs1 ∧ ỹ4 = ŷs4,0).
– R5,6 denotes the relation (g̃1 = ĝs1 ∧ ỹ5 = ŷs5,0) ∧ (g̃1 = ĝs1 ∧ ỹ6 = ŷs6,0).

Moreover, (Rx, cx, zx) will denote the transcript for the relation Rx in the proof. According to the boolean
structure of the relation R, the challenges c chosen by the verifier and the challenges c0, c1,2−, c3, c4 and c5,6
sent by the verifier must to verify the following equations:

c = c0 ⊕ c1,2− ;

c1,2− = c3 ⊕ c4 ⊕ c5,6 .

If the prover is honest (i.e., R holds), then we have the following cases:
Case η = 1001100: the relations R1,2− and R5,6 hold, but the relations R0, R3 and R4 are not verified.

The prover chooses (c0, z0), (c3, z3) and (c4, z4), then simulates the transcripts for these relations. It then
receives c from the verifier, which fixes the values of c1,2− and c5,6:

c1,2− = c0 ⊕ c ;

c5,6 = c3 ⊕ c4 ⊕ c1,2− .

Since R1,2− and R5,6 hold, the prover is able to compute the responses z1,2− and z5,6 from c1,2− and
c5,6.

Case η = 10010xx (where each x can be replaced by any bit): the relations R1,2− and R4 hold, but
the relations R0, R3 and R5,6 may be not verified. The prover chooses (c0, z0), (c3, z3) and (c5,6, z5,6),
then simulates the transcripts for these relations. It then receives c from the verifier, which fixes the
values of c1,2− and c4:

c1,2− = c0 ⊕ c ;

c4 = c3 ⊕ c5,6 ⊕ c1,2− .

Since R1,2− and R4 hold, the prover is able to compute the responses z1,2− and z4 from c1,2− and c4.
Case η = 1000xxx (where each x can be replaced by any bit): the relations R1,2− and R3 hold, but

the relations R0, R4 and R5,6 may be not verified. The prover chooses (c0, z0), (c4, z4) and (c5,6, z5,6),
then simulates the transcripts for these relations. It then receives c from the verifier, which fixes the
values of c1,2− and c3:

c1,2− = c0 ⊕ c ;

c3 = c4 ⊕ c5,6 ⊕ c1,2− .

Since R1,2− and R3 hold, the prover is able to compute the responses z1,2− and z3 from c1,2− and c3.
Case η = 0xxxxxx (where each x can be replaced by any bit): the relation R0 holds, but the rela-

tions R1,2−, R3, R4 and R5,6 may be not verified. The prover chooses z1,2−, (c3, z3), (c4, z4) and
(c5,6, z5,6), which fixes the value c1,2−:

c1,2− = c3 ⊕ c4 ⊕ c5,6 .

The prover then simulates the transcripts for these relations and receives c from the verifier, which fixes
the values of c0:

c = c0 ⊕ c1,2− .

Since R0 holds, the prover is able to compute the responses z0 from c0.
On the other hand, if the prover is dishonest (i.e., R does not hold), then we have the following cases:
Case η = 1001101: the relations R0, R3, R4, and R5,6 are not verified. The prover chooses (c0, z0), (c3, z3),

(c4, z4), and (c5,6, z5,6) then simulates the transcripts for these relations. It then receives c from the
verifier, which fixes the value of c1,2− in order that the equation c1,2− = c0 ⊕ c holds. However, since
c1,2−, c3, c4, and c5,6 are fixed, the probability that the equation c1,2− = c3⊕ c4⊕ c5,6 holds is 1/p (each
challenge is chosen in Z∗p), which is negligible.

23



Case η = 100111x (where x can be replaced by any bit): this case is similar to the previous one.
Case η = 101xxxx (where each x can be replaced by any bit): the relations R0 and R1,2− are not

verified. The prover chooses (c0, z0) and (c1,2−, z1,2−) then simulates the transcripts for these relations.
It then receives c from the verifier, however the probability that the equation c1,2− = c0⊕ c holds is 1/p,
which is negligible.

Case η = 11xxxxx (where each x can be replaced by any bit): this case is similar to the previous one.
This example covers all cases in the structure of the binary word k, and can easily be generalized. Note

that the size of the transcript of this proof is linear in l. As the prover/verifier needs to check the equations
on the challenges that follow a tree structure, the time complexity is quadratic in l, however, we note that
the number of exponentiations remains linear in l, making this proof efficient.

E Security Model for k-Times Anonymous Sanitizable Signatures

In this section we propose a fully detail model for k-times Anonymous Sanitizable Signature schemes.

Definition 6 (k-SAN). A k-times Anonymous Sanitizable Signature scheme (k-SAN) is a tuple of polynomial
time algorithms:

Setup(1λ) : given a security parameter, returns public parameters params.
KeyGen(1λ, k, n) : given a security parameter and two integers k and n, return a pair of key (sk, pk).
SaKeyGen(1λ) : given the public parameters, a security parameter, return a pair of key (ssk, spk).
Delegate(sk, spk, k) : given the keys sk and spk and an integer k, return a delegation del.
Sign(m,ADM, sk, spk) : given the keys sk, spk, a message m and a admissible set ADM ⊂ JnK, return a

signature σ.
Sanitize(m,σ,MOD, ssk, pk, del, η) : given the keys pk, ssk, a message-signature pair (m,σ), a modification

MOD, a delegation del and a signature index η, return a signature σ′.
Verify(pk,m, σ) : given a key pk, a message m and a signature σ, returns 0 or 1.
Link(pk,m, σ,m′, σ′) : given a key pk, two message-signature pair m,σ and m′, σ′, return an identity ppk

and a witness w or ⊥.
Trace(w, σ) : given a witness w and a signature σ, return 0 or 1.

The security properties of sanitizable signatures have already been investigated in numerous previous
works [1, 4, 11, 3]. We have adapted the existing security properties to the newly introduced model. We also
add the properties related to the k-times mechanism: anonymity, traceability and non-frameability. These
properties stayes consistant with what has been defined for proxy signatures (Section 3) as both notions
share conceptual similarities but diverge in practical usages. Security experiments are provided in Figure 3,
with associated oracles detailed in Figure 4 and 5.

Unforgeability. The users cannot generate a valid signature without knowing a secret key which has
obtained a delegation. A k-times anonymous sanitizable signature is unforgeable when for any PPT adversary
A, the probability that A wins the SUF experiment is negligible for every n ∈ N.

Immutability. A sanitizable signature is immutable when no adversary is able to sanitize with unauthorized
modification. A k-times anonymous sanitizable signature is immutable when for any PPT time adversary A,
the probability that A wins the Immut experiment is negligible for every n ∈ N. The adversary has access
to a delegation and a signature oracle.

Transparency. The verifier cannot decide whether a given signature has been sanitized or not. A k-times
anonymous sanitizable signature is transparent when for any PPT adversary A, the probability that A wins
the {Otran

Sa/Si,Odel,OSign,Otran
San }-Sanitize experiment is negligible for every n ∈ N.

Invisibility. The invisibility property prevents an adversary which is not the signer nor the sanitizer of
a signature from determining any information on the modifiable blocks.A k-times anonymous sanitizable
signature is invisible when for any PPT adversary A, the probability that A wins the {OInvis

LRADM,Odel,OSign,
OInvis

San }-Sanitize experiment is negligible for every n ∈ N.

24



ExpSUF
k-SAN,A(λ, n)

1 : S ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k, n)

4 : (spk, ssk)← SaKeyGen(1λ)

5 : del← Delegate(sk, spk, k)

6 : (m
∗
, σ

∗
)← AOSUF/unlink

Sign
,OSUF

San (pk, spk)

7 : if ∃ADM, spk, (m∗
, σ

∗
,ADM, spk) /∈ S :

8 : return Ver(m∗
, σ

∗
, pk)

9 : return 0

ExpImmut
k-SAN,A(λ, n)

1 : S ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k, n)

4 : (m
∗
, σ

∗
)← AOdel,OSign (pk)

5 : if (Ver(m∗
, σ

∗
, pk) = 1)∧

6 : (∀ MOD, ∀(m,σ,ADM, spk) ∈ S

7 : s.t. ADM(MOD) = 1,m
∗ ̸= MOD(m)) :

8 : return 1

9 : return 0

ExpAno
k-SAN,A(λ, n)

1 : b←$ {0, 1}, η0, η1 ← 0, γ ← 0,S,Schal ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k, n)

4 : for j ∈ {0, 1},

5 : (spkj , sskj)← SaKeyGen(1λ)

6 : t← AOdel,OSign (pk, spk0, spk1)

7 : if t /∈ JkK, return b

8 : for j ∈ {0, 1},
9 : delj ← Delegate(sk, spkj , t)

10 : b
∗ ← AOdel,OSign,O

Ano
San ,OAno

chal−Sign,O
Ano
chal−San (pk, spk0, spk1)

11 : if ηb ≥ t ∨ ηb−1 ≥ t− γ, return b

12 : return b = b
∗

ExpO−Sanitize
k-SAN,A (λ, n)

1 : b←$ {0, 1}
2 : S,H ← ∅

3 : params← Setup(1λ)

4 : (pk, sk)← KeyGen(1λ, k, n)

5 : (spk, ssk)← SaKeyGen(1λ)

6 : del← Delegate(sk, spk, k)

7 : b
∗ ← AO

(pk, spk)

8 : return b = b
∗

Expno−Frame
k-SAN,A (1λ, n)

1 : U,D,H ← ∅

2 : (pk, sk)←$ KeyGen(1λ, k, n)

3 : (m
∗
i , σ

∗
i )

2
i=1 ← A

Ono−Frame
Register

,Odel,O
Ano/no−Frame
Sign (pk)

4 : (ppk, w)← Link(pk,m∗
1 , σ

∗
1 ,m

∗
2 , σ

∗
2 )

5 : if ∃ssk s.t. (ppk, ssk, 1) ∈ U : return 1

6 : return 0

ExpTrace
k-SAN,A(λ, n)

1 : S,D ← ∅

2 : params← Setup(1λ)

3 : (pk, sk)← KeyGen(1λ, k, n)

4 : (m
∗
i , σ

∗
i )

qs
i=1 ← A

Otrace
del ,OSign (pk)

5 : return CheckTrace(pk, (m∗
i , σ

∗
i )

qs
i=1)

Odel(sk, spk, l ≤ k)

1 : return Delegate(sk, spk, l)

OSign(sk, spk,m,ADM)

1 : σ ← Sign(m,ADM, sk, spk)

2 : S ← S ∪ {(m,σ,ADM, spk)}
3 : return σ

OSUF/unlink
Sign (sk, spk,m,ADM)

1 : σ ← Sign(m,ADM, sk, spk)

2 : S ← S ∪ {(m,σ,ADM, spk)}
3 : return σ

Figure 3: Experiments and Oracles for k-Times Anonymous Sanitizable Signatures. (Additional Oracles
are Provided in Figure 4 and 5. Oracles inputs provided by the adversary are underlined, the other are

provided by the challenger. Sets U ,D,S,H are global parameters.)

25



Transparency Oracles
Otran

Sa/Si(b, sk, ssk, del,m,ADM,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k :

2 : return ⊥
3 : σ ← Sign(MOD(m),ADM, sk, spk)

4 : if b = 0:

5 : σ ← Sign(m,ADM, sk, spk)

6 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

7 : H ← H∪ {η}
8 : return σ

Otran
San (ssk, pk, del,m, σ,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k :

2 : return ⊥
3 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

4 : H ← H∪ {η}
5 : return σ

Unforgeability Oracle
OSUF

San (ssk, pk, del,m, σ,MOD, η)

1 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

2 : S ← S ∪ {(MOD(m), σ)}
3 : return σ

Invisibility Oracles
OInvis

LRADM(b, sk, spk,m,ADM0,ADM1)

1 : σ ← Sign(m,ADMb, sk, spk)

2 : S ← S ∪ {(m,σ,ADM0 ∩ ADM1, spk)}
3 : return σ

OInvis
San (ssk, pk, del,m, σ,MOD, η)

1 : if for some ADM, ((m,σ,ADM, spk) ∈ S)
2 : ∧ (ADM(MOD) = 0) : return ⊥
3 : if Verify(m,σ, pk) = 0, return ⊥
4 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

5 : S ← S ∪ {(MOD(m), σ,ADM, spk)}
6 : return σ

Unlinkability Oracles
Ounlink

San (ssk, pk, del,m, σ,MOD, η)

1 : if ADM(MOD) = 0 ∨ η ∈ H ∨ η ≥ k : return ⊥
2 : if ((m,σ,ADM, spk) ∈ S) ∧ (ADM(MOD) = 0,

3 : for some ADM) : return ⊥
4 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

5 : S ← S ∪ {(MOD(m), σ,ADM, spk)}
6 : H ← H∪ {η}
7 : return σ

Ounlink
LRSan(b, ssk, pk, del, (mi,MODi, σi)i∈{0,1}, η)

1 : if ∃i ∈ {0, 1},ADMi(MODi) = 0 ∨
2 : ∃i ∈ {0, 1},Verify(mi, σi, pk) = 0

3 : ∨ ADM0 ̸= ADM1 ∨MOD0(m0) ̸= MOD1(m1)

4 : ∨ η ∈ H ∨ η ≥ k : return ⊥
5 : σ ← Sanitize(mb, σb,MODb, ssk, pk, del, η)

6 : S ← S ∪ {(MODb(mb), σ,ADMb, spk)}
7 : H ← H∪ {η}
8 : return σ

Traceability Oracle
Otrace

del (sk, spk, l ≤ k)

1 : del← Delegate(sk, spk, l)

2 : D ← D ∪ {(spk, del, l)}
3 : return del

Non-Frameability Oracles
Ono−Frame

Register (U , spk)
1 : if spk =⊥,

2 : (spk, ssk)←$ SaKeyGen(1λ)

3 : U ← U ∪ {(spk, ssk, 1)}
4 : else U ← U ∪ {(spk,⊥, 0)}
5 : return spk

Ono−Frame
del (sk, spk, l ≤ k)

1 : del← Delegate(sk, spk, l)

2 : D[spk]← (del, l)

3 : H[spk]← ∅
4 : return del

Ono−Frame
San (pk, spk,m, σ,MOD, η)

1 : Extract (spk, ssk, b) from U
2 : if b = 0 ∨ D[spk] =⊥ ∨η ∈ H[spk] :

3 : return ⊥

4 : D[spk]
p−→ (del, l)

5 : if η > l : return ⊥
6 : σ ← Sanitize(m,σ,MOD, ssk, pk, del, η)

7 : H[spk]← H[spk] ∪ {η}
8 : return σ

Figure 4: Oracles for k-Times Anonymous Sanitizable Signatures. (Oracles inputs provided by the
adversary are underlined, the other are provided by the challenger. Sets U ,D,S,H are global parameters.)

26



Anonymity Oracle
OAno

San (pk, (sski, deli)i∈{0,1}, j,m, σ,MOD)

1 : if ∄ADM, (m,σ,ADM, spkj) ∈ S, s.t. (ADM(MOD) = 1) :

2 : return ⊥
3 : σ ← Sanitize(m,σ,MOD, sskj , pk, delj , ηj)

4 : S ← S ∪ {(MOD(m), σ,ADM, spkj)}

5 : ηj ← ηj + 1

6 : return σ

OAno
chal−Sign(sk, (sski, deli)i∈{0,1},m,ADM)

1 : σ ← Sign(m,ADM, sk, spkb)

2 : Schal ← Schal ∪ {(MOD(m), σ,ADM)}
3 : return σ

OAno
chal−San(sk, (sski, deli)i∈{0,1},m, σ,MOD)

1 : if ∄ADM, (m,σ,ADM) ∈ Schal, s.t. (ADM(MOD) = 1) :

2 : return ⊥
3 : σ ← Sanitize(m,σ,MOD, sskb, pk, delb, ηb)

4 : Schal ← Schal ∪ {(MOD(m), σ,ADM)}
5 : ηb ← ηb + 1, γ ← γ + 1

6 : return σ

Figure 5: Oracles for k-Times Anonymous Sanitizable Signatures. (Oracles inputs provided by the
adversary are underlined, the other are provided by the challenger. Sets S are global parameters.)

Unlinkability. Considering a fixed sanitizer assigned with two signature, the verifier cannot link a sanitized
signature with its original version. A k-times anonymous sanitizable signature is unlinkable when for any
PPT adversary A, the probability that A wins the {Ounlink

LRSan,Odel,OSUF/unlink
Sign ,Ounlink

San }-Sanitize experiment is
negligible for every n ∈ N.

F Proof of Theorem 2

Proof. Each of the 8 properties are proven individually to establish the security of the k-SAN. It’s important
to note that properties of unforgeability, immutability, k-traceability, and non-frameability only necessitate
collision-resistance in the hash function, whereas invisibility requires programming the random oracle in
the proof. Transparency, unlinkability, and anonymity proofs, on the other hand, are not dependent on
the specific hash function employed. These reductions are applicable for any value of n ∈ N. Denote by
AdvdiffGi,Gi+1

(A), the probability |Pr[Gi(A) = 1]− Pr[Gi+1(A) = 1]|.

Correctness. It is verified by investigation.

Unforgeability. Let GameSUF0 denote the experiment ExpSUFk-SAN,A(1
λ) instantiated by the k-Times Anonymous

Sanitizable Signature of Section E.
Based on the condition (m∗, σ∗, ·, ·) /∈ S, we are ensured that A outputted a signature that was not

outputted by the challenger. The SoK proof πσ signs all elements in the signature, hence, any modification
of the signature implies modifying πσ. We elaborate our reduction based on this fact.

GameSUF1 : we abort if there is a collision for the responses of the hash function. As argued in the proof of
Theorem 1, the adversary’s A advantage differs by a negligible factor, i.e.,

AdvdiffG0,G1
(A) ≤ Advcol−resistH .

27



GameSUF2 : the SoK πMOD and πσ, and the NIZK proof Π<k are simulated based on their respective simulator
for each request to the oracles OSign and OSan. This reduction is achieved straightforwardly for each of the
proofs independently leading to

AdvdiffG1,G2
(A) ≤ (qSign + qSan) · (2 · AdvSimSoK + AdvZKNIZK).

GameSUF3 (enabling step): instead of sampling h4 ←$ G1, we sample a random value r4 ←$ Z∗p and define
h4 = gr41 . This elements keeps the same distribution, no modification of the advantages is needed.

GameSUF4 : based on the extraction of ssklog∗, we abort if the adversary A has produced a signature passing
all other conditions and such that spk = g

ssklog
∗

1 . A similar reduction for multiples users has been given in
the experiment Gameunf5 of the proof of Theorem 1. This leads

AdvdiffG3,G4
(A) ≤ AdvDL

G1
.

GameSUF5 : based on the extraction of sk∗log, we abort if the adversary A has produced a signature passing

all other conditions such that pk = g
sk∗log
1 . Based on similar arguments this leads to:

AdvdiffG4,G5
(A) ≤ AdvDL

G1
.

Analysis. The challenger reject any forged NIZK or SoK without knowledge of the witnesses. Moreover any
valid NIZK or SoK based on the secret keys of the signer or a sanitizer make the challenger returns failure. It
is still required that A has outputted a valid SoK proof πσ otherwise failing the verification. Hence, it must
be for a different key, thus, the adversary has obtained a valid delegation for another public sanitization key.
Claim. The adversary’s A advantage in hybrid GameSUF5 is negligible, given the SPS-EQ scheme is existentially
unforgeable under adaptive chosen-message attacks, i.e.,

AdvSUFG5
(A) ≤ AdvEUF-CMA

SPS-EQ .

Reduction. This reduction is similar to the one provided to conclude to unforgeability of the k-APS signature
in Theorem 1.

Immutability. Let game GameImmut
0 represent experiment ExpImmut

k-SAN,A(λ) instantiated with our k-Times
Anonymous Sanitizable Signature.

GameImmut
1 : we abort if there is a collision for the responses of the hash function in the elements that the

challenger sees during the experiment. As argued before, the adversary’s A advantage in hybrids GameImmut
0

and GameImmut
1 only differs by a negligible factor, i.e.,

AdvdiffG0,G1
(A) ≤ Advcol−resistH .

GameImmut
2 : we extract the SoK πMOD recovering a witness c such that, for all i ∈ JnK, any of the these

two statement: ui = H(mi, i, 0)
c ∧ vi = H(mi, i, 1)

c or ui = H(i, 0)c ∧ vi = H(i, 1)c, should hold true. If
the above does not hold the challenger aborts the experiment. The reduction is similar to the previous ones
involving the simulation-extractability of a SoK. We conclude that the adversary’s A advantage differs by a
negligible factor, i.e.,

AdvdiffG1,G2
(A) ≤ AdvSimSoK.

Claim. The adversary’s A advantage in hybrid GameImmut
2 is negligible, given the SPS-EQ scheme is existen-

tially unforgeable under adaptive chosen-message attacks, i.e.,

AdvImmut
G2

(A) ≤ AdvEUF-CMA
SPS-EQ .

28



Reduction. Once again, this reduction is similar to the one provided to conclude to unforgeability of our
k-APS signature in Theorem 1.

Transparency. Let Gametran0 represent Exp
{Otran

Sa/Si,Odel,OSign,Otran
San }−Sanitize

k-SAN,A (λ) instantiated with our k-SAN signa-
ture.

Gametran1 : on a call to OSan, we output new SPS-EQ signatures σ̂ instead of randomised ones.
Claim. We claim that hybrids Gametran0 and Gametran1 are identically distributed, i.e.,

AdvdiffG0,G1
(A) = 0.

Reduction. The reduction R is straightforward and has been provided in a similar context for GameAno1 in
the proof of Theorem 1.

Gametran2 : the same change as in hybrid Gametran1 is applied for the signature σMOD. The reduction is
analogous, hence,

AdvdiffG1,G2
(A) = 0.

Gametran3 : the signature of knowledge πσ produced during signature or sanitization on calls from A to
oracles OSign, OSan or OSa/Si are now simulated. This reduction is achieved straightforwardly for each of the
proofs independently. The adversary’s A advantage differs by,

AdvdiffG2,G3
(A) ≤ (qSign + qSan + qSa/Si) · AdvSimSoK.

Gametran4 : instead of computing α3 = hx
2 · g

u·ssklog
1 , we sample it at random α3 ←$ G1, when producing the

signature σ.
Claim. We claim that the adversary’s A advantage in hybrids Gametran3 and Gametran4 only differs by a
negligible factor, i.e.,

AdvdiffG3,G4
(A) ≤ qSa/Si · AdvDDH

G1
.

Reduction. Based on a DDH challenge (X = gx1 , Y = gy1 , Z), we highlight the reduction to prove our claim.
Let h2 = X during the setup, ỹ = Y , while producing the signature σ and generating all ỹi in order to
preserve ỹ =

∏l
i=1 ỹi. Among the l elements ỹi, l − 1 are generated and the remaining element is define as

ỹl = ỹ ·
(∏l−1

i=1 ỹi

)−1
. Here all elements follow an uniform distribution. . Note that we are simulating the

NIZK proof Π<k and the SoK πσ, hence allowing us to be unaware of the witness. Then set α3 = Z · gu·ssklog1 .
Knowing the discrete logarithm of h3, we can compute α4 = Y r3 · hv·ssklog

4 . In order to simulate the signing
oracle, we execute it as usual. The values defined in the setup are used, i.e., h2 = X. Note that the game
is aborted if the adversary tries to query a signature for the same index a second time, hence no other
signature for index i∗ could be computed nor leak information to the adversary. When Z = gxy1 we have
perfectly simulated Gametran3 and when Z ←$ G1, we have perfectly simulated Gametran4 . Hence distinguishing
between these two experiments implies distinguishing between the two event of the DDH problem.

Gametran5 : instead of computing α4 = hx
3 · h

v·ssklog
4 , we sample it at random α4 ←$ G1 when producing the

signature σ. The reduction to show indistinguishablility of these two problem is analogous to the previous
one, we directly conclude that

AdvdiffG4,G5
(A) ≤ qSa/Si · AdvDDH

G1
.

Gametran6 : instead of computing τ = e(h4, α2)
ssklog , we sample Z ←$ G1 and define τ = e(Z,α2) for any

sanitized signature.

29



Claim. We claim that the adversary’s A advantage in hybrids Gametran5 and Gametran6 only differs by a
negligible factor, i.e.,

AdvdiffG5,G6
(A) ≤ AdvDDH

G1
.

Reduction. We consider a reduction R emulating experiments Gametran5 and Gametran6 against a distinguisher
A. This reduction takes as input a DDH challenge (X,Y, Z) ∈ G3

1. It defines h4 = X during the setup
and spklog = Y during the key generation of the sanitizer. The remaining actions of algorithms Setup and
SaKeyGen stay unchanged. The algorithms KeyGen and Delegate are not affected by this change and can still
be execute as they should be in Gametran5 and Gametran6 . In contrary, sanitizations require slight changes at
the end of the algorithms. First, relying on the previously produced signature σ and the delegation del, we
can execute sanitization up to the signature σMOD and produce x, ỹ, s̃pk, α1, u, v and α2 just like they used
to be in description of the scheme in Section 6. Since the previous games, α3 and α4 are sampled at uniform
in G1. Our concern is now on τ supposed to be computed as τ = e(h4, α2)

ssklog = e(h
ssklog
4 , α2). Based on the

DDH challenger define τ = e(Z,α2). When Z = gxy we perfectly emulate Gametran5 , otherwise Gametran6 . At
last the signature of knowledge is emulated which produce valid signatures. It is important to ensure that
the threshold of k signature is not overpasses as no tracing could be possible for the produced signature.
A condition checks the limit of k signatures in both OSa/Si and Otran

San . The bit returned by the adversary A
is then transferred as the decision against the DDH challenge. R has a probability of success similar to the
success of the distinguisher A. This conclude to our claim.

Gametran7 : instead of sampling Z ←$ G1 and computing τ = e(Z,α2) for all signatures produced by the
sanitizer, we sample a new Z ←$ G2 for each of the signatures and define τ = e(g1, Z).
Claim. We claim that the adversary’s A advantage in hybrids Gametran6 and Gametran7 only differs by a
negligible factor, i.e.,

AdvdiffG6,G7
(A) ≤ Advclass−hidG2

.

Reduction. Consider a reduction R based on a challenge from the class hiding experiment in G2 playing
against a distinguisher A. The reduction R receives two elements M and M (b) both in G(qSan+qSa/Si)

2 . We
only modify how α2 and τ are computed, the rest remains similar to both Gametran6 and Gametran7 . We refer
to α2 (resp. τ) on the ith call from A to the oracle OSa/Si or Otran

San as α2,i (resp. τi). Let α2,i = Mi and
τi = e(g1,M

(b)
i ) for all i ∈ JqSan + qSa/SiK. Based on the value of b, we have τi = e(g1,M

r
i ), for all i and

a integer r fixed for all sanitizations, otherwise, τi = e(g1,M
′
i), for a random element M ′i . As a result, we

emulate perfectly one or other of the games. We can forward the adversary A’s response to the challenger
of the class hiding experiment and we win against this game with equal probability. This prove the claim.

Gametran8 : on execution of the sanitization algorithm on calls to OSa/Si, we sample ŷi,j ←$ G1 instead
of defining them as a power of the ŷi,j = yri,j . We have replaced the randomisation of these elements by
newly produced, one which are then signed since Gametran1 . Hence the signature σ̂ remains valid under this
modification.
Claim. We claim that the adversary’s A advantage in hybrids Gametran7 and Gametran8 only differs by a
negligible factor, i.e.,

AdvdiffG7,G8
(A) ≤ 2 · qSa/Si · l · AdvDDH

G1
.

Reduction. We consider a sequence of hybrids H2i+j with associated reduction Ri,j for i ∈ JqSa/Si · lK and
j ∈ {0, 1}. All reductions take as input the decision Diffie-Hellman instance (X,Y,X) in G1 and instead of
defining ĝ1 = gr1 and ŷi,j = yri,j after having defined yi,j = g

xi,j

1 in the delegation process, it sets ĝ1 = X,
yi,j = Y and ŷi,j = Z. To compute ŷi′,j′ , for i′ > i,and j′ > j, its set ŷi′,j′ = Xxi′,j′ . In order to compute
spki,j = spklog

xi,j = y
ssklog
i,j , we take advantage of the knowledge of ssklog and proceed as before for the other

parts of the algorithms. Ri,j simulate the rest of the experiment straightforwardly and on obtaining the
answer of a distinguisher between experiments Gametran7 and Gametran8 , forward it to the DDH challenger.
Clearly, if the tuple (X = gx1 , Y = gy1 , X = gxy1 ) is a decisional Diffie-Hellman tuple, then Ri,j perfectly

30



simulates H2i+j . On the other hand, if the tuple is not a strong decisional Diffie-Hellman tuple, then Ri,j

simulates H2i+j+1 perfectly. It is easy to see that H1 correspond to Gametran7 and that H2·qSa/Si·l+2 correspond
to Gametran8 . The claim follow since we proceeded to a sequence of 2 · qSa/Si · l reductions to the DDH problem.

Gametran9 : on calls to OSa/Si, while executing the sanitization algorithm, we sample all elements ŝpkk,l ←$

G1 instead of defining them as a power of the spkk,l.
Claim. We claim that the adversary’s A advantage in hybrids Gametran8 and Gametran9 only differs by a
negligible factor, i.e.,

AdvdiffG8,G9
(A) ≤ qSa/Si · Advclass−hidG1

.

Reduction. We consider a sequence of hybrids Hi with associated reduction Ri for i ∈ JqSa/SiK. Where in Hi,
the elements ŝpkk,l are sampled as ŝpkk,l ←$ G1 during the first i calls to sanitization of the qSa/Si oracle
instead of being computed as they used to be.

Consider a reduction Ri in between each of the hybrids Hi and Hi+1. The reduction Ri simulating
either of Hi or Hi+1 with similar probability for an adversary A trying to distinguish in between those
two hybrids. The reduction Ri takes as input a challenge (m,m′) ∈ (G2l

1 )
2 from the challenger of the

class-hiding experiment in G1. The vector m′ is either a randomisation of m or a completely new message
sampled uniformly at random. Ri simulate the identical parts of the experiments Hi or Hi+1 except that
it sets (spk1,0, · · · , spkl,1) = m and based on ssklog sets yk,l = spk

−ssklog
k,l , for all k ∈ JlK and l ∈ {0, 1}.

As the elements of m are randomly sampled at uniform, the distribution of the yk,l is unchanged. Based
on the received message m′ = (m′1, · · · ,m′2l), it defines (ŝpk1,0, · · · , ŝpkl,1) = m′. Note that as we are only
generating new SPS-EQ signatures since the change introduced in experiment Gametran1 , hence the signature σ̂
remains valid under the proposed change. Moreover the elements α3, α4 and τ are sampled at random during
sanitization in OSa/Si, hence they are independent of the values of the ŝpkj and we can simulate either Hi or
Hi+1 based on the received challenge m′. Trying to distinguish between both experiments, A returns a bit
b, the latter is forwarded to the challenger of the class-hiding experiment. R wins with the same probability
that A has to win against this experiment.
Claim. An adversary A against Gametran9 has no advantage, i.e., AdvtranG9

(A) = 0.
In Gametran9 we reached the point where algorithmsx Sign(m,ADM, sk, spk) and Sanitize(m,σ,MOD, ssk,

pk, del, η) leads to executing the same algorithm. Indeed, in the Sanitize algorithms all elements included in
the signature follow the same distribution as in Sign. Hence, an adversary is unable to distinguish a signature
σ ← Sign(m,ADM, sk, spk) outputted by the OSa/Si oracle from a signature produced by σ ← Sanitize(m,σ,
MOD, ssk, pk, del, η) as the latest correspond to a second execution of σ ← Sign(m,ADM, sk, spk).

Invisibility. Let GameInvis0 represent Exp{O
Invis
LRADM,Odel,OSign,OInvis

San }−Sanitize
k-SAN,A (λ) instantiated with our k-Times Anony-

mous Sanitizable Signature in the ROM.

GameInvis1 : we abort the experiment if a signature given to one of the oracle by A is valid and has not
been produced by one of the oracles.
Claim. We claim that the adversary’s A advantage in hybrids GameInvis0 and GameInvis1 only differs by a
negligible factor, i.e.,

AdvdiffG0,G1
(A) ≤ AdvSUFk-SAN.

Reduction. The reduction is straightforward based on a record of the produced signatures kept by the
challenger.

GameInvis2 : we abort the game if there is a collision in the responses of the random oracle.
Claim. We claim that the adversary’s A advantage in hybrids GameInvis1 and GameInvis2 only differs by a
negligible factor, i.e.,

AdvdiffG1,G2
(A) ≤ qH

2λ
.

We can apply a union bound over all qh queries to the random oracle, and the claim follows.

31



GameInvis3 : we rely on the perfect simulatability of the signature of knowledge πMOD to make them inde-
pendent of the witness a used to compute values ui and vi for i ∈ JnK while signing or sanitizing a signature
on calls to the oracles OLRADM and OInvis

San . The same reduction has already been provided, hence we directly
conclude that the adversary’s A advantage in hybrids GameInvis2 and GameInvis3 only differs by a negligible
factor, i.e.,

AdvdiffG2,G3
(A) ≤ (qLRADM + qSan) · AdvSimSoK.

Analysis. The SoK being simulated, πMOD does not allow to recover the witnesses. Thus, the value a could
only leak through the ciphertext e.

GameInvis4 : on calls to OLRADM, the ciphertext e is sampled at random during the signature. A record A of
the random value e, a is kept. On calls to OInvis

San for messages signed within OLRADM, instead of decrypting e
the value a is recovered from the record.
Claim. We claim that the adversary’s A advantage in hybrids GameInvis3 and GameInvis4 only differs by a
negligible factor, i.e.,

AdvdiffG3,G4
(A) ≤ qLRADM · AdvIND-CCA

E .

Reduction. The reduction is direct based on the IND-CCA property of the encryption scheme E . It is achieved
through a sequence of hybrids experiment H0, · · · , HqLRADM

. Experiment H0 is defined as GameInvis3 . For all
i ∈ JqLRADMK, Hi execute the same action as Hi−1 except that on the ith call to OLRADM, it generate the
value e by sampling it at random in the encryption space.

To obtain a reduction Ri in between Hi−1 and Hi, for all i ∈ JqLRADMK. The reduction Ri simulate
either Hi−1 or Hi to an adversary A trying to distinguish between the two games. Ri obtains the sanitizer
public encryption key pke from the challenger of the IND-CCA encryption scheme. On the i − 1 first calls
(except for i = 1 as there exist no call 0) to OLRADM, samples the values e at random during signature. On
call i to OLRADM, sends a random value a0 and a to the IND-CCA challenger and obtain a response c, set
e = c and include it in the signature. On obtaining the decision bit from A, Ri sends the same answer to
IND-CCA challenger. As this encrypted value is the only difference between all the Hi−1 and Hi, it is as hard
to distinguish both hybrids as to win against the IND-CCA challenge.

GameInvis5 : on a call to OSan, we output new SPS-EQ signatures σ̂ instead of randomised ones.
Claim. We claim that hybrids GameInvis4 and GameInvis5 are identically distributed, i.e.,

AdvdiffG4,G5
(A) = 0.

Reduction. The reduction R is straightforward. Consider “maliciously” generated keys, outputted by R exe-
cuting (pkdelSPS-EQ, sk

del
SPS-EQ) ← KeyGenSPS-EQ(1

λ, l). Hence, passing any potential key verification as honestly
generated. Answer every signature and sanitization request as usual. All request to OSa/Si are answered by
producing a new signature σ̂ of the randomised ui, vi when sanitization is required instead of randomizing
the existing one. From the Signature Adaptation property, ChgRep and Sign outputs identically distributed
signatures when executed based on the same key and messages randomised by the same random value.

GameInvis6 : this game is the same as the previous one, except that the values ui and vi computed during one
of the signature of the OLRADM oracle are generated randomly. The signature of knowledge πMOD is already
simulated, hence can be computed even for these random elements.
Claim. We claim that the adversary’s A advantage in hybrids GameInvis5 and GameInvis6 only differs by a
negligible factor, i.e.,

AdvdiffG5,G6
(A) ≤ qLRADM · Advclass−hidSPS-EQ .

Reduction. We use a sequence of hybrids to demonstrate this claim. For all i ∈ J0, qLRADMK, consider the
sequence of hybrids Hi where for all j ≤ i, the values uj and vj are chosen at random while executing
OLRADM and the remaining ones are defined as originally prescribed in experiment GameInvis5 . Now we show

32



through a reduction that the difference between two consecutive hybrids are negligible: the reduction obtains
the setup for the SPS-EQ signature from the challenger of the class hiding experiment, based on these setup
it generate its own keys. The remaining of the setup and the set definitions are executed as usual. The
classe-hiding experiment is executed for messages in G2n

1 . We obtain two messages m and mb. The element
m is used to program the random oracle: for i ∈ ADM H(mi, i, 0)← mi, H(mi, i, 1)← m2i and for i /∈ ADM,
H(i, 0)← mi, H(mi, i, 1)← m2i. The second message mb is used as (u1, · · · , un, v1, · · · , vn). The remaining
of the algorithms are executed as it is done in both hybrids Hi and Hi+1. Once an answer b ∈ {0, 1} is
received from A, it is forwarded to the DDH challenger as the reduction’s response.
Claim. An adversary A against GameInvis6 has no advantage, i.e., AdvInvis,G6

A = 0.
The adversary’s A response is a decisional bit b that should reflect if the signature outputted by OLRADM

can be modified based on ADM0 or ADM1. Considering that all signatures outputted by OLRADM are now
independent of ADM0 and ADM1. We conclude that the adversary’s bit distribution is independent of the
uniform distribution of b. As a direct consequence the distribution of b = b∗ is uniform within {0, 1} and
then AdvInvisG6

(A) = 0.

Unlinkability. Let Gameunlink0 represent Exp
{Ounlink

LRSan,Odel,OSUF/unlink
Sign ,Ounlink

San }−Sanitize
k-SAN,A (λ) instantiated with our k-Times

Anonymous Sanitizable Signature.
Starting from Gameunlink0 and executing Sanitize(mb, σb,MODb, ssk, pk, del, η) on calls to OLRSan, we intro-

duces independent changes leading to an execution which is independent of the bit b. As these steps only
implies negligible changes to the adversary’s advantage this is sufficient to show unlinkability. We highlight
that the delegation del, the sanitizer’s key and the signature index η remains unchanged through this process.
As the tuple del returned in the signature only depends on these value, both values will lead to identically
distributed elements.

Gameunlink1 : on a call to OLRSan, we output new SPS-EQ signatures σMOD instead of randomised ones.
Claim. We claim that hybrids Gameunlink0 and GameInvis1 are identically distributed, i.e.,

AdvdiffG0,G1
(A) = 0.

Reduction. The reduction R is straightforward. Consider “maliciously” generated keys, outputted by R exe-
cuting (pkdelSPS-EQ, sk

del
SPS-EQ) ← KeyGenSPS-EQ(1

λ, n), hence, passing any potential key verification as honestly
generated. Answer every signature and sanitization request as usual. All request to OLRSan are answered by
producing a new signature σMOD of the randomised ui, vi when sanitization is required instead of randomizing
the existing one. From the Signature Adaptation property, ChgRepSPS-EQ and SignSPS-EQ outputs identically
distributed signatures when executed based on the same key and messages randomised by the same random
value.

Under this change, the signature has been totally randomised during the sanitization, all element being
newly produced at sanitization. The NIZK proof Π<k is new and only depends on witness η and del. While
the mandatory equality ADM0 = ADM1, implies that the immutable base of both message is the same. Hence
the ui,j and the vi,j are the same for all i ∈ JlK and j ∈ {0, 1} and still randomised by a value b, stored in a
new ciphertext. Finally the last part of the signature is only dependent of the randomised values and does
not leak any information on the previously used message. Under these considerations, we conclude to our
proof.

Anonymity. Let game GameAno0 represent experiment ExpAnoπ,A(λ) instantiated with our k-Times Anonymous
Sanitizable Signature.

In contrary to the unlinkability where the message and the modifications under sanitization change for
a fixed sanitizer, in the anonymity experiment the delegation delb and the sanitizer’s identity i.e., spkb are
changing based on the challenge bit b while the message and the modification is fixed. If we shown that
there are only negligible steps between an execution of Sign(m,ADM, sk, spkb) and Sanitize(m,σ,MOD, sskb,

33



pk, delb, η) and their respective execution that does not rely on b, then, we can conclude that the identity of
the sanitizer remains hidden.

GameAno1 : during the sanitization executed on call to oracle OAno
chal−San of the experiment ExpAnoπ,A(λ), we

output new SPS-EQ signatures σ̂ instead of randomising it from σ̂ of delb.
Claim. We claim that hybrids GameAno0 and GameAno1 are identically distributed, i.e.,

AdvdiffG0,G1
(A) = 0.

Reduction. The reduction R is straightforward by an hybrid over the η ≤ t ≤ k signatures randomised
by the challange sanitization orcale. Consider the keys outputted by R executing (pkdelSPS-EQ, sk

del
SPS-EQ) ←

KeyGenSPS-EQ(1
λ, 4l+1). Answer every signature and sanitization request as usual. The sanitization request

σ ← Sanitize(m,σ,MOD, sskb, pk, delb, η) and answeres it by producing a new signature σ̂ of (ĝ1, ŷ1,0, · · · , ŝpkl,1)
instead on the randomised vector σ̂ of delb. From the signature adaptation property, ChgRepSPS-EQ and
SignSPS-EQ outputs identically distributed signatures when executed based on the same key and messages
randomised by the same random value.

GameAno2 : instead of producing the proof πσ on calls to the sanitization oracle, the proof is simulated
based on its simulator.
Claim. We claim that the adversary’sA advantage in hybrids GameAno1 and GameAno2 only differs by a negligible
factor, i.e.,

AdvdiffG1,G2
(A) ≤ k · AdvSimSoK.

The reduction is direct based on the zero-knowledge property of the SoK.

GameAno3 (enabling step): instead of directly sampling h1, h2, h3, h4 ←$ G1, we sample a random value
r1, r2, r3, r4 ←$ Z∗p and define hi = gri1 , for i ∈ J4K.
Claim. We claim that it is a bridging step, meaning that the adversary’s A advantage is not modified under
this change:

AdvdiffG2,G3
(A) = 0.

As this elements keeps the same distribution in the group, the adversary has indistinguishable viewing
of these experiments.

GameAno4 : instead of encrypting a·b into e during the sanitization of σ, the sanitizer sampled the ciphertext
e at random and a · b is kept in a record to be used in further sanitization.
Claim. We claim that the adversary’sA advantage in hybrids GameAno3 and GameAno4 only differs by a negligible
factor, i.e.,

AdvdiffG3,G4
(A) ≤ AdvIND-CCA

E .

This is a direct reduction to the IND-CCA experiment.

GameAno5 : instead of encrypting a into e during the signature and the sanitizations of σ, the challenger
sample the ciphertext e at random and a is kept in a record to be used in further sanitization. Let qchals be
the number of calls to the oracle OAno

chal−San.
Claim. We claim that the adversary’sA advantage in hybrids GameAno4 and GameAno5 only differs by a negligible
factor, i.e.,

AdvdiffG4,G5
(A) ≤ (qchals + k) · AdvIND-CCA

E .

This is a direct reduction to the IND-CCA experiment.
Step 5 directly leads a signature totaly decorelated of the sanitizer’s identity. All elements are either

sampled at random or independent of the sanitizer’s identity by construction.

GameAno6 : instead of computing α3 = hx
2 · g

u·ssklogb
1 , we sample it at random α3 ←$ G1, when producing

the a sanitization σ when requested to the oracle OAno
chal−San.

34



Claim. We claim that the adversary’sA advantage in hybrids GameAno5 and GameAno6 only differs by a negligible
factor, i.e.,

AdvdiffG5,G6
(A) ≤ k · AdvDDH

G1
.

Reduction. The same reduction is provided in proof of Theorem 1. We apply an hybrid argument over it for
a constant number of executions.

GameAno7 : instead of computing α4 = hx
3 · h

v·ssklogb
4 , we sample it at random α4 ←$ G1 when producing a

signature σ requested to the oracle OAno
chal−San.

Claim. We claim that the adversary’sA advantage in hybrids GameAno6 and GameAno7 only differs by a negligible
factor, i.e.,

AdvdiffG6,G7
(A) ≤ k · AdvDDH

G1
.

Reduction. The same reduction has been provided in the proof of Theorem 1. We apply an hybrid argument
over it for a constant number of executions.

GameAno8 : instead of computing τ = e(h4, α2)
ssklog0 on sanitization of a signature, the challenger samples

a fixed Z0 ←$ G1 at the beginning of the experiment and define τ = e(Z0, α2) for any signature sanitized
with the oracle OAno

chal−San.
Claim. We claim that the adversary’sA advantage in hybrids GameAno7 and GameAno8 only differs by a negligible
factor, i.e.,

AdvdiffG7,G8
(A) ≤ k · AdvDDH

G1
.

Reduction. We consider a reduction R emulating experiments GameAno7 and the same experiment with the
first sanitization by OAno

chal−San encompassing this modification. R is against a distinguisher A. This reduction
takes as input a DDH challenge (X,Y, Z) ∈ G3

1. It defines h4 = X during the setup and spklog0 = Y during
the key generation of the sanitizer associated to index 0. The remaining actions of algorithms Setup and
SaKeyGen stay unchanged. The algorithms KeyGen and Delegate are not affected by this change and can
still be execute as they should be in GameAno7 and its modification. In contrary, sanitizations require slight
changes when executed with the unknown key ssklog0. First, relying on the previously produced signature
σ and the delegation del, we can execute the algorithm normally up to the signature σMOD and produce x,
ỹ, s̃pk, α1, u, v and α2. Since the previous games, α3 and α4 are sampled at uniform in G1. The element
τ is supposed to be computed as τ = e(h4, α2)

ssklog0 = e(h
ssklog0
4 , α2). Based on the DDH challenger define

τ = e(Z,α2). When Z = gxy we perfectly emulate GameAno7 otherwise the modified game where the first
sanitization is made based of Z = gz. At last the signature of knowledge is emulated which produce valid
signatures. It is important to ensure that the threshold of k signature is not overpasses as no tracing could
be possible for the produced signature as it is done in OAno

San . Indeed, the outputted τ is random and does
not allow tracing. The bit returned by the adversary A is then transferred as the decision against the DDH
challenge. R has a probability of success similar to the success of the distinguisher A. This conclude to our
claim. Now based on an hybrid argument we can conclude the reduction between experiments GameAno7 and
GameAno8 .

GameAno9 : instead of computing τ = e(h4, α2)
ssklog1 on sanitization of a signature, the challenger samples

a fixed Z1 ←$ G1 at the beginning of the experiment and define τ = e(Z1, α2) for any signature sanitized
with the oracle OAno

chal−San.
Claim. We claim that the adversary’sA advantage in hybrids GameAno8 and GameAno9 only differs by a negligible
factor, i.e.,

AdvdiffG8,G9
(A) ≤ AdvDDH

G1
.

Reduction. This reduction is the identical to the previous reduction with the bit 0 flipped to 1.

35



GameAno10 : instead of sampling Z0 ←$ G1 and computing τ = e(Z0, α2) for all signatures produced by the
sanitizer associated to index 0, for each new sanitization a new Z0 ←$ G2 is sampled to define τ = e(g1, Z0).
Claim. We claim that the adversary’sA advantage in hybrids GameAno9 and GameAno10 only differs by a negligible
factor, i.e.,

AdvdiffG9,G10
(A) ≤ k · Advclass−hidG2

.

Reduction. Consider a reduction R based on a challenge from the class hiding experiment in G2 playing
against a distinguisher A. The reduction R receives two elements M,M ′ ∈ GqSan

2 . The only modification
needed is on how α2 and τ are computed, the rest remains similar to both GameAno9 and GameAno10 . We refer
to α2 (resp. τ) on the ith call from A to the oracle OAno

San as α2,i (resp. τi). Let α2,i = Mi and τi = e(g1,M
′
i)

for all i ∈ JqSanK. Based on the challenge, we have either τi = e(g1,M
r
i ), for all i and an integer r fixed

for all sanitization of index 0, or either τi = e(g1,M
′
i), for a new random element M ′i changed for each

sanitization of index 0. As a result, we emulate perfectly one or other of the games. We can forward the
adversary A’s response to the challenger of the class hiding experiment and we win against this game with
equal probability. This prove the claim.

GameAno11 : instead of sampling Z1 ←$ G1 and computing τ = e(Z1, α2) for all signatures produced by the
sanitizer associated to index 1, for each new sanitization a new Z1 ←$ G2 is sampled to define τ = e(g1, Z1).
Claim. We claim that the adversary’sA advantage in hybrids GameAno10 and GameAno11 only differs by a negligible
factor, i.e.,

AdvdiffG10,G11
(A) ≤ k · Advclass−hidG2

.

Reduction. This reduction is the identical to the previous reduction with the bit 0 flipped to 1.

GameAno12 : while the challenger produces the delegation for the proxy signer, instead of generating spki,j =
spkxi,j for all i ∈ JlK, j ∈ {0, 1}, they are sampled uniformly at random within G1.
Claim. We claim that the adversary’sA advantage in hybrids GameAno11 and GameAno12 only differs by a negligible
factor, i.e.,

AdvdiffG11,G12
(A) ≤ 2l · AdvDDH

G1
.

Reduction. The same reduction is provided in proof of Theorem 1.
GameAno12 : since GameAno11 the vector (g1, y1,0, · · · , spkl,1) is sampled at random during the delegations of

both sanitizers. Instead of randomising one of them to obtain (ĝ1, ŷ1,0, · · · , ŝpkl,1) embedded in the sanitized
signature σ returned to the adversary, we sample these elements randomly for all the signatures sanitized
with the oracle OAno

chal−San.
Claim. We claim that the adversary’sA advantage in hybrids GameAno11 and GameAno12 only differs by a negligible
factor, i.e.,

AdvdiffG11,G12
(A) ≤ k · Advclass−hidG1

.

Reduction. Let R be a reduction based on a challenge from the class hiding experiment in G1 playing
against a distinguisher A against one modification in one of the answer of the oracle. The reduction R
receives two elements M,M ′ ∈ G4l+1

1 . During the setup it defines g1 ← M1 (the first element of vector
M), then while executing Delegate(sk, spkb, k), it signs M in σ̂. Based on the challenge M ′, during the
execution of Sanitize(m,σ,MOD, sskb, pk, delb, η), it inputs M ′ into the SPS-EQ signature, thus obtaining
σ̂ ← SignSPS-EQ(sk

del
SPS-EQ,M

′) embedded in the signature with M ′. The rest of the experiment is executed
normally. Based on the value of M ′, we either emulate GameAno11 when M ′ has been picked in the equivalent
class of M , or its modified version, when M ′ has been picked at random. As a result it is hard to distinguish
between both experiments. Based on an hybrid argument we conclude this reduction between GameAno11 and
GameAno12 .

In experiment GameAno12 , the elements that A sees are completely independent of the value b which is
supposed to be guessed by A. Any strategy of guess would then inevitably lead to a null advantage as the

36



distribution of the adversary’s A outputs are independent of the uniformly distributed value b ←$ {0, 1}.
This conclude to our proof for this property.

Traceability. Let game GameTrace0 represent experiment ExpTracek-SAN,A(λ) instantiated with our k-Times Anony-
mous Sanitizable Signature.

GameTrace1 : we abort if there is a collision for the responses of the hash function in the elements that the
challenger sees during the experiment. As argued before, the adversary’s A advantage in hybrids GameTrace0

and GameTrace1 only differs by a negligible factor, i.e.,

AdvdiffG0,G1
(A) ≤ Advcol−resistH .

GameTrace2 : each of the SoK π∗σ,i contained in the signatures (σ∗i )
qs
i=1 outputted by the adversary are

extracted. The witnesses ssklog
∗
i , x
∗
i , s
∗
i , t
∗
i , sk

∗
log,i are recovered and based on the publicly known elements

and the ones inside the signatures, we can check soundness of the proofs. On failure of the extraction or
proof of invalid statements, the experiment is aborted. This leads to the following difference based on a
straightforward sequence of reductions:

AdvdiffG1,G2
(A) ≤ qS · AdvZKSoK.

Analysis. Under simulation-extractability of the SoK πσ, it is ensured that A has sanitized the signature
produced by the signer if CheckTrace returned 1. Unless it knows the DL of pklog, A has correctly computed
the elements ỹ, s̃pk, α1, α2, α3, α4 and τ . Based on the correctness of the sanitizable signature we are ensured
that no delegation where forged, we can always recover ppk = (α3/α

′
3)

1/(u−u′) and w = (α4/α
′
4)

1/(v−v′)

when the same combination of keys spki was used twice. This does not implies that A has not overpasses
the limitation k ≤ 2l. We now ensure this through another reduction.

GameTrace3 : witnesses s are extracted from Π<k. Based on the extracted witness we verify the soundness
of the proof. The experiment is aborted and returns 0 if the extracted values s are not consistent with the
elements in the signatures. The probability that an adversary has outputted a valid proof for an invalid
statement is negligible:

AdvdiffG2,G3
(A) ≤ qS · AdvsoundNIZK .

Analysis. The previous reduction guarantees that no key index greater than k can be used to sanitize a
signature. Hence, on receiving a delegation del for k, A has not been able to use more than the k first
combination of keys. The last line of attacks that remains is to produced a valid delegation that remains
unknown to the signer i.e., forging a signature for its key or based on a forged delegation. We proceeds in
three steps, one enabeling step and two steps to conclude:

GameTrace4 (enabling step): instead of producing the SoK πσ on calls to the signing oracle, the signature
of knowledge is simulating with its simulator.
Claim. We claim that the adversary’s A advantage in hybrids GameTrace3 and GameTrace4 only differs by a
negligible factor, i.e.,

AdvdiffG3,G4
(A) ≤ qS · AdvZKSoK.

The reduction is direct based on the perfect simulatability of the SoK.

GameTrace5 : we abort if one of the recovered element sk∗log extracted from the proofs πσ verify sk∗log = sklog.
Claim. We claim that the adversary’s A advantage in hybrids GameTrace5 is negligible, i.e.,

AdvTraceG5
(A) ≤ qs · AdvDL

G1
.

Reduction. The reduction R is straight forward. R receive a challenge (g1, X) for the DL problem, uses g1 as
the base element and set pk = X. It simulates the Odel as usually after having generate the necessary keys

37



for the SPS-EQ signatures. On calls from A to the OSign, R execute it normally and simulate the proof πσ as
prescribed by the latest experiment. On receiving an answer (m∗i , σ∗i )

qs
i=1 from A, if the experiment succeeds

for the given values, we return a random sk∗log to the challenger of the DL problem.

GameTrace6 : unforgeability of SPS-EQ signature σ̂ implies that it is not possible to produce dishonest
delegation. We claim that:

AdvdiffG5,G6
(A) ≤ qS · AdvEUF-CMA

SPS-EQ .

Reduction. Consider an adversary A winning against GameTrace6 . Let R be a reduction emulating between
the answers of A and ExpEUF-CMA

SPS-EQ . We implement the reduction R straightforwardly. Instead of using
KeyGenSPS-EQ(1

λ, 4l + 1) to generate the keys (pkdelSPS-EQ, sk
del
SPS-EQ), set pkdelSPS-EQ as the public key received

from the challenger against ExpEUF-CMA
SPS-EQ . Moreover, to issue elements σ̂ on a call from A to OSign, R uses

the provided signing oracle obtaining σ̂. Finally, for a winning adversary outputting a triple (spk∗,m∗, σ∗)

for which we have Ver(m∗, σ∗, pk) = 1, it holds that VerifSPS-EQ(pk
MOD
SPS-EQ, (ĝ1, ŷ1,0, · · · , ŝpkl,1), σMOD) = 1

from the passing verification. For a winning adversary we can then, transfer one of the message-signature
pair (u1, v1, · · · , un, vn), σMOD to the challenger of the EUF-CMA experiment of the SPS-EQ signature. The
response given by the challenger of the EUF-CMA experiment, is outputted by the challenger simulating
GameTrace6 instead of a winning bit. The claim follows as for any adversary there are only negligible chances
to forge a SPS-EQ signature and there must be at least one tuple that the returned message-signature pair
is a forge.

With this reduction we prevent from an adversary forging a new delegation. This allows us to conclude
the proof.

Non-Frameability. The proof of Non-Frameability is the same as for our k-APS signature. Let Gameno−Frame
0

be the original experiment of Non-Frameability instantiated with our k-SAN scheme of Section 6.

Gameno−Frame
1 : we abort if there is a collision in the responses of the random oracle OH . This prevent

from an adversary outputting two values u1 = H(m1, 0, α1
2) = H(m2, 0, α2

2) = u2 such that ppk would be set
to 0 during the computation in the Trace algorithm.
Claim. We claim that the adversary’s A advantage in hybrids Gameno−Frame

0 and Gameno−Frame
1 only differs

by a negligible factor, i.e.,
AdvdiffG0,G1

(A) ≤ qH
2λ

.

We can apply a union bound over all qh queries to the random oracle, and the claim follows.

Gameno−Frame
2 : we abort the experiment if two public keys spklog produced by the challenger for the proxies

are the same.
Claim. We claim that the adversary’s A advantage in hybrids Gameno−Frame

1 and Gameno−Frame
2 only differs

by a negligible factor, i.e.,
AdvdiffG1,G2

(A) ≤ |U|/|G1|.

Secret keys ssklog are sampled uniformly within the group Z∗p, which is of the order of the group G1.
Each ssklog leads to a unique public key spklog. Hence, the probability to draw to equal keys based on |U|
independent and identically distributed draw is |U|/|G1|.

Gameno−Frame
3 : the SoK proofs πσ in the signature returned by A are extracted. Based on the extracted

values (ssklogExt,i, xExt,i, sExt,i, tExt,i, skExt,ilog )i=1,2, we verify the soundness of the proofs by checking if it belong
to the language. As argued before we obtain the following difference in the advantages:

AdvdiffG2,G3
(A) ≤ 2 · AdvsoundSoK .

Analysis. From this point, it is ensured that A holds a witness for the proofs π1
σ and π2

σ and has computed
(α1

3, α
1
4) and (α2

3, α
2
4) based on these values or knows the discrete logarithm of the signer’s key sklog.

38



Gameno−Frame
4 : we abort if one of the recovered element skExt,ilog extracted from the proofs πσ verify skExt,ilog =

sklog for any of i ∈ {1, 2}.
Claim. We claim that the adversary’s A advantage in hybrids Gameno−Frame

3 and Gameno−Frame
4 only differs

by a negligible factor, i.e.,
AdvdiffG3,G4

(A) ≤ AdvDL
G1
.

Reduction. Consider a reduction R emulating Gameno−Frame
5 based on a challenge X for the discrete logarithm

problem. For each registration request from A, it sets set spklog = Xsi for a random si ←$ Zp. As A is not
provided with a sanitization oracle, their is no need to simulate any action for the sanitizers. On A’s success,
ssklog

Ext,i and ssklog
Ext,i where extracted consistently from both proofs. The value ssklog = ssklog

1 · s−1i for
the correct i is returned as the answer to the DL problem. The witness has the same probability as A to be
right. Hence, Advno−Frame,G3−G4

A ≤ AdvDL
G1
.

Gameno−Frame
5 : the signature of knowledge πσ is simulated based on its simulator for each request to the

oracles Ono−Frame
Sign . The adversary’s A advantage in hybrids Gameno−Frame

4 and Gameno−Frame
5 only differs by a

negligible factor, i.e.,
AdvdiffG4,G5

(A) ≤ qSign · AdvSimSoK.

Claim. The adversary’s A advantage in hybrid Gameno−Frame
5 is negligible, given that the discrete logarithm

problem is hard, i.e.,
Advno−Frame

G5
(A) ≤ AdvDL

G1
.

Reduction. Consider a challenge X for the discrete logarithm problem. During the signer’s key generation
KeyGen, we define pklog = X. The others keys for the SPS-EQ signature are produced normally, hence
delegation request Odel can executed as usual as they do not depend on the key pklog or the associated secret
key. The same holds for request to Ono−Frame

Register . It remains to produced coherent answer for the signature
request. As the proof πσ is simulated, this is straightforwardly achieved by the challenger. Once A returns
(m∗i , σ

∗
i )i=1,2 both skExt,1log and skExt,2log are extracted. At the end of both hybrids, if the proof does not holds for

a valid statement or holds under the witnesses associated to one of the registered sanitizer, the experiment
is aborted. Thus, the proof must holds true for a

The value sk = sk1 · s−1i for the correct i is returned as the answer to the DL problem. The witness has
the same probability as A to be right.

Based on the two previous reductions, A has not produced a proof πσ for any of the keys produced by
the challenger. Hence, if the signatures σ∗1 and σ∗2 verifies, the proof πσ holds true for some keys generated
by the adversary. Moreover the elements α3, α4 and τ are well formed and tracing an adversary’s registered
user. The condition (ppk, ·, ·, 1) ∈ U implies that A has probability 0 to win this experiment. ⊓⊔

39


