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Automated crack detection on metallic materials with 
flying-spot thermography using deep learning and 
progressive training
Kevin Helvig a, Pauline Trouvé-Pelouxa, Ludovic Gaverinab, Baptiste Abeloosa 

and Jean-Michel Rocheb

aDTIS, ONERA, Université Paris-Saclay, Palaiseau, France; bDMAS, ONERA, Université Paris-Saclay, Châtillon, 
France

ABSTRACT
In non-destructive testing for metallic materials, ‘Flying-spot’ ther-
mography allows the detection of cracks thanks to the scanning of 
samples by a local laser heat source observed in the infrared 
spectrum. However, distinguishing a crack from other surface struc-
tures such as air ducts or non-planar shapes on the material surface 
can be challenging in an automation perspective. To address this, 
we propose to use deep learning techniques, which can exploit 
contextual information but require a significant amount of labelled 
data. This study presents a training method based on curriculum 
learning and recent denoising diffusion models to generate syn-
thetic images. The protocol progressively increases the complexity 
of training images, using successively simulated data from a multi- 
physics finite-element software, synthetically generated data with 
diffusion process, and finally real data. Several detection scores are 
measured for various machine learning and deep learning architec-
tures, demonstrating the benefits of the proposed approach for 
regular application cases and degraded experimental conditions, 
consisting of limited thermal enlightenment recordings.
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1. Introduction

The manual inspection of coated metallic materials can present challenges. Specifically, 
when it comes to surface crack detection, functional cooling structures combined with the 
condition of the coating can disrupt the operator, leading to false positives or cases of 
non-detection. This can result in costly consequences, both in terms of discarding non- 
defective components and wasting operator time.

Among non-destructive testing (NDT) techniques, flying-spot thermography (FST) 
uses an active local heat source to scan the surface of a metallic sample. 
Discontinuities in the heat diffusion on the surface, measured in the infrared 
spectrum, reveal the presence of crack-like defects. This inspection method was 
originally proposed for crack detection in aerospace metallic parts in the late 1960s 
[1]. It is effective for characterizing hard-to-detect defects without heavy 
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instrumentation, such as micro-cracks in chipping [2]. However, the conventional 
examination procedure involving subtracting scanning maps and applying filters 
faces challenges in automation due to time-consuming processes and the need for 
precise manual registration and adjustments [3]. To address these limitations, we 
propose a ‘single-pass’ mode using a single forward scanning map without sub-
traction or classical filtering. Working on non-crossing scans eliminates prior knowl-
edge and enables crack length tracking. This simplification of the acquisition 
process comes with more ambiguity in crack detection on the data, due to 
edges and material heterogeneity. To overcome this issue, we propose to use 
a deep learning technique to achieve automatic detection of defects. Here, we 
propose a progressive training of defect detection models using successively 
simulated, synthetical and experimental data.

1.1. Review of the literature

Significant efforts have been made to improve the flying-spot thermography (FST) tech-
nique, including the use of flying-line thermography, which employs a line of laser spots 
as heat sources to accelerate scans compared to punctual flying-spot thermography [4]. 
Simulation works using finite element models (FEM) of flying spot and flying line have also 
been performed to study the thermal physics phenomena behind this examination 
technique and plan experiment set-ups [5,6]. Several works have further investigated 
this technique with the characterization of the detected defects [7] and determination of 
the influence of defect geometry on cracks thermal signature, like crack width [2]. Hence, 
FST is a promising examination technique, particularly for detecting micro-cracks on 
coatings, as well as for a range of potential industrial applications, such as art painting 
restoration [8]. While several image processing techniques have been proposed for NDT 
using FST [9], only a recent publication by [10] proposes to use complex recurrent 
architectures (RNN) based on deep learning to manage temporal features. RNN are neural 
networks specialized in sequential data processing, such as time series [11]. Our prior 
research underscores the potential of deep learning to achieve superior performance on 
FST data [12]. However, it has been observed that the limited quantity of data tends to 
disrupt the training process and diminish overall performance. Image synthesis using 
generative models is a common strategy in deep learning to artificially increase the total 
amount of data. Generative adversarial networks (GANs) have been used extensively for 
image generation, but they are difficult to train due to issues such as mode collapse [13]. 
A recent alternative to GANs is denoising diffusion models, deep neural models that 
generate synthetic images from random noise without the need for a discriminator [14]. 
This approach is spreading rapidly, with some papers indicating that these networks can 
outperform GANs in certain cases of image synthesis while being easier to train [15]. They 
have already been explored in some works highlighting their fidelity in medical examina-
tion [16], but to the best of our knowledge, not in the context of FST.

Curriculum learning, an approach to training neural networks that originates from 
behavioral psychology [17,18], consists in progressively introducing the machine learning 
system to more complex features through different training steps [19,20]. Although this 
approach is not yet widely used, it is promising and opens up possibilities for various 
applications, such as robotics [21] and natural language understanding [22].
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1.2. Contributions

The first contribution is the implementation of an FST test bench, followed by the 
generation of simulated and experimental data. A neural network training protocol is 
then proposed, based on curriculum learning using data simulation and diffusion models 
as image generators. This protocol is used for automatic detection of crack-like defects on 
metallic samples by ‘single-pass’ laser thermography. We highlight the performance gains 
of the proposed method, compared to direct stand-alone training, as well as the improve-
ments obtained in generalization capabilities to unknown samples. The influence of 
degraded experimental conditions is evaluated. The proposed curriculum learning 
approach hence provides a grounded framework for a proper use of synthetic data and 
generic simulation to train deep learning models for the automation of thermal examina-
tion techniques.

2. Problem statement and data

This section describes data collections for the proposed training method. Subsection 2.1 
presents the theoretical elements of FST, providing some key elements to calibrate the 
experimental and simulated set-up. The subsection compares in more details the posi-
tionning adopted here, compared with the conventional approach [3]. Then, there is an 
important focus on the datasets built using the simulation framework in subsection 2.2, 
the experimental set-up built for this study in section 2.3 and the synthetic data genera-
tion using diffusion models 2.4. A dataset summary is given in subsection 2.5.

2.1. Problem statement

In FST, it is commonly assumed that the scan velocity remains constant during the 
examination. Additionally, the thermal emissivity and diffusivity of the material are quasi- 
constant as well. Specifically, the examinations are conducted for limited temperature 
variations, which are studied in the MWIR bandwidth (Middle Wavelength Infrared, 3–5  
µm). In this context, the theoretical work of Krapez [3] introduces the Peclet number. This 
non-dimensional number is defined as to the ratio between convective heat transfer and 
thermal diffusion. According to [3], the best detection, understood as the most significant 
thermal discontinuity due to the crack, corresponds to a Peclet number of 1. 

Pe ¼
Convective heat flux

Heat diffusion
¼

vspot � Rspot

α
:

With vspot [mm/s]: the velocity of the heat source scanning the surface. Rspot [mm]: the size 
of the spot due to the heat source and α [mm2/s]: the thermal diffusivity of the materials.

The processing method proposed in [3] for crack detection is based on subtracting 
two forward and backward scanning maps crossing the defect, then using Laplacian 
filtering. This method is applied in Figure 1 on a millimetric defect, the observation 
scene is on the order of centimeters. This figure shows on the left the difference 
between both scans, on the right, the obtained map after filtering, highlighting the 
signal due to the crack. However, this method rises issues in an automation context: it 
is time-consuming for inspection and processing, requiring delicate registration of the 
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two maps before subtraction, and fine adjustments for filtering. Finally, the considered 
scans are passing through, assuming prior knowledge about the location of the defect 
and its orientation.

On the contrary, we propose to work directly on a single forward scanning map, in 
a so-called ‘single-pass’ mode, without subtraction nor classical filtering. We also 
propose to work on non-passing scans to eliminate the operator’s prior knowledge 
of the defect and to give the possibility to follow the crack length on the material 
surface. Figure 2 provides an example of a thermal image used in this study. This 
image is obtained by averaging and normalizing all the images from a thermal 
recording during the scan. Figure 2 illustrates various problematic surface elements 
for an automatic defect detection, such as material heterogeneity or heat source 
discontinuities. We propose here to adress the automatic detection using the ability 
of deep learning to learn contextual information.

Figure 1. (a) FST thermal image before filtering obtained by following the state of the art subtraction 
method [3]. (b) Thermal image after Laplacian filtering: if there are still some artifacts due to the heat 
trajectory and non-planar surfaces, the signal due to the crack is distinguishable.

Figure 2. Example of obtained using a ‘single-pass’ detection method, which illustrates the various 
surface elements that interfere with defect detection.
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2.2. Samples and experimental data

The study is performed on several coated metallic superalloy samples. The coating is a thermal 
barrier. Samples 1, 3, 5, and 6 are used to train the diffusion model and to fine-tune the 
classification networks. Fine-tuning consists in proceeding only to the training of the last layer 
of a pre-trained network, reducing the number of parameters trained, reducing this way the 
data starvation. They are also used for the direct stand-alone training. Samples 2 and 4 are 
used to test the generalization capabilities of the networks on unknown samples that were 
not included in the initial training. Sample 2 has a unique marking on the surface coating that 
can disturb detection. The samples and their main characteristics are summarized in Table 1. 
We can only provide here the ratio crack length-critical length, which gives an idea of how the 
crack length is distributed between the available samples. The critical crack length is the 
maximum allowable crack length defined by the manufacturer’s specifications, referred to as 
the criticity in the study, is a few millimeters.

Figure 3 shows the Onera FST bench used in order to generate experimental data for 
crack detection. This set-up uses a laser heat source with a power varying from 0.5 to 3 
W. The wavelength is 532 nm. A dichroic lens is added to reflect the laser spot on the part 
and to transmit the IR heat flux to the MW-IR camera, sensitive between 3 and 5 µm. The 
spot covers a distance of 4.5 mm for horizontal scans, 6 mm for vertical scans, close to the 
defect. The scan velocity varies between 0.5 and 2.5 mm/s. Various sets of parameters are 
used around the operating point (Peclet tending to 1). An angular rotation is also 
manually applied to the samples. It varies from 0° (defect is vertical) to 45° in experiments.

The ranges of experimental settings are distributed as presented here considering the 
theory. ‘Enlarged settings’ correspond to Pe 2 0:35; 5:31½ �, ‘Optimal settings’ to 
Pe 2 0:71; 3:18½ �. ‘Degraded settings’ have the same Peclet numbers as in ‘Enlarged settings’ 
but with an important amount of experiments performed with limited heating duration and 
distant from the crack. The samples 1,3,5 and 6 are used to train machine learning architec-
tures in several different databases. The base Ba is used with enlarged settings, to produce 

Table 1. Summary of samples used in this study. The same region is examined 
for each sample.

Sample code Composition Ratio crack length/critical length

1 Coated superalloy 0.7
2 Coated superalloy 0.9
3 Coated superalloy 1.0
4 Coated superalloy 1.2
5 Coated superalloy 1.3
6 +3 coated samples without defect

Figure 3. FST bench of Onera.
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a first amount of experimental data to train the generative model. Base Ca is used for fine- 
tuning trainings on the application data (Optimal settings). A dataset is also created with these 
samples, in order to test the performance in case of degraded experimental conditions (low 
thermal enlightenment), forming the database D. Samples 2, 4 are reserved to control 
generalization capabilities to different samples not examined for training steps (dataset Cb). 
Table 2 gives a summary of these different datasets, with the associated number of thermal 
images. All the experimental datasets used for the training steps are balanced between 
cracked and no-crack thermal images.

2.3. Simulated data

Simulated data are produced using the multi-physics finite-element software Comsol [23]. 
The simulation shows the trajectory of the heat source on the surface, on which a crack 
may or may not be present. The crack is simulated by a linear thermal resistance. The 
simulations do not include any surface coating nor heterogeneity. As in the experimental 
bench, simulated inspection parameters such as laser velocity, spot radius, and power are 
expanded around the optimal Peclet number to increase the amount of produced images. 
The heat diffusion in the surface is modeled by the convection-diffusion Equation (1), and 
laser heat flux ϕ follows a Gaussian approximation (2) based on the studies [24,25]. The 
equations are given below: 

@2T
@x2 þ

@2T
@y2 ¼

v
α
:
@T
@y
: (1) 

With T as temperature [K], v as spot-velocity [mm/s], α as thermal diffusivity [mm2/s]. 

ϕ ¼
A� P

S
� exp

� ðx � x0Þ
2
� ðy � y0 � v:tÞ2

R2
spot

 !

: (2) 

With A as absorption rate [%], P as power [W], S as irradiated surface area [mm2]. Variables 
x and y represent spatial location of the spot.

The crack is conventionally modeled as a thermal resistance of the ’air gap’ type (3).

Rth ¼
e

λair
: (3) 

With λair the air thermal conductivity [W:m:K � 1] and e the crack opening in this 
model [mm].

Several elements of the simulation framework are also available in Table 3.

Table 2. Summary of the different datasets used in this study. Origin, number of image, 
samples and examination settings used are indicated.

Base Source Nimages Samples Settings

Aa Simulation 28,975 – Enlarged settings
Ab Simulation 6,000 – Enlarged settings
Ba Experimental 600 1,3,5 + 6 Enlarged settings
Bb Diffusion models 20,000 – –
Ca Experimental 330 1,3,5 + 6 Optimal settings
Cb Experimental 21 2,4 Optimal settings
D Experimental 950 1,3,5 + 6 Degraded settings
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A first training set is generated, representing only the metallic surface, without any 
contours or structures. This dataset is called Aa and contains 13,000 thermal images 
without cracks and 15,000 with cracks. Figure 4 presents an example of a simulated 
image generated following this protocol for each class.

A second dataset is generated, presenting simple generic edges, such as a straight line 
separating the air simulated environment from the rest of the metal surface. A small 
rotation is added to this simulated edge, increasing contours variability. This dataset is 
called Ab. The variability due to the orientation and the location of the simulated metallic 
surface is not incorporated into this second simulation dataset: it will be introduced 
through common data augmentations during training such as rotation or mirror flips. 
This second simulated dataset contains 6,000 thermal images. This is a balanced dataset 
between crack and no crack images. Figure 5 presents an example of a simulated image 
generated following this protocol for each class.

Table 3. Settings used for the FEM 
simulations.

Setting Value

Crack length [mm] 5 or 10
Orientation [degree] 0 to 90
Scan velocity [mm/s] 0.5 to 2.5
Spot radius [mm] 0.5 to 1.5
Distance crack-scan [mm] 0 to 10
Thermal diffusivity [m2/s] 7.1e-7
Mesh type Triangular

Figure 4. Examples of simulated thermal images from Aa dataset. On the left, the simulation presents 
a defect. On the right, the image is a negative example without defect.

Figure 5. Examples of simulated thermal images from Ab dataset. At left, the simulation presents 
a defect. Right image is a negative example without defect. Edges are easily visible to the naked eyes.

QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL 7



2.4. Synthetic data generation using diffusion models

For synthetic data generation, a denoising diffusion model is used [14]. The principle of 
this network is illustrated in Figure 6. Diffusion models are trained to convert images to 
Gaussian noise. Each step of this process is a denoising network, converting progressively 
the input image to noise. The denoising networks used in this study are U-nets, a common 
architecture deployed for image segmentation [26]. In a second time, trained layers are 
reversed to convert random noises to new synthetic images. A Pytorch adaptation of the 
original diffusion model developed by Ho et al. has been successfully trained without 
hyper-parameters adjustment [14], on the base Ba, generating the base Bb containing 
20,000 thermal images, which is balanced between crack and no crack images too [27]. 

This database introduces the networks to more specific features able to disturb defect 
detection, like surface heterogeneity or complex part edges. Features vary from one 
thermal image to another.

Figures 7 and 8 give examples of artificial images generated using this model, 
respectively for without crack and with crack cases. These images highlight 

Figure 6. Denoising diffusion model principle.

Figure 7. Sample of experimental images and synthetic images obtained using a denoising diffusion 
model, for uncracked images. For visual comparison.
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qualitatively the ability of the diffusion model to generate accurate images. Some 
features of these synthetic images are noticeable, seeming well imitated: border 
between coated and uncoated regions, the influence of this border on thermal 
diffusion, reflection artifacts, and samples edges. A comparison is added here 
between diffusion models and variational auto-encoders (VAE). These architectures 
are very traditional generative models: they are components to build greater 
synthetic generators, such as diffusion models or GANs, as for natural image 
synthesis [28]. The selected architecture is a beta-VAE, which is a very common 
and simple model for image synthesis. Pythae library is used to build the VAE 
architecture [29]. The Beta-VAE is trained with the same base as for the diffusion 
models. A small amount of data is generated as illustrated in Figure 9 which gives 
some generated samples using this architecture. As shown, the architecture strug-
gles to generate synthetic data that are as accurate as diffusion-generated syn-
thetics. The encoder and the decoder of the VAE have also needed to be built 
specifically to approach diffusion model synthesis performance, whereas a generic 
diffusion model performs very well for a large panel of publicly available datasets 
[15]. The properties of diffusion models may explain this difference, such as 
a greater expressive power, and a distributed and progressive noise-to-image 
transformation. If images generated using the beta-VAE must be relevant to learn 
some features with a less important computational cost than a diffusion model, the 
poor sample quality will alternate the features learning of the neural architectures.

2.5. Datasets summary

Table 2 provides a summary of the different databases, their origin, and their main use. 
The table lists the samples used, the amount of thermal images, and the experimental 
conditions used. The dataset Ca is split between training and test data, with a 2/3 ratio. 
Figure 10 gives a synthesis of the different datasets, which are used for training or for 
experiments on the capabilities of the networks.

Figure 8. Sample of experimental images and synthetic images obtained using a denoising diffusion 
model, for cracked images. Defect circled in red.
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3. Method

This section describes the proposed training pipeline. The curriculum learning 
approach is presented in subsection 3.1, and architectures and metrics used in 3.2 
and 3.3.

3.1. Curriculum learning pipeline

The training protocol based on curriculum learning is described in Figure 11. The training 
starts with an untrained model having random weights and a generic features learning on 
simulated finite element data related to thermal aspects such as heat diffusion on the 
surface (step 1). An intermediate simulated step (step 2) is included, which allows to 
introduce into the training how structures such as generic, rectilinear contours will alter 

Figure 9. Samples generated using our modified beta-VAE. Several major features such as edges 
emerge, but the synthesis is still confuse and noisy.

Figure 10. Illustration of the different datasets used for the training pipeline, with the source of each 
kind of data.
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heat propagation, in addition to the defect. The network is then retrained on synthetic 
images produced by the diffusion models (step 3). This step allows to finalise the learning 
process by moving from generic features to their more specific counterparts, related to 
heat diffusion on a non-homogeneous material. Fine-tuning is then performed on 
a limited sample of experimental data (step 4). Typical augmentations such as horizontal 
and vertical inversions, as well as random rotations, are applied at each step of the 
training. The optimizer used is the Adam optimizer [30]. Learning rate is 10� 4, with 
scheduling [31].

3.2. Architectures

Various deep learning architectures for classification are trained using the proposed 
training pipeline. On the one hand, a well-known convolutional classification net-
work, a visual geometry group architecture, VGG-13, is trained [32]. Then, archi-
tectures based on the attention mechanism are studied, the vision transformers 
[33]. Attention mechanism allows for hierarchical learning that associates different 
regions of the input image [34]. This approach seems relevant for the application 
studied here, which presents both local illumination and multi-scale phenomena, 
here thermal. This ability from transformers is suggested in [35]. Therefore, two 
networks based on the attention mechanism are selected, the Shifted-attention- 
windows (Swin) and Class-attention-in-Transformers (CaiT) architectures [36,37]. The 
baseline is a traditional machine learning architecture that uses a Histogram-of- 
Oriented-Gradient (HOG) filter as a features extractor and a Support Vector 
Machine (SVM) as a classification head [38]. It provides a benchmark for classical 
machine learning methods. All the selected models are compared with their direct 
training on Ca, in order to measure the benefits of the proposed approach. Table 4 
gives more details about the deep learning models used in this study, with the 
associated name in timm/pytorch-image-models library [39], used to load the 
different models studied here with Pytorch deep learning library.

Figure 11. Proposed training protocol based on a progressive training of defect detection models 
using successively simulated, synthetical and real data.
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3.3. Metrics

For all selected methods, the metrics are evaluated on the test subset of dataset 
Ca. Accuracy, precision, recall and F1-score (also known as f-score) are measured 
[40]. Accuracy (4) is an estimation of overall model performance, representing the 
proportion of correctly predicted samples out of the total number of samples. 
Precision (5) quantifies the proportion of true positive predictions (correctly classi-
fied as presenting a defect) among all positive predictions made by the model, 
while recall (6) (sensitivity) estimates the proportion of true positive predictions 
among all actual positive instances. These metrics play a crucial role in assessing 
a classification model’s effectiveness. The F1 score (7), or f-score, which combines 
precision and recall into a single metric, is particularly useful. It is calculated by 
taking the harmonic mean of precision and recall, providing valuable insights into 
the model’s predictive capabilities and performance across different classes of data. 
The equations corresponding to each metric are given below: 

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
¼

Correct classifications
Total

(4) 

Precision ¼
TP

TPþ FP
(5) 

Recall ¼
TP

TPþ FN
(6) 

F1Score ¼
2� Precision� Recall

Precisionþ Recall
(7) 

with false positives (FP) corresponding to false alarms, while false negatives (FN) corre-
spond to missed detections. True positives (TP) are true crack thermal images, whereas 
true negative (TN) corresponds to true no-crack thermal images.

4. Results

4.1. General results

Table 5 summarizes the test results obtained by different selected architectures on 
dataset Ca for both direct training (using the training set of dataset Ca) and the curriculum 
learning approach proposed. The final step of the proposed training protocol (fine-tuning 
on the application dataset) is performed on this dataset. Overall, all the deep learning 
methods provide very high test-accuracy value and a significant performance gain 

Table 4. Models used in this study. The number of parameters corresponds to the 
number of trainable weights in the deep learning architectures.

Model name Reference in pytorch-image-models Number of parameters

VGG13 ’vgg13’ 128,957,890
CaiT ’cait_xxs24_224’ 11,617,538
Swin ’swin_s3_small_224’ 49,555,528
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compared to traditional machine learning methods, with a test-accuracy above 90% 
compared to 83%, respectively. Moreover, the use of curriculum training increases the 
performance compared to direct training: VGG13 architecture has an increase in test- 
accuracy of 5%, while it is about 9% for CaiT and Swin architectures. Hence, the proposed 
training method looks more beneficial for transformer architectures. Additionally, the 
performance differences between VGG13 and attention-based architectures may indicate 
the benefits of the attention mechanism for the application case. Architectures trained 
using the curriculum learning approach also appear to exhibit a reduced gap between 
precision and recall: the results table shows a 4% gap for CaiT architecture in direct 
training, whereas this gap is reduced to 1% with the proposed training method. The 
proposed method reduces the small bias favorizing missed detection over false alarms 
(Precision > Recall), which is present with conventional direct training.

4.2. Generalization capabilities

The generalization abilities of the networks trained with the proposed method are 
evaluated and compared with direct training from the Ca database. Generalization 
abilities to unknown samples are first evaluated, followed by the impact of degraded 
experimental conditions.

4.2.1. Generalization to new samples
Trained CaiT and VGG13 (using either direct or curriculum training) are tested on scans of 
samples 2 and 4 of Table 1, not used during training, constituting the database Cb. Table 6 
gathers the obtained performance with test-accuracy. For sample 4, this table shows that 
the training process based on curriculum learning increases robustness to unknown 
samples, compared to direct training. The highest decrease of performance for sample 
2 can be explained by an anomalous surface in comparison with other samples as shown 
in Figure 12. This untypical coating boundary can disturb classification. Transformers 
seem also to have a better generalization ability than more usual convolutional networks, 
which is consistent with recent works on this kind of architecture [41].

Table 5. Scores obtained using direct training and with the curriculum-based training proposal 
(evaluation on the test-subset of the dataset Ca).

Method Architecture Test-accuracy [%] F1 Precision Recall

Baseline HOG+SVM 83 0.83 0.82 0.83
Direct training VGG13 92 0.92 0.95 0.90

Swin 87 0.86 0.92 0.86
CaiT 90 0.91 0.93 0.89

Curriculum learning VGG13 97 0.97 0.96 0.99
Swin 96 0.96 0.94 0.98
CaiT 99 0.98 0.98 0.99

Table 6. Test-accuracy obtained on the base Cb, which corresponds to samples not seen during 
training. The number of images per sample is given.

Ech. #image Acc. (CaiT, direct) Acc. (CaiT, curriculum) Acc. (VGG13, direct) Acc. (VGG13, curriculum)

2 11 59 82 41 77
4 10 90 96 78 90
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4.2.2. Degraded thermal conditions
The selected neural networks are challenged using data from various experimental 
conditions, especially degraded and poor conditions, which show low crack response, 
using dataset D. Direct training is performed on this dataset, as well as the fine-tuning for 
the proposed approach. Figure 13 provides an example of these degraded thermal 
images. While defects can be distinguished through eyes on the thermal image, other 
structures like part edges are hard to see. Table 7 summarizes the accuracy obtained on 
a test-subset for this specific database, for direct training and the proposed training 
approach.

Figure 12. Example of thermal image from sample 2. The specificity of the surface examined may 
disturb detection (base D).

Figure 13. Thermal image for degraded conditions (scan velocity is 2.5 mm/s). If the defect can be 
detected easily in this example, contextual information such as coating boundary or edges are harder 
to distinguish.

Table 7. Tests of selected neural networks on base with degraded experi-
mental conditions, base D.

Architecture Test-accuracy (direct) Test-accuracy (Curriculum)

VGG13 54 (no learning) 69
Swin 73 74
CaiT 72 78
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Convolutional architectures seem to struggle with this dataset, as VGG trained with 
direct learning is unable to distinguish the defect. This issue is not observed with transfor-
mer architectures. The proposed curriculum approach improves performance, even on this 
suboptimal subset. These findings demonstrate the challenges that networks face when 
learning from degraded experimental conditions. Therefore, using the optimized para-
meters described in section 2 is necessary for a more accurate crack detection.

4.3. Ablation study of the training pipeline

In this section, an ablation study is performed on the proposed training pipeline. The main 
principle is to miss out each element of the training procedure in order to give indications 
of its most contributing steps.

Table 8 gives a synthesis of all the ablations performed. Impacts of these ablations in 
terms of test-accuracy is evaluated for all the architectures studied. F1, precision and recall 
are also computed.

Table 8 shows poorer performance without diffusion training, with a test-accuracy 
between 61% and 70% (No step 2 in the Table). While the training with diffusion data and 
without simulations is close to the performance obtained with the complete training pipeline. 
From these results the most crucial element of the training pipeline proposed seems to be the 
diffusion model, giving a large synthetic dataset to train the networks. This step gives 
important enough amounts of data to perform the feature learning well, with high perfor-
mance on the evaluation subset, whereas simulations give just refining increases of perfor-
mance. However, pretraining on simulated data using a physically correlated model is still 
relevant, in order to focus neural networks on generic features associated with the defect and 
how it alters thermal diffusion, while reducing the total number of training epoch.

5. Discussions

In this section, we discuss several points of our proposed method, firstly, the number of 
samples and experimental conditions, then the training pipeline, and finally the choice of 
the generative model.

5.1. Data

The samples studied in this work have relatively intact thermal coatings. These samples 
present a mark on its surface. Adding more aged parts with highly deteriorated coatings 

Table 8. Results of the ablation study on the training pipeline: performance is evaluated for 
architectures selected if one or more training steps are shortcut (base C, evaluation subset).

Ablation
Train last step? VGG13 Swin CaiT

– Acc. F1 P. R. Acc. F1 P. R. Acc. F1 P. R.

No step 1 and 1.5 (FEM) Fine-tuning 96 0.97 0.97 0.97 98 0.98 0.97 0.99 95 0.95 0.93 0.97
No step 3 96 0.97 0.94 0.99 96 0.96 0.94 0.99 94 0.95 0.91 0.99

No step 2 (diff.) Fine-tuning 61 0.69 0.75 0.67 66 0.68 0.70 0.65 70 0.70 0.72 0.65
No step 3 55 0.70 0.55 0.99 57 0.67 0.56 0.83 55 0.69 0.54 0.94

No step 3 – 97 0.96 0.94 0.99 94 0.95 0.89 0.99 97 0.97 0.94 0.99
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may introduce additional noise in the features observed by neural networks. It would be 
worthwhile to investigate robustness of architectures trained with the proposed method 
compared to direct training when more diverse and challenging samples are included. 
This could include a wider range of crack types or part geometries to further evaluate the 
capabilities of the trained models, in the perspective of building a generalist FST crack 
detector.

Results obtained in this study suggest a significative increase of performance for the 
proposed training method, as for application case (base Ca) as for tests with various 
conditions (databases: Cb and D). However, the influence of settings such as camera 
resolution is not explored here. Studying the performance of the training pipeline in even 
harder conditions such as introducing variation in image resolution or other thermal 
properties could be interesting to explore how to increase the robustness of tested 
architectures. Finally, the influence of the amounts of data has not been studied here. 
A strategy ‘more is better’ has been followed: the generative capabilities of the diffusion 
models are not limited, even if redundant features may appear, depending on the 
diversity of the input distribution. The question of the amount of simulated data is 
more interesting: if a large amount of data has been produced here, a more limited 
sample of simulations could work too, due to the limited complexity and quantity of 
features of the simulations proposed, and regarding the limited impact of these data on 
final performance. It can be explored in further research.

5.2. Synthetic generation

The work presented highlights the ability of diffusion models to generate synthetic from 
relatively limited amounts of data, with a generic architecture, whereas other approaches 
need an important work to be adjusted to the task, and will be generic by design. Diffusion 
models appear to beat complex architectures like GANs [15]. We also need to address 
concerns about the computational cost of diffusion models. This study involved a complete 
training of this type of architecture from scratch, which was computationally expensive. 
However, the more common approach of fine-tuning a pre-trained diffusion model is clearly 
relevant and could be a possible improvement to greatly reduce this cost, especially in cases 
with more reduced datasets. Very new fine-tuning techniques dedicated to text-to-image 
diffusion models can perform effective image syntheses with very limited amounts of data 
(no more than a dozen of images), such as dreambooth approach [42].

6. Conclusions and perspectives

In this article, we have presented the coupling of deep learning associated with the 
proposal of ‘single-pass’ FST for defect detection on our application samples. The paper 
proposed a method for automated defect detection in metallic materials using FST, based 
on detection networks trained through a curriculum learning approach. This proposal of 
training approach demonstrated performance gains compared to direct learning. The 
proposed training process demonstrates both general increases of performance and 
reduced bias between missed detection and false alarms for all the architectures studied. 
Furthermore, this training protocol has shown that it improved robustness of the studied 
deep learning models in various experimental cases.
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Several possibilities are identified in order to expand this work. The comparison 
between direct training and curriculum learning can obviously be extended to other 
architectures. Playing more with the amounts of data introduced at each step of the 
curriculum learning could be interesting too. Evaluating the influence of crack length is 
another important perspective, but needs more samples to be conducted in a proper 
way. The construction of a large publicly available pre-training dataset is part of our 
ongoing work. This would allow for testing such comparisons in proper ways. On the 
other hand, we could turn to more advanced diffusion models [43]. To conclude, the 
proposed training approach is not limited to the FST inspection technique. Its applica-
tion to other NDT techniques, such as flash thermography, could be implemented in 
the future.
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