
HAL Id: hal-04644928
https://hal.science/hal-04644928v3

Preprint submitted on 29 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating Large Language Model Inference with
Self-Supervised Early Exits

Florian Valade

To cite this version:
Florian Valade. Accelerating Large Language Model Inference with Self-Supervised Early Exits. 2024.
�hal-04644928v3�

https://hal.science/hal-04644928v3
https://hal.archives-ouvertes.fr


Accelerating Large Language Model Inference
with Self-Supervised Early Exits

Florian Valade
Gustave Eiffel University

Fujitsu

July 29, 2024

Abstract

This paper presents a novel technique for accelerating inference in
large, pre-trained language models (LLMs) by introducing early exits
during inference. The computational demands of these models, used
across a wide range of applications, can be substantial. By capitalizing
on the inherent variability in token complexity, our approach enables se-
lective acceleration of the inference process. Specifically, we propose the
integration of early exit "heads" atop existing transformer layers, which
facilitate conditional terminations based on a confidence metric. These
heads are trained in a self-supervised manner using the model’s own
predictions as training data, thereby eliminating the need for additional
annotated data. The confidence metric, established using a calibration
set, ensures a desired level of accuracy while enabling early termina-
tion when confidence exceeds a predetermined threshold. Notably, our
method preserves the original accuracy and reduces computational
time on certain tasks, leveraging the existing knowledge of pre-trained
LLMs without requiring extensive retraining. This lightweight, modular
modification has the potential to greatly enhance the practical usability
of LLMs, particularly in applications like real-time language processing
in resource-constrained environments.

1



1 Introduction
Large language models (LLMs) have become central to advancing capabilities
in natural language processing (NLP), delivering remarkable performance
across a range of tasks. The trend towards scaling up these models correlates
strongly with improved performance, understanding, and generality. However,
the computational cost associated with these larger models is substantial,
often necessitating the use of powerful server infrastructure Samsi et al. [2023].
This not only limits local usability but also raises significant privacy concerns
and requires considerable investment to scale in response to user demand.
Solutions exist to reduce the computational demands of these models, but
they often impact the model’s performance by reducing its accuracy Zhu et al.
[2023].

Despite their effectiveness, these models often operate inefficiently. The
nature of language itself contributes to this inefficiency; namely, not all
tokens generated during the inference process contribute equally to the overall
meaning or require the same level of computational resources. Some tokens
are inherently simpler and can be predicted with high confidence early in
the computation process, while others, contributing more significantly to the
context or meaning, may require deeper processing.

In response to these challenges, our objective is to develop a method
that can be easily integrated into existing pre-trained models to enhance
their inference speed without necessitating extensive retraining or modifica-
tion. Our proposed solution focuses on the strategic placement of early exit
"heads" Scardapane et al. [2020], Teerapittayanon et al. [2016] within the
transformer layers of an LLM. These heads are designed to terminate the
inference process prematurely when a certain confidence threshold is met,
based on the complexity and predictability of the token being processed.

Our contribution is twofold:

1. We introduce a lightweight, modular enhancement for pre-trained LLMs
that significantly accelerates inference by incorporating early exits in
the model architecture. These exits are strategically placed and are
trained in a self-supervised manner, leveraging the outputs from the
model itself as training targets.

2. We d evise a novel method for determining when to apply these early
exits during inference. This involves generating a calibration set and
establishing confidence thresholds in a self-supervised manner. These

2



thresholds allow the model to make informed decisions about whether
to continue processing based on the predicted confidence level of the
output at each step.

This method not only improves the efficiency of LLMs but also maintains
the integrity and accuracy of the model’s outputs, making it particularly
useful for applications requiring real-time processing capabilities in resource-
constrained environments.

2 Related Work
The Transformer architecture, introduced by Vaswani et al. [2023], has revo-
lutionized the field of natural language processing (NLP). Large Language
Models (LLMs) have become increasingly popular due to their ability to
process and generate human-like text with remarkable accuracy. As LLMs
continued to grow in size and complexity, they began to expand beyond
NLP, demonstrating their potential for applications in other domains such as
computer vision Dosovitskiy et al. [2020], speech recognition Radford et al.
[2022] and other. The pursuit of larger and more accurate models has led to
the development of numerous LLM architectures Devlin et al. [2019], Thoppi-
lan et al. [2022], Brown et al. [2020], Radford et al., Touvron et al. [2023],
Chowdhery et al. [2022], Zhang et al. [2022]. However, this growth in size
and complexity has come at a cost: modern LLMs are often computationally
expensive to run, making them less accessible for widespread adoption and
hindering their potential for real-world applications.

To mitigate the computational costs associated with large language models,
several techniques have been employed to improve their efficiency. Some of
these approaches include quantization Sun et al. [2020], Shen et al. [2019],
Yao et al. [2022], pruning Fan et al. [2019] or knowledge distillation Bai
et al. [2021], Sun et al. [2019]. Early exit, has been explored in various
machine learning domains as a means to reduce computational costs while
maintaining acceptable accuracy. In the context of neural networks, early
exit refers to the ability of a model to terminate computation at intermediate
layers, allowing for faster inference and reduced computational overhead.
Research in this field mainly goes along two axes: designing efficient early exit
networks Teerapittayanon et al. [2017], Huang et al. [2018] and improving the
exit rule to find the best trade off between accuracy and computation Liu
et al. [2020], Xin et al. [2020], Zhou et al. [2020], Valade et al. [2024]. Most

3



of these methods rely on diverse confidence metric to determine a threshold
of early exiting at inference time.

Our contribution lies in the versatility and adaptability of our early exit
strategy, which can be integrated into any recent LLM architecture. Unlike
many existing methods, our approach leverages the generative capacity of
pretrained models by training our early exit mechanism without the need
for additional data. We set our thresholds for exiting using a calibration
set, which allows us to finely control the balance between computational
efficiency and accuracy. This method ensures that our model can dynamically
adjust to varying complexities in data while maintaining a strict budget on
computational resources, making it highly suitable for real-world applications
where processing speed and model responsiveness are crucial.

Our proposal shares some features with conformal predictions Vovk et al.
[1999]. There, the goal is to build, given a trained model, a calibration set and
a conformity measure, a prediction interval (or set) valid with high probability
for a new instance. Our calibration of the thresholds for exiting borrows
some idea from conformal prediction has the huge difference that we tackle a
self-supervised problem. Moreover, our goal is not to build a set of outputs
but only the next token for a sequence.

3 Methodology
This section details our methodology for integrating and utilizing early exits
within large language models (LLMs) to enhance computational efficiency
during inference. The approach is designed to be generalizable and, while
we demonstrate its application using the Phi-2 Model, it is applicable to
any multi-layered transformer model. This adaptability ensures that our
methodology can be leveraged across a broad spectrum of modern LLMs,
enhancing their usability without requiring significant modifications to their
underlying architectures.

3.1 Definitions and Preliminaries

In this section, we establish the foundational definitions and notations used
throughout our study on early exit strategies in LLMs.

Dataset: Let T = {0, 1, . . . , V − 1} represent the token space, where V
is the size of the vocabulary and each element corresponds to a unique token

4



within the model’s vocabulary.
We define two specific datasets used in our experiments: the calibration

dataset and the training dataset. Let Dt = {x1,x2, . . . ,xNt} and Dc =
{x1,x2, . . . ,xNc} be the calibration and training datasets, respectively. Each
sample xi in these datasets is a sequence of tokens: xi = (xi,1, xi,2, . . . , xi,Li

),
where Li denotes the length of the ith sample and xi,j ∈ T represents the jth

token in the ith sample.
Classifiers: Define fθ : T ∗ → ∆V as the LLM, where θ denotes the

parameters of the main model, T ∗ signifies the set of all possible token se-
quences, and ∆V represents the V -dimensional probability simplex, indicating
the distribution over the vocabulary. The token that is assigned with the
highest probability is then the next token in the sequence. The output of the
main model given an input token list x is denoted as pθ = fθ(x) to simplify
notation.

We incorporate K early exit heads into the LLM to facilitate efficient
inference. Each head hk : T ∗ → ∆V for k ∈ {1, 2, ..., K} is a classifier that
outputs a probability distribution over the vocabulary. The output of the kth

head given an input token list x is denoted by pk, where pk is a vector in ∆V .
We define the confidence metric c : ∆V → R, which assesses the reliability

of predictions by converting a probability vector pk into a scalar confidence
value. This metric plays a critical role in determining whether the processing
at an early exit head is sufficient or if further computation is necessary. As an
example, a simple max function can be used as confidence metric. With these
definitions established, we proceed to describe the implementation details of
each component, their interaction within the system, and the methodologies
used for training and inference.

3.2 Implementation and Training

To enhance the inference efficiency of large language models, we incorporate
early exit "heads" into a pre-existing model, in this instance, the Phi-2
model Gunasekar et al. [2023]. These heads are implemented at regular
intervals along the network. Structurally, each head is a simple multi-layer
perceptron (MLP), identical to the final classification head of the model. each
of these head takes as input hidden features from a transformer block inside
the model.

For the implementation of these heads, we experimented with two initial-
ization strategies: initializing the heads from scratch and copying the final

5



classification head in order to fine-tune it. The difference between the two
are analyzed in section 4.

Training batch Calibration batch
This is an example script: A cat is
My name is In Python, a list is
I am a In C, we can define a function
Welcome to The capital of France is
what is a The derivative of x2 is

Table 1: Starting batch used to have a diverse set of tokens generated.

The training of these heads is conducted in a self-supervised manner. We
construct batches from various starting points (see Table 1) in conversations
to ensure coverage of diverse linguistic structures and token complexities. For
each input, we infer the next token based on the model fθ and we compute a
custom loss that compares the output from each early exit head to the output
from the main model. The loss function for each head is defined as follows:

loss =
K∑
k=1

lossk =
K∑
k=1

{(1− λ) · CE (pk,pθ)− λ · Entropy (pk)} , (1)

where K represents the total number of classifiers1, pk denotes the output of
the kth classifier with pθ being the output of the underlying model, CE is the
cross-entropy loss, computed as:

CE(x,y) = −
∑
i

yi log(softmax(xi)).

Moreover, the entropy penalty, defined as

Entropy(p) = −
∑
i

pi log(pi).

is added to encourage the model to be less confident (closer to the uniform
probability distribution) in the case when the certainty of the classification is
low.

In the loss function (1), the tuning parameter λ is a penalty weight
that balances the cross-entropy loss with the entropy penalty, promoting

1The total number of classifiers is just the number of early exit heads within the model.

6



confidence in the early exits where appropriate, and allowing for uncertainty
where necessary. This mechanism ensures that the early exits do not overly
commit to predictions without sufficient confidence, and it plays a crucial role
in the calibration of thresholds for early termination in subsequent stages.
We study the impact of λ in section 4.

3.3 Calibration and Inference

After training the early exit heads, the next crucial step involves calibrating
and using these heads during model inference. This process is divided into
two main stages: calibration of the confidence thresholds and the application
of these thresholds during inference.

3.3.1 Calibration of Confidence Thresholds

The calibration starts with the selection of an appropriate confidence metric.
Our experimental setup tested several metrics: the maximum probability
value, the entropy of the probability distribution, and the difference between
the two highest probability scores from the classification vector. The latter,
known as the "breaking ties" metric, was selected due to its superior empirical
performance. Mathematically, the breaking ties metric for a probability vector
p is defined as:

c(p) = p(1) − p(2)

where p(1) and p(2) are the highest and second-highest entries in p, respectively.
To calibrate the confidence thresholds, we use a calibration batch provided

in Table 1. This batch is composed of diverse starting points designed to
cover different linguistic contexts.

For each starting point, the model generates tokens, and the selected
confidence metric is applied to each output from the early exits. We record
both the metric value and a Boolean indicating whether the early exit’s
prediction matches the prediction of the underlying model fθ. After generating
a sufficient number of tokens, we obtain a dataset of metric values paired
with correctness indicators.

Upon completing the calibration process, we derive two distinct vectors
for each head k in the model. Let

ck = (c(hk(x1)), c(hk(x2)), . . . , c(hk(xNc))) ∈ RNc (2)

7



be the vector containing the metric values obtained at head k during the
calibration phase, where xi is an input from the calibration dataset Dc and
c(hk(xi)) represents the confidence metric applied to the output of the classifier
hk for the input xi.

Correspondingly, let tk be a binary vector of length Nc where each element
corresponds to the correctness of the prediction associated with the respective
element in ck. Specifically, tk,i is 1 if the ith prediction at head k is the same
as the ith prediction associated to of the underlying model fθ(xi), otherwise
0. More formally, we can write:

tk,i = 1{argmaxhk(xi)=argmax fθ(xi)} =

{
1 if argmax(hk(xi)) = argmax(fθ(xi))
0 otherwise

(3)
where the maxima are taken over the coordinates of the probability score
vectors associated to the token sequence xi.

The calibration set is subsequently used to establish a confidence threshold
for each early exit head. We begin by sorting the metric values obtained
during calibration. Then, let ϵ ∈ [0, 1] be a confidence level selected to control
the adherence to the model’s output, specifying the minimum proportion of
correct decisions required above the threshold. This parameter is crucial as
it determines the trade-off between accuracy and efficiency in the inference
process. The threshold for each head k is set to the lowest metric value where
the percentage of correct predictions is at least ϵ, ensuring that decisions
made past this threshold maintain a high level of precision. Formally, the
threshold for each head is defined as follows.

Recall that ck and tk are respectively the vector of scores and the vector
correctness in prediction given by (2) and (3). We can sort these two vectors
w.r.t. the ascending order according to the values of ck. That is, we can
rearrange terms ck = (ck,1, ck,2, . . . , ck,Nc) and tk = (tk,1, tk,2, . . . , tk,Nc) in a
such way that ck,1 ≤ ck,2 ≤ . . . ≤ ck,Nc . Moreover, let ĵ be the first index such
that: ∑Nc

i=ĵ
tk,i

Nc − ĵ + 1
≥ ϵ.

Then, let the threshold τk be defined as:

τk = ck,ĵ.

In other words, τk is the value of the confidence metric at the index ĵ, where

8



ĵ is the smallest index such that the proportion of correct prediction in the
remaining samples is at least ϵ.

3.3.2 Inference Process

After establishing the confidence thresholds for each early exit head through
the calibration process, the model is then ready to utilize these thresholds
during the inference phase to efficiently process new inputs.

During inference, each input x is sequentially processed through the
model’s layers, with the possibility of early termination at any of the early
exit heads hk. For each head k ∈ {1, 2, . . . , K}, we compute:

pk = hk(x),

ck = c(pk).

We then return pk as output from the model if:

ck ≥ τk.

If no head satisfies this inequality, we return pθ.
This calibrated and threshold-driven early exit mechanism allows the

model to balance efficiency with accuracy, ensuring that resource-intensive
computations are only performed when necessary.

4 Experiments and Results
In this section, we present the results of our experiments2 on training and
evaluating the Phi-2 model with early exits placed at regular interval along
the network, specifically after layer 6, 12, 18, 24. The underlying model has
a total of 32 layers. We first describe the training process, including the
impact of the hyperparameter λ on the penalty term and the effect of copying
the last language model (LM) head versus initializing the weights for the
early exit classifiers. We then present the results of our training experiments,
highlighting the trade-offs between accuracy and entropy, which is used to
improve our confidence metric.

2All computations are run on a server with an Intel(R) Xeon(R) Gold 5120 CPU and a
Tesla V100 GPU with 32GB of Vram and 64GB of RAM. Code used in experiments to train
and evaluate can be found under : https://anonymous.4open.science/r/BranchyLLM-B870

9



In the second part of this section, we focus on the inference phase, where
we investigate the performance degradation of the model as we increase the
speedup by exiting earlier in the network. We provide a comprehensive
evaluation of our approach, including various evaluation scores and speedup
metrics, to demonstrate the effectiveness of our method in achieving signif-
icant speedup while maintaining acceptable performance. Throughout our
experiments, we use the Phi-2 model as a representative example, due to its
relatively small size, which allows for rapid iteration and experimentation.
However, our approach is theoretically applicable to any language model
architecture.

4.1 Training

During training, we employed a modified loss function that deviates from
the traditional cross-entropy loss. Our goal is to encourage the model to
produce outputs with low confidence scores, allowing our confidence metric
to effectively sort the most confident outputs. Specifically, our loss function
incorporates a penalty term, weighted by the hyperparameter λ, to discourage
the model from producing overly confident outputs.

To monitor the training process, we tracked three key metrics: (1) accuracy
of each head, which measures the proportion of instances where the argmax
of the head’s output matches the argmax of the main model’s output; (2)
entropy, which indicates the level of uncertainty in the head’s output; and (3)
the modified loss function. These metrics provide insights into the model’s
ability to produce accurate and uncertain outputs, which are essential for
effective early exiting.

Figure 1 illustrates the training dynamics for four different scenarios: (a)
low penalty (λ = 0.1), (b) high penalty (λ = 0.95), and (c) using a pre-trained
classification head from the main model, with and without penalty.

The results demonstrate several key findings. Firstly, the copied head
without penalty shows better accuracy but insufficient entropy, making our
confidence metric less meaningful and thus impairing the early exit perfor-
mance. Secondly, adding a penalty to a pre-trained head does not achieve the
desired balance; accuracy fails to reach potential levels without the penalty,
and entropy does not increase significantly. Finally, for initialized heads, a
strong penalty does not adversely affect accuracy but significantly increases
entropy, which is beneficial for our early exit strategy.

Our analysis suggests that while pre-trained heads excel in accuracy, they

10



Figure 1: Accuracy and entropy metrics during training for different configu-
rations of the early exit model. The first column shows the accuracy of each
exit head, while the second column plots the corresponding entropy values.
Four settings are compared: low entropy penalty (λ = 0.1) (Phi-2 0.1), high
entropy penalty (λ = 0.95) (Phi-2 0.95), and heads initialized from the
main model’s classification head, with (Phi-2 0 Fine Tuned) and without
penalty (Phi-2 0.95 Fine Tuned).

11



lack the necessary uncertainty for effective early exits unless modified appro-
priately. The incorporation of a penalty term during training, particularly
with newly initialized heads, ensures that the model maintains high accuracy
while also producing outputs with higher entropy. This balance is crucial for
the functionality of our early exit mechanism, as it allows for confident early
terminations without compromising overall model performance.

4.2 Inference

During inference, our early exit mechanism dynamically decides when to stop
processing further based on a confidence metric. This decision is controlled by
the parameter ϵ, which determines the confidence threshold for each exit head.
By adjusting ϵ, we can control the trade-off between speed and accuracy: a
lower ϵ results in more data being processed through early exits, leading to
faster inference but potentially lower accuracy, whereas a higher ϵ ensures
more accurate predictions at the cost of increased computational time.

4.2.1 Experimental Setup

We evaluated the performance of our early exit strategy using the Phi-2 model
across various values of ϵ. We compared the following metrics:

• Benchmark Scores: Performance on different benchmarks, such as
MMLU, Winogrande, and Hellaswag.

• Speedup: The reduction in computational time compared to the full
model inference.

• Exit Distribution: The percentage of tokens exiting at each head.

4.2.2 Results

Figure 2 shows the benchmark scores of the model as a function of ϵ. On the
MMLU benchmark, the scores remain relatively stable as ϵ decrease, suggesting
that the early exit heads can make confident and correct predictions without
significantly sacrificing performance. This is encouraging as it indicates that
we are not losing accuracy while speeding up our inference for this benchmark.
However, on the Hellaswag and Winogrande benchmarks, the scores show a
clear increase with higher values of ϵ. This indicates that while our method

12



maintains efficiency for the MMLU task, it is less effective for Hellaswag and
Winogrande, where lower ϵ values lead to a noticeable drop in performance.

Figure 2: Model benchmark scores as a function of ϵ. Higher ϵ values
correspond to higher scores.

Figure 3 illustrates the speedup achieved at different ϵ levels. A lower
ϵ results in more tokens exiting early, leading to substantial computational
savings. The speedup is most pronounced at lower ϵ values, demonstrating
the efficiency gains from our early exit strategy.

Figure 3: Inference speedup as a function of ϵ. Lower ϵ values lead to greater
speedup.

The exit distribution across different heads for various ϵ values is shown
in Figure 4. With lower ϵ, a larger proportion of tokens exit at the earlier
heads, while higher ϵ values push more tokens towards the final layers. This

13



distribution highlights the flexibility of our approach in balancing speed and
accuracy based on application requirements.

Figure 4: Distribution of token exits across different heads for various ϵ values.

4.2.3 Discussion

Our results demonstrate that the early exit strategy significantly enhances
the efficiency of large language models. By carefully selecting ϵ, users can
tailor the inference process to meet specific needs, achieving a desired balance
between speed and accuracy. The ability to exit early without substantial
loss in some benchmark performance makes this approach highly valuable for
real-time applications on specific tasks.

The integration of early exits into the Phi-2 model showcases the potential
for widespread adoption across other large language models.

5 Limitations and potential impacts
Our method demonstrates promising results with minimal degradation in
performance on the MMLU benchmark, which suggests its potential effective-
ness. However, we observed that other benchmarks experience a noticeable
drop in performance. This indicates the necessity of evaluating our method
on specific tasks to ensure performance retention. To maintain high accuracy
across various tasks, a higher epsilon value should be used. However, this

14



approach reduces the usage of early exit heads, thereby limiting the overall
usability and efficiency of the method.

Due to constraints in computational resources, we were unable to test our
method on larger LLMs. Consequently, we selected a smaller LLM, phi-2, for
our experiments. It is important to note that other, more substantial LLMs
might exhibit different behaviors when subjected to our method. Therefore,
further experimentation on a broader range of models is necessary to fully
understand the generalizability and effectiveness of our approach across diverse
architectures and scales.

About the impacts, our approach accelerates inference in large language
models (LLMs), reducing computational resources and energy consumption
significantly. This efficiency improvement enhances the practical usability of
LLMs across various applications, resulting in lower operational costs and a
smaller environmental footprint.

Careful task-specific evaluation is essential to avoid potential negative
impacts, such as reduced accuracy and the risk of misinformation. While we
observe minimal performance degradation on the MMLU benchmark, other
tasks may experience accuracy loss. Such issues are inherent to all LLMs and
underscore the need for rigorous validation to maintain output reliability.

6 Conclusion
In conclusion, we have presented a comprehensive framework for accelerat-
ing inference in large language models through the strategic integration of
self-supervised early exits. By harnessing the inherent variability in token
complexity, our method enables selective acceleration without sacrificing ac-
curacy, thus addressing the pressing need for more efficient natural language
processing solutions. The lightweight and modular nature of our approach
not only facilitates seamless integration into existing pre-trained models
but also enhances their practical usability across a wide array of real-world
applications.

Throughout our experiments with the Phi-2 model, we have demonstrated
significant computational savings while maintaining high accuracy on certain
benchmarks. Our method offers a fine balance between speed and precision,
allowing users to tailor the inference process according to specific require-
ments. Moreover, the adaptability of our approach highlights its potential
for widespread adoption across diverse language model architectures, paving

15



the way for enhanced efficiency and scalability in natural language processing
tasks.

Looking ahead, further research could explore optimizations and refine-
ments to our methodology, such as fine-tuning the calibration process for
different tasks or investigating alternative early exit strategies. Additionally,
extending our experiments to larger and more complex language models
could provide deeper insights into the scalability and generalizability of our
approach. Ultimately, our work opens up exciting possibilities for accelerating
inference in large language models, thereby advancing the frontier of natural
language processing and enabling novel applications in various domains.

References
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun

Liu, Michael Lyu, and Irwin King. BinaryBERT: Pushing the Limit
of BERT Quantization, July 2021. URL http://arxiv.org/abs/2012.
15701. arXiv:2012.15701 [cs].

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey
Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage Models are Few-Shot Learners. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam

16

http://arxiv.org/abs/2012.15701
http://arxiv.org/abs/2012.15701
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html


Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Olek-
sandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel.
PaLM: Scaling Language Modeling with Pathways, October 2022. URL
http://arxiv.org/abs/2204.02311. arXiv:2204.02311 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
arXiv:2010.11929 [cs], October 2020. URL http://arxiv.org/abs/2010.
11929. arXiv: 2010.11929.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing Transformer
Depth on Demand with Structured Dropout, September 2019. URL http:
//arxiv.org/abs/1909.11556. arXiv:1909.11556 [cs, stat].

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes,
Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann,
Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh
Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten,
and Kilian Q. Weinberger. Multi-scale dense networks for resource efficient
image classification, 2018.

17

http://arxiv.org/abs/2204.02311
https://aclanthology.org/N19-1423
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1909.11556
http://arxiv.org/abs/1909.11556


Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju.
Fastbert: a self-distilling bert with adaptive inference time, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language Models are Unsupervised Multitask Learners.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. Robust Speech Recognition via Large-Scale Weak
Supervision, December 2022. URL http://arxiv.org/abs/2212.04356.
arXiv:2212.04356 [cs, eess].

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas,
Michael Jones, William Bergeron, Jeremy Kepner, Devesh Tiwari, and
Vijay Gadepally. From Words to Watts: Benchmarking the Energy Costs
of Large Language Model Inference, October 2023. URL http://arxiv.
org/abs/2310.03003. arXiv:2310.03003 [cs].

Simone Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini. Why should
we add early exits to neural networks? Cognitive Computation, 12:954 –
966, 2020. doi: 10.1007/s12559-020-09734-4.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. Q-BERT: Hessian Based Ultra
Low Precision Quantization of BERT, September 2019. URL http://
arxiv.org/abs/1909.05840. arXiv:1909.05840 [cs].

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient Knowledge Distillation
for BERT Model Compression, August 2019. URL http://arxiv.org/
abs/1908.09355. arXiv:1908.09355 [cs].

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and
Denny Zhou. MobileBERT: a Compact Task-Agnostic BERT for Resource-
Limited Devices, April 2020. URL http://arxiv.org/abs/2004.02984.
arXiv:2004.02984 [cs].

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet:
Fast inference via early exiting from deep neural networks. 2016 23rd
International Conference on Pattern Recognition (ICPR), pages 2464–2469,
2016. doi: 10.1109/ICPR.2016.7900006.

18

http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2310.03003
http://arxiv.org/abs/2310.03003
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/2004.02984


Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast
inference via early exiting from deep neural networks, 2017.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv
Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo
Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin,
Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma,
Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch,
Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern,
Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz,
Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John,
Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm,
Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and
Quoc Le. LaMDA: Language Models for Dialog Applications, February
2022. URL http://arxiv.org/abs/2201.08239. arXiv:2201.08239 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Ham-
bro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. LLaMA: Open and Efficient Foundation Lan-
guage Models, February 2023. URL http://arxiv.org/abs/2302.13971.
arXiv:2302.13971 [cs].

Florian Valade, Mohamed Hebiri, and Paul Gay. Eero: Early exit with reject
option for efficient classification with limited budget, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is
All You Need, August 2023. URL http://arxiv.org/abs/1706.03762.
arXiv:1706.03762 [cs].

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of
algorithmic randomness. In In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 444–453. Morgan Kaufmann, 1999.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT:

19

http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1706.03762


Dynamic Early Exiting for Accelerating BERT Inference, April 2020. URL
http://arxiv.org/abs/2004.12993. arXiv:2004.12993 [cs].

Z. Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong
Li, and Yuxiong He. Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Neural Information Processing
Systems, 2022. doi: 10.48550/ARXIV.2206.01861.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open Pre-trained Transformer Language Models, June 2022. URL
http://arxiv.org/abs/2205.01068. arXiv:2205.01068 [cs].

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu
Wei. BERT Loses Patience: Fast and Robust Inference with Early Exit, Oc-
tober 2020. URL http://arxiv.org/abs/2006.04152. arXiv:2006.04152
[cs].

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A Survey on
Model Compression for Large Language Models, September 2023. URL
http://arxiv.org/abs/2308.07633. arXiv:2308.07633 [cs].

20

http://arxiv.org/abs/2004.12993
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2006.04152
http://arxiv.org/abs/2308.07633

	Introduction
	Related Work
	Methodology
	Definitions and Preliminaries
	Implementation and Training
	Calibration and Inference
	Calibration of Confidence Thresholds
	Inference Process


	Experiments and Results
	Training
	Inference
	Experimental Setup
	Results
	Discussion


	Limitations and potential impacts
	Conclusion

