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NUMERICAL APPROXIMATION OF ERGODIC BSDES USING NON
LINEAR FEYNMAN-KAC FORMULAS

EMMANUEL GOBET, ADRIEN RICHOU, AND LUKASZ SZPRUCH

Abstract. In this work we study the numerical approximation of a class of ergodic
Backward Stochastic Differential Equations. These equations are formulated in an in-
finite horizon framework and provide a probabilistic representation for elliptic Partial
Differential Equations of ergodic type. In order to build our numerical scheme, we put
forward a new representation of the PDE solution by using a classical probabilistic
representation of the gradient. Then, based on this representation, we propose a fully
implementable numerical scheme using a Picard iteration procedure, a grid space dis-
cretization and a Monte-Carlo approximation. Up to a limiting technical condition
that guarantees the contraction of the Picard procedure, we obtain an upper bound
for the numerical error. We also provide some numerical experiments that show the
efficiency of this approach for small dimensions.

Keywords. ergodic BSDEs, probabilistic numerical scheme, elliptic PDEs, Feynman-
Kac representation.

MSC Classification (2020): 65C30, 65C20, 65M12, 60H35.

1. Introduction

1.1. Statement of the problem. We study the numerical solution (Y, Z, λ) of the
Ergodic Backward Stochastic Differential Equation (EBSDE)

(1) Yt = YT +

∫ T

t
(f(Xs, Zs)− λ) ds−

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T,

where the processes (Y,Z) take values in some appropriate L2 space, and λ is a scalar
(called ergodic cost). Here X is the solution of an ergodic forward SDE; detailed as-
sumptions will be stated later, see Section 2. Our goal is to design a new numerical
scheme for computing the solution of (1), and to provide its error analysis with some
numerical experiments to illustrate its performance.

Ergodic BSDE, introduced first by [FHT09], is an efficient tool to analyse optimal con-
trol problems with ergodic cost functionals; other methods are based on the Hamilton-
Jacobi-Bellman equation, see for instance [AL98] and [BF02]. Let us highlight the link
between EBSDE and stochastic control problem. It is now well known that, in a quite
general setting, adjoint problems for stochastic control problems are given by solutions
to BSDEs and their resolution gives access to the optimal control, see [Pen93]-[MY99]-
[Zha17] for instance. Namely, consider the solution (Y T , ZT ) of the following BSDE,
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Fondation du Risque, and of the Chaire "Stress Test, RISK Management and Financial Steering" of
the Ecole Polytechnique Foundation. The second author research has benefited from the support of the
ANR Project ReLISCoP (ANR-21-CE40-0001).
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parameterized by T > 0:

(2) Y T,x
t = g(Xx

T ) +

∫ T

t
f(Xx

s , Z
T,x
s )ds−

∫ T

t
ZT,x
s dWs, 0 ⩽ t ⩽ T.

Under suitable assumptions (see [HMR15, Theorem 4.4]) the following asymptotic ex-
pansion result holds: for some constants L ∈ R and C > 0,∣∣∣Y T,x

0 − λT − Y x
0 − L

∣∣∣ ⩽ C(1 + |x|3)e−T/C(3)

where Y x
0 is the solution of (1) for X0 = x. This shows that solving (1) for any x gives

an explicit approximation for Y T,x
0 in (2) as T is large.

1.2. State of the art. Although theoretical properties of EBSDEs have been well stud-
ied in the literature, see e.g. [FHT09], [Ric09], [DHT11], [CH13], [Mad15], [GT20], to
the best of our knowledge, the recent article [BQKMS24] is the only one that provides a
numerical scheme dedicated to the resolution of EBSDEs. This scheme relies on a ran-
dom horizon time approximation and a neural network space approximation. Our aim
is to provide an alternative fully implementable scheme and to study the approximation
error.

About numerics for ergodic control, we refer to [CLGP89] and [CP05] which approx-
imate the stochastic control problem in infinite horizon using Markov chain approxima-
tions.

The literature about numerics for BSDEs is huge and it is mostly restricted to the
case of finite horizon problem, in contrast with the infinite horizon setting of (1). For
the study of discretization errors under standard regularity conditions, see [Zha04]; for
singular terminal conditions, see [GGG12]; for quadratic growth driver, see [CR16]. For
an overview of numerical methods for BSDEs (in finite horizon), see the recent review
[CKSY23]. However, none of these works cover the case of infinite horizon BSDEs, except
[BGJ20] who deals with infinite horizon BSDEs without dependency with respect to
the Z-component and, as already mentioned, the recent article [BQKMS24] concerning
EBSDEs.

1.3. Our contributions and organization of the paper. Our aim is therefore to
design a first numerical scheme in multidimensional setting for solving EBSDE. For this,
we establish a Markov representation of the value function and its gradient: for spe-
cialists, this is presumably not a surprizing result, but to the best of our knowledge, it
was not done so far. This is performed under the classical dissipativity assumption (As-
sumptions (A-3)) and under a less usual but quite natural Hurwitz stability condition
(Assumptions (A-2’)); see Proposition 2.1. Then, we derive (see Theorem 2.1) a fixed
point equation to which the gradient is (the unique) solution: this equation writes as
an expectation of functionals involving the required solution and sub-Gamma random
variables. Some contraction properties of this fixed point equation are also investigated
in Subsection 2.3. All these analytical results are the purpose of Section 2.

This probabilistic fixed point representation of the solution associated to a finite grid
discretization of the space allows to design a suitable Picard iteration scheme in Sec-
tion 3, for which we prove full convergence rates, with respect to the number of Picard
iterations, the number of Monte-Carlo samples, the grid mesh on which the numerical so-
lution is computed: see Proposition 3.3 and Corollary 3.1. On the technicalities side, we
establish smoothness properties of the fixed-point mapping in suitable weighted norms,
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and we leverage concentration-of-inequalities of Bernstein type (suitable for subGamma
tails) to control uniformly statistical errors.

Finally, some numerical experiments that illustrate theoretical convergences obtained
are presented in Section 4.

1.4. Notations. In all this work, we consider a filtered probability space (Ω,F , (Ft)t≥0,P)
which supports a d-dimensional Brownian motion W = (W 1, . . . ,W d)⊤. The filtration
(Ft)t≥0 is the one generated by W augmented by the P-null sets, so that the filtration
satisfies the "usual conditions".
Vector, matrix: |x| denotes the Euclidean norm of x ∈ Rd; when A is a matrix ∥A∥

stands for the matrix 2-norm (i.e. subordinated to the Euclidean norm); x⊤
denotes the transpose of the vector x and Tr(A) denotes the trace of A. For a
vector x ∈ Rp (resp. a matrix A ∈ Rp×q) and R ∈ R+, we denote ⌊x⌋R (resp.
⌊A⌋R) the projection of x (resp. A) on the Euclidean ball B̄(0, R) of Rp (resp.
Rp×q).

Function: C0(Rp,Rq) denotes the set of functions f : Rp → Rq that are continuous.
C1(Rp,Rq) (resp. C1

b (Rp,Rq)) denotes the set of functions f : Rp → Rq that
are differentiable with a continuous (resp. continuous bounded) derivative. For
a bounded function f ∈ C0(Rp,Rq) (resp. C0(Rp,Rq×r)), we denote |f |∞ :=
supx∈Rp |f(x)| (resp. ∥f∥∞ := supx∈Rp ∥f(x)∥).

For a function f := (fi)1⩽i⩽p ∈ C1
b (Rp,Rq), we denotes ∇xf the function

Rp ∋ x 7→ (∂xjfi)i,j ∈ Rp,q. In particular, when p = 1, ∇xf is a row-vector
valued function.

Random variables and stochastic processes: For p ≥ 1, Lp denotes the set of
(scalar or vector-valued) random variablesX with finite norm |X|p := (E [|X|p])1/p <
+∞. L∞ stands for the set of essentially bounded random variables.

S 2
T is the set of scalar adapted continuous processes Y on [0, T ] such that

E

[
sup

s∈[0,T ]
|Ys|2

]
< +∞.

S 2
loc denotes the set of continuous processes Y on R+ such that (Yt)t⩽T ∈ S 2

T ,
for all T > 0. M 2

T is the set of R1×d-valued predictable processes Z on [0, T ]
such that

E
[∫ T

0
∥Zs∥2ds

]
< +∞.

Observe that we write Zt as a row vector (in a coherent manner with writing
the stochastic integral

∫ t
0 ZsdWs). M 2

loc denotes the set of continuous processes
Z on R+ such that (Zt)t⩽T ∈ M 2

T , for all T > 0.
Specific distributions: For ℓ > 0 and a > 0, we denote Γ(a, ℓ) the gamma distribution

with density (with respect to the Lebesgue measure)

x 7→ ℓa

Γ(a)
xa−1e−ℓx1(0,+∞)(x).

We recall the scaling property between distributions Γ(a, ℓ)
d
= ℓ−1Γ(a, 1), and

the special value of the Gamma function Γ(12) =
√
π.

We denote by F the cumulative distribution function of the Gaussian distri-
bution N (0, 1).
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2. Analytical results

2.1. Model and value function. We consider the following ergodic BSDE

(4) Yt = YT +

∫ T

t
(f(Xs, Zs)− λ) ds−

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T,

where (Y, Z, λ) is a solution in the space S 2
loc × M 2

loc × R and X is the solution of the
forward d-dimensional SDE

Xt = x+

∫ t

0
b(Xs)ds+ΣWt, 0 ⩽ t.(5)

Existence and uniqueness of (Y,Z, λ) solution to (4) will be stated in Proposition 2.1.
We assume following assumptions on f and b.

Assumption 2.1. There exist constants Kf,x ⩾ 0, Kf,z ⩾ 0, Kb,x ⩾ 0 and η > 0 such
that, ∀x, x′ ∈ Rd, z, z′ ∈ R1×d,

(A-1) |f(x, z)− f(x′, z′)| ⩽ Kf,x |x− x′|+Kf,z∥z − z′∥,
(A-2) |b(x)− b(x′)| ⩽ Kb,x |x− x′| ,
(A-3) ⟨b(x)− b(x′), x− x′⟩ ⩽ −η |x− x′|2 ,
(A-4) Σ is invertible.

Since b is a Lipschitz function, the SDE (5) has a unique strong solution for any
starting point x at time 0: whenever necessary to emphasize on the x-dependence of
the solution, we shall denote it by Xx. Owing to the condition of (A-3), the solution
X admits a unique invariant measure denoted ν, see [Kha12, Chapter 4].

Let us emphasize that these assumptions can be weakened in several directions in
order to study the well-posedness or some properties of EBSDEs. For example, some
existence and uniqueness results under weaker dissipativity assumptions than (A-3) are
also available in [DHT11, HMR15]: in these papers, we are allowed to consider an extra
bounded nonlinear term in the drift of X. It is also possible to relax the invertibility of
Σ or to consider a multiplicative noise: see e.g. [FHT09, Ric09, GT20].

For some reasons that will be explained after, we will restrict our study from Subsec-
tion 2.2 to the special case where X is solution of an ergodic multidimensional Ornstein-
Uhlenbeck process. Namely, we will assume that the drift b(x) = −Ax with a Hurwitz
matrix −A (see condition (A-2’)), so that the dynamics of X writes

(6) Xt = x−
∫ t

0
AXsds+ΣWt.

Choosing this model family is not so restrictive in practice because of the popularity
of this model in applications. In this special case, Assumptions 2.1 are replaced by the
following alternative assumptions.

Assumption 2.2. There exists a matrix A ∈ Rd×d such that b(x) = −Ax for all x ∈ Rd,
and there exist constants Kf,x ⩾ 0, Kf,z ⩾ 0 and a > 0 such that, ∀x, x′ ∈ Rd, z, z′ ∈
R1×d,

(A-1’) |f(x, z)− f(x′, z′)| ⩽ Kf,x |x− x′|+Kf,z∥z − z′∥,
(A-2’) SpA ⊂ {z ∈ C|ℜ(z) > a}.
(A-3’) Σ is invertible.

Let us remark that, when A is a symmetric matrix, Assumptions 2.1 are easily fulfilled
as soon as Assumptions 2.2 are satisfied. Nevertheless this it is no longer true for a
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general Hurwitz matrix: for instance A =

(
1 −3
0 1

)
is Hurwitz but x ·Ax ⩾̸ 0 for some

x. So, the introduction of these alternative assumptions is justified by the fact that we
do not want to restrict our study to symmetric matrices A. Finally, for any Hurwitz
matrix −A, i.e. satisfying (A-2’) with a > 0, we define CA as the smallest constant
such that

(7)
∥∥e−At

∥∥ ⩽ CAe
−at, ∀t ⩾ 0.

Let us remark that this constant always exists and CA ⩾ 1, see e.g. [GS17, Section
2.1] for some explicit estimates on this constant. Moreover, CA = 1 as soon as A is
symmetric.

Proposition 2.1. Let us assume that Assumptions 2.1 or 2.2 are in force. Then the
ergodic BSDE (4) has a solution (Y,Z, λ) such that

(8) Yt = u(Xt), Zt = ū(Xt)

for two measurable functions satisfying the growth

|u(x)| ⩽ C(1 + |x|), |ū(x)| ⩽ C, ∀x ∈ Rd.(9)

Moreover, the solution (Y,Z, λ) is unique (up to a constant for Y ) in the class of Mar-
kovian solutions with previous growth.

The justification that u ∈ C1 and that ū(.) = ∇xu(.)Σ will be established later in
Theorem 2.1.
Proof. Let us start by assuming Assumptions 2.1. We refer to [DHT11, HMR15] for
the proof of the existence and uniqueness result as well as the Markovian representation.
The growth of u comes from Theorem 4.4 in [FHT09]. To be precise, it is assumed in
[FHT09] that f(., 0) is bounded. Nevertheless, as mentioned in the proof of Lemma
3.12 in [HMR15], results stay true when f(., 0) has a linear growth. Now, let us explain
why ū is bounded. By using the proof of Theorem 4.4 in [FHT09], we have that u is a
Lipschitz function. Now we remark that (Yt, Zt)t∈[0,1] is the solution of the finite time
horizon BSDE

Yt = u(X1) +

∫ 1

t
(f(Xs, Zs)− λ)ds−

∫ 1

t
ZsdWs, t ∈ [0, 1].

Then, classical estimates on Z gives us that Z is bounded.
Now we tackle the alternative Assumptions 2.2. Up to our knowledge, this framework

is not directly covered by published results on EBSDEs. Nevertheless, some standard
computations show that for all x, x′ ∈ Rd, t ⩾ 0, we have Xx

t −Xx′
t = e−At(x− x′) and

then

(10) |Xx
t −Xx′

t | ⩽ CAe
−at|x− x′|.

Moreover, for any B > 0, there exists a constant CB > 0 such that, for any progressively
measurable process β bounded by B, we have

(11) sup
t⩾0

EQ[|Xx
t |2] ⩽ CB(1 + |x|2),

where Q is the Girsanov change of probability associated to the process β, i.e. dQ
dP

is given by the Doléans-Dade exponential of β. Then, by checking all the proofs in
[FHT09, DHT11, HMR15], we can remark that Assumption (A-3) is used only to prove
estimates like (10) and (11). Then, all results stay true when we replace Assumption
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2.1 by 2.2. This fact was already highlighted in [GT20]: see their assumption (A6) as
well as explanations that follow. □

Next, the BSDE (4) gives a probabilistic representation of the following elliptic PDE

(12) Lu(x) + f(x,∇xu(x)Σ) = λ,

where L denotes the generator of the semi-group associated to the SDE (5).

Proposition 2.2. Under assumptions of Proposition 2.1, u given by (8) is a viscosity
solution of (12).

Proof. As in [FHT09, DHT11], we can consider, for all α > 0, the infinite horizon
BSDE

Y α,x
t = Y α,x

T +

∫ T

t
(f(Xx

s , Z
α,x
s )− αY α,x

s ) ds−
∫ T

s
Zα,x
s dWs, 0 ⩽ t ⩽ T,

and define uα(x) := Y α,x
0 , ūα(x) := Y α,x

0 −Y α,0
0 for all x ∈ Rd. ūα is Lipschitz continuous

and has a uniform linear growth: there exists C that does not depend on α such that
|ūα(x)| ⩽ C(1+ |x|) for all x ∈ Rd. To be precise, it is assumed in [FHT09, DHT11] that
f(., 0) is bounded. Nevertheless, as mentioned in the proof of Lemma 3.12 in [HMR15],
results stay true when f(., 0) has a linear growth. By standard arguments, see e.g. proof
of Theorem 5.74 in [PR14], ūα is a viscosity solution of the elliptic PDE

Lu(x) + f(x,∇xu(x)Σ) = αu(x) + αuα(0), x ∈ Rd.

According to [FHT09], there exists a sequence (αn)n∈N such that αn ↘ 0, αnu
αn(0) → λ

and ūαn → u uniformly on Rd when n → +∞. Then Remark 6.3 in [CIL92] gives us
that u is a viscosity solution of (12). □

2.2. Time-randomized Feynman-Kac representation. Now, our goal is to obtain
a representation of v(x) := ∇xu(x) as an expectation of a functional involving v(.) and
the process X.
Heuristics. We first explain informally the derivation, without taking much care of pre-
cise assumptions, for the sake of emphasising ideas. Writing the ergodic BSDE (4) with
Xx and using the Markovian representation of Proposition (2.1), we get

(13) u(x) = E
[
u(Xx

T ) +

∫ T

0
(f(Xx

s , ū(X
x
s ))− λ) ds

]
.

By informally differentiating the above with respect to x and using the Malliavin calculus
integration by parts formula (see [Nua06, Exercise 2.3.5, p.142]) to avoid differentiating
the f term and having a ∇xū term, we obtain

(14) v(x) = E
[
v(Xx

T )∇xX
x
T +

∫ T

0
Ux
s f(X

x
s , ū(X

x
s ))ds

]
where Ux

s is the (raw vector valued) Malliavin weight given by

Ux
s =

1

s

(∫ s

0
(Σ−1∇xX

x
r )

⊤dWr

)⊤
.

If we assume for the moment that ū = ∇xuΣ, we can replace ū in (14) by vΣ. At
first sight, v(.) solves a nice fixed-point equation (14) where the right-hand side is an
expectation of a functional of v, of the path of Xx and of its tangent process ∇xX

x. But
a careful inspection shows that the terms inside the expectation have likely exploding
polynomial moments as T goes to +∞. To see this, consider the simplest case of
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Ornstein-Uhlenbeck process, in dimension d = 1, with Σ = 1 and b(x) = −ax for a
scalar parameter a > 0: then ∇xX

x
t = e−at and

Ux
s =

1

s

∫ s

0
e−ardWr

d
= N

(
0,

1− e−2as

2as2

)
.

Taking a bounded f gives an estimation of Lp-norm as follows:∣∣∣∣∫ T

0
Ux
s f(X

x
s , ū(X

x
s ))ds

∣∣∣∣
p

≤
∫ T

0
|Ux

s f(X
x
s , ū(X

x
s ))|p ds

≤
∫ T

0
Cp

√
1− e−2as

2as2
∥f∥∞ds :

the upper integral converges at s = 0 but diverges at s = T when T = +∞. It shows
that the usual Malliavin weight does not lead to finite estimates as T → +∞, which is
a major flaw in the future perspective of using a Picard iteration1.
Solution and final derivation. Actually, there is no uniqueness of such weights Ux

s , it is
known that they coincide up to conditional expectation given Xx

s , see [FLLL01, Section
2.1]. To overcome the issue of integrability at T = +∞, we follow a slightly different
path, using the likelihood ratio method [AG07, Chapter VII, Section 3]: denote by
p(0, x; s, .) the density of Xx

s , which exists owing to Girsanov arguments under the
condition (A-4). Assuming for a while appropriate smoothness with respect to x, we
get that the first derivative of the integral term in (13) equals

∇xE
[∫ T

0
f(Xx

s , ū(X
x
s ))ds

]
=

∫ T

0

∫
Rd

f(x′, ū(x′))∇xp(0, x; s, x
′)dx′ds

= E
[∫ T

0
f(Xx

s , ū(X
x
s ))Ū

x
s ds

]
where

Ūx
s = ∇x(log(p(0, x; s, x

′))
∣∣
x′=Xx

s
.(15)

In Theorem 2.1 below, we prove that

E
[∫ ∞

0

∣∣Ūx
s f(X

x
s , v(X

x
s )Σ)

∣∣ ds] < +∞

as a difference with the previous weight Ux
s . Actually whether the above holds in full

generality is, so far, an open question (because of untractable formulas for Ūx
s ), however

we have established the required property in the subclass of ergodic models described
by multidimensional Ornstein-Uhlenbeck processes (Assumptions 2.2). Standard com-
putations from (6) show that

(16) Xx
t = e−Atx+ e−At

∫ t

0
eAsΣdWs,

hence Xx
t is distributed as a Gaussian vector, with mean e−Atx and covariance

Σt :=

∫ t

0
eA(s−t)ΣΣ⊤eA

⊤(s−t)ds =

∫ t

0
e−ArΣΣ⊤e−A⊤rdr.

1it would require that Kf,z be small enough, with more stringent conditions than those of this work,
see e.g. Proposition 2.4.
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The matrix Σt clearly inherits from the invertibility of Σ (condition (A-4)); in addition
we have the following estimates

Σt ∼
t→0+

t ΣΣ⊤, Σt ∼
t→+∞

Σ∞,∥∥Σ−1
t

∥∥ ⩽ C(1 ∨ t−1), ∥Σt∥ ⩽ C2
A

∥∥ΣΣ⊤∥∥
2a

, ∀t ⩾ 0,

(17)

where Σ∞ is the covariance matrix of the invariant law ν given by

ν := N
(
0,

∫ +∞

0
e−ArΣΣ⊤e−A⊤rdr

)
.(18)

In view of (15) and the above Gaussian distribution, we easily getŪ
x
s = (Xx

s − e−Asx)⊤Σ−1
s e−As =: e−asŨs,

Ũs = eas(Xx
s − e−Asx)⊤Σ−1

s e−As = eas
(∫ s

0 e
AuΣdWu

)⊤
(e−As)⊤Σ−1

s e−As.
(19)

Observe that (Ũs)s>0 does not depend on x. Moreover, owing to (16) and (17), there
is a time-uniform constant C such that

(20) E
[∣∣Xx

s − e−Asx
∣∣2] ⩽ C(s ∧ 1),

which in turn implies (again using (17) and (7)) the following upper-bound:

(21) E
[
|Ũs|2

]
⩽ C(1 ∨ s−1), ∀s > 0,

for a new time-uniform constant C. This informal derivation leads to the next state-
ment, which rigorous proof is postponed to Section 5.1. Note that in comparison with
Proposition 2.1, the link between the value function u and its supposedly derivative ū
is established, as well their continuities.

Theorem 2.1. Let us assume that Assumptions 2.2 are in force. Then
(1) u ∈ C1(Rd),
(2) Zt = v(Xt)Σ with v := ∇xu, ∥v∥∞ < +∞,
(3) the gradient v is solution of the four following equations

v(x) = E
[
v(Xx

T )e
−AT +

∫ T

0
e−asŨsf(X

x
s , v(X

x
s )Σ)ds

]
(22)

= E
[∫ +∞

0
e−asŨsf(X

x
s , v(X

x
s )Σ)ds

]
(23)

= E
[
v(Xx

T )e
−AT + 1G≤Tθ

√
π

θ

√
Ge−(a

θ
−1)GŨG

θ
f
(
Xx

G
θ

, v(Xx
G
θ

)Σ
)]

(24)

=

√
π

θ
E
[√

Ge−(a
θ
−1)GŨG

θ
f
(
Xx

G
θ

, v(Xx
G
θ

)Σ
)]

(25)

where Ũs given by (19) satisfies (21), θ ∈ (0, a) and G d
= G(1/2, 1) is independent

of W .

Remark 2.1 (Application to the approximation of BSDE in large horizon). As re-
called in introduction, a BSDE with driver independent of Y , such as (2), can be well
approximated, as the horizon T is large, by an EBSDE with the formula

Y T,x
0 ≈ λT + Y x

0 + L(26)
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with the error bound (3). Since Y x
0 is defined up to a constant, the constant L depends

implicitly on the choice of the constant for Y x
0 . Once v is obtained from Theorem 2.1,

one can deduce

λ =

∫
Rd

f(x, v(x)Σ)ν(dx)

with ν the invariant probability measure (18): indeed, we just have to integrate (13) with
respect to ν and apply Fubini theorem. Second, since u is the antiderivative of v up to
constant, we can set

Y x
0 = u(x) =

∫ 1

0
v(tx)xdt, ∀x ∈ Rd.

These arguments set the first two terms on the right hand side of (26). The tuning of L
is more delicate. In view of (3) and since we take Y x=0

0 = 0, we have

L = lim
T→+∞

(Y T,x=0
0 − λT ),

with an exponential convergence. A naive approach would consist in estimating Y T,x=0
0

(using a usual numerical method for BSDE) for a few T , to get an estimation of L. The
experiments related of this approach are postponed to further research.

Remark 2.2. Let us remark that the invertibility of Σ is not necessary to get the exis-
tence and uniqueness result of Proposition 2.1, see e.g. [FHT09]. Moreover, it is well
known that the invertibility of Σ is not necessary to get the invertibility of Σt for all
t > 0. Indeed, Kalman condition on A and Σ, i.e.

the matrix (Σ|AΣ|...|Ad−1Σ) has rank d,

is equivalent to the invertibility of Σt for all t > 0 (see [KS91, Proposition 6.5, Chapter
5]). Under this weaker assumption, Ũt remains well-defined for all t > 0. Nevertheless,
if Σ is not invertible, its time singularity close to 0+ is too strong and (E[|Ux

t |])t∈(0,1] be-
comes not integrable. Then, the invertibility of Σ becomes necessary to get the Feynman-
Kac representation of v in Theorem 2.1.

2.3. Contraction properties of the Fixed point equation. We have established
that v solves equations (24) and (25) that can be seen as some fixed point equations.

More precisely, we define for all T ∈ R+ ∪ {+∞}, a map ΦT such that, for all
measurable function w : Rd → R1×d, ΦT (w) is a measurable function from Rd to R1×d

given by, for all x ∈ Rd,

ΦT (w)(x) = E
[
w(Xx

T )e
−AT1T<+∞ + 1G≤Tθ

√
π

θ

√
Ge−(a

θ
−1)GŨG

θ
f
(
Xx

G
θ

, w(Xx
G
θ

)Σ
)]
.

Then, equations (24) and (25) rewrite as

ΦT (v) = v, ∀ T ∈ R+ ∪ {+∞}.
As a preparation to discuss numerical approximation schemes, we study the contraction
property of ΦT . In order to do it, we firstly have to set a suitable norm on the space
C0(Rd,R1×d). Let ρ : Rd 7→ [1,+∞) a positive weight function. We assume that ρ is an
increasing function with respect to |x| with a growth at most exponential and at least
affine: there exists C > 0 such that

(27) 1 + C−1|x| ⩽ ρ(x) ⩽ CeC|x|, ∀x ∈ Rd.
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Some standard choices will correspond to polynomial or exponential weighting, i.e.
ρ(x) = (1 + α|x|)β or ρ(x) = exp(α|x|) for some parameter α > 0 and β ⩾ 1. The
ρ-norm of a function u : Rd 7→ R1×d is defined by

∥u∥ρ = sup
x∈Rd

|u(x)|
ρ(x)

,

and we denote C0
ρ(Rd,R1×d) the Banach space of functions w ∈ C0(Rd,R1×d) such that

∥w∥ρ < +∞.

Proposition 2.3. Let us assume that Assumption 2.2 is fulfilled and

cT,(28) := sup
x∈Rd

E
[
ρ(Xx

T )

ρ(x)
1T<+∞

]
< +∞,(28)

cT,(29) :=

∫ T

0
e−as sup

x∈Rd

E
[
|Σ−1

s (Xx
s − e−Asx)|ρ(X

x
s )

ρ(x)

]
ds < +∞.(29)

Then, for any functions w1, w2 ∈ C0
ρ(Rd,R1×d), we have ΦT (w1),ΦT (w2) ∈ C0

ρ(Rd,R1×d)
and

∥ΦT (w1)− ΦT (w2)∥ρ ⩽ κT ∥w1 − w2∥ρ ,
with

κT := CAe
−aT cT,(28)1T<+∞ + CAKf,z∥Σ∥cT,(29).

In particular, if κT < 1, v0 ∈ C0
ρ(Rd,R1×d) and vn+1 = ΦT (v

n) for all n ∈ N, then v is
the unique fixed point of ΦT and it satisfies

∥vn − v∥ρ ⩽ (κT )
n
∥∥v0 − v

∥∥
ρ
.

The proof of Proposition 2.3 is postponed to Section 5.2.
Now we can specify a little bit the condition κT < 1 according to the values of the

constants cT,(28), cT,(29), CA, c1,(30) and c2,(30) that satisfy

∥Σ−1
s ∥1/2 ⩽ c1,(30) +

c2,(30)√
s
, ∀s > 0.(30)

Let us remark that the existence of these constants comes from (17).

Proposition 2.4. • If CA = 1 and ρ(x) = eα|x| with α > 0, then

inf
T∈R+∪{+∞}

κT ⩽ Kf,z∥Σ∥
√
d

(
2e

α2∥ΣΣ⊤∥
a2 F

(√
2α∥ΣΣ⊤∥1/2√

a

))d/2(
c1,(30)

a
+

√
πc2,(30)√
a

)
and this upper-bound is an upper-bound for κ∞. In particular, κ∞ < 1 as soon
as α is small enough and

Kf,z∥Σ∥
√
d

(
c1,(30)

a
+

√
πc2,(30)√
a

)
< 1.

• If CA ⩾ 1 and ρ(x) = (1 + α|x|)β with β ⩾ 1 and α > 0, then

inf
T∈R+∪{+∞}

κT ⩽ CAKf,z∥Σ∥
√
dE

(CA + αCA

(∥ΣΣ⊤∥
2a

)1/2

|Y |
)2β

1/2(
c1,(30)

a
+

√
πc2,(30)√
a

)
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where Y ∼ N (0, Id). Moreover, this upper-bound is an upper-bound for κ∞. In
particular, κ∞ < 1 as soon as α is small enough and

CAKf,z∥Σ∥
√
d(CA)

β

(
c1,(30)

a
+

√
πc2,(30)√
a

)
< 1.

Remark 2.3. Let us emphasize that the choice of ρ will have an impact on the numerical
error of our scheme. In particular, as noticed in Remark 3.4, we should consider a
weight with the largest possible growth in order to minimize the spatial truncation error.
Proposition 2.4 says that it is possible to consider an exponential weight when CA = 1.
On the other hand, if CA > 1 we have to settle for a polynomial growth.

The proof of Proposition 2.4 is postponed to Section 5.3. In light of this Proposition,
we will consider only the case T = +∞ in the remaining of the paper, which corresponds
to equations (23) and (25).

Remark 2.4. When Σ = σId and A = aId with σ > 0 and a > 0, we can compute that
CA = 1 and remark that, for all t > 0 and h > 0,

1√
1− e−h

⩽
1√

1− e−t
1h>t +

√
t

1− e−t

1h⩽t√
h
.

Then, we obtain the following upper-bound

∥Σ−1
s ∥1/2 =

√
2a

σ2(1− e−2as)
⩽

√
2a

σ

(
1√

1− e−t
+

√
t

1− e−t

1√
2as

)
, ∀t > 0.

Thus, if we consider the weight function ρ(x) = eα|x| with α > 0, Proposition 2.4 gives
us that

(31) κ∞ ⩽ Kf,z

√
d

a

(
2e

α2σ2

a2 F

(√
2ασ√
a

))d/2

inf
t>0

√
2 +

√
π
√
t√

1− e−t
.

A direct numerical computation shows that the above inft>0 term equals 4.006... <√
2+

√
π√

1−e−1
= 4.008...; hence, κ∞ is smaller than 1 as soon as Kf,z

√
d
a< 0.249 and α is

small enough.

3. Numerical Scheme

The aim of this section is to define a fully implementable scheme in order to provide
a numerical approximation of the function v solution to the fixed point equation v =
Φ∞(v). The proposed scheme is provided in Definition 3.1: it relies on the contraction
property given by Proposition 2.3, a space discretization through a regular grid and an
empirical mean appoximation of the expectation. A full study of the approximation
error is obtained in Proposition 3.3 and Corollary 3.1.

3.1. Definition of the scheme. We denote Π a non empty finite subgrid of δZd, N
its cardinality, δ its mesh size and 2 its convex hull (in Rd). Without loss of generality
we can assume that 0 ∈ 2. In order to define a multilinear interpolation procedure on
Π, we consider the following basis functions:

∀z ∈ Π, ∀x ∈ Rd, ψz(x) :=
d∏

i=1

(
1− |δ−1(xi − zi)|

)
+
,
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where (.)+ denotes the positive part function. For a function ϕ : Π → R1×d, we define
Pϕ the interpolation of ϕ on Rd as follows

Pϕ(x) =:

{∑
z∈Π ψz(x)ϕ(z), x ∈ 2∑
z∈Π ψz(Proj(x,2))ϕ(z), x /∈ 2 .

By a small abuse of notation we also consider this interpolation operator for functions
ϕ : Rd → R1×d by defining Pϕ := Pϕ|Π. By the same definition, P can act also on
vector-valued and matrix-valued functions.

This interpolation operator satisfies following standard properties.

Proposition 3.1. Let us consider ϕ, ϕ̃ : Rd → R1×d. Then we have
(1)

∥Pϕ− Pϕ̃∥∞ ⩽ ∥ϕ− ϕ̃∥∞ .

(2) If ϕ ∈ C2(Rd,R1×d), then there exists C ⩾ 0 only depending on |∇2ϕ|∞,2 such
that

∥Pϕ− ϕ∥∞,2 ⩽ Cδ2.

(3)

|Pϕ(x)| ⩽ Pρ(x) sup
z∈Π

∣∣∣∣ϕ(z)ρ(z)

∣∣∣∣ , ∀x ∈ Rd.

(4)

sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ ⩽ sup
x∈2,y∈2,|y−x|⩽

√
dδ

ρ(y)

ρ(x)
.

Proof. The two first points are standard. For the third point, we have, for all x ∈ Rd,

|Pϕ(x)| =

∣∣∣∣∣∑
z∈Π

ψz(Proj(x,2))ϕ(z)

∣∣∣∣∣ ⩽∑
z∈Π

ψz(Proj(x,2))ρ(z)
∣∣∣∣ϕ(z)ρ(z)

∣∣∣∣
⩽ sup

z∈Π

∣∣∣∣ϕ(z)ρ(z)

∣∣∣∣ ∑
z′∈Π

ψz′(Proj(x,2))ρ(z′) = Pρ(x) sup
z∈Π

∣∣∣∣ϕ(z)ρ(z)

∣∣∣∣ .
So, it just remains to prove the fourth point. Since 0 ∈ 2 and ρ is an increasing function
with respect to |x|, then Pρ(x)

ρ(x) ⩽ 1 for all x /∈ 2. When x ∈ 2,

|Pρ(x)| ⩽ sup
z∈Π,sup1⩽j⩽d |xj−zj |<δ

ρ(z) ⩽ sup
y∈2,|y−x|<

√
dδ

ρ(y)

which proves the result. □
We are now able to define our scheme in the next definition. The idea is to use the

Picard iteration, to use a spatial approximation of functions onto Π and to approximate
expectations by empirical means. Let us remark that the sample size of empirical means
will depend on the point z ∈ Π where we compute an approximation of our solution
v(z): we denote it Mz. Finally, we also denote ⌊.⌋R the projection onto the Euclidean
ball B̄(0, R) of R1×d.

Definition 3.1. We construct a sequence of random functions vnM : Ω × Π → R1×d,
n ∈ N such that v0M = 0 and, for all n ∈ N, z ∈ Π,

vn+1
M (z) =

 1

Mz

Mz∑
j=1

Rz
n+1,j(Pv

n
M )


B

,
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where B ⩾ ∥v∥∞, for any ϕ : Rd → R1×d, (Rz
n,j(ϕ))n,j∈N∗,z∈Π are independent random

variables and for any z ∈ Π, (Rz
n,j(ϕ))n,j∈N∗ have the same distribution as

Rz(ϕ) :=

√
π

θ

√
Ge−(a

θ
−1)GŨG

θ
f
(
Xz

G
θ

, ϕ(Xz
G
θ

)Σ
)
,

recalling that θ ∈ (0, a) and G d
= G(1/2, 1) is independent of W .

Remark 3.1. The condition B ⩾ ∥v∥∞ gives a weak dependence of the scheme on the
unknown solution v. Nevertheless, it is possible to use some theoretical a priori estimates
(see e.g. the proof of Proposition 2.1) to set B. However, it seems that the truncation
procedure is not necessary in practice since we observe the convergence in our numerical
experiments without applying the truncation.

Remark 3.2. The scheme given by Definition 3.1 is fully implementable and we are able
to give a complete study of the numerical error in Section 3.2: see Corollary 3.1. On
the other hand, it is well known that a grid spacial approximation has a major drawback:
The size of the grid exponentially increases when dimension d linearly increases and
thus, it is not possible in practice to get a numerical scheme that works as soon as d is
too large. Obviously, it is also possible to replace the grid spacial approximation by an
other dimensional robust spacial approximation as a neural network for example, even
if, in this case, the theoretical study of the numerical error would be more complicated.
The numerical study of a scheme based on a neural network spacial approximation is
left for future works.

Remark 3.3. Actually, the independence in z could be removed since it does not affect
the subsequent error analysis. Having common randomness for different z is refereed to
"Common Random Number" method in the literature [GY92] and may give especially
good results in sensitivity analysis problems. In our case, it would contribute to get a
smoother (in space) numerical solution.

3.2. Theoretical study of the scheme. In order to treat the statistical error coming
from the replacement of expectations by empirical means, we will consider measure-
concentration inequalities based on Orlicz norms. We denote Ψ̃ : R+ → R+ an Or-
licz function, that is a continuous non-decreasing function, vanishing in zero and with
limx→+∞ Ψ̃(x) = +∞ and we define the Ψ̃-Orlicz norm of a real random vector Y by

|Y |
Ψ̃
:= inf

{
c > 0,E

[
Ψ̃

( |Y |
c

)]
⩽ 1

}
.

We easily generalize previous defintion to matrix-valued random variables. We also
assume that Ψ̃ is convex2, which implies in particular that |.|

Ψ̃
is a norm, and an

increasing function in order to insure that Ψ̃−1 is a concave function defined on R+.
In the remaining, we will use the following convex and increasing Orlicz function:

Ψ(.) := exp(.)− 1.

Let us remark that |Y |Ψ < +∞ implies that there exists ε > 0 such that E
[
eε|Y |] <

+∞ which means that Y is light-tailed. This Orlicz function satisfies some important
properties that are recalled in the next proposition.

2convex Orlicz functions are also referred to “Young functions” or “N-functions” in the literature.
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Proposition 3.2. (1) [Talagrand inequality] There exists a universal constant
CΨ such that, for all sequence (Yk)1⩽k⩽K of independent, mean zero, random
variables satifying |Yk|Ψ < +∞ for all 1 ⩽ k ⩽ K, we have

(32)

∣∣∣∣∣
K∑
k=1

Yk

∣∣∣∣∣
Ψ

⩽ CΨ

(
E

[∣∣∣∣∣
K∑
k=1

Yk

∣∣∣∣∣
]
+

∣∣∣∣ max
1⩽k⩽K

|Yk|
∣∣∣∣
Ψ

)
.

(2) [Maximal inequality] There exists a universal constant CΨ such that, for all
sequence (Yk)1⩽k⩽K of random variables satisfying |Yk|Ψ < +∞ for all 1 ⩽ k ⩽
K, we have

(33)
∣∣∣∣ max
1⩽k⩽K

|Yk|
∣∣∣∣
Ψ

⩽ CΨΨ
−1(K) max

1⩽k⩽K
|Yk|Ψ.

Talagrand inequality comes from Theorem 3 in [Tal89] while Maximal inequality is
provided by Lemma 2.2.2 in [vdVW96]. We also provide the following technical Lemma,
whose proof is postponed to Section 5.4.

Lemma 3.1. Let us assume that Assumption 2.2 is fulfilled. There exists C > 0 that
does not depend on n ∈ N, M ∈ N∗, δ > 0 and z ∈ Π such that, for all ϕ : Rd → R1×d

measurable such that ∥ϕ∥∞ ⩽ B and z ∈ Π,

(34)
∣∣∣∣Rz(ϕ)

1 + |z| − E
[
Rz(ϕ)

1 + |z|

]∣∣∣∣
Ψ

+ E

[∣∣∣∣Rz(ϕ)

1 + |z| − E
[
Rz(ϕ)

1 + |z|

]∣∣∣∣2
]
⩽ C.

Proposition 3.3. Let us assume that Assumption 2.2 is fulfilled and κ∞ < 1, recalling
that κ∞ is defined in Proposition 2.3. In particular, Proposition 2.3 gives us that the
fixed point equation Φ∞(v) = v has a unique solution v. We also assume that v ∈
C2(Rd,R1×d) with bounded second derivatives.

Then there exists a constant C > 0 that does not depend on M , n and δ such that

E

[
sup
x∈Rd

∣∣∣∣PvnM (x)− v(x)

ρ(x)

∣∣∣∣
]

⩽C

(
sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ infz∈Π
log(1+N)(1 + |z|)√

Mzρ(z)
+ δ2 +

1

infx∈∂2 ρ(x)

)
+ κn∞E

[
sup
x∈Rd

∣∣∣∣v(x)ρ(x)

∣∣∣∣
]
.

The proof of Proposition 3.3 is postponed to Section 5.5.

Remark 3.4. The upper bound obtained for the numerical error in Proposition 3.3 can
be easily analyzed:

(1) The first term is the statistical error coming from the approximation of the expec-
tation by an empirical mean. The growth of ρ allows to decrease the size sample
Mz when |z| is large.

(2) The second term is related to the space discretization by a discrete grid δZd.
(3) This third term is a truncation error. In order to get a good control on it, we

should consider a weight function ρ with large enough growth.
(4) The last term comes from the Picard procedure and it tends to 0 only if we have

a contraction property for Φ∞, i.e. κ∞ < 1.

We are now able to specify the error given by Proposition 3.3 when we assume that
our grid Π is centered in 0, and is given by{

(i1δ, ..., idδ) | ik ∈ {−Ñ , ..., Ñ}, k ∈ {1, ..., d}
}
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for a given Ñ ∈ N, which implies that N = (2Ñ + 1)d. We also take Mz = M̃(1 +
|z|)2ρ−2(z).

Corollary 3.1. Let us assume that assumptions of Proposition 3.3 are fulfilled.
• If CA = 1 and ρ(x) = eα|x| (α > 0), then we have

E

[
sup
x∈Rd

∣∣∣∣PvnM (x)− v(x)

ρ(x)

∣∣∣∣
]
= O

(
δ2 +

log(2 + Ñ)√
M̃

+ e−αÑδ + κn∞

)
.

• If CA > 1 and ρ(x) = (1 + α|x|)β (α > 0, β ⩾ 1), then we have

E

[
sup
x∈Rd

∣∣∣∣PvnM (x)− v(x)

ρ(x)

∣∣∣∣
]
= O

(
δ2 +

log(2 + Ñ)√
M̃

+ (1 + αÑδ)−β + κn∞

)
.

Proof. We just have to apply Proposition 3.3 and specify some terms in the upper-
bound by setting ρ.

First of all, if CA = 1, then we can take ρ(x) = eα|x| according to Proposition 2.4.
We apply the fourth point of Proposition 3.1 to get

sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ ⩽ sup
x∈2,y∈2,|y−x|⩽

√
dδ

eα|y|−α|x| ⩽ eα
√
dδ.

We also have infx∈∂2 ρ(x) = eαÑδ which gives us the result.
Otherwise, CA > 1 and we can take ρ(x) = (1 + α|x|)β according to Proposition 2.4.

Then

sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ ⩽ sup
x∈2,y∈2,|y−x|⩽

√
dδ

(
1 + α|y|
1 + α|x|

)β

⩽ (1 + α
√
dδ)β,

and infx∈∂2 ρ(x) = (1 + αÑδ)β which concludes the proof. □

4. Numerical experiments

We use our approach to solve numerically the ergodic BSDE:

Yt = YT +

∫ T

t
(f(Xs, Zs)− λ) ds−

∫ T

t
ZsdWs, 0 ⩽ t ⩽ T,

where X is an Ornstein-Uhlenbeck process in dimension d, σ = Id and A = aId,

f(x, z) = 1+sin(γ(|x|+|z|))+γ|z|−sin(γ(|x|+2|x|e−|x|2))−(2γ|x|+2|x|2−d+2a|x|2)e−|x|2 .

We can easily check that the unique solution is given by Yt = u(Xt), Zt = v(Xt), λ =

1, where u(x) = e−|x|2 and v(x) = −2x⊤e−|x|2 .Moreover, Xx
t ∼ N (e−atx, 1−e−2at

2a Id). In
all our numerical experiments we consider a number of Monte-Carlo samples Mz that
does not depend on z, denoted M in the following. Moreover, we do not apply the
truncation step, i.e. we consider the case B = +∞.
Dimension 1. Figure 1 illustrates the convergence of our algorithm in dimension 1. We
remark that the Picard scheme has almost converged at the third iteration. Moreover,
the truncation of the domain has an impact only on the two extreme points of the grid.
Thus, for this reason, in all numerical experiments, errors are measured on the grid
points except on the r extreme ones for various values of r, i.e. by setting

Ed,r
∞,n := sup Ed,r

n ,

Ed,r
n :=

{
|vnM (x)− v(x)| : x = (i1δ, ..., idδ), ik ∈ {−(Ñ − r), ..., (Ñ − r)}, k ∈ {1, ..., d}

}
,
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Figure 1. Solution v at different iterations. Parameters: d = 1, γ = 1,
a = 2, θ = 1.8, Ñ = 10, δ = 0.2, M = 105.

and for the next experiments in dimension 1 we consider the sup error E1,1
∞,n.

Figure 2 shows the impact of γ on the numerical convergence of our scheme. We can
easily check that Kf,z = 2γ. Unsurprisingly, γ has an impact on the contraction of the
Picard iteration and we can clearly observe the change of behaviour around γ = 2.7.
Note that the theoretical upper-bound (31) for κ∞ is approximately equal to 4

√
2γ when

α tends to 0 which implies the contraction when γ < (4
√
2)−1: this theoretical bound

is clearly far behind the threshold numerically observed.
Figure 3 illustrates the impact of the choice of θ on the numerical convergence of our

scheme. Intuitively, θ plays a role on the statistical fluctuation of our scheme. From our
theoretical study, we have seen that we should take θ < a. In practice, the threshold is
softer: taking θ too large is clearly a bad idea but there is no numerical problems up to
θ = 3 when a = 2.
Dimension 2. The impact of γ in dimension 2 is illustrated in Figure 4. We observe that
the threshold γ ≈ 2.7 obtained in dimension 1 remains of the same order in dimension
2. Let us also remark that when we are close to the threshold, the error due to the
truncation of the domain seems to propagate further since the sup error E2,2

∞,n becomes
smaller than E2,1

∞,n.
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Figure 2. Box plots of log-sup errors Ed,r
∞,n (with d = 1, r = 1) for

different n, as a function of γ. Parameters: a = 2, θ = 1.8, Ñ = 10,
δ = 0.2, M = 105.
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Figure 3. Box plots of log-sup errors Ed,r
∞,n (with d = 1, r = 1) for

different n, as a function of θ. Parameters: a = 2, γ = 1, Ñ = 10,
δ = 0.2, M = 105.
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Figure 4. Box plots of log-sup error Ed,r
∞,n (with d = 2) for different

n, as a function of γ. On the left r = 1, on the right: r = 2. Other
parameters: a = 2, θ = 2, Ñ = 10, δ = 0.2, M = 105.
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Higher dimension. Finally, we also investigate the impact of the dimension in Figure 5
and Table 1. Note that we have reduced M and Ñ and we have increased δ with respect
to previous numerical experiments. As previously remarked, Ed,1

∞,3 is much better than
Ed,0
∞,3 whereas Ed,2

∞,3 is of the same order as Ed,1
∞,3. Numerical experiments have been

conducted on a Intel(R) Core(TM) i5-4590S CPU @ 3.00GHz with 8GB RAM, by using
Python 3 with Numba library but without parallelization. Obviously, due to the curse
of dimension, we are not able to tackle dimensions beyond d = 5 in a reasonable time.
Nevertheless, it should be possible to implement our scheme by using parallelization
paradigm, on CPU or even GPU, and then to increase a little bit the upper bound on
covered dimensions. Moreover, it should be also possible to use neural networks instead
of grid in order to tackle high dimensional problems. These two research directions are
left for future works.

log
(
1, 03

)

log
(
1, 13

)

log
(
1, 23

)

log
(
2, 03

)

log
(
2, 13

)

log
(
2, 23

)

log
(
3, 03

)

log
(
3, 13

)

log
(
3, 23

)

log
(
4, 03

)

log
(
4, 13

)

log
(
4, 23

)

log
(
5, 03

)

log
(
5, 13

)

log
(
5, 23

)
7

6

5

4

3

2

1

Figure 5. Box plots of log grid errors Ed,r
n (with d = 1, 2, 3, 4, 5, r =

0, 1, 2). Parameters: a = 2, γ = 1 θ = 1.8, Ñ = 5, δ = 0.4, M = 104

Dimension d 1 2 3 4 5
Error Ed,1

∞,3 5.49 ∗ 10−2 5.69 ∗ 10−2 7.69 ∗ 10−2 11.9 ∗ 10−2 11.3 ∗ 10−2

Error Mean(Ed,1
3 ) 2.31 ∗ 10−2 1.94 ∗ 10−2 2.16 ∗ 10−2 2.76 ∗ 10−2 3.49 ∗ 10−2

Time (s) 4 18 217 4155 86639
Table 1. Comparison of sup errors and computational times as a func-
tion of the dimension d. Parameters: a = 2, γ = 1 θ = 1.8, Ñ = 5,
δ = 0.4, M = 104
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5. Proofs

5.1. Proof of Theorem 2.1.
Proof of item (1). Start from (13), apply Fubini theorem and rewrite expectation using
the transition probability density of X: it gives, for all x ∈ Rd and T > 0,

u(x) =

∫
Rd

u(y)p(0, x;T, y)dy +

∫ T

0

(∫
Rd

f(y, ū(y))p(0, x; s, y)dy − λ

)
ds.(35)

The density p(0, x; s, y) is smooth in x, y, s provided that s > 0. Denote by g(c, y)
the density at point y ∈ Rd of the Gaussian distribution N (0, c Id). Then, leveraging
the bounds (17), a direct and standard computation shows that, for any compact set
K ⊂ Rd, there exist positive constants c1, c2 such that, for all s ∈ (0, T ], y ∈ Rd, we
have

sup
x∈K

|∇xp(0, x; s, y)| ≤ c1min(1, s−1/2)g(sc2, y).

In addition, owing to the bounds (9) on u and ū, the functions

y 7→min(1, T−1/2)g(Tc2, y) |u(y)|
and (s, y) 7→min(1, s−1/2)g(sc2, y) |f(y, ū(y))|

are clearly integrable on Rd and [0, T ]×Rd respectively. Thus, u as given in (35) is C1.
By rewriting the first term on the right hand side of (35) as an expectation, differenti-
ating with respect to x, using ∇xX

x
T = e−AT (see (16)) and the above arguments for

the time integral, it readily follows

∇xu(x) = E
[
∇xu(X

x
T )e

−AT
]
+

∫ T

0

∫
Rd

f(y, ū(y))∇xp(0, x; s, y)dyds.(36)

Proof of item (2). Notice that for fixed T , one can look at (1) as a classical BSDE in a
finite horizon [0, T ], with terminal condition u(XT ). Thus, the standard results [MZ02,
Theorem 3.1] apply and give the first announced result. The boundedness of v comes
from Proposition 2.1 and the invertibility of Σ.
Proof of (22). We have ∇x log(p(0, x;T, y)) = ∇xp(0,x;T,y)

p(0,x;T,y) = (y − e−Asx)⊤Σ−1
s e−As:

therefore, passing from (36) to (22) is granted by Fubini theorem. Indeed, starting from
(19) and using the Lipschitz property of f with (21)-(17)-(20), we get

E
[∣∣f(Xx

s , v(X
x
s )Σ)Ū

x
s

∣∣]⩽ CE
[
(1 + |Xx

s |)(1 ∨ s−1/2)
]
e−as

⩽ C(1 ∨ s−1/2)e−as(37)

with a new constant (depending on x but uniform in s) at each line. Using Ūx
s = e−asŨs

(see (19)), we complete the proof of (22).
Proof of (24). This is obtained by reinterpreting the time-integral (22) as an integral with
respect to the distribution of E d

= G(12 , θ): for any integrable function φ : [0, T ] 7→ R,∫ T

0
φ(s)e−asds = E

[
1E≤Tφ(E)e−aE+θE

√
π√
θ

√
E

]
= E

[
1G≤Tθφ

(
G

θ

)
e−(a−θ)/θG

√
π

θ

√
G

]
using G := E θ

d
= G(12 , 1). Then (24) easily follows with φ(s) = Ũsf(X

x
s , v(X

x
s )Σ).
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Proof of (23) and (25). Their proofs follow by passing to the limit in (22) and (24) as
T → +∞. This is possible thanks to the exponential decay in (37) and to (7). □

5.2. Proof of Proposition 2.3. Let us start by proving that ΦT (w) ∈ C0(Rd,R1×d)
when we assume that w ∈ C0

ρ(Rd,R1×d). For any compact set K ⊂ Rd we have, using
(27) and the fact that Xx

T − e−ATx is a Gaussian random variable that does not depend
on x,

E
[
sup
x∈K

|w(Xx
T )|
]
⩽ CE

[
sup
x∈K

eC|Xx
T−e−AT x|eC|e−AT x|

]
⩽ CKE

[
eC|X0

T |
]
< +∞.

By using the linear growth of f , (27) and same computations as previously, recalling
(21) and the fact that Ũ does not depend on x, we also get∫ T

0
E
[
sup
x∈K

∣∣e−asŨsf(X
x
s , w(X

x
s )Σ)

∣∣]ds
⩽C

∫ T

0
e−asE

[
sup
x∈K

eC|Xx
s −e−Asx|eC|e−Asx|

]1/2
E
[
|Ũs|2

]1/2
ds

⩽CK

∫ T

0
e−as(1 ∧ s−1/2)ds < +∞.

Then, Lebesgue’s dominated convergence theorem gives us that ΦT (w) is a continuous
function. Same kind of computations lead us also to

|ΦT (w)(x)|
ρ(x)

⩽∥e−AT ∥E
[ |w(Xx

T )|
ρ(Xx

T )

ρ(Xx
T )

ρ(x)

]
1T<+∞

+

∫ T

0
e−asCE

[
|Ũs|

1 + |Xx
s |+ |w(Xx

s )|
ρ(Xx

s )

ρ(Xx
s )

ρ(x)

]
ds

⩽CAe
−aT cT,(28) ∥w∥ρ + CAC(1 + ∥w∥ρ)cT,(29) < +∞

which implies that ΦT (w) ∈ C0
ρ(Rd,R1×d). Now, we consider w1, w2 ∈ C0

ρ(Rd,R1×d).
By using the Lipschitz property of f and same computations as previously, we have

|ΦT (w1)(x)− ΦT (w2)(x)|
ρ(x)

⩽E
[
∥e−AT ∥ ∥w1 − w2∥ρ

ρ(Xx
T )

ρ(x)

]
1T<+∞

+Kf,z

∫ T

0
e−asE

[
|Ũs| ∥w1 − w2∥ρ ∥Σ∥

ρ(Xx
s )

ρ(x)

]
ds

⩽CAe
−aT cT,(28) ∥w1 − w2∥ρ 1T<+∞

+Kf,z∥Σ∥CA

∫ T

0
e−asE

[
|Σ−1

s (Xx
s − e−Asx)|ρ(X

x
s )

ρ(x)

]
ds ∥w1 − w2∥ρ

⩽
(
CAe

−aT cT,(28)1T<+∞ +Kf,z∥Σ∥CAcT,(29)
)
∥w1 − w2∥ρ .

The end of the Proposition is a straightforward application of the Banach fixed-point
theorem. □
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5.3. Proof of Proposition 2.4. We start by assuming that CA = 1 and ρ(x) = eα|x|

with α > 0. Then, by considering Y ∼ N (0, Id), we have

cT,(28) ⩽ sup
x∈Rd

E
[
eα|X

x
T−e−AT x|eα(|e

−AT x|−|x|)
]
⩽ E

[
eα|Σ

1/2
T Y |

]
⩽ E

[
eα∥ΣT ∥1/2|Y |

]
⩽E

[
e

α∥ΣΣ⊤∥1/2√
2a

∑d
i=1 |Yi|

]
=

(
2e

α2∥ΣΣ⊤∥
4a F

(
α∥ΣΣ⊤∥1/2√

2a

))d

(38)

where we have used that CA = 1 in the first inequality, E
[
eλ|Y1|] = 2eλ

2/2F (λ) and F
stands for the cumulative distribution function of the Gaussian distribution N (0, 1). By
the same token, we also get

cT,(29) ⩽
∫ T

0
e−as sup

x∈Rd

E
[
|Σ−1

s (Xx
s − e−Asx)|eα|Xx

s −e−Asx|eα(|e
−Asx|−|x|)

]
ds

⩽
∫ T

0
e−asE

[
|Σ−1/2

s Y |2
]1/2

E
[
e2α|Σ

1/2
s Y |

]1/2
ds

⩽
∫ T

0
e−as∥Σ−1

s ∥1/2
√
d

(
2e

α2∥ΣΣ⊤∥
a F

(√
2α∥ΣΣ⊤∥1/2√

a

))d/2

ds.(39)

Then, we can use (38), (39) and (30) to get the upper bound

κT ⩽

(
2e

α2∥ΣΣ⊤∥
4a F

(
α∥ΣΣ⊤∥1/2√

2a

))d

e−aT

+Kf,z∥Σ∥
√
d

(
2e

α2∥ΣΣ⊤∥
a F

(√
2α∥ΣΣ⊤∥1/2√

a

))d/2 ∫ T

0
e−as

(
c1,(30) +

c2,(30)√
s

)
ds.

A simple study of this upper-bound as a function of T shows that this upper-bound is
minimal in 0 or in +∞. Moreover, this upper-bound is bigger than 1 for T = 0 which
never gives us a contraction. Computing the integral when T = +∞ gives us the bound
written in the proposition.

We assume now that CA ⩾ 1 and ρ(x) = (1+α|x|)β with β ⩾ 1 and α > 0. We have
now

cT,(28) ⩽ sup
x∈Rd

E

[(
1 + α|Xx

T − e−ATx|+ αCAe
−aT |x|

1 + α|x|

)β
]
⩽ E

( sup
x∈Rd

1 + α|X0
T |+ αCA|x|

1 + α|x|

)β


⩽E
[
(CA + α|Σ1/2

T Y |)β
]
⩽ E

(CA + αCA

(∥ΣΣ⊤∥
2a

)1/2

|Y |
)β


(40)
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and, by the same token,

cT,(29) ⩽
∫ T

0
e−as sup

x∈Rd

E

[
|Σ−1

s X0
s |
(
1 + α|X0

s |+ αCA|x|
1 + α|x|

)β
]
ds

⩽
∫ T

0
e−asE

[
|Σ−1/2

s Y |2
]1/2

E

(CA + αCA

(∥ΣΣ⊤∥
2a

)1/2

|Y |
)2β

1/2

ds

⩽
√
dE

(CA + αCA

(∥ΣΣ⊤∥
2a

)1/2

|Y |
)2β

1/2 ∫ T

0
e−as

(
c1,(30) +

c2,(30)√
s

)
ds.(41)

Then, we can do as previously: we use (40) and (41) to get an upper-bound for κT that
we can optimize in T . This upper-bound is minimal in 0 or +∞, the value in 0 is bigger
than 1 while the value in +∞ gives the bound advertised in the proposition. □

5.4. Proof of Lemma 3.1. By using the growth of f and ϕ as well as Young inequality,
(17) and θ < a, we have for all c > 0,

E
[
e

1
c

∣∣∣Rz(ϕ)
1+|z|

∣∣∣] ⩽E

[∫ +∞

0
e

C
c

√
se

−(a
θ
−1)s∥Ũs∥ 1+|Xz

s |
1+|z|

1√
πs
e−sds

]

⩽E

[∫ +∞

0
e

C
c
∥Σ−1

s ∥|Xz
s−e−Asz|

(
1+|Xz

s−e−Asz|+ |e−Asz|
1+|z|

)
1√
πs
e−sds

]

⩽e
C
c

∫ +∞

0
E
[
e

C
c
∥Σ−1

s ∥|Xz
s−e−Asz|2

] 1√
πs
e−sds

⩽e
C
c

∫ +∞

0
E
[
e

C
c
|Σ−1/2

s (Xz
s−e−Asz)|2

] 1√
πs
e−sds

where, as usual, the constant C may change from one term to another but does not de-
pend on n,M , δ, z and c. Since Σ−1/2

s (Xz
s−e−Asz) ∼ N (0, Id), E

[
e

C
c
|Σ−1/2

s (Xz
s−e−Asz)|2

]
=

(1− 2C
c )

−d/2 as soon as C
c < 1/2. Thus, for all c > 2C,

E
[
e

1
c

∣∣∣Rz(ϕ)
1+|z|

∣∣∣] ⩽ e
C
c

(
1− 2

C

c

)−d/2

.(42)

For some C
c = τ⋆ < 1/2 small enough, the above upper bound is smaller than 2, which

proves that ∣∣∣∣Rz(ϕ)

1 + |z|

∣∣∣∣
Ψ

≤ C

τ⋆
=: c⋆.(43)

In addition, combining x+ x2

2 ≤ ex − 1 for any x ⩾ 0 and (42) with c = c⋆ we get

1

c⋆
E
[∣∣∣∣Rz(ϕ)

1 + |z|

∣∣∣∣]+ 1

2(c⋆)2
E

[∣∣∣∣Rz(ϕ)

1 + |z|

∣∣∣∣2
]
⩽ E

[
e

1
c⋆

∣∣∣Rz(ϕ)
1+|z|

∣∣∣]− 1 ≤ 1.(44)

This readily yields the second part of (34).
The first part easily follows too, in view of (43)-(44) and since |.|Ψ satisfies the trian-

gular inequality. □
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5.5. Proof of Proposition 3.3. Let us denote, for n ⩾ 0,

e∞,n+1 := E

[
sup
x∈Rd

∣∣∣∣∣Pvn+1
M (x)− v(x)

ρ(x)

∣∣∣∣∣
]
.

We have

e∞,n+1 ⩽ E∞,1 + E∞,2 + E∞,3

with

E∞,1 := E

[
sup
x∈Rd

∣∣∣∣∣Pvn+1
M (x)− P (⌊EvnM

[R(·)(PvnM )]⌋B)(x)
ρ(x)

∣∣∣∣∣
]
,

E∞,2 := E

[
sup
x∈Rd

∣∣∣∣∣Pv(x)− P (⌊EvnM
[R(·)(PvnM )]⌋B)(x)
ρ(x)

∣∣∣∣∣
]
,

E∞,3 := sup
x∈Rd

∣∣∣∣Pv(x)− v(x)

ρ(x)

∣∣∣∣ .
Here, the subscript in EvnM

[.] means that the expectation is conditionally to all the
simulation noises up to iteration n.
Error E∞,1: Recalling that P is linear, ⌊.⌋∥v∥B is 1-Lipschitz and applying inequality (3)
in Proposition 3.1, we get

E∞,1 ⩽ E

sup
z∈Π

1

ρ(z)

∣∣∣∣∣∣⌊EvnM
[Rz(PvnM )]

⌋
B
−

 1

Mz

Mz∑
j=1

Rz
n+1,j(Pv

n
M )


B

∣∣∣∣∣∣
 sup

x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣
⩽ sup

x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣E
[
E
[
sup
z∈Π

|Hz(ϕ)|
]
|ϕ=PvnM

]
,(45)

where

Hz(ϕ) :=
1

Mz

Mz∑
j=1

Rz
n+1,j(ϕ)

ρ(z)
− E

[
Rz(ϕ)

ρ(z)

]
.

Since Ψ is a convex and increasing function, Jensen inequality gives us

E
[
sup
z∈Π

|Hz(ϕ)|
]
⩽

∣∣∣∣sup
z∈Π

|Hz(ϕ)|
∣∣∣∣
Ψ

Ψ−1

(
E
[
Ψ

(
supz∈Π |Hz(ϕ)|

|supz∈Π |Hz(ϕ)| |Ψ

)])
⩽ Ψ−1(1)

∣∣∣∣sup
z∈Π

|Hz(ϕ)|
∣∣∣∣
Ψ

.

Then we upper bound the right hand side of the previous inequality by applying Maximal
inequality (33) to get

E
[
sup
z∈Π

|Hz(ϕ)|
]
⩽ CΨ−1(N) sup

z∈Π
|Hz(ϕ)|Ψ=C log(1+N) sup

z∈Π
|Hz(ϕ)|Ψ .(46)

Since Hz(ϕ) is a sum of centered i.i.d. r.v., we can apply Talagrand inequality (32):

|Hz(ϕ)|Ψ ⩽ C

E [|Hz(ϕ)|] +

∣∣∣∣∣∣ sup
1⩽j⩽Mz

∣∣∣Rz
n+1,j(ϕ)

ρ(z) − E
[
Rz(ϕ)
ρ(z)

]∣∣∣
Mz

∣∣∣∣∣∣
Ψ
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which gives us, using the upper-bound (34) and Maximal inequality (33),

|Hz(ϕ)|Ψ ⩽ C
1√
Mz

1 + |z|
ρ(z)

E

[∣∣∣∣Rz(ϕ)

1 + |z| − E
[
Rz(ϕ)

1 + |z|

]∣∣∣∣2
]1/2

+ C
Ψ−1(Mz)

Mz

1 + |z|
ρ(z)

∣∣∣∣Rz(ϕ)

1 + |z| − E
[
Rz(ϕ)

1 + |z|

]∣∣∣∣
Ψ

⩽ CM−1/2
z

1 + |z|
ρ(z)

.

We just have to plug the previous bound into (46) and (45) to get

E∞,1 ⩽ C sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ infz∈Π
log(1+N)(1 + |z|)√

Mzρ(z)
.

Error E∞,2: Recalling Proposition 2.3, we have that v is the unique solution of the fixed
point equation Φ∞(v) = v. We get, by using the linearity of P , the first inequality in
Proposition 3.1, the fact that ⌊.⌋B is 1-Lipschitz and Proposition 2.3,

E

[
sup
x∈Rd

∣∣∣∣∣Pv(x)− P (⌊EvnM
[R(·)(PvnM )]⌋B)(x)
ρ(x)

∣∣∣∣∣
]

=E

[
sup
x∈Rd

∣∣∣∣P (⌊Φ(v(·))⌋B)(x)− P (⌊Φ(PvnM (·))⌋B)(x)
ρ(x)

∣∣∣∣
]

⩽E

[
sup
x∈Rd

∣∣∣∣Φ(v(·))(x)− Φ(PvnM (·))(x)
ρ(x)

∣∣∣∣
]

⩽ κ∞E

[
sup
x∈Rd

∣∣∣∣v(x)− PvnM (x)

ρ(x)

∣∣∣∣
]
= κ∞e∞,n.

Error E∞,3: We have assumed that v is C2. Then, by using the second inequality in
Proposition 3.1 and the boundedness of v, we have

sup
x∈Rd

∣∣∣∣Pv(x)− v(x)

ρ(x)

∣∣∣∣ ⩽ sup
x∈2

∣∣∣∣Pv(x)− v(x)

ρ(x)

∣∣∣∣+ sup
x∈Rd\2

∣∣∣∣Pv(x)− v(x)

ρ(x)

∣∣∣∣
⩽ Cδ2 +

C

infx∈Rd\2 ρ(x)

where C does not depend on Π since ∇2v is assumed to be bounded on Rd. Since 0 ∈ 2,
we also have infx∈Rd\2 ρ(x) = infx∈∂2 ρ(x).
Error e∞,n: Now we just have to collect previous estimates to get

e∞,n+1 ⩽C sup
x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ infz∈Π
log(1+N)(1 + |z|)√

Mzρ(z)
+ κ∞e∞,n + Cδ2 +

C

infx∈∂2 ρ(x)

which gives us

e∞,n ⩽

(
n−1∑
k=0

κk∞

)(
C sup

x∈Rd

∣∣∣∣Pρ(x)ρ(x)

∣∣∣∣ infz∈Π
log(1+N)(1 + |z|)√

Mzρ(z)
+ Cδ2 +

C

infx∈∂2 ρ(x)

)
+ κn∞e∞,0.

This last inequality is the one we wanted to prove. □
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