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Résumé. De grandes quantités de données non étiquetées sont souvent disponibles, mais
l’étape d’annotation est généralement une tâche fastidieuse et/ou coûteuse. En apprentissage
non supervisé, l’adaptation de domaine peut résoudre ce problème en exploitant les étiquettes
d’un domaine source pour classifier des données d’un domaine cible, similaire mais différent.
Dans le cas de séries temporelles, des défis supplémentaires surviennent, notamment en raison
des décalages temporels potentiels qui s’ajoutent aux décalages de distribution entre les
domaines.

Nous présentons une méthode dénommée Match-And-Deform (MAD) qui vise à relever ces
défis en identifiant les correspondances entre les séries temporelles des domaines source et
cible tout en tenant compte des distorsions temporelles. Le problème d’optimisation associé
aligne simultanément (1) les séries en optimisant un coût de transport optimal et (2) les temps
à l’aide de dynamic time warping. Intégré dans un réseau de neurones profond, MAD permet
l’apprentissage de nouvelles représentations des séries temporelles, alignant les domaines et
améliorant le pouvoir discriminant du réseau.

La méthode est évaluée empiriquement sur des données de référence et des données réelles de
télédétection, démontrant l’efficacité de MAD: les séries sont appariées de façon pertinentes
et les décalages temporels sont estimés avec précision. Des performances de classification
comparables ou supérieures aux stratégies d’adaptation de domaine de séries temporelles
profondes de l’état de l’art sont également obtenues.

Cet article est issu de Painblanc et al. [2023]. Le code et le jeu de données sont
disponibles publiquement: https://github.com/rtavenar/MatchAndDeform

Mots-clés. adaptation de domaines, séries temporelles, transport optimal, dynamic time
warping

Abstract. Large amounts of unlabeled data are often available, and the annotation step is
usually a tedious and/or costly task. Unsupervised domain adaptation can address this issue
by leveraging labels from a source domain to classify data from a related, yet different, target
domain. When dealing with time series data, additional challenges arise due to potential
temporal shifts alongside the feature distribution shift.

We introduce the Match-And-Deform (MAD) approach to address these challenges. MAD
aims at identifying matching between source and target time series while taking into account
temporal distortions. To achieve this, the associated optimization problem simultaneously (1)
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aligns the series using an optimal transport loss and (2) adjusts the timestamps using dynamic
time warping. When integrated into a deep neural network, MAD facilitates the learning
of new representations of time series that align the domains and enhance the network’s
discriminative power.

Empirical evaluations conducted on benchmark datasets and real remote sensing data demon-
strate MAD’s effectiveness. These numerical experiments show meaningful sample-to-sample
matching and accurately estimates time shifts. Comparable or superior classification perfor-
mance compared to state-of-the-art deep time series domain adaptation strategies are also
achieved.

This paper is adapted from Painblanc et al. [2023]. Code and data are publicly
available: https://github.com/rtavenar/MatchAndDeform

Keywords. domain adaptation, time series, optimal transport, dynamic time warping

1 Introduction

A standard assumption in machine learning is that the training and the test data are drawn
from the same distribution. When this assumption is not met, trained models often have
degraded performances because of their poor generalization ability. Domain Adaptation
(DA) addresses this challenge by considering the generalization problem when there exists a
distributional shift, allowing for improving task efficiency on the target domain through the
use of comprehensive information from a source domain.

In this work, we consider DA issue for time series data. Our objective is to classify time series
from an unlabelled target dataset (X′) ∈ Rn′×T ′×q using a labelled source dataset (X,Y) ∈
Rn×T×q × C. This setting can be yield for example by crop-type mapping from remote
sensing data (miniTimeMatch dataset), where domains correspond to different geographical
areas and class-level temporal shifts are observed, as illustrated on Fig.1.

Corn Horsebeans Meadow Spring barley

Average DK1 NDVI series Average FR1 NDVI series

Figure 1: Illustration of temporal shift between averaged NDVI time series for 2 domains,
for different types of crops (miniTimeMatch data)

The DA literature primarily focuses on addressing distribution shifts through alignment or
common representation space approaches. In unsupervised DA frameworks, training on
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source domain data leverages this shared representation for improved performance on the
target domain. The standard adversarial training aims to induce domain-invariant repre-
sentations in deep neural networks. Extention to time series can be done with specialized
architectures such as convolutional layers (CoDATS, Wilson et al. [2020]). However, the
time dimension vanishes with the use of pooled features. Optimal Transport (OT, Peyré
and Cuturi [2019]) emerges as a powerful tool in both unsupervised and semi-supervised DA,
deriving efficient solutions for assessing distribution shifts and deep neural network losses
that capture domain dissimilarities. However, current OT-based DA methods do not encode
any temporal coherence for time series data analysis.

In the following, we first introduce basics from OT and time series alignment, and define our
optimisation problem to deal with DA for time series. Empirical evaluations are then con-
ducted on benchmark datasets and real remote sensing data to demonstrate the effectiveness
of the proposed approach.

2 Domain Adaptation for time series with Optimal Trans-

port and Temporal Alignment

2.1 Background

The optimisation problem for comparing two objects (either time series or distributions) x
and x′ can be stated as:

J
(
C(x,x′),Π

)
= argmin

π∈Π

〈
C(x,x′),π

〉
, (1)

in which Π is a set of admissible couplings. A coupling will either be a temporal alignment
if x and x′ are time series or a matching between samples if they are distributions, with
appropriate constraint sets (see Fig.2.1). The solution J(·, ·) of the optimization problem is
called the optimal coupling matrix. The cost matrix C(x,x′) = {d(xi, x′j)}ij stores distances
d(xi, x′j) between atomic elements xi and x′j, respectively from x and x′. Dynamic time
warping (DTW, Sakoe and Chiba [1978]) and Optimal transport (OT) are both instances
of the same general optimization problem (1) that (OT) defines a distance between two
probability measures or (DTW) matches two (multivariate) time series, as illustrated on
Fig.2.1.
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Optimal Transport Dynamic Time Warping

argmin
γ∈Γ(w,w′)

〈
C(X,X′),γ

〉
argmin
π∈A(T,T ′)

〈
C(x,x′),π

〉
X,X′: Datasets with weights w,w′ x,x′: Time series of lengths T, T ′

Γ(w,w′): set of all couplings A(T, T ′): set of all temporal alignments

C(Xi,X′j)
C(xℓ,x

′
m)

Figure 2: Illustration of the 2 optimisation problems: (left) OT defines a distance between
two probability measures and (right) DTW matches two (multivariate) time series

2.2 Match-And-Deform

We introduce Match-And-Deform (MAD) that combines OT with DTW to achieve time series
matching and timestamp alignment. In other words, MAD evaluates the feature distribution
shift between domains up to a global temporal alignment. MAD jointly optimizes a global
DTW alignment and an OT coupling to match two sets of time series. Let us therefore define
MAD as:

MAD(X,X′) = argmin
γ∈Γ(w,w′)
π∈A(T,T ′)

⟨L(X,X′)⊗ π,γ⟩

= argmin
γ∈Γ(w,w′)
π∈A(T,T ′)

∑
i,j

∑
ℓ,m

d(xi
ℓ, x

′j
m)πℓmγij. (2)

with, L(X,X′) is a 4-dimensional tensor whose elements are Li,j
ℓ,m = d(xi

ℓ, x
′j
m), with d :

Rq × Rq → R+ being a distance. ⊗ is the tensor-matrix multiplication. π is a global DTW
alignment between timestamps and γ is a transport plan between samples from X and X′.

This optimization problem can be further extended to the case of distinct DTW mappings
for each class c in the source data. This results in the following optimization problem, coined
|C|-MAD:

|C|-MAD(X,X′,Y) = argmin
γ∈Γ(w,w′)

∀c,π(c)∈A(T,T ′)

∑
i,j

∑
ℓ,m

Li,j
ℓ,mπ

(yi)
ℓm γij . (3)

4



In that case, |C| DTW alignments are involved, one for each class c. π(yi) denotes the DTW
matrix associated to the class yi of xi. This more flexible formulation allows adapting to
different temporal distortions that might occur across classes.

The joint optimization problem introduced in Eq. (3) involves |C| finite sets of admissible
DTW paths and a continuous space with linear constraints for the OT plan. We perform a
Block Coordinate Descent (BCD) to optimize the corresponding loss.

Fig. 3 illustrates the general workflow of MAD.

Source dataset (X, Y ),
shape (n ⇥ T ⇥ q)

1 T
Time

yi = 0
yi = 1

1 T’ T
Time

Target dataset (X0),
shape (n0 ⇥ T 0 ⇥ q)

|C|-MAD(X,X0,Y)
1 T’

1

T

1 T’

1

T

|C| temporal (DTW)
coupling matrices ⇡0,⇡1

1 n’

1

n’

Samples (OT)
coupling matrix �

1 T’ T
Time

ŷj = 0

ŷj = 1

Realigned target dataset
(shape (n0 ⇥ T ⇥ q))
+ associated classes

<latexit sha1_base64="0ZBoQ35Pb+uQvOc/pwIKdXeNmpM="></latexit>

Figure 3: Match-And-Deform (|C|-MAD) takes two time series datasets as inputs: a source
(labelled) dataset and a target (unlabelled) dataset. It jointly computes an optimal transport
(OT) coupling matrix γ and |C| class-wise dynamic time warping (DTW) paths {π(c)}c∈C.
The OT cost is derived from the pairwise distances yielded by the DTW paths while the
DTW cost is weighted by the OT plan. These outputs are then used to improve classification
in the target dataset (figure from Painblanc et al. [2023])

2.3 Deep Domain Adaptation Loss

MAD can be used as a loss function in a neural network to learn a domain-invariant latent
representation. Indeed, OT has been successfully used as a loss to measure the discrepancy
between source and target domain samples embedded into a latent space. Similarly to Deep-
JDOT (Damodaran et al. [2018]), our proposal considers a deep unsupervised temporal DA
model that relies on MAD or |C|-MAD as a regularization loss function, as illustrated on
Fig.4.
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L
(
X,Y,X′, fθ, gΩ, γ, {π(c)}c

)
=

1

n

∑
i

Cross-Entropy (CE) on source domain︷ ︸︸ ︷
Ls

(
yi, fθ(gΩ(x

i))
)

(4)

+ α
∑
i,j

∑
ℓ,m

d
(
gΩ(x

i)ℓ, gΩ(x
′j)m

)
π
(yi)
ℓm γij︸ ︷︷ ︸

Matching series under temporal alignment
(MAD cost on intermediate features)

+β
∑
i,j

Lt

(
yi, fθ(gΩ(x

′j))
)
γij︸ ︷︷ ︸

CE on target domain
transporting source labels

Optimisation is computed over two groups of parameters: (i) the neural network parameters
θ and Ω and (ii) MAD transport plan γ and DTW paths {π(c)}c. Similar to what is done
in Damodaran et al. [2018], we use an approximate optimization procedure that relies on
stochastic gradients.
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Figure 4: MAD backbone architecture and schematic view of the loss computation (figure
from Painblanc et al. [2023])
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3 Experimental Results on Remote Sensing Data

The use of MAD and |C|-MAD as losses for neural domain adaptation is now assessed con-
sidering a real remote sensing dataset, for which there exists a known global temporal shift
between the (classes of the) domains due to different weather conditions. The proposed
approach has also been further studied on benchmarked datasets, results are not reported
here.

miniTimeMatch dataset is a subsample of TimeMatch Nyborg et al. [2022], a crop-type map-
ping dataset of different geographical areas, with assumed temporal shifts. Pre-processing
performed on the raw data is described in Painblanc et al. [2023]. It finally leads to a dataset
of 28, 858 time series and 8 classes per domain, each being described by 10 features per
timestamp. Both variant of MAD (considering a single DTW path vs one DTW path per
class) are evaluated, in comparison with state-of-the-art method CoDATS-WS (Wilson et al.
[2020]). Main results are reported in Tab.1: MAD and |C|-MAD outperform CoDATS-WS
in 4 out of the 5 DA problems, sometimes with an important improvement (see DK1 → FR1
for example). This illustrates the fact that MAD and |C|-MAD are of prime interest when
global or class-specific temporal deformations occur between domains (see Fig. 1).

Problem No adaptation CoDATS-WS MAD |C|-MAD Target only
DK1 → FR1 69.2± 1.3 74.8± 1.5 88.4± 0.4 88.3± 0.9 95.8± 0.9
DK1 → FR2 62.2± 3.5 87.0± 3.4 82.5± 1.1 81.0± 1.1 94.2± 1.7
DK1 → AT1 73.9± 0.2 71.6± 15.4 93.1± 1.2 92.3± 2.2 96.7± 0.7
FR1 → DK1 61.9± 5.2 78.0± 10.7 88.2± 0.3 88.2± 0.5 96.2± 0.3
FR1 → FR2 78.8± 0.9 82.1± 8.2 90.5± 0.2 89.6± 0.4 94.2± 1.7
Average 69.2± 2.2 78.7± 7.8 88.5± 0.6 87.9± 1.0 95.4± 1.1

Table 1: Mean and std classification accuracy over 3 repetitions (DK: Denmark, FR: France,
AT: Austria)

4 Conclusion and perspectives

In this paper, we introduce Match-And-Deform (MAD) that combines optimal transport and
dynamic time warping for time series domain adaptation in the presence of global time shifts.
We furthermore embed MAD as a regularization loss in a neural domain adaptation setting
and evaluate its performance in different settings: MAD reaches better performance than
state-of-the-art strategies thanks to its ability to capture temporal shifts.

Nevertheless, inter-domain class balance is an implicit OT hypothesis. Extension of MAD
could alleviate this OT assumption by using unbalanced optimal transport. An application
of MAD could be to consider an estimate the quality of missing values imputation with MAD
score.
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