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Output null controllability for linear time-invariant
structured discrete-time systems: a graph theoretic

condition
Jacob van der Woude, Christian Commault and Taha Boukhobza

Abstract—In this paper, we consider a linear time-invariant
discrete-time system and study the output null controllability
problem, i.e., the problem of steering the output to zero in
a finite number of steps. We assume that we only know the
structure of the system, i.e., the zero/nonzero location in the
system matrices. Hence, we consider a structural version of the
output null controllability problem. We represent the structure
of the system by means of a directed graph and present a graph
theoretic sufficient condition for the problem to be generically
solvable. Here generically solvable means that the problem is
solvable for almost all systems with the same structure. We
illustrate the conditions using an example.

Keywords—Structured linear discrete-time systems, output
null controllability, graph theoretic approach, solvability con-
dition

I. INTRODUCTION

In this paper, we consider a linear time-invariant discrete-
time system with a state, an input, and an output. We study
the problem of steering the output to zero in a finite number
of steps by applying an appropriate sequence of inputs. More
specifically, we address the problem from a structural point of
view, meaning that we only want to use the structure of the
system equations. Hence, we only assume the zero/nonzero
structure of the system matrices to be known. Because of
this, we can only say something about the possible generic
solvability of the problem. Here, generic solvability of the
problem means that it is solvable for almost all systems with
the same structure, while the set of systems with the same
structure for which the problem fails to be solvable forms a
set of zero Lebesgue measure.

For a specific numerically specified system, an input that
actually steers the output to zero in a finite number of steps,
also requires the numerical values of matrix entries, i.e.,
for such a concrete input actually solving the problem, the
structure of the system alone is not enough.

Controllability in the structural context has already been
studied for quite some time. The first publication in 1974 is
due to Lin [10]. Later other publications on the topic followed,
see the introduction of the survey paper [7]. Originally, the
results involved continuous-time systems and full state con-
trollability. Zero state controllability for discrete-time systems
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was studied in [22]. As such, that current paper can be seen as
a follow-up and extension of some controllability aspects for
linear continuous-time systems. A structural characterisation
of output controllability was left as an open problem in [13]
and, to the best of our knowledge, no graph characterisation for
structural output controllability is available to date. The second
difficulty is the intrinsic hardness of the problem: the minimum
output controllability problem has recently been proven to be
an NP-hard problem [6].

In the overview papers [7] and [17], or in the textbooks [12]
and [18], an extensive motivation for the study of structured
systems is given. In general, the study is motivated by the
lack of precise knowledge in the description of the systems.
For instance, in several applications the nonzero values in the
system matrices are obtained via measurements, and thus with
certain errors. Or, they appear by using physical laws that are
only valid in perfect conditions, thus also with some associated
errors in practical situations. In such situations, the structural
approach toward the systems may be useful, yielding results
that are true generically, i.e., in most practical cases. Also,
sometimes certain properties of linear time-invariant systems
are hard to compute, such as minimal controllability problems,
see [14] and [16], whereas the structured (practical) versions
are easy to solve, see [15].

A very important advantage of structured systems is the
fact that they are associated in a natural way with a directed
graph. This graph is important to visualize the interactions
inside the system and also to characterize a lot of properties
of the system. This characterization in graph terms is often
very informative in terms of deep structure of the system, but
also generally leads to very efficient algoritms to check the
properties.

The study of controllability in complex networks/structured
systems was given an enormous boost in 2011 by [11]. The
paper revived interest in the subject, and many papers on
various aspects of controllability have appeared since. See, for
instance, [2], [15] and [21]. The paper proved that important
network features can be nicely formulated in terms of struc-
tured systems properties. This considerably enlarged the range
of structured systems applications. Through time also other
aspects of linear structured systems have been studied, like
structural properties of transfer matrices and various structural
(disturbance) decoupling problems. Many of the results were
inspired by the geometric and frequency domain approach
toward linear system theory, like in [1], [4] and [5].

As mentioned earlier, in the current paper the focus is on
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discrete-time systems and on steering the output to zero in
a finite number of time steps. The problem in this paper has
been studied in other works, and nice geometric conditions are
known, see [20] and [23]. However, the conditions in these
references do not well fit within the structural framework that
we adopt in this paper. Therefore, we use conditions that better
fit the structural approach. Specially we will use an alternative
sufficient condition. The condition will be expressed in terms
of the directed graph that easily can be associated with the
structured system in this paper. The sufficiency condition is
then obtained using a decomposition of the graph of the system
that naturally fits the problem under consideration. The main
result of this paper, being a sufficient graph theoretic condition
for the generic solvability of the problem, can then be obtained
easily. We illustrate the condition through an example.

The outline of this paper is as follows. In Section II, we
introduce the type of system studied in this paper. Also, we
formulate the state and output null controllability problem and
recall a necessary and sufficient condition for their solvability.
The presented condition comes from the geometric approach
towards linear system theory, see [23]. For completely known
and numerically specified systems, the condition is elegant and
also intuitive in a sense. However, the geometric nature of the
condition does not fit very well within the structural approach
adopted in this paper. This holds in particular for the output
null controllability problem, since a structural condition for
the generic solvability of the state null controllability problem
can be easily given, see [22]. Therefore, in Section III, we
present an alternative sufficient condition for the output null
controllability problem that better suits our purposes. This
paper focuses on finding a solvability condition that matches
the adopted structural point of view. In Section IV, several
special cases are studied that easily can be dealt with in the
structural approach. The special cases will be the foundation
of the main result of the paper. In Section V, the graphs
of structured systems will be introduced, together with some
elementary notions of graph theory. Also, a decomposition will
be described that follows naturally from the problem studied
in the paper. In Section VI, parts of the obtained decom-
position will be related to existing results in the literature.
The combination of these results yields a sufficient condition
for the generic solvability of the output null controllability
problem in graph terms. The condition is included in Section
VI-B, and is illustrated via an example in Section VII. We
end the paper with Section VIII with some conclusions and
remarks. In particular, the possible necessity of the obtained
sufficient condition will be discussed. Also an extension of
the obtained condition will be mentioned. The appendix, in
Section IX, contains the proof of a statement in a derivation
of the alternative sufficient condition.

In this paper, we will frequently use identity matrices I , and
zero matrices 0. However, to simplify the notations, we will
not precise their dimensions, which will always follow from
the context in which they appear.

II. STATE AND OUTPUT NULL CONTROLLABILITY

We consider the following linear discrete-time system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), (1)

with k ≥ 0, the time, and all variables and matrices as usual.
More precisely, we have a state x(k) ∈ Rn, an input u(k) ∈
Rm, and an output y(k) ∈ Rp, implying that A ∈ Rn×n,
B ∈ Rn×m and C ∈ Rp×n.

Considering system (1), we denote its state at time k ≥ 0,
given the initial state x(0) = x0 and a control sequence u :=
{u(0), u(1), u(2), · · · }, by xu(k, x0). Similarly, yu(k, x0) de-
notes the output at time k, given the initial state x0 and control
sequence u. Note that

xu(k, x0) = Akx0 +

k−1∑
l=0

Ak−1−lBu(l). (2)

Likewise,

yu(k, x0) = CAkx0 +

k−1∑
l=0

CAk−1−lBu(l). (3)

Considering system (1), we say that for initial state x0, the
state null controllability problem is solvable, if there exists a
time K ≥ 0 and a control sequence u such that xu(k, x0) = 0
for all k ≥ K. When the latter holds for any initial state x0,
we say that system (1) is state null controllable. We use the
abbreviation SNC for ‘the state null controllability problem’,
or ‘state null controllable’. Hence, we may say that SNC is
solvable for initial state x0, or that SNC is solvable for system
(1), respectively. Or, even simpler, we may refer to it as SNC
for x0, or SNC for system (1), respectively.

We write 〈A|im B〉 for the controllable subspace, i.e.,
the column space of the well-known controllability matrix(
B,AB, · · · , An−1B

)
. Recall that 〈A|im B〉 is the smallest

A-invariant subspace that contains im B. For SNC, necessary
and sufficient conditions for A and B are well known, see for
instance [20], Exercise 3.19. Two of such conditions are listed
in the next lemma.

Lemma 1. Let system (1) be given. Then
(i) SNC is solvable for initial state x0 if and only if

Anx0 ∈ 〈A|im B〉.
(ii) SNC is solvable if and only if rank(A− zI,B) = n, for

all z 6= 0.

Now, including the output, we say that for initial state x0,
the output null controllable is solvable, if there exists a time
K ≥ 0 and a control sequence u such that yu(k, x0) = 0
for all k ≥ K. When the latter holds for any initial state x0,
we say that system (1) is output null controllable. We use the
abbreviation ONC for ‘the output null controllability problem’,
or ‘output null controllable’. Hence, we may say that ONC is
solvable for initial state x0, or that ONC is solvable for system
(1), respectively. Or, even simpler, we may refer to it as ONC
for x0, or ONC for system (1), respectively.

We write V∗(kerC) for the largest controlled invariant
subspace in ker C, i.e., the largest subspace V in ker C such
that AV ⊆ V+ im B. Also, for ONC, necessary and sufficient
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conditions for A,B, and C can be derived, see Hautus [8] for
some background.

Lemma 2. Let system (1) be given. Then ONC is solvable for
initial state x0 if and only if Anx0 ∈ V∗(kerC) + 〈A|im B〉.

Proof. It can be checked that the geometric condition is a
discrete-time analogon of the condition in [23], Theorem 4.4,
when the stability region is the origin in the complex plane.

�

Note that both types of null controllability are linear in the
initial state. Indeed, assume that SNC is solvable for initial
states x(0) = xa and x(0) = xb by applying control sequences
ua and ub, respectively. Then SNC is also solvable for x(0) =
αaxa + αbxb by applying control sequence αaua + αbub. A
similar statement holds for ONC.

III. SUFFICIENT SOLVABILITY CONDITION FOR ONC
From Lemma 2, a (geometric) sufficient condition for the

solvability of ONC follows directly. However, this condition
does not easily go together with the structural approach that
we adopt in this paper. Therefore, to derive a condition that
nicely fits the structural approach, we will use an alternative
sufficient condition. To introduce this condition, we consider
system (1) with initial state x(0) = x0, and we assume that

rank
(
C(zI −A)−1B

)
= rank

(
C(zI −A)−1

(
B, x0

))
, (4)

where
(
B, x0

)
is the n × (m + 1) matrix obtained by con-

catenating the matrix B with the column vector x0, and the
rank condition (4) holds for almost all complex z. Then, seen
as an equation over the (field of) rational functions, the rank
condition in (4) implies that the equation

C(zI −A)−1Bu(z) = C(zI −A)−1x0 (5)

has a rational vector u(z) as a solution. It then follows that
there exist rational vectors p(z) and q(z) such that

(zI −A)p(z)−Bq(z) = x0 and Cp(z) = 0.

Indeed, with u(z) as a solution to equation (5), take q(z) =
−u(z) and p(z) = (zI −A)−1(x0 +Bq(z)).

Next, note that Cp(z) = 0 implies that Cp(z) can be
seen as a polynomial expression that happens to be the zero
polynomial. Hence, we obtain that there exist rational vectors
p(z) and q(z) such that

(zI −A)p(z)−Bq(z) = x0 and Cp(z) is polynomial.

Using methods of Schumacher [19], see also Hautus [8], it
can be proved that the latter implies that (see also a proof in
the appendix)

x0 ∈ V∗(kerC) + 〈A|im B〉 .

Note that the subspace V∗(kerC)+〈A|im B〉 is A-invariant.
Indeed, by the properties mentioned in Section II, it follows
that A

(
V∗(kerC) + 〈A|im B〉

)
⊆ V∗(kerC) + im B +

〈A|im B〉 ⊆ V∗(kerC) + 〈A|im B〉. Hence, it follows im-
mediately that

Anx0 ∈ V∗(kerC) + 〈A|im B〉 . (6)

By Lemma 2, the latter implies the existence of a control
sequence u = {u(k)|k ≥ 0} for x(0) = x0, such that
yu(k, x0) = 0 for all k ≥ K for some appropriate K ≥ 0. So,
we have obtained the following sufficient condition.

Lemma 3. Consider system (1) with the initial state x0. If
rank condition (4) is satisfied, then ONC is solvable for x0.

Proof. If condition (4) is satisfied, condition (6) follows from
the above, implying by Lemma 2 that ONC is solvable for x0.

�

Hence, the rank condition in (4) provides a sufficient con-
dition for solving ONC for a specific initial condition. Rank
conditions like (4), with x0 replaced by a known matrix, are
useful in the structural approach that we follow in this paper,
because they can be implemented in an elegant way.

IV. THE SOLVABILITY OF ONC IN SPECIAL CASES

Before treating the general case, we first look at some
special cases in which the solvability of ONC can be treated
more easily, and that may be useful for the general case.

1) Consider the linear discrete time system given by (1).
Proposition 1. Assume that SNC for system (1) is
solvable, then also ONC is solvable for system (1).
Proof. If for initial state x0, there is a control sequence
u and an integer K ≥ 0 such that xu(k, x0) = 0 for all
k ≥ K, then also yu(k, x0) = Cxu(k, x0) = 0 for all
k ≥ K. Hence, SNC implies ONC. �

2) Assume that the state x(k), and the matrices A,B and
C in (1) are partitioned as

x(k) =

(
x1(k)
x2(k)

)
, A =

(
A11 A12

0 A22

)
, (7)

B =

(
B1

0

)
, C =

(
C1 C2

)
, (8)

with x1(k) ∈ Rn1 , x2(k) ∈ Rn2 , A11 ∈ Rn1×n1 , A12 ∈
Rn1×n2 , A22 ∈ Rn2×n2 , where n1 + n2 = n, B1 ∈
Rn1×m, C1 ∈ Rp×n1 and C2 ∈ Rp×n2 .
Proposition 2. Let the partitioning as in (7) and (8) be
given, and assume that A22 is nilpotent, then ONC is
solvable for system (1) if and only if ONC is solvable
for the subsystem described by

x1(k+1) = A11x1(k)+B1u(k), y(k) = C1x1(k). (9)

Proof. Tthe solvability of ONC for system (9) follows
from the solvability of ONC for (1), partitioned as
in (7) and (8), starting from x(0) = (x>1 (0), 0

>)>,
where > denotes transpose, and 0> denotes a zero row
vector of suitable dimension. Conversely, for any x(0) =
(x>1 (0), x

>
2 (0))

>, and any finite length control sequence
{u(k)|n2 > k ≥ 0}, it follows by the nilpotency
of matrix A22, that x(n2) = (x>1 (n2), 0

>)>, i.e., the
second component of x(k) goes to zero automatically,
and stays there. Next, extending the starting control
sequence with a control sequence {u(k)|k ≥ n2} such
that ONC is solved for system (9) starting from x1(n2)
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at k = n2, it follows directly that ONC is solved
for system (1), starting from the original initial state
x(0) = (x>1 (0), x

>
2 (0))

>, by application of the control
sequence u = {u(k)|k ≥ 0}. �

3) Next assume that SNC is solvable for the subsystem (9),
and therefore, by Proposition 1, also ONC is solvable for
any matrix C1. Then the following equivalence holds.
Proposition 3. Let the partitioning as in (7) and (8) be
given, and assume that rank(A11 − zI,B1) = n1, for
all z 6= 0, then ONC is solvable for system (1) if and
only if ONC is solvable for system (1) for all x(0) =
(0>, x>2 (0))

>.
Proof. Indeed, since rank(A11 − zI,B1) = n1, for z 6=
0, it follows that ONC is solvable for system (1) for
all x(0) = (x>1 (0), 0

>)>. Because of the linearity in
the initial state, it then follows that ONC is solvable
for system (1) for all x(0) = (x>1 (0), x

>
2 (0))

> if and
only if ONC is solvable for system (1) for all x(0) =
(0>, x>2 (0))

>. �

4) Now assume that the state x(k), and the matrices A,B
and C in (1) are partitioned as

x(k) =

 x1(k)
x2(k)
x3(k)

 , A =

 A11 A12 A13

0 A22 A23

0 0 A33

 ,

(10)
and

B =

 B1

0
0

 , C =
(
C1 C2 C3

)
, (11)

with x1(k) ∈ Rn1 , x2(k) ∈ Rn2 , x3(k) ∈ Rn3 ,
A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A13 ∈ Rn1×n3 ,
A22 ∈ Rn2×n2 , A23 ∈ Rn2×n3 , A33 ∈ Rn3×n3 , where
n1 + n2 + n3 = n, B1 ∈ Rn1×m, C1 ∈ Rp×n1 ,
C2 ∈ Rp×n2 and C3 ∈ Rp×n3 .
The following equivalence is now immediate.
Proposition 4. Let the partitioning in (10) and (11) be
given, and assume that rank(A11 − zI,B1) = n1, for
all z 6= 0, and matrix A33 is nilpotent. It then follows
that ONC is solvable for system (1) if and only if ONC
is solvable for the following subsystem of (1) given by

x̃(k + 1) = Ãx̃(k) + B̃u(k), y(k) = C̃x̃(k),

with

x̃(k) =

(
x1(k)
x2(k)

)
, Ã =

(
A11 A12

0 A22

)
,

B̃ =

(
B1

0

)
, C̃ =

(
C1 C2

)
,

for any initial state x̃(0) = (0>, x>2 (0))
>, with x2(0) ∈

Rn2 arbitrary.
Proof. A proof can be obtained by combining the results
of the Propositions 2 and 3. �

Hence, because of the two assumptions, for the solvabil-
ity of ONC for system (1), with a partitioning as in (10)
and (11), we can ignore x3(k), and need only to focus

on the evolution of x1(k) and x2(k), for x1(0) = 0 and
x2(0) is arbitrary.

5) Finally, continue with the partitioned system and the
assumptions as before, and add a rank condition.
Lemma 4. Let the partitioning in (10) and (11) be given,
and assume that rank(A11 − zI,B1) = n1, for all z 6=
0, and matrix A33 is nilpotent. Next, also assume that

rank
(
C(zI −A)−1B

)
= rank

(
C(zI −A)−1(B,G)

)
,

(12)
with G> =

(
0 I 0

)
, (13)

where the matrix I in (13) denotes the n2 × n2 identity
matrix, and the zeros denote zero matrices of suitable
dimensions.
Then, for any initial condition x0 of the form x0 =
(0>, x2(0)

>, 0>)>, with x2(0) ∈ Rn2 the ONC is
solvable.
Proof. By the sufficient condition in Lemma 3, it follows
that for all initial conditions x0 = (0>, x2(0)

>, 0>)>,
with x2(0) ∈ Rn2 arbitrary, there exists a control
sequence u = {u(k)|k ≥ 0} such that yu(k, x0) = 0 for
all k ≥ K for some appropriate K ≥ 0, i.e., a control
sequence u that solves ONC for the above x0. �

Hence, for the partitioned system description as in (10)
and (11), the rank assumption (12), and the other two
assumptions

(
rank(A11 − zI,B1) = n1 for all z 6= 0,

and A33 nilpotent
)

are sufficient for solving ONC.
Based on the last case, the following sufficient condition

can now be given.

Proposition 5. Consider system (1), partitioned as in (10) and
(11). Then ONC is solvable for the system if

1) rank(A11 − zI,B1) = n1, for all z 6= 0,
2) rank condition (12) is satisfied
3) A33 is nilpotent.

Proof. The next observations follow from the various cases.
Condition 3 implies that x3(k), and therefore C3x3(k), goes to
zero automatically. Condition 2 implies that there is a control
that steers C2x2(k) to zero, and condition 1 says the same for
x1(k), and therefore for C1x1(k). By linearity, it then follows
that ONC is solvable for any x0. �

It turns out that the partitioning, as in (10) and (11), and
the checking of the above conditions, can be implemented
and performed elegantly for structured systems. Hence, for
structured systems, the above yields a sufficient condition for
the solvability of ONC in a structural sense.

V. STRUCTURED SYSTEMS

A. Graph representation

We assume now that system (1) is structured, i.e., we
assume that A,B, and C in (1) are so-called structured
matrices, containing free nonzeros and fixed zeros. Let the
graph representing the structure of the system be given by
G = (V, E), with node set V and edge set E . The node set
can be written as V = X ∪ U ∪ Y , with X = {x1, · · · , xn}
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the set of state nodes, U = {u1, · · · , um} the set of input
nodes, and Y = {y1, · · · , yp} the set of output nodes. The
edge set is given by E = {(xj , xi)|aij 6= 0} ∪ {(uj , xi)|bij 6=
0} ∪ {(xj , yi)|cij 6= 0}, where, for example, (xj , xi) denotes
an edge from node xj to node xi, and aij 6= 0 indicates that
the (i, j) element of A is a free nonzero, and similarly for the
other edges and nonzero elements.

Given graph G = (V, E), we say there is a path from node
ṽ ∈ V to node v̂ ∈ V , if there exist mutually distinct nodes
v0, v1, . . . , vl ∈ V , with v0 = ṽ, vl = v̂ and (vi−1, vi) ∈ E ,
for i = 1, 2, . . . , l. The path then has length l, and is said
to go from node ṽ(= v0), also called begin node, to node
v̂(= vl), also called end node, and the path is said to consist
of the nodes v0, v1, . . . , vl. A cycle is a path with at least one
edge, of which the begin node and end node coincide. A path
consisting of a single node with no edge to itself, has length
0. Hence, the length of a cycle is always positive.

Given subsets Ṽ, V̂ ⊆ V , we say that V̂ is reachable from
Ṽ , if there is a path from a node ṽ ∈ Ṽ to a node v̂ ∈ V̂ . We
say that a collection of paths from V̂ to Ṽ is disjoint when
they mutually have no nodes in common. The size of such a
disjoint collection is the number of paths it consists of.

B. Graph decomposition

We focus now on the graph G = (V, E) of the structured
system (1) and introduce the following decomposition.
• We let V1 be the set of nodes of V that are reachable from
U , i.e., that can be reached from a node in U using a path,
possibly of zero length. We write V1 = X1 ∪ U1 ∪ Y1,
where U1 = U (obviously), X1 denotes the set of state
nodes that are reachable from U , and Y1 denotes the set
of output nodes that are reachable from U .

• Next, consider the complementary set V\V1 = {v ∈
V|v 6∈ V1}. Focusing on the subgraph of G with node
set V\V1, we let V2 ⊆ V\V1 denote all nodes that are
reachable from a cycle in V\V1, i.e., all nodes in V\V1
that can be reached using a path from a node in a cycle
with nodes in V\V1. The cycle has a positive length, the
path may be possibly of zero length.
Let V3 be all remaining nodes in V\V1. Hence, V3 =
(V\V1)\V2.

• We note that nodes in V\V1 can not be reached from
U , but may be reachable from nodes, and even cycles,
in V\V1 itself. Further, note that all nodes contained in
cycles in V\V1 are elements of V2. Hence, the nodes in
V3 are not contained in any cycle (in V\V1). However,
the nodes in V3 may be reached using a path, but such a
path cannot start in a cycle.

• We write V = V1 ∪ V2 ∪ V3, and in particular X =
X1 ∪ X2 ∪ X3, U = U1, Y = Y1 ∪ Y2, where X1,U1,Y1
are as above, X2 denotes the set of state nodes in V\V1
reachable from a cycle in V\V1, X3 = X\(X1 ∪X2) and
Y2 = Y\Y1. Also, observe that V\V1 = V2 ∪ V3.
The matrices A,B, and C can be partitioned as

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , B =

 B1

B2

B3

 ,

C =

(
C11 C12 C13

C21 C22 C23

)
,

with the submatrices of suitable dimensions. Note that
some of the subsets V1,V2,V3 may be empty, in which
case the corresponding submatrices are void, i.e., consist-
ing of zero rows and/or columns.

• As a consequence of the definition of V1, it follows
that the submatrices A21, A31, B2 and B3, when existing,
must be zero matrices. Indeed, a nonzero entry in B2 or
B3 would mean that there are nodes in V\V1 that can
be reached from U directly by an edge starting in U .
Similarly, a nonzero entry in A21 or A31 would mean
that there are nodes in V\V1 that can be reached from U
via a path that passes through V1. Both are impossible
by the definition of V1.
As a consequence of the definition of the sets V2,V3 ⊆
V\V1, it follows that the submatrix A32, when existing,
must be a zero matrix. Indeed, a nonzero entry in A32

would mean that there are nodes in V3 that are connected
to nodes from V2, and therefore are connected to a cycle
in V\V1. Consequently, such a node in V3 should belong
to V2, which is impossible by the definition of V3.
Finally, by definition all edges from V1 to Y have the
end node in Y1. Therefore, C21, when existing, must be
a zero matrix.

• As a result of these observations, it follows that the
matrices A,B and C can be partitioned in more detail
as

A =

 A11 A12 A13

0 A22 A23

0 0 A33

 , B =

 B1

0
0

 ,

C =

(
C11 C12 C13

0 C22 C23

)
,

where some of the submatrices may be void because
corresponding node sets that are empty.

VI. EXISTING RESULTS AND MAIN RESULT

A. Incorporating existing results

The following results can be found in literature. Start from
the decomposition derived in the previous section.
• Recall that all state nodes in X1 can be reached from U .

The latter can equivalently be expressed by saying that
the pair (A11, B1) is irreducible, cf. [7]. By Theorem 2
of Hosoe and Matsumoto, see [9], this implies that the
generic rank of (A11 − zI,B1) = n1, for all z 6= 0, or,
by Lemma 1, that SNC is structurally solvable for the
structured system given by the pair (A11, B1).

• The structural version of the rank condition (12) is
satisfied if and only if in graph G the maximal number of
disjoint paths from U to Y equals the maximal number
of disjoint paths from U ∪ X2 to Y . For details, see the
survey paper [7].

• Recall that, by construction, there are no cycles in V3.
Therefore, the restriction of graph G to the nodes in
X3 does not contain any cycle. The latter implies that
any numerical realisation of matrix A33 is structurally
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nilpotent. Indeed, in Theorem 4 of [22], it is shown that
det(sI − A33) = sn3 if and only if the graph of A33

contains no cycles.

B. Main result

The previous results can be summarised in the following
theorem containing sufficient conditions for the structural
solvability of ONC. It is the main result of this paper.

Theorem 1. Consider the structured system (1), and let its
graph G be decomposed as described in Subsection V-B. Then
ONC is generically solvable when the maximal number of
disjoint paths from U to Y is equal to the maximal number of
disjoint paths from U ∪ X2 to Y .

Proof. The condition on the equal maximal number of disjoint
paths from U to Y , and from U ∪X2 to Y , implies by Theorem
6 in [7] that the rank condition (12) generically holds. Then
condition 2 of Proposition 5 is generically satisfied. Conditions
1 and 3 are generically satisfied by how the partitioning in
Subsection V-B is obtained. Hence, in the context of the present
theorem, the conditions of Proposition 5 are generically sat-
isfied, and consequently, ONC is generically solvable. �

The graph decomposition in Subsection V-B starts with find-
ing nodes that can be reached from the inputs. The reachable
set can be simply obtained by a breadth first algorithm which
complexity is linear in the number of edges in the system
graph. Note that the first and third bullet in Subsection VI-A
are satisfied automatically by the decomposition. The second
bullet of Subsection VI-A, i.e., the condition in Theorem 1,
can be checked by using ideas based on maximal size linkings,
i.e., sets of disjoint paths of maximal size. See Theorem 2
in Section 3.2 of [3] for more details. The computational
aspects of the computations can be worked out using bipartite
graphs and maximal matchings. See Section 4, and Lemma 4
in Section 5, of [3] for more details.

To summarize, the conditions of Theorem 1 can be checked
using well-known and very efficient (polynomial) algorithms
from combinatorial optimization.

VII. EXAMPLE

In this section, the main result, i.e., Theorem 1, of this paper
is illustrated by means of an example.

Consider the structured system (1) given by the structured
matrices

A =


0 ∗ 0 ∗ 0 ∗
0 0 0 0 0 0
0 0 0 0 ∗ 0
0 ∗ 0 0 0 0
∗ 0 0 0 ∗ ∗
0 0 0 ∗ 0 ∗

 , B =


0
0
0
0
∗
0

 ,

C =

(
× ∗ 0 0 0 ×
∗ ∗ ∗ 0 0 0

)
,

where the 0’s denote fixed zeros and the ∗’s are free nonzeros.
The entries × will be treated below as a fixed zero 0 or as a
free nonzero ∗. The graph G of the system is given in Figure

1. In the graph below the special nature of the entries × (either
a free nonzero or a fixed zero) is indicated by the dotted edge.
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Fig. 1. Graph of example.

From graph G, the decomposition in Subsection V-B easily
follows. Indeed, it is straightforward to see that the set of
input-connected vertices is V1 = {u, x3, x5, y2} and then
V\V1 = {x1, x2, x4, x6, y1}. If any of the entries × is a
free nonzero, then the set of vertices reachable by a path
from a cycle is V2 = {x1, x6, y1} and then V3 = {x2, x4},
else V2 = {x1, x6} and V3 = {x2, x4, y1}. In both cases,
it follows that X1 = {x3, x5},U1 = {u},Y1 = {y2},X2 =
{x1, x6},X3 = {x2, x4}, and Y2 = {y1}.

Based on the sets X1, X2, X3, Y1, and Y2, the state and
output component can be relabelled as follows: x̂1 = x3, x̂2 =
x5, x̂3 = x1, x̂4 = x6, x̂5 = x2, x̂6 = x4, and ŷ1 = y2, ŷ2 =
y1. Note that u needs no relabelling here.

Then, the associated matrices Â, B̂ and Ĉ can be obtained
easily and can be partitioned as described in Subsection V-B:

Â =


0 ∗ 0 0 0 0
0 ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗
0 0 0 ∗ 0 ∗
0 0 0 0 0 0
0 0 0 0 ∗ 0

 , B̂ =


0
∗
0
0
0
0

 ,

Ĉ =

(
∗ 0 ∗ 0 ∗ 0
0 0 × × ∗ 0

)
.

The main result of this paper (i.e., Theorem 1) is that ONC
is structurally solvable for the structured system given by A,B,
and C (and by Â, B̂, and Ĉ), if both entries × are fixed zeros,
i.e., if there are no edges from x1 to y1 and from x6 to y1.
Indeed, when × = 0 for both entries, the maximal number of
disjoint paths from U to Y is one and is equal to the maximal
number of disjoint paths from U ∪ X2 to Y .

If one of the two entries × is unequal to 0, i.e., × 6= 0, then
the maximal number of disjoint paths from U ∪ X2 to Y is
equal to two. Indeed, then generically y1(k) 6= 0 for all k ≥ 0,
no matter what control sequence {u(k)|k ≥ 0} is applied.

The above conclusions can be verified numerically by se-
lecting the nonzero entries in A,B, and C randomly, yielding
a numerical realisation of the matrices. Next, An, V∗(kerC),
and 〈A|im B〉 can be computed and Lemma 2 can be checked
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numerically. Also, the condition can be checked formally
by computing Anλ, V∗(ker Cλ) and 〈Aλ|im Bλ〉, given the
matrices Aλ, Bλ, and Cλ parametrised by the vector λ, and
checking the condition in Lemma 2.

VIII. CONCLUSION AND DISCUSSION

A. Summary

In this paper, we studied the output null controllability prob-
lem for a structured linear discrete-time system and studied
the generic solvability of the problem. The latter means that
the problem is solvable for almost all systems with the same
structure. For this, we only needed the zero/nonzero structure
of the system matrices. We represented the structure of the
system by means of a directed graph and presented a graph
theoretic sufficient condition for the generic solvability of the
problem.

B. Necessity of condition of Theorem 1

The obtained sufficient condition in Theorem 1 is illustrated
through an example. In the example, the condition also ap-
peared to be necessary. This phenomenon has shown up in all
examples studied thus far. However, the actual necessity of the
condition could not be proved yet. The (believed) necessity of
the condition of Theorem 1 is a topic for future research.

C. Extension

A possible extension of Theorem 1 might be that the set X2

is restricted to the set of nodes in X2 that are contained in a
cycle in X2. For the example, this would mean that only node
x4 in X2 has to be taken into consideration in the application
of Theorem 1. A proof of such an extension would require a
more detailed investigation of the graph decomposition and all
related aspects. To avoid the paper from getting too technical,
this possible extension and its proof are omitted.
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IX. APPENDIX

Following the method in [19], write p(z) and q(z) in their
Laurent series as follows

p(z) =
∑
k>−`

pkz
−k and q(z) =

∑
k≥−`

qkz
−k

for some nonnegative integer `, i.e.,

p(z) = p1−`z
`−1 + · · ·+ p−1z

+p0 + p1z
−1 + p2z

−2 + · · · ,
q(z) = q−`z

` + q1−`z
`−1 + · · ·+ q−1z

+q0 + q1z
−1 + q2z

−2 + · · · .

Then, by comparing powers of z−k for k ≥ −`, it follows
from

x0 = (zI −A)p(z)−Bq(z) and Cp(z) is polynomial,

that
0 = p1−` −Bq−`
0 = pk+1 −Apk −Bqk for − ` < k < 0
x0 = p1 −Ap0 −Bq0
0 = pk+1 −Apk −Bqk for k ≥ 1

and
0 = Cpk for k ≥ 1

Hence, for k ≥ 1, it follows that

pk+1 = Apk +Bqk and Cpk = 0.

Introducing p̃(s) =
∑
k≥1 pkz

−k and q̃(s) =
∑
k≥1 qkz

−k, it
follows that

p1 = (zI −A)p̃(z)−Bq̃(z) and Cp̃(z) = 0,

which implies that p1 ∈ V∗(kerC), see [8].
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Further,

x0 = p1 −Ap0 −Bq0
0 = pk+1 −Apk −Bqk for all − ` ≤ k < 0

with p−` = 0. In particular,

x0 = p1 −Ap0 −Bq0
0 = p0 −Ap−1 −Bq−1
...

...
...

0 = p2−` −Ap1−` −Bq1−`
0 = p1−` −Bq−`

Multiplying the obtained equations by I, A, . . . , A`−1 and A`,
respectively, and adding them together, it follows that

x0 = p1 −Bq0 −ABq−1 − · · · −A`Bq−`.

Hence, it follows that x0 − p1 ∈ 〈A|im B〉. With p1 ∈
V∗(kerC), it consequently follows that x0 ∈ V∗(kerC) +
〈A|im B〉.


